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ABSTRACT A force plate is one of the most popular tools for postural stability assessment. It decomposes
the ground reaction force (GRF) applied to the human body into multiple force components to determine
the center of pressure (COP), which is the point at which the GRF is applied. Many COP measures have
been proposed to characterize postural stability. Despite postural stability being closely related to GRF
components, the interactions between them have rarely been studied. By studying the correlation structure
of these GRF components, we developed a set of features to assess postural stability. We determined the
correlationmatrix of these GRF components and subsequently solved the corresponding eigenvalue problem;
we used the resulting eigenvalues to characterize postural stability. The effectiveness of the proposed features
was demonstrated by using them to differentiate between individuals in two age groups: 18–24 and 65–73
years. Statistical test results showed that the correlation matrix eigenvalues of the two age groups differed
significantly. The classification results demonstrated that most of the correlation matrix eigenvalues were
more sensitive to age variations than one of the most reliable and accurate conventional COP features.
Furthermore, by reducing the force sensing requirement from three-dimensional to one-dimensional by
considering only the vertical GRF components, a simplified version of the proposed approach can be
obtained, which could reduce the cost of the force plate system substantially.

INDEX TERMS Correlation structure, force plates, ground reaction force, postural control, quiet standing.

I. INTRODUCTION
The center of pressure (COP) is defined as the point at which
the ground reaction force (GRF) is applied to the human
body. Our postural control system must adaptively adjust
the position of the COP to generate stabilizing moments
to maintain postural balance [1], [2]. By decomposing the
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GRF into multiple force components, force plates can easily
determine the location of the COP. For the remainder of the
manuscript, the GRF components that have been obtained by
the force plates will be referred to as FP-GRF signals.

Owing to the critical role of the COP in postural bal-
ance and the ease with which force plates can be used,
COP features have been employed in approximately 60%
of the published literature on postural control [3], [4].
Many COP features have been proposed for assessing the
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impacts of different health-related conditions on postural sta-
bility; these health-related conditions include aging [5], [6],
peripheral neuropathy [7], musculoskeletal disorders [8],
stroke [9], [10], spinal cord injury [11], concussion [12],
cancer [13], frailty syndrome [14], symptomatic degener-
ative lumbar disease [15], Parkinson’s disease [16], [17],
multiple sclerosis [18], [19], and fall risk [20]. In addition,
COP features have also been used to assess the impacts
of special events such as pregnancy. However, despite the
widespread use of the COP in assessing postural stability,
the FP-GRF signals associated with the COP have rarely been
studied [21].

Based on random matrix theory (RMT) developed by
Wigner et al. [22]–[26], the correlation structure method rep-
resents a systematic approach for studying multivariate time
series. By characterizing the interactions between multiple
channels of signals with the eigenvalues and eigenvectors
of the correlation matrix, the correlation structure method
has been used to analyze the multivariate time series associ-
ated with financial data [27], [28], magnetoencephalography
recordings [29], climate data [30], internet traffic [31], and
electroencephalograms [32]–[35]. However, to the best of our
knowledge, the correlation structure of the FP-GRF signals
has never been studied. Therefore, in this work, we introduce
a set of features to assess postural stability by extracting
features from the correlation structure of the FP-GRF signals
(hereafter, the GRF correlation structure). The effectiveness
of the proposed features was verified by using them to differ-
entiate between individuals belonging to two age groups via
experiments in which the individuals were asked to be in the
quiet standing posture. The assumption is that if the proposed
features can outperform the conventional measures used in
detecting the effects of aging on postural stability, then the use
of the proposed features as general postural stabilitymeasures
would warrant further investigation.

Compared to conventional methods which assess postural
stability by using features extracted from two-dimensional
COP motion, a novelty of the proposed approach is that
postural stability features are extracted from eight channels of
FP-GRF signals. In addition, by using RMT to study the GRF
correlation structure, this work introduces a new theoretical
framework for postural stability assessment.

II. METHODS
A. EXPERIMENTAL PROCEDURE
The volunteers participating in this study belonged to two
age groups—a younger age group (20.1 ± 1.29 years,
range 18-24 years; BMI 22.5 ± 3.21 kg/m2) and an older
age group (68.7 ± 2.96 years, range 65-73 years; BMI
23.9 ± 4.13 kg/m2). Each group consisted of ten healthy
men and ten healthy women. Based on self-reports and
physical examinations, we verified that no participant had a
pathological condition that would compromise their postural
performance. The experimental procedures were approved
by the Institutional Review Board of the Kaohsiung Medical

University Chung-Ho Memorial Hospital, Kaohsiung, Tai-
wan. Written informed consent was obtained from partici-
pants before the test.

Every participant was tested in two experimental sessions
per day for 2 days. Each session included three 80 s eyes-
open–closed trials. Consequently, each test participant under-
went 12 trials (3 trials/session × 4 sessions). In the first 40 s
of the trials, the participants were asked to look straight ahead
at a visual reference and stand quietly (with arms at the side)
in a comfortable stance near the center of the force plate.
Subsequently, under the same test conditions, the participants
were asked to close their eyes for the remaining 40 s of the
trial. The trials and sessions were separated by approximately
1 and 5 min of rest, respectively. Unless otherwise specified,
the data collected between 5 s and 35 s in the eyes-open trials
were used for this study.

The measurement system consisted of a force plate
(9286AA, Kistler Instrumente AG) connected to a PC-based
data acquisition system. The force plate measurements were
sampled at 512 Hz with a 14-bit analog-to-digital data acqui-
sition card (USB-6009, National Instruments, Austin, TX)
connected to a desktop PC. The data processing software was
a custom-developed program written in LabVIEW (National
Instruments, Austin, TX). The signals were filtered using
a zero-phase sixth-order low-pass Butterworth filter with a
5-Hz cutoff frequency.

B. CORRELATION STRUCTURE METHOD
The first step in the correlation structure method is to deter-
mine the correlation matrix of the multivariate time series to
study the interdependencies between N channels of signals.
The i-th row and j-th column of the correlation matrix is
specified as the Pearson product-moment correlation coef-
ficient between the i-th and j-th signals; it is denoted as
cij. The correlation matrix, denoted as C, is a real N by N
symmetric matrix with diagonal terms cii = 1. To study
the correlation structure of these signals, we then solve the
eigenvalue problem

(C − λiI)vi = 0 (1)

to determine the eigenvalues λi and eigenvectors vi for
i = 1, . . . , N . In (1), I is an N -dimensional identity matrix
and 0 is anN -dimensional vector whose elements are all zero.
Through linear algebra, it can be shown that the resulting
eigenvalues are always real and that the corresponding eigen-
vectors are orthogonal to one another. Using linear algebra,
we can also show that the sum of the eigenvalues isN . That is,
λ1+λ2+λ3+· · ··+λN = N , and the value λi is proportional
to the amount of correlation in the direction of its eigenvector
vi. The eigenvalues are arranged in ascending order such that
λmin = λ1 ≤ λ2 ≤ λ3· · · · ≤ λN = λmax ; these eigenvalues
are called the spectrum of the correlationmatrix. Notably, this
spectrum plays a central role in characterizing the correlation
structure of a multivariate time series.

After solving the eigenvalue problem, most previous
studies attempted to use the information provided by the
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eigenvalues and eigenvectors to separate genuine correlations
from random correlations. By assuming the number of signals
N → ∞, the number of data points of each of these signals
L → ∞, and Q = L/N ≥ 1, the probability distribution
function of the correlation matrix eigenvalues of independent
Gaussian signals can be represented as [36]:

ρ(λ) =
Q
√
(λ+ − λ)(λ− − λ)

2πσ 2λ
(2)

where

λ− = σ
2

(
1+

1
Q
− 2

√
1
Q

)
, λ+ = σ

2

(
1+

1
Q
+ 2

√
1
Q

)
(3)

with λ− and λ+ representing the lower and upper bounds
of the eigenvalues, respectively. Hereafter, the eigenvalues
outside the RMT bounds of (3) are referred to as displaced
eigenvalues.

When signals are all mutually independent and thus uncor-
related, the correlation matrix should be an identity matrix.
However, because of the finite size of the time window used
to construct the correlation matrix, the off-diagonal elements
of the correlation matrix are generally not zero even when
the signals are completely independent. Equation (3) is used
to determine the lower and upper bounds of the correla-
tion matrix eigenvalues for such random correlation results;
therefore, (3) provides a guideline for identifying nonrandom
correlations. The presence of displaced eigenvalues implies
the existence of nonrandom correlations. Therefore, by iden-
tifying displaced eigenvalues, one can differentiate physically
meaningful correlation modes from the background noise by
using RMT [30], [32], [34]. A more rigorous and complete
introduction to RMT is beyond the scope of this work. Inter-
ested readers are referred to papers and books such as [32]
and [37]–[39].

Studying the correlation structure of a multivariate time
series by using the results of RMT has several limitations.
First, the requirements of N → ∞ and L → ∞ are
difficult to meet when dealing with real-world signals. Sec-
ond, the results of RMT are invalid for nonstationary time
series. Third, interpreting the eigenvalue statistics is often
very difficult [30], [39]. Therefore, instead of studying the
GRF correlation structure analytically, we directly tested the
effectiveness of the correlation matrix eigenvalues in char-
acterizing postural stability by differentiating between indi-
viduals belonging to two age groups via the quiet standing
experiments described in the previous section.

C. GRF COMPONENTS OBTAINED BY FORCE PLATE
A force plate, which is shown in Fig. 1, is a simplemechanical
device. In Fig. 1, the x, y, and z axes correspond to the
medial–lateral (ML), anterior–posterior (AP), and vertical
directions, respectively, whereas the origin of the coordinate
system is chosen as the geometrical center of the force plate.
In addition, dx and dy represent the distances along the x and

FIGURE 1. Force plate with its coordinate system and three geometrical
parameters. The locations of four force sensors on the force plate are also
shown.

y axes, respectively, from the coordinate axes to the force
sensors, and dz is the distance along the z axis from the origin
of the coordinate system to the support surface of the force
plate.

With force transducers positioned at the four corners of
the force plate, Fi denoting the GRF component at the i-th
corner of the force plate, and fx , fy, and fz denoting the GRF
components in the ML, AP, and vertical directions, respec-
tively, the resultant GRF can be expressed as the following
vector f:

f = fxi+ fyj+fzk = F1 + F2 + F3 + F4 (4)

where i, j, and k are unit vectors along the x, y, and z axes,
respectively. By denoting Fiz as the vertical component of Fi,
the vertical component of the resultant GRF f can be written
as

fz = F1z + F2z + F3z + F4z (5)

Similarly, theML andAP components of the resultant GRF
f can be represented as

fx = F1x + F2x + F3x + F4x (6)

fy = F1y + F2y + F3y + F4y (7)

where Fix and Fiy are the ML and AP components of Fi,
respectively. The force plate employed in this work uses eight
FP-GRF signals to compute the COP. These FP-GRF signals
are F12x = F1x + F2x , F34x = F3x + F4x , F14y = F1y + F4y,
F23y = F2y + F3y, F1z, F2z, F3z, and F4z. Using Newtonian
mechanics, we derive the following equations, which can then
be used to determine the coordinates of the COP.

COPx =
dx (F14z − F23z)+ dz (F12x + F34x)

F1z + F2z + F3z + F4z
(8)

COPy =
dy (F12z − F34z)+ dz

(
F14y + F23y

)
F1z + F2z + F3z + F4z

(9)

For a given COP position, (8) and (9) represent two balance
task constraints imposed on the FP-GRF signals. Another
balance task during quiet standing is control of the rotation
about the center of mass of the human body in the verti-
cal direction [40]. When standing on a force plate, the free
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moment (FM) applied to the human body can be represented
as [41], [42]:

FM = −dx(F14y − F23y)+ dy(−F12x + F34x)

−COPx(F14y + F23y)+ COPy(F12x + F34x) (10)

As a frictional torque, FM also needs to be appropriately
controlled to prevent our body from rotating excessively in
the vertical direction. Therefore, (10) represents another con-
straint imposed on FP-GRF signals.

With the balance task constraints of (8) - (10), it is evident
that the FP-GRF signals cannot be all mutually indepen-
dent. Consequently, we hypothesize that the GRF correlation
structure should contain some displaced eigenvalues, that is,
at least some of the eigenvalues are outside the RMT bounds
of (3). The validity of this hypothesis will be discussed in
Section III.

D. DATA ANALYSES
Data analyses were performed to assess the differences
between individuals belonging to two age groups by using
the tested features. To compare the proposed approach with
the conventional method, in addition to the correlation matrix
eigenvalues, the tested features also included a COP velocity
feature. The COP velocity is typically characterized by its
mean velocity (MV), its MV in the ML direction (MVML),
and its MV in the AP direction (MVAP). This study chose
MVAP as the benchmark COP feature because it has been
considered the most sensitive measure in the assessment of
postural balance performance [5], [43], [44] and is considered
one of the best traditional COP features in identifying older
people with high fall risk [20]. For the sake of comparison,
this study also reports the results obtained by MVML .

Considering the possible nonstationarity of the FP-GRF
signals and by assuming these signals to be stationary for a
short duration, we used a sliding window method to deter-
mine the correlation matrices. As shown in Fig. 2, a sliding
window of width T is moved along the signals with a step
size 1T . The correlation coefficients of all signal pairs can
be computed for each of these sliding windows. For the k-th
window, such a correlation coefficient between the i-th and
j-th signals is denoted as cij[k]. With cij representing the
i-th row and j-th column element of the correlation matrix
C[k], the corresponding eigenvalues and eigenvectors can
then be determined by solving the eigenvalue problem. After
sorting the eigenvalues in ascending order, the vector of the
eigenvalues is defined as λ = [λ1, λ2, . . . , λ8]T. In this work,
the length of the sliding window T was chosen as 1 s. The
step size 1T of the sliding window was chosen as 0.125 s.
Therefore, for a signal length of 30 s, the number of windows
was 233 (29 s/0.125 s + 1).
To demonstrate the effectiveness of the proposed approach,

we first used a standard statistical test procedure to compare
the two age groups.We denoted the i-th eigenvalue population
means of the younger and older populations as λ̄YPi and λ̄OPi ,
respectively, and performed two-sided t-tests to determine

FIGURE 2. Sliding window method employed in this work to determine
the correlation matrix of the signals of GRF components.

FIGURE 3. Eigenvalues of the younger and older age groups.

whether the value of λ̄YPi was different from the value of
λ̄OPi . The difference was considered significant if the p-value
was < 0.05.
To set up the samples for the statistical tests, for a given test

participant, the value of the i-th eigenvalue associated with
the k-th window of the j-th experimental trial was denoted as
λi(j, k) for j = 1, . . . , 12 (12 trials/person), and k = 1, . . . ,
233 (233 windows/trial). By averaging this variable over the
sliding windows and the experimental trials, the sample value
of the i-th eigenvalue was determined using

λi =
1

2796

12∑
j=1

233∑
k=1

λi(j, k) (11)

The statistical test results are summarized in Table 1.
Table 1 also presents the results of the benchmark COP fea-
ture. To illustrate the distribution patterns of the eigenvalues,
the sample means of the eigenvalues are plotted in Fig. 3 for
both age groups.

To further compare the effectiveness of the proposed fea-
tures, we used a binary classification method to classify the
younger and older age groups by using the tested features.
To use a larger data set to verify the effectiveness of the
proposed approach, we employed a simple data augmentation
technique to increase the size of the dataset. As mentioned
earlier, we conducted 12 trials (4 sessions × 3 trials/session)
with each test participant, and therefore, the number of possi-
ble combinations for selecting three objects from 12 objects
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TABLE 1. Statistical Test Results of Tested Features Obtained from 3D GRF Components.

is 220. By using the average of three trial results as the test
sample, we could generate 220 samples for each participant
by using the data augmentation technique. Consequently,
the number of samples of each age group increased from
240 (12 measures/person × 20 persons) to 4400 (220 mea-
sures/person × 20 persons).

When performing the classification tests, each of the tested
features was independently used to classify the two age
groups. When solving these binary classification problems,
we assumed that the mean of the tested feature of the positive
class was larger than that of the negative class.

When classifying any given sample data point, if its feature
value was larger than a specified threshold, the classifier
assigned this data point to the positive class. Otherwise, this
data point was assigned to the negative class. If a positive
class sample data point was correctly classified as positive,
it was counted as a true positive, and if a negative class sample
data point was classified as positive, it was counted as a
false positive. The true and false positive rates vary with the
value of the threshold. By sweeping the threshold from the
lowest to the highest sample data values, a receiver operating
characteristic (ROC) curve was generated by plotting the true
positive rate as a function of the false positive rate. The area
under the curve (AUC) of the ROC curve was computed
and reported in this work. The AUC represents an estimate
of the probability that a classifier ranks a randomly chosen
positive example higher than a randomly chosen negative
example [45].

Accuracy was defined as the proportion of correctly clas-
sified samples; in this study, we chose the optimal operating
point of the ROC curve as the point that yields the highest
classification accuracy. Sensitivity was defined as the pro-
portion of correctly classified older age group samples, and
specificity as the proportion of correctly classified younger
group samples. This study used accuracy, sensitivity, and
specificity associated with the optimal operating point of
the ROC curve to characterize the classification results. The
classification test results are summarized in Table 2.

The basic version of the proposed approach assumes
that the force plate can measure three-dimensional (3D)
GRF components. However, this approach can be directly

TABLE 2. Classification Results of Tested Features Obtained from 3D GRF
Components.

adapted to force plates that can only measure the GRF com-
ponents in the vertical direction: F1z, F2z, F3z, and F4z.
The following reasons can justify such a simplification.
First, one-dimensional (1D) force sensors are much more
affordable than 3D force sensors. Therefore, the cost of the
measurement system can be considerably reduced. Second,
because of the gravitational force in the vertical direction,
theGRF components in the vertical direction are considerably
larger than the GRF components in the horizontal direction
during quiet standing. Therefore, the GRF components in the
AP and ML directions are often considered negligible when
computing the COP during quiet standing [46], [47]. This is
also the reason that the Nintendo Wii balance board (Nin-
tendo) is considered a suitable and reliable tool for assessing
the performance of standing balance, even though it cannot
be used for measuring the horizontal components of the
GRF [48]–[50]. The 1DGRF statistical and classification test
results obtained by considering only the GRF components
in the vertical direction are summarized in Tables 3 and 4,
respectively.

Finally, to further test the proposed approach, the tested
features were used to differentiate younger age group test
subjects in eyes-open and eyes-closed conditions. This is
important since it is well known that withdrawal of visual
information can degrade postural stability. Similar to Table 2,
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TABLE 3. Statistical Test Results of Tested Features Obtained from 1D
GRF Components.

TABLE 4. Classification Results of Tested Features Obtained from 1D GRF
Components.

the classification results are summarized in Table 5. In this
test, sensitivity was defined as the proportion of correctly
classified eyes-open samples, and specificity as the propor-
tion of correctly classified eyes-closed group samples.

III. RESULTS AND DISCUSSION
In agreement with previous studies, the benchmark COP fea-
ture, that is, the meanMVAP of the older group is significantly
higher than that of the younger group (Table 1). Significant
statistical test results were achieved for all the eigenvalue
features. The mean of the highest eigenvalue (i.e., λ8) of the
older group is significantly higher than that of the younger
group. This result indicates that the dominant role of the
highest eigenvalue of the older group is more prominent than
that of the younger group. By contrast, the means of the
remaining eigenvalues of the older group are all significantly
lower than those of the younger group.

According to RMT, a condition for eigenvalues to be
bounded by (3) is that signals need to be independent of
one another. Eigenvalues that show large deviations from the
RMT bounds correspond to a genuine multivariate time series
correlation structure. As discussed in Section II.C, with three
balance task constraints, the FP-GRF signals cannot be all
mutually independent. Therefore, we hypothesized that some
of the eigenvalues should be outside the RMT bounds of (3).

With L = 512 (1 s window with a 512-Hz sampling rate)
and N = 8 (eight channels of FP-GRF signals), the eigen-
value bounds associated with (3) are [0.765 1.265]. As shown
in Table 1, the eigenvalues obtained in this work are all
outside the RMT bounds. This implies that none of the corre-
lations between the FP-GRF signals are random. However,

TABLE 5. Classification Results of Tested Features Obtained from 3D GRF
Components for assessing the visual effects of the younger age group.

this finding is not conclusive because the requirements of
L → ∞ and N → ∞ have not been met. Nevertheless,
several other observations also support the existence of non-
random correlations in the GRF correlation structure.

The first observation, as inferred from Fig. 3, is that there
is a clear separation of the highest eigenvalue from the
remaining eigenvalues in both age groups. The implications
of such an eigenvalue distribution pattern can be illustrated
by considering two extreme correlation structure cases. In the
first case, all signals are assumed to perfectly correlate with
one another. By recalling that the sum of the eigenvalues is
N , this spectrum of eigenvalues has only one nonzero eigen-
value, λN = N , and thus exhibits a centralized distribution
pattern. In the second extreme case, all signals are all mutu-
ally independent and thus uncorrelated. In this case, we have
a uniform eigenvalue distribution pattern of λi = 1 for
i = 1, . . . , N. The results shown in Fig. 3 are very dif-
ferent from the uniform distribution pattern and resemble
the centralized distribution behavior. Thus, Fig. 3 supports
the existence of nonrandom correlations in the GRF cor-
relation structure. In fact, a previous work found that a
repulsion between the highest eigenvalue and the remain-
ing eigenvalues occurs when all signals are simultaneously
correlated [38].

The second observation is related to the probability distri-
bution function predicted byRMT. If the correlations between
the FP-GRF signals are all random, the probability distribu-
tion function of the eigenvalues should be represented by (2).
If this is indeed the case, the eigenvalues of the younger and
older age groups should have the same probability distribu-
tion function and their eigenvalues should therefore be identi-
cal. However, as seen in Table 1, the means of eigenvalues of
the two age groups are all significantly different. In addition,
the results in Table 2 indicate that the differences between
the eigenvalues can effectively help distinguish between the
two age groups. Therefore, these results appear to suggest that
that the two age groups have different nonrandom correlation
properties, which can help differentiate between individuals
of the two age groups.
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In addition to the identification of the nonrandom correla-
tions of the GRF correlation structure, the issue that warrants
investigation is the impact of the horizontal GRF compo-
nents. As mentioned in Section II.D, when computing the
COP by using (8) and (9), the contributions of the horizontal
GRF components were considered negligible for quiet stand-
ing. This assumption is supported by our results. As seen
in Tables 1 and 3, theMVAP values obtained from 3D and 1D
GRF signals are similar. Furthermore, by only considering
the vertical GRF components, we observe that the statistical
and classification test results presented in Tables 3 and 4 are
in accordance with the results presented in Tables 1 and 2,
respectively. A comparison between the 1D GRF correlation
structures of the two age groups shows that the means of the
correlation matrix eigenvalues are all significantly different
(Table 3) suggesting that these eigenvalues can still be used to
effectively differentiate between individuals belonging to the
two age groups (Table 4). However, the results of Table 4 are
inferior to the results of Table 2. In specific, the highest AUC
and accuracy in Table 2 are 0.971 and 0.904 (obtained by λ6),
respectively. In comparison, the highest AUC and accuracy
in Table 4 are 0.894 and 0.822 (obtained by λ4), respectively.
Such differences suggest that the horizontal GRF components
play an important role in characterizing the GRF correlation
structure and should be considered when assessing postural
stability.

Finally, Table 5 summarizes the classification results of
the tested features for differentiating the eyes-open and eyes-
closed experimental data of the younger age group. Results
of Table 2 and Table 5 demonstrate that the tested features
are less effective in assessing the impact on postural stability
caused by visual effect than that caused by the aging effect.
However, in differentiating the visual effect on the younger
age group, two of the proposed features (λ7 and λ8), are
still able to provide better results than the benchmark COP
feature MVAP.

To further investigate the potential of the proposed
approach in assessing postural stability, we should adapt
the proposed approach to allow it to be used with differ-
ent GRF measurement devices in future work. For example,
by placing pressure sensors under different areas of the foot,
many instrumented insoles can measure multiple GRF com-
ponents [51]–[55]. By studying the GRF correlation struc-
ture associated with these instrumented insoles, the proposed
approach can be used to study human walking and running
behaviors.

IV. CONCLUSION
As the only variable force applied to the human body dur-
ing quiet standing, the GRF plays a crucial role in postu-
ral balance. When measured using force plates, the GRF
is decomposed into multiple components. Therefore, when
standing on a force plate, our postural control system needs to
coordinate these force components tomaintain stable posture.
Despite the postural stability being closely related to these
GRF components, the interactions between postural stability
and GRF components have rarely been studied.

Based on RMT, we proposed a systematic approach to
analyze the correlation structure of these GRF signals.
We determined their correlation matrix and then solved
the corresponding eigenvalue problems; we then used the
resulting eigenvalues to characterize postural stability. The
effectiveness of the proposed features was demonstrated
by comparing the GRF correlation structures of individuals
belonging two age groups via experiments in which the
individuals were in the quiet standing posture.

The experimental results reveal the following. First, our
results agree with the analytical results obtained using RMT,
which predict the eigenvalue bounds for mutually indepen-
dent signals. Because the GRF components are constrained
for several balance tasks and therefore cannot be all mutually
independent, some of the eigenvalues should be outside the
RMT bounds. This hypothesis was at least partially supported
by our experimental results because the eigenvalues obtained
in this study were all outside the RMT bounds. Second,
statistical and classification test results demonstrated that the
eigenvalues of the GRF correlation structure can effectively
differentiate between the two age groups. Therefore, we con-
clude that the GRF correlation structure is age dependent.
The third finding relates to the horizontal GRF components,
which have been considered negligible during quiet stand-
ing. However, by comparing the classification test results
obtained from 1D and 3D GRF components, we found that
the horizontal GRF components provide valuable information
for postural stability assessment and therefore should not be
completely ignored.

Considering the simplicity and effectiveness of the pro-
posed features, a possible future work is to extensively test the
effectiveness of the proposed features in characterizing the
impact of many health-related conditions that could impair
postural stability. Another possible future work is to adapt the
proposed approach to other GRF measurement devices such
as instrumented insoles.
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