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ABSTRACT In the past decade, research in the face recognition area has advanced tremendously, particularly
in uncontrolled scenarios (face recognition in the wild). This advancement has been achieved partly due
to the massive popularity and effectiveness of deep convolutional neural networks and the availability
of larger unconstrained datasets. However, several face recognition challenges remain in the context of
very low resolution homogeneous (same domain) and heterogeneous (different domain) face recognition.
In this survey, we study the seminal and novel methods to tackle the very low resolution face recognition
problem and provide an in-depth analysis of their design, effectiveness, and efficiency for a real-time
surveillance application. Furthermore, we analyze the advantage of employing deep learning convolutional
neural networks, while presenting future research directions for effective deep learning network design in
this context.

INDEX TERMS Low resolution face recognition, unconstrained face recognition, coupled mappings, super

resolution, efficient face recognition models, lightweight convolutional neural networks.

I. INTRODUCTION

Pattern recognition algorithms have evolved very swiftly in
the past decades. Computing power and storage nowadays
allow us to process large datasets even in a single com-
puter, allowing us to propose and implement a more robust
and accurate pattern recognition models. These models have
applications in diverse areas such as cybersecurity [9], critical
industrial systems [60], social networking [59], [61], among
others. In pattern recognition for computer vision, automated
face recognition is a very relevant area of research. Applica-
tions for automated face recognition systems include aiding
in law enforcement, forensics, surveillance tracking, and bio-
metrics authentication [55], among others. Automated face
recognition is the task of identifying or verifying a person’s
identity using a computer system, where this person’s face
image serves as a reference for posterior recognition. Today,
face recognition algorithms can run in real-time on a smart-
phone. However, challenges still exist in this area, includ-
ing face recognition in uncontrolled environments with low
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image resolution and image artifacts. Face recognition algo-
rithms still need to improve in their robustness, reliability, and
inference time performance.

The face recognition task is comprised of four steps: face
detection, alignment, feature extraction, and identity match-
ing. A classic algorithm for the face detection step is the
Boosting approach proposed by Viola and Jones [97]. The
viola-Jones face detector uses classifiers in a cascade fashion,
making it robust and efficient at inference run-time. Face
alignment consists of using the detected face landmarks to
estimate a frontal position for that face image. This process
is also known as face frontalization. Some face alignment
methods map the new face position in a 2D space or a
3D space [8]. More recent approaches based on convolu-
tional neural networks include Multi-task Cascaded Convolu-
tional Networks [119] and the Retinaface detector [20]. Both
approaches couple the face detection and alignment steps and
show an impressive benefit of training them together. For the
feature extraction step, Traditional approaches include Eigen-
faces [95], Fisherfaces [3], the extraction of Local Binary
Pattern Histograms [24], Gabor [17], SIFT [57], and SURF
[2] features; and at the start of this decade, works with learned
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descriptors such as [11] started to emerge. However, these
methods struggle with capturing the non-linearity (deforma-
tions, pose, and lighting conditions) of face appearances in
unconstrained scenarios. The face recognition evaluation task
has two variants: identification and verification. Identifica-
tion refers to a one-to-many probe and gallery matching,
while verification refers to a one-to-one probe and gallery
verification. Simultaneously, the evaluation can be open-set,
where probes can either appear or not in the gallery, or closed-
set, where the probes always appear in the gallery.

Face recognition in uncontrolled scenarios, also called face
recognition in the wild, refers to identifying or verifying a
person from face images taken from scenes with variations in
illumination, scale, viewpoint, aging, partial occlusion, and
image quality. Automated face recognition in uncontrolled
scenarios has made remarkable progress in the last decade,
mainly due to the popularization of methods based on neu-
ral networks. Popular benchmark databases such as Labeled
Faces in the Wild (LFW) [41], YouTube Faces (YTF) [105],
and CelebA [56] have gathered most of the attention from
researchers in the face recognition field. Today it is possible
to obtain a recognition accuracy performance of more than
96%, even in real-time constraints (more than 30 frames
per second) [66] in these datasets. In turn, these models
sacrifice model explainability [58] in favor of achieving better
recognition performance.

Additional approaches for bringing face recognition and
biometrics authentication methods to a real-world appli-
cation include protection against computer vision-based
authentication system adversarial attacks such as CNN-based
Anti-spoofing [71] and multi-factor authentication systems
[81]. Surveillance systems can also benefit from match-
ing Near Infrared and Visible Spectrum images (NIR-
VIS) as infrared sensors become more widely available.
As noted by [73], these approaches focus on model-
ing the change of illumination from the visible spectrum
domain to the infrared one. Modern approaches in this area
include [35], [124], and [75].

Due to the recent increased focus on real-world video
surveillance applications, there is also an increasing need
for face recognition algorithms robust to very low resolution
scenarios. This newer very low resolution face recognition
challenge translates to poor face recognition accuracy perfor-
mance for traditional face recognition algorithms. Recogni-
tion accuracy performance rapidly declines once face regions
with an area of 32 x 32 pixels or below are present [7].
We refer to these pixel area sizes to very low resolution
(VLR) in this paper. Furthermore, at the start of this decade,
datasets accurately representing this VLR video surveillance
scenario were unavailable. Recent efforts for more accurate
real-world surveillance application datasets for very low res-
olution face recognition have emerged in the past few years.
These databases include the SCface dataset [29], UCCS [84],
IJB-S [48], TinyFace [14], and Survface [16].

In contrast to previous studies for very low resolution face
recognition [53], [54], and [100], we explore and analyze
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the efficacy and efficiency of the state-of-the-art methods on
challenging datasets for this problem. We focus on the aspects
each method uses to solve the very low resolution problem
and the complexity elements impacting efficiency perfor-
mance, while also pointing out its limitations. Additionally,
in comparison with [72], this survey also covers more recent
methods from the state of the art relevant to specific native
VLR face recognition datasets, described in Subsection I-A.
Furthermore, we discuss other face recognition approaches
focused primarily on efficient run-time computation. Lastly,
we provide new research directions stemming from advance-
ments on lightweight convolutional neural networks, capsule
networks, and knowledge distillation.
In this study, we make the following contributions:

o Provide an efficiency and efficacy analysis of current
state-of-the-art methods for very low resolution face
recognition.

o Provide an in-depth study of the advantages and lim-
itations of current approaches for the very low reso-
lution face recognition problems from an application
perspective.

« Provide an overview of alternative modern lightweight
architectures and their performance on very low resolu-
tion face datasets.

« Provide insights for future research directions.

This paper is organized as follows. Section I presents the
unconstrained very low resolution face recognition prob-
lem. Section II analyzes the state-of-the-art methods for
solving the VLR FR Problem, divided into Subsection II-A
for heterogeneous approaches and Subsection II-B for
efficient homogeneous approaches. Section III presents
and discusses the performance results of state-of-the-art
approaches in relevant unconstrained VLR FR datasets
(Subsections III-A and III-B), discusses the research chal-
lenges affecting unconstrained VLR FR performance
(Subsection III-C), and discusses future research directions
for the VLR FR area (Subsection III-D. Finally, Section IV
gives the final remarks of our study.

A. DATASETS FOR VERY LOW RESOLUTION FACE
RECOGNITION

Currently, very low resolution face recognition under surveil-
lance scenarios is a very niche research area with limited
datasets available. Recent efforts for expanding studies in
this area include the datasets described in Table 1. The
SCface [29], Point and Shoot [4], IJB-S [48], UCCSface
[84], QMUL-Survface [16], and QMUL-Tinyface [14] are
the available benchmark datasets for unconstrained very low
resolution face recognition. Extensive studies across all the
previously mentioned benchmark datasets are not present in
the current state of the art.

Fig. 1 shows samples of all the aforementioned datasets.
We can appreciate that the datasets suited for heterogeneous
face recognition benchmarking are the SCface, Point and
Shoot, UCCSface, and IJB-S, because they contain both high
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TABLE 1. Summary of unconstrained datasets for very low resolution face recognition. Taken and complemented from [53]. Most of the available
datasets come from real-world surveillance imagery and contain high resolution and low resolution pairs, except QMUL-surface and QMUL-Tinyface.
However, these two datasets contain the largest number of images and identities, making them suitable training deep learning methods.

Database name Source Quality Static image/video  # subjects # images
Point and Shoot [4] Manually Collected HR + blur  static + video 558 12,178
SCface [29] Surveillance HR + LR static 130 4,160
QMUL-Survface [16]  Surveillance LR static + video 15,573 463,507
QMUL-TinyFace [14] Web LR static 5,139 169,403
UCCSface [84] Surveillance HR + blur  static 308 6,337
1JB-S [48] Surveillance HR + LR static + video 202 3 million+

Point and Shoot

oy |
FOERR

QMUL-Survface QMUL-Tinyface UCCSface

SCface

FIGURE 1. Example of subjects in the different datasets available for very
low resolution face recognition, taken from their respective dataset
papers [4], [16], [29], [48], [14], and [84]. The SCface [29], Point and Shoot
[4], UB-S [48], and UCCSface [84] are the most suitable for heterogeneous
face recognition, because they supply the HR and VLR image pairs for
each identity. The QMUL-Survface [16] and QMUL-Tinyface [14] are
suitable for the homogenous face recognition problem, where only VLR
images are available.

resolution and native low resolution imagery. On the other
hand, the QMUL-Survface and QMUL-TinyFace datasets are
suitable for deep learning homogeneous face recognition due
to their large number of images and identities. These are very
different problems on their own. However, in a multi-network
architecture solution, subnetworks could be pre-trained using
the VLR homogeneous datasets only, for instance.

Table 1 summarizes the datasets available for the very
low resolution face recognition specific task. The source
column indicates the scenario where the data was obtained,
the quality column indicates the type of the available images
where “HR” corresponds to High Resolution imagery, “LR”
to Very Low Resolution imagery and ‘““blur” to blurred low
resolution images. The static image/video column indicates
whether the dataset has static images and also contains video
data or not. The next columns indicate the total number of
identities and number of images.

Il. STATE-OF-THE-ART METHODS FOR SOLVING THE
VERY LOW RESOLUTION FACE RECOGNITION PROBLEM
The face recognition problem at very low resolution has two
variants: homogeneous and heterogeneous. In homogeneous
face recognition, we match images that come from the same
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source domain. In this case, both the probe images and the rest
of the reference images come from the unconstrained VLR
domain. In heterogeneous face recognition, we match images
from different domains: the probe VLR images with the
high resolution gallery images. As such, a domain gap exists
between the VLR probe image taken from the surveillance
camera and the high resolution reference gallery image taken
in a controlled environment. The VLR probe images have
a 32 x 32 resolution or less, and the reference gallery HR
images have a 100 x 100 resolution or more. The heteroge-
neous variant of the problem is the hardest one due to the
domain disparity between the probe and camera resolutions
in a varying range of conditions. Fig. 2 summarizes the
taxonomy for the state-of-the-art solutions for the variants
of the very low resolution face recognition problem. This
taxonomy is divided into methods for the Heterogeneous face
recognition problem, which are: Projection methods (Cou-
pled Mappings) and Synthesis methods (Super Resolution),
and the Homogeneous feature extraction and matching for
the homogeneous face recognition problem. This distinction
is common in the heterogeneous face recognition literature
[73]. Projection methods, called Coupled Mapping methods
in LR face recognition literature, aim to project both domains
into the same unified space. Synthesis methods, commonly
referred to as Super Resolution methods, aim to project
domain into the other. In this case, the VLR images get pro-
jected into the HR domain to perform face recognition. The
Homogeneous feature extraction and matching methods are
the traditional face recognition methods that perform a direct
one-to-one comparison with all the face images. We propose
to further divide each approach into traditional and deep
learning methods, since they have an important performance
gap in terms of accuracy and efficiency.

A. HETEROGENEOUS APPROACHES FOR VERY LOW
RESOLUTION FACE RECOGNITION

This subsection describes the state-of-the-art methods for
solving the heterogeneous very low resolution face recogni-
tion problem. These approaches are divided into Projection
and Synthesis methods, also commonly known as Coupled
Mappings and Super Resolution methods respectively.

1) PROJECTION METHODS: COUPLED MAPPINGS
Coupled mapping methods fall into the category of projec-
tion methods. This type of methods aim to find an adequate
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Traditional Methods

Projection Methods/
Coupled Mappings

Deep Learning
Methods

Heterogeneous Face
Recognition

Traditional Methods

Synthesis methods/

Super resolution

Traditional Methods

Homogeneous Feature
Extraction and
Matching

Homogeneous Face
Recognition

Deep Learning
Methods

Deep Learn
Methods

Linear Discriminant Analysis-based SDA, CMFA, CMDM

MDS, Pose Robust MDS,
DMDS, LDMDS, LMCM,
LGGS CM

Multidimensional Scaling-based

Deep Coupled ResNet,
TCN

Coupled Mapping Loss

Multiple-branch architecture GenLR-Net

S2R2, Yang et al., Zeyde et al.,

Sparse Representations Uiboupin et al.

Canonical Correlation CLLR-SR-CCA, 1D CCA, 2D
Analysis-based CCA SR

Single branch SR design C-SRIP, ComSupResNet

Deep Cascaded Bi-Network,
SNSR/Robust Partially Coupled
Network, CSRI, FAN

Coupled training

Capsule Network reconstruction Dual Directed CapsNet

Eigenfaces, Fisherfaces,

Holistic representations Taplacianfaces

Hand-engineered feature-based
matching

Gabor, Gabor+PCA-+LDA, Local
Binary Patterns

Conventional Convolutional Neural
Networks for face recognition

DeepFace, VGGFace, DeeplD,
FaceNet, RIDN

Lightweight Convolutional Networks
for face recognition

ShuffleFaceNet, MobileFaceNet,
‘VarGFaceNet

FIGURE 2. Taxonomy of the very low resolution face recognition state of the art approaches. We propose to divide every approach into both
traditional and deep learning methods due to the increasing effectiveness and popularity of deep learning methods in the past decade. Deep
learning methods tend to have a better generalization and take advantage of graphical acceleration (GPU) hardware to close the gap for a
real-time application. Approaches for bringing the real-world application to reasonable inference times on CPU include the Traditional
Multidimensional Scaling Coupled Mappings and the Lightweight Convolutional Neural Networks for homogeneous feature extraction and

matching methods.

representation of data from different domains by projecting
the HR and VLR images to a single unified space. Afterwards,
similarity metrics are be computed for classification and pos-
terior optimization operations, as illustrated in Fig. 3. Table 2
shows a summary of all the projection methods discussed in
this subsection.

a: CLASSICAL APPROACHES FOR COUPLED MAPPINGS

Classical methods for Coupled Mappings include Coupled
Marginal Discriminant Mappings [120], Multidimen-
sional Scaling (MDS) [6] and Pose-Robust MDS [5] by

VOLUME 9, 2021

Biswas et al., Simultaneous Discriminant Analysis [12],
and Coupled Marginal Fisher Analysis [88]. These meth-
ods are based on feature extraction, projection, and using
a variant of Linear Discriminant Analysis for classification
and matching. The optimization method of choice for MDS
problems is the iterative majorization algorithm [103].

The Multidimensional Scaling (MDS) approach pro-
posed by Biswas et al. [6] proposed to optimize the distance
between the transformed feature vectors using a combined
transformation matrix with three different regularizing terms.
The goal of the optimization is to approximate the distance
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TABLE 2. Summary of coupled mapping techniques. Most of the traditional approaches in the last years are based on Multidimensional Scaling [6] and
improved upon using locality constraints and enforcing inter-class margins. The rest of the methods are Deep Learning-based methods based on
ResNet/VGG architectures enforcing cross-resolution learning at an architecture branch level or the loss function level.

Method

Approach

Reported metrics

Simultaneous Discriminant
Analysis (SDA) (2011) [12]

Learn projection matrices using LDA-based scatter matrices
for images from LR and HR domains and their matching
combinations.

Multi-PIE [36] mean accuracy: 96.46% on
LR probe. No efficiency metrics reported.

Coupled Marginal Fisher
Analysis (2012) [88]

Marginal Fisher Discriminant Analysis-based optimization.
Objective function is to minimize the inter-class and intra-class
ratio of the sum of the distances between the projected features
to the unified space.

Multi-PIE [36] mean accuracy: 96.80% on
LR probe. No efficiency metrics reported.

Coupled Marginal Discrim-
inant Mappings (CMDM)
(2015) [120]

Model and optimize the ratio of similarity (scatter) matrices
between and inter-class for solving as an eigen-decomposition
problem. Similar to CMFA.

FERET mean accuracy: 88.5%. No effi-
ciency metrics reported.

Multidimensional
(MDS) (2012) [6]

Scaling

Optimize projected LR and HR feature distance and approxi-
mate them to HR features from the source domain.

SCface mean accuracy: 60%. No effi-
ciency metrics reported.

Pose-Robust MDS (2013)
[5]

Based on MDS [6]. Model and estimate mode and median
matrices from viewpoint, illumination and eigenimage info
from training set.

Multi-PIE: over 80% recognition rate.
SCface: outperforms SIFT+PCA,
SIFT+LDA, SURF+PCA, LBP on
rank-1 accuracy CMC curve by more
than 10% margin. No efficiency metrics
reported.

Discriminative
Multidimensional ~ Scaling
(DMDS) (2018) [108]

Inspired by MDS [6]. Adds inter-class and intra-class con-
straints to better project the features pertaining to each class
in the latent subspace.

SCface mean accuracy: 79.92%. No effi-
ciency metrics reported.

Local-Consistency
Preserved DMDS
(LDMDS) (2018) [108]

Complementary to DMDS. Only optimizes the sample distance
from the same domains, not accross.

SCface mean accuracy: 81.54%. No effi-
ciency metrics reported.

Large Margin Copuled
Mappings (LMCM) (2016)
[116]

Based on LDA. Maximizes class margins using weights from
constructed class graphs. Class is centroid-based.

SCface mean accuracy: 60.4%. Inference:
takes 8.5 microseconds per image (117.65
face images per second) on i5-4200U
CPU.

Local Geometry to Global
Structure CM [86] (2015)

Minimizes the mappings that minimize the distance of LR
and HR neighbors from the same class. Subsequently, combine
these mappings to generate the global projection matrix.

SCface: 43.2% mean accuracy. No effi-
ciency metrics reported.

Deep Coupled ResNet

(2018) [62]

Deep learning-based method. Uses trunk-branch structure. Fea-
ture extraction using a ResNet style subnetwork and branch
FC subnetworks for LR and HR images. Rescales images for
data augmentation strategy. Optimization using softmax and
centerloss functions.

SCface: 88.2% mean accuracy. No effi-
ciency metrics reported.

GenLR-Net (2018) [69]

Deep learning-based method. Uses VGG face architecture as
base. Uses multiple classification losses at different points in the
network to model the LR-HR relationship and a final contrastive
loss function to learn the LR projection closer to the HR
projected features.

LFW: 90.00% mean ver. rate. CFP:
77.28% ver. rate. No efficiency metrics
reported.

Transferable Coupled Net-
work (TCN) (2019) [115]

Dual branch architecture forHR and VLR input with
ResNet/VGGFace backbone. Only the HR subnetwork is pre-
trained. Optimized using the triplet loss by setting HR and
LR anchors with positive and negative reinforcements from the
opposite domain.

SCface: 89.37% mean accuracy with
ResNet backbone. No efficiency metrics
reported.

of the transformed feature vectors in the projected space,
to the distance of the samples in the default high resolution
space. The regularizing terms use an independent parameter
to control the approximation rate to the sample’s distance in
the high resolution space and the class separability.
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Later, Biswas er al. proposed Pose-Robust MDS [5],
which introduced a pose estimation after the MDS compu-
tation. The pose estimation process firstly projects the probe
image on the tensor basis extracted from the training low
resolution set, then estimates pose using the fiducial locations

VOLUME 9, 2021



L. S. Luevano et al.: Study on Performance of Unconstrained VLR Face Recognition

IEEE Access

3t MDS Approach

HR space

DMDS Approach

VLR space Y,

Native space LMCM Approach

Subspace projection

FIGURE 3. Visual comparison of classical Coupled Mappings methods.

In MDS [6], both domains get projected into a single common subspace
with the HR and the VLR features are closer but separated in the
intra-class space. In contrast, DMDS [108] introduces inter-class and
intra-class constraints that promote a larger, more discriminative, latent
space. In LMCM [116], the improved inter-class and intra-class margins in
the common subspace lead to a better recognition performance in
unconstrained scenarios, as opposed to prior techniques.

in relation to the median fiducial locations from the training
set. It involves modeling mode matrices for the subjects
in the training set, spaces of viewpoint, illumination, and
eigenimage vectors [95]. Then, after computing a TensorFace
component, the coefficient vectors for the face normalization
are computed. The authors also introduced robustness by
slightly perturbating the fiducial locations. The MDS and
pose components are independently trained, which helps at
not heavily taxing the total training time by the pose estima-
tion component and its increased number of fiducial locations
due to augmentations.

The approach proposed by Zhang et al. [116] called
Large Margin Coupled Mappings constructs inter-class
and intra-class graphs, then learns the projection matrices
by maximizing the class margins using the weights from the
graph distances of the inter-class graph and vice-versa for
the weights in the intra-class graph. Then, it introduces the
intra-class scatter as a regularizing term. The method uses
a scatter matrix approach for computing the inter-class and
intra-class distance, where a class centroid is used as a ref-
erence, the same as in LDA approaches. Fig. 3 illustrates the
margin enforced by the class graphs in the common subspace.
The reported inference run-time is of 8.5 microseconds on
an Intel Core 15-4200U Laptop CPU, which is equivalent to
processing 117.65 face images per second.

The Discriminative Multidimensional Scaling (DMDS)
approach proposed by Yang et al. [108] aims to find the
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projection matrices to minimize the distance between
intra-class samples in the common latent subspace. This
work is directly inspired by the previously mentioned MDS
approach [6], and it features two additional inter-class and
intra-class constraints to add discriminative potential in the
latent subspace. These constraints contribute to the projection
matrix optimization by using the projected sample distance
in the latent subspace according to its class. Fig. 3 graphi-
cally illustrates the discriminative space encouraged by the
method’s constraints. The authors also proposed a variant
of the method called Local-Consistency Preserved DMDS
(LDMDS), where they changed the optimization of the sam-
ple distance to only optimize the distance of the samples from
the same domain space additional to the MDS optimization
function.

The Local Geometry to Global Structure CM approach
proposed by Shi and Qi [86] aims to minimize the dis-
tance between projected features as well. However, this
approach uses a k-neighbor approach to influence the dis-
tance optimization in both intra-class and inter-class pro-
jected groups. In the inter-class constraint, they included an
independent term that heavily penalizes the nearest neigh-
bors and maximizes the margin across classes. After the
projection, the global structure concatenating the resulting
LR and HR feature vectors is built and utilized to optimize
the projection.

b: DEEP LEARNING APPROACHES FOR COUPLED
MAPPINGS

Few methods using Deep Learning with a coupled mapping
strategy have been proposed for the very low resolution face
recognition problem, such as [54] and [37]. However, they do
not aim to model the unified space for cross-resolution face
recognition, rather to extract robust features from LR and HR
faces. In contrast, the Deep Coupled ResNet method in [62]
consists of one residual trunk network which specializes in
feature extraction across different resolutions and two branch
networks that minimize the distance between intra-class sam-
ples. Both of the branch networks utilize the same loss func-
tion for optimization. This architecture is illustrated in Fig. 4.

The strength of this method relies on the robustness of the
extracted features using the trunk network. It also employs
modern face recognition heuristics such as using a PReLU
[94] activation function.

This method achieves the best recognition rate for the
SCface dataset. For the camera positioned at 4.2 meters,
it yields an accuracy of 73.3%, corresponding to more than
a 10% advantage over the previously described methods.
Even though this method is more effective than the previous
ones, it makes assumptions regarding the resolution factor by
using bilinear interpolation in various steps, mirroring a data
augmentation strategy where we identify that there is room
for improvement. A more intelligent method such as super
resolution for face hallucination could be used to improve the
image reconstruction process or a different network design
for synthesizing images of different resolutions.
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FIGURE 4. Overview of the Deep Coupled Resnet architecture, taken from [62]. This architecture features a single
ResNet-style network for feature extraction where the Coupled Mapping loss fits the generated features using the images
from both HR and VLR domains. The network weights are updated by the CenterLoss [104] function for more accurate face

recognition performance.
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FIGURE 5. GenLR-Net structure, taken from [69]. The weights from the VGG [74] backbone for the high resolution sub-network are pre-trained

while the low resolution sub-network is fully trained.

Another method using a projection approach is the
GenLR-Net [69], detailed in Fig. 5, which uses the VGG
face network as a base. This projection method also includes
a small Super Resolution component, which marginally
improves performance. This network features two subnet-
works: one for low resolution images and the other one for
high resolution images. This method uses two loss functions:
an inter-class and intra-class loss before the final convolution
and pooling layers with the contrastive loss for the fully
connected layers. The contrastive loss gradient gets propa-
gated only to the low resolution network and not to the high
resolution network. The intuition is to project the features
closer to their high resolution counterparts, a similar intuition
to [90]. This method was not tested on the SCface dataset.

The Transferable Coupled Network (TCN) [115]
bridges the domain gap by learning the LR subnetwork
parameters from the fixed and pre-trained HR subnetwork
and its optimization process. The process is shown in Fig. 6.
In the same vein as other domain adaptation methods, it uses
the triplet loss to learn HR and LR anchors and updating them
with cross-resolution examples from the same subject. The
transferable triplet loss also enforces inter-class margins for
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the identity anchors. The authors propose using VGGFace or
ResNet architectures for the HR and LR subnetworks. Using
ResNet for feature extraction outperforms the VGGFace
alternative in both the LFW and SCface datasets. However,
using the ResNet backbone is significantly more computa-
tionally expensive. The authors reported a mean accuracy
performance of 89.37% on the SCface dataset and 95.05%
in the VLR probe sizes on the LFW dataset.

c: DISCUSSION ON PROJECTION METHODS

As we have showed, most of the classical methods are based
on MDS and Fisher Analysis/LDA. While we can see a clear
recognition performance boost on Pose-Robust MDS versus
the original MDS by Biswas, other methods have shown that
enforcing inter and intra-class margins yield better robustness
than estimating frontal poses for the methods. The DMDS and
LDMDS methods use this margins to improve performance.
However, none of these classical methods project the VLR
samples closer to the projected HR samples in the unified
space, a notion which has aided in the performance of newer
deep learning-based Super Resolution methods. In terms of
efficiency, these methods allow servicing many cameras even
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with resolution-specific anchors.

on affordable hardware, such as Laptop CPUs as evidenced
by LMCM, assuming ten frames per second as real-time
performance.

In the case of deep learning-based methods, their most
glaring limitation is that they are not optimized for real-time
performance on CPU or affordable GPUs. In this area, effi-
cient deep learning approaches have not been proposed.
TCN and DCR both feature ResNet backbone architectures
while GenLR-Net features a VGGFace backbone. From
both of these architecture types, ResNet architectures yield
a better accuracy performance. However, both of these
backbones have been outperformed by lightweight CNN
architectures [67] even when fine-tuning to VLR datasets.
As such, ResNet is also a shortcoming of these deep learning
approaches.

2) SYNTHESIS METHODS: SUPER RESOLUTION-BASED
APPROACHES
Super Resolution methods aim to upscale a low resolution
image by a factor, usually of 4x. For the context of very
low resolution face recognition, they first upscale the very
low resolution image to the high resolution space and later
perform face recognition. Some of these methods have a
face recognition constraint in the upscaling network. Fig. 7
illustrates the basic idea of super resolution methods.
Having a recognition constraint in the same super resolu-
tion process yields better accuracy than performance super
resolution and recognition separately. Running the two tasks
separately can hinder performance in some datasets as stated
in [14]. An example of this phenomenon is the approach
described on [118], which uses a face recognition loss to train
the overall super resolution network as well. This method
outperforms state-of-the-art methods not tailored for face
recognition purposes, such as the Laplacian Super Resolu-
tion Network [49]. Table 3 shows the most successful super
resolution methods specifically made for and tested on very
low resolution face datasets.
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FIGURE 7. Basic idea of super resolution methods for face recognition.
In this type of approach, the synthesis is made from the low resolution
probe image space to the gallery high resolution space only. The high
resolution image remains the same. Then, a similarity measurement is
employed to score the upscaled probe against the gallery images.

Super Resolution is an active research area, however, most
works are focused only on increasing the most popular met-
rics for this task. This metrics are the Structural Similar-
ity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR).
The value of these metrics is dataset-dependent and they
are not a real indicator of their discriminative potential for
face recognition purposes. Furthermore, for supervised Super
Resolution training, the most common approach is to take
a high resolution image dataset and use bilinear interpola-
tion to downscale the images, in order to be able to train
the models.

Using artificial downsampling strategies present a domain
disparity problem between native very low resolution
images from the surveillance feed and the synthetically
downscaled images. Moreover, the datasets for this task
do not contain only face images, most contain miscel-
laneous images such as buildings, animals, objects, etc.
This hinders performance for face hallucination purposes.
Most of the modern methods in this area are neural
network-based.
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TABLE 3. Summary of super resolution approaches discussed in this section. Traditional approaches have been mostly tested with constrained face
recognition datasets, while deep learning approaches have been tested primarily with unconstrained face recognition datasets. Most of these deep

learning approaches have been only tested on the UCCS dataset and have made a tremendous leap on recognition performance and different architecture

proposals for training and transferring the knowledge from the recognition performance to the super resolution components and across native and

synthetic images.

Method

Approach

Reported Metric

S2R2 matching (2008) [36]

Compute and optimize a super resolution matrix by measuring the
similarity of a reconstruction in the low resolution feature space, while
adding smoothness to the super-resolved image.

Multi-PIE identification accuracy: 84.1% for
12 x 12 probles, 62.8% for 6 x 6 probes. Out-
performs downsampling the HR image to probe
resolution and bilinear interpolation matching
on FERET. No efficiency metrics reported.

Uiboupin et al. Sparse Repre-
sentation (2016) [96]

Based on Hidden Markov Model + SVD components [68]. Uses down-
sampling operator, blurring kernel, dictionary with face images and
natural imagery to improve reconstruction.

FERET mean accuracy: 21.60%. No efficiency
metrics reported.

Coherent Local Linear Recon-
struction (2010) [42]

Use CCA to model neighboring images accross resolutions and project
to HR space using PCA vectors.

PSNR on CAS-PEAL face database [27]:
31.18%, outperforms PCA reconstruction. No
efficiency metrics reported.

2D CCA Face Image SR (2014)
(1]

Iteratively solves the eigenvalue problem for CCA in directions X and Y
for two left and right projection matrices which are used for upscaling.

CUHK dataset [99] recognition accuracy:
99.31%. Inference time: 1.38 seconds per image
on a desktop 2.4GHz processor.

Deep Cascaded Bi-Network
(2016) [125]

Uses a dual input branch network design to process high frequency spa-
tial priors and the input LR image. Estimates deformation coefficients to
generate the final super-resolved image. Cascaded training employed.

PSNR on Multi-PIE: 35.65. Face hallucination
step: 3.84 seconds for four cascades on a single
core i7-4790 CPU.

Cascaded Super-Resolution
with Identity Prior (C-SRIP)
(2016) [30]

For each scaling factor, it uses ResNet-based reconstruction modules
and independent SqueezeNets for the identity constraint. The recon-
struction modules are placed in a cascade fashion.

On LFW: 27.164 PSNR and 0.8171 SSIM. On
CelebA: 26.028 PSNR and 0.7945 SSIM. Re-
construction runtime: 30ms for a single image
on an NVIDIA Titan X. 30M parameter count
[771.

Single Network with SR (2016)
[100]

Pre-trains a super resolution sub-network in an unsupervised fashion,
then a supervised fine-tuning step is performed for face recognition.

UCCS dataset rank-1 recognition accuracy:
53.69%. No efficiency metrics reported.

Robust Partially Coupled Net-
work (2016) [100]

Fully coupled super resolution network with downsampled HR to
ground truth HR image reconstructions and LR to HR image reconstruc-
tion. The huber loss [43] was used for improving VLR face recognition
performance.

UCCS dataset rank-1 recognition accuracy:
59.03%. No efficiency metrics reported.

Complement Super Resolution
and Identity (CSRI) (2018) [14]

Two branch network with shared network weights between the synthetic
LR face image branch with supervised super resolution training and the
Native LR face images without ground truth. Update both subnetworks
with the classification loss.

Tinyface rank-1 recognition performance:
44.8%. No efficiency metrics reported.

Feature Adaptation Network
(FAN) (2019 [112]

Dual branch architecture which encodes and concatenates a descriptor
from both VLR and HR. Performs super resolution afterwards and
creates a the final disentangled descriptor.

SCFace mean recognition accuracy: 90.27%.
Inference time performance: 0.016 secods on
Nvidia TITAN X GPU.

Dual Directed Capsule Net-
work (2019) [90]

Extract image features using a convolution and project the VLR image
features closer to the HR image feature centroid. Super resolve the
projected images using a capsule network [80] architecture with a
reconstruction FC module.

UCCS recognition accuracy: 95.81%. No effi-
ciency metrics reported.

Compact
Network
(2020) [77]

Super-Resolution
(ComSupResNet)

Single branch architecture design with a 2-layer VLR feature extraction
module. Asymmetric number of ResNet reconstruction blocks for each
scaling factor and cascaded reconstruction modules greatly the reducing
parameter count.

On LFW: 26.22683 PSNR and 0.7901 SSIM.
On CelebA: 26.5572 PSNR and 0.8059 SSIM.
1M Parameter count.

To mitigate the synthetic dataset and native dataset discrep-
ancy problem, approaches using hybrid datasets (synthetic
and native) have been proposed such as [14].

a: CLASSICAL METHODS FOR SUPER RESOLUTION-BASED
LOW RESOLUTION FACE RECOGNITION

The S2R2 matching [36] proposed by Hennings-Yeomans
et al. features simultaneous super resolution and recognition.
This method performs the synthesis by first super resolving
an image with an SR matrix, then using another LR matrix
to downsample the images and compare them in the low
resolution space. The second component of the optimization
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measures the smoothness of the super-resolved image. The
third component measures the difference between the fea-
tures extracted from the HR ground truth and those of the
super-resolved image.

Other methods for sparse representations include
Yang et al. [110] and Zeyde et al. [114], which inspired
the later work of Uiboupin ef al. [96]. The authors pro-
posed a sparse representation method that uses two different
dictionaries: one with natural images and face images, and
another with face images only. The recognition part is a
7-state Hidden Markov Model, for seven facial components,
with SVD coefficients for feature extraction and recognition,
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based on [68]. The LR images were modeled as a linear
combination of a blurring kernel and downsampling operator,
optimizing the reconstruction from the ground-truth high
resolution images.

Methods based on Canonical Correlation Analysis (CCA)
have also been proposed, such as Coherent Local Linear
Reconstruction SR (CLLR-SR) [42] by Huang et al. and
2D CCA Face Image SR [1] by An ef al. On CLLR-SR
the authors reconstruct particular facial details and the entire
face by using CCA to model the relationships between neigh-
boring images across resolutions. The objective is to project
the face image features into a coherent subspace from PCA
vectors, then making this transformation of the LR features
more correlated to the HR features using the base vectors
obtained by the CCA step. The latter approach proposed by
An et al., used 2D CCA [51], instead of 1D CCA. The 2D
CCA approach yields a better recognition performance in
the CAS-PEAL-R1 and CUHK datasets. 2D CCA does not
reshape the image data into 1D vectors, utilizing 2D PCA
[46] as a base. The projection coefficient is divided into
left and right projections, both for each dimension, and is
later optimized. The authors reported an average time for
super resolving one face image at 1.38 seconds on a 2.4GHz
CPU. This is an improvement in super resolution perfor-
mance from the spatial representation method [47], which
had the closest face recognition performance in the reported
datasets.

b: DEEP LEARNING METHODS FOR SUPER RESOLUTION-
BASED VERY LOW RESOLUTION FACE RECOGNITION

In a study conducted by Wang et al. [100], they proposed and
evaluated the various image recognition models. In the Sin-
gle Network with Super Resolution Pre-training model,
the authors pre-trained an unsupervised super resolution net-
work and posteriorly fine-tuned it with the supervised recog-
nition component (two fully connected layers and softmax
classifier on top). The model that yielded the best recognition
performance was the Robust Partially Coupled Network
model. They noted that pre-training using Super Resolution
methods was insufficient for recognition purposes and that
data augmentation or data adaptation is needed for improving
face recognition accuracy performance. In this model, they
built on top of the previous one, and added an HR to HR
reconstruction such that the filter information gets transferred
to the LR to HR reconstruction subnetwork. This makes it a
partially-coupled super resolution network. After this, they
used the Huber loss [43] instead of the MSE loss to further
improve face recognition performance, due to its lower sen-
sitivity to outliers.

The Deep Cascaded Bi-Network [125] train using a cas-
caded process. This cascaded process is done by sequentially
incrementing the scaling factors, usually by 2x, in each
super-resolution step. The Deep Cascaded Bi-Network intro-
duces the concept of a high frequency priors, generated using
a mean face template used to estimate the average warping of
the training images. The network design features two input
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branches, one for processing the LR image and the other one
to process the LR image with the high frequency priors. After-
wards, the resulting maps are gated with the mean face tem-
plate and the estimated deformation coefficients to generate a
third feature map. This third feature map, the image residual,
is multiplied with the output of the previous two branches.
The final hallucinated face image is the addition of these two
outputs. The authors reported an improvement in PSNR per-
formance over bicubic interpolation, PCA, and CSDN [101]
on the MultiPIE dataset. The reported runtime for performing
face hallucination using four cascades is of 3.84 seconds on
a single core 17-4790 CPU with the authors noting that the
bottleneck is the gated subnetwork with higher-dimensional
super-resolved feature maps.

The Cascaded Super-Resolution with Identity Prior
(C-SRIP) [30] consists of three sequential super resolution
modules for a cascaded training methodology. Each module
is a ResNet-based subnetwork with a Convolution, Leaky-
ReLU, and sub-pixel convolution at the end to super-resolve
the image. These modules are trained with separate pre-
trained SqueezeNets to introduce identity priors at each res-
olution. The architecture for this approach is described on
Figure 8. The proposed final loss function is the sum of
the cross-entropy loss for the predicted identity from the
SqueezeNets at each scale and a multi-scale SSIM loss. The
authors reported better PSNR and SSIM results than LapSRN
[49] and SRGAN [50] for the LFW and CelebA datasets,
when using only the CASIA-WebFace dataset to train. The
authors also report an average runtime of 30ms per image
for super resolving a single image using an NVIDIA Titan
X GPU.

The Complement Super-Resolution and Identity
(CSRI) [14] method, detailed in Fig. 9, uses two subnetworks
with two parallel branches: one processing the synthetic
low resolution images and the high resolution ground truth
counterpart and one processing the native low resolution
image recognition only. The key aspect of this architecture
is the shared parameters from both branches. The authors
reported results for their proposed TinyFace benchmark
dataset. The complement super resolution learning strategy
(shared weights) yields an 8% Rank-1 accuracy increase
over an independent weights strategy. They report a 10.1%
of Rank-1 accuracy increase when training the recognition
network jointly with the super resolution network, as opposed
to performing these tasks separately.

The Feature Adaptation Network (FAN) [112] bridges
the domain gap using a dual branch architecture, disentan-
gling face component feature learning and posteriorly decod-
ing and re-encoding the face image. This architecture is a
GAN-based approach, shown in Fig. 10. The authors pro-
pose to train the network using native and synthetical VLR
image pairs. The synthetical pairs are created by randomly
downscaling the HR images. Encoding face and non-identity
features separately allows for optimizing the closely related
facial identity features, while disregarding the rest at the loss
function level. As such, the identity features are the only ones
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FIGURE 9. Overview of the Complement Super-Resolution and Identity Network (CSRI), taken from
[14]. The network is comprised of two subnetworks: one for synthetic LR images with supervised
training and one for Native LR face images without supervision for super resolution. Both of these
networks share their parameters, learning from the classification accuracy and the super resolution
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FIGURE 10. Architecture overview of the Feature Adaptation Network (FAN), taken from [112]. This method consists of
two input branches for HR and LR images, extracts features for both of them, and generates two descriptors. These
descriptors are for the HR image and the LR + HR images. After that, it performs two reconstructions: one for identity

features and another one for non-identity features.

used for classification. The rest of the features are used only
for reconstruction. The authors reported an average accuracy
of 90.27% in the SCFace dataset, and an inference time
of 0.016 seconds for a single face image in an NVIDIA Titan
X GPU.
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Another recently proposed method is the Dual Directed
Capsule Network for Very Low Resolution Image Recog-
nition [90], depicted in Fig. 11. Firstly, this method utilizes
native low resolution images and upscales them using bilin-
ear interpolation for training. It also downscales the native
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FIGURE 11. Overview of the Dual Directed Capsule Networks for Very Low Resolution Image Recognition, taken from [90].
The authors proposed to project the extracted VLR image features closer to the HR image feature centroid using an
HR-Anchor loss as a first step. Then, they used these projected features to feed the capsule network component, which
performs the super resolution reconstruction with three fully connected layers.

high resolution images to low resolution. The authors utilize
a feature extraction strategy by taking any high resolution
information as an “‘anchor” to guide the feature extraction
of low resolution native images. This is done by introducing
a novel “High Resolution-anchor” loss function and also by
propagating the recognition gradient in the feature extraction
and posterior super resolution stages. The anchor value is
learned using every high resolution sample of its class and
then is used to modify the extracted low resolution feature
such that it gets closer to the anchor value. An important note
is that the method does not use the low resolution information
to learn the anchor at any time. Even though this method
uses projection methods akin to coupled mapping techniques,
the network is trained with a reconstruction loss at the end,
with the image reconstruction network section at the end.
This approach was tested on various recognition datasets, one
of them being the UCCS dataset, which is also representa-
tive of the problem at hand, achieving a Rank-1 accuracy
of 95.81%.

The Compact Super-Resolution Network (ComSupRes-
Net) [77] is a single network architecture which extracts VLR
features using only two layers, with the first one comprising
of a 9 x 9 filter with boundary padding. Afterwards, the recon-
struction modules are presented in a cascade training fashion,
incrementing the scale factors by 2x after each module. The
internal reconstruction blocks in each module have residual
connections. However, the number of blocks in at each mod-
ule is different, resulting in a decreased number of parame-
ters. Figure 12 illustrates this architecture. The authors report
an improvement on PSNR and SSIM performance against
C-SRIP and LapSRN for the CelebA dataset. They also
achieve the second-best PSNR and SSIM performance on
the LFW dataset against C-SRIP with a fewer number of
parameters (1M vs 30M parameters).
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¢: DISCUSSION ON SUPER RESOLUTION APPROACHES

The most critical limitation of super resolution methods is
the increased training and testing time. By the nature of the
approach, these methods need to upsample and then per-
form classification to be effective. This encoding process,
decoding and re-encoding is costly, so much more on deep
learning-based approaches. This is the case of popular meth-
ods based on Generative Adversarial Networks such as [50]
and [113]. Deep learning super resolution approaches rely
on two or more subnetworks to process HR and VLR input
images. In the particular case of FAN, it is only possible to
perform inference in real-time using expensive GPUs such
as the Nvidia Titan X. Efficient super resolution methods
for face recognition is still an opportunity area. As noted
by [72], some methods include down-sampling and posterior
deconvolution to alleviate the computational load. By doing
so, the dimensionality of the intermediate representations
is heavily reduced, making it possible to run inference in
real-time using GPUs. Such is the case of [23] and [87].
However, the advantages of super resolution methods are the
novel architectures such as CSRI, FAN, and Dual Directed
CapsNet. These innovations come in the form of distilling
synthetic and native VLR knowledge using attention lay-
ers (CSRI, RPCN), face feature vector components (FAN),
and feature projection strategies before reconstruction (Dual
Directed CapsNet). One of the most important notions of
these methods is using HR anchors to optimize VLR feature
extractors to this richer HR feature space.

B. HOMOGENEOUS EFFICIENT APPROACHES FOR VERY
LOW RESOLUTION FACE RECOGNITION

Deep learning methods have shown to be effective for
general-purpose recognition tasks. However, their complexity

75481



IEEE Access

L. S. Luevano et al.: Study on Performance of Unconstrained VLR Face Recognition

L HFE+U,g 1
=~ 7|
HFE+U (1]
L ‘FE x2(1) | HFE+U,,(2) L HFE+U,;(3) L REC
"~ T ™ T T 1
— Bl — 2 —
EINE _ — 3] [3
] S 3 2 ] ]
o x| |x - | 2
gl [<] 7 ) g MEGIEERE
. " " % x x " " <
ARMRE 2 g ERERMERE
; £ £ ~ s =3 J
£ 123 >3 3 S ARSI
x n 1 £ o £ £ .'l ‘ll %
o == 3 s g =] |&
s |=| [& 2 2 2l [=] |2] |5
a ol |« =) = =] al |12l |2
2 2| (= > 4
& > > 2 £
z z € o
S| |8 = — - (gl (8] YU
Sl (g ] ][z 7| (g G
3 =3 =2 3 S LFE: Low-Frequncy Feature Extraction module
<32 [£3] [«3 1 z
FEANE{NE A peiinl NP ) L "
[ Nl e bt an o HFE+U,g: High-Frequncy FeatureExtraction with Upscaling (by factor 8)
| |dd| | a « = x8
= = = 50 [
S S S L x module
cow cw cwn > [-}
o o o £ 2
o o (8] 8 3 REC : Reconstruction module

FIGURE 12. The Compact Super-Resolution Network (ComSupResNet), taken from [77], features a single architecture design for
super resolving VLR images. The VLR extraction module features two layers while the reconstruction modules feature a variable

number of residual blocks, resulting in a 1M parameter count.

requirements make them unfeasible for using them on
real-time scenarios. In consequence, methods for achiev-
ing real-time performance in other computer vision tasks
on embedded devices have emerged, such as SqueezeNet
[44], ShuffleNet [123], ShuffleNetV2 [64], MobileNet [40],
MobileNetV2 [83], MobileNetV3 [39], and VarGNet [121].
This set of methods were proposed for efficiently solving
general computer vision tasks such as image recognition,
object detection, and others. These methods are commonly
called Lightweight Convolutional Neural Networks. Most
recently, face recognition variants of these methods were
proposed. We will discuss these methods in-depth in the next
subsection II-B1.

Fig. 13 shows a multiply-addition operations (MAdds)
benchmark against accuracy performance for these computer
vision tasks to give a general idea of where they stand in
between each other. MobileNetV3 currently claims to be
the network with the best efficiency-accuracy network for
general-purpose computer vision tasks as per their evaluation
[39]. This metric gives us a general idea of the relative perfor-
mance between each other. However, the accuracy generally
depends on a specific dataset and problem.

1) LIGHTWEIGHT CONVOLUTIONAL NEURAL NETWORKS
FOR FACE RECOGNITION

Lightweight neural networks tailored specifically for the face
recognition task have been proposed, such as MobileFaceNet
[13], ShuffleFaceNet [66], and VarGFaceNet [107].

In general, these techniques are based on lightweight
general-purpose CNN architectures. In order to have a bet-
ter efficiency-accuracy trade-off, these lightweight networks
employ the following techniques: using grouped convolutions
and shuffling the output channels to make to reduce the
number of operations and share information across different
input and output channels, using variable groups of grouped
convolutions to balance between information retaining and
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FIGURE 13. Accuracy against MAdds benchmark for lightweight
general-purpose networks for computer vision, taken from [39]. Currently,
MobileNetv3 shows the best trade-off between multiply-addition
operations against accuracy, followed closely by MnasNet and
MobileNetv2.

complexity, point-wise 1 x 1 convolutions to reduce depth
channels and computational complexity while filtering, hav-
ing low-dimension embeddings before the fully connected
layers, using strides instead of max pooling operations to
reduce complexity and retain more information directly from
the data and using inverted bottleneck structures to reduce
the number of parameters and compact the network channels
again to match the input channels.

Table 4 shows an overview of the most recent face recogni-
tion networks based on mobile CNN architectures, the tech-
niques they use, and their computational footprint in FLOPs.
These face recognition-specific approaches follow several
guidelines for optimized face recognition performance such
as: using Global DepthWise convolutions instead of global
average pooling [13], using additive-angular margin-based
loss functions [21], and lightweight design ideas. These ideas
aim to retain as much fine-grained information as possi-
ble by avoiding the use of max pooling [66]. These tech-
niques have proven to be beneficial for face recognition
performance and may not be for general computer vision
tasks.
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TABLE 4. Summary of some of the most recent and most successful efficient lightweight CNN architectures for face recognition. ShuffleFaceNet greatly
improves efficiency performance with its compact 128-D feature vector size and a lesser deep architecture while maintaining comparable accuracy

performance with VarGFaceNet and MobileFaceNet.

Method Approach

Efficiency optimizations

Complexity remarks

Global DephtWise convolution instead of Global Aver-

MobileFaceNet [13] Based on MobileNetV2 [83]

vector

age Pooling layer, stride=1 after conv1, 1280-D feature

933.3M FLOPs

Global DephtWise convolution after Conv5, PReLU

ShuffleFaceNet [66] Based on ShuffleNetV2 [64]

activation, add strides and eliminate pooling at convl1,

577.5M FLOPs

compact 128-D feature vector

Teacher-student network architecture, set channel num-

VarGFaceNet [107] Based on VarGNet [121]

Knowledge distillation

ber as constant in a group, variable number of groups,
PReLU activation, point-wise conv before FC layer,
512-D feature vector

Teacher model: 24GFLOPs
Student Model: 1022M FLOPs

VarGFaceNet [107] is a lightweight method based on
VarGNet. In contrast to VarGNet, VarGFaceNet firstly
expands the channels to 1024, using 1 x 1 convolutional
layers to preserve information. After that, it uses variable
group convolutions and point-wise convolutions to reduce the
intermediate representations. The authors managed to reduce
run-time on CPU and GPU to 31 fps on the method variant
that they tested on the SCface dataset, where they reported a
rank-1 accuracy of 43.5%. It does not achieve the same per-
formance as other heavier Deep Learning methods, but it does
outperform the classical hand-crafted methods that appeared
at the start of this decade and earlier deep learning-based
methods that were starting to emerge.

2) KNOWLEDGE DISTILLATION AND QUANTIZED
NETWORKS

Approaches based on teacher-student networks for training
and efficient inference, named knowledge distillation meth-
ods, have also emerged in recent years. VarGFaceNet [107],
discussed in the previous subsection, uses knowledge distil-
lation for training. This method uses recursive knowledge
distillation with the Angular Distillation loss function. The
selected teacher network is a ResNet architecture, which
is used for feature vector extraction. These feature vectors
are then used in the VarGFaceNet loss function to draw the
feature vectors generated by the lightweight network closer to
those of the teacher network. The angular distillation method-
ology uses similarity measurements such as L2 or cosine
similarity to score both feature vectors. An attempt for effi-
cient very low resolution face recognition using knowledge
distillation was proposed in [28]. Their method uses a teacher
model based on VGGFace and uses a student network with
a simpler design for inference. The authors also used manual
resizing to train the student network. The output of the teacher
network uses a graph-based approach to accept and reject
persons that do not appear in training. The approach performs
better than other methods from the state of the art, such as
[91] and [70], but not from the ones mentioned in the previ-
ous Coupled Mappings section, even classical hand-crafted
approaches. We consider that the most significant drawbacks
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of this approach are the fact that there is no re-projection and
that the images available for training in the low resolution
space are the resized gallery images. When testing on a very
challenging database such as the SCface one, it does not
achieve desirable performance.

Another approach to reduce inference complexity has been
quantization, such as the works from [79], [109], and [45].
These approaches focus on reducing parameter number rep-
resentation by limiting the number of representation bits,
where floating-point convolutional layers can be quantized
into binary convolutional layers. In consequence, this reduces
complexity at the knowledge representation level. Efficiency
is mainly achieved by using bit-wise convolutional layers and
by changing activation functions to binary operators. How-
ever, these approaches present a challenge with balancing
the k-bit quantization representation, the network depth, and
signal preservation. Recent literature has several points to
consider to improve quantized network performance [65].
These considerations are: using learnable scaling factor vec-
tors, residual connections for quantized layer blocks, using
the PReL.U activation function, among others.

3) DISCUSSION ON EFFICIENT APPROACHES FOR
HOMOGENEOUS VLR FACE RECOGNITION

The most important advantage of lightweight convolutional
neural networks is the efficiency-accuracy trade-off. Most
of these networks achieve it by firstly expanding the chan-
nels and then using fast downsampling strategies. These fast
downsampling strategies come in the way of point-wise con-
volutions or using strides directly closer to the input layer.
Extending knowledge to the different channels in the inter-
mediate representations is also important. In this respect,
both VarGFaceNet and ShuffleFaceNet are based on different
strategies for propagating knowledge to different channels,
where the variable group convolutions yield better accuracy
performance. These networks feature a strong and robust fea-
ture extraction, due to them being deep enough for reaching
a FLOPs threshold (1.2GFLOPs) while not degrading the
image representations. This is achieved by using linear com-
binations of blocks instead of the traditional convolution and
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TABLE 5. Face identification rank-1 accuracy results for the SCface
dataset. Compiled from [54] and [67]. Each column marks the horizontal
distance of the camera to the subject, where d1 of 4.2 meters is the
farthest from the subject and, as such, the most challenging one for
heterogeneous face recognition purposes. The networks marked with
“FT” denote that they were fine-tuned for the SCface dataset. The models
marked with an asterisk * were not trained or fine-tuned in the SCface
dataset but rather the MS-Celeb-1M dataset. [32].

Method dl d2 d3 Mean
(42m) (2.6m) (1.0m) accuracy
SCface [29] 1.82 6.18 6.18 4.73
CLPM [52] 3.46 4.32 3.08 3.62
CSCDN [101] 6.99 13.58 18.97 13.18
SSR [111] 7.04 13.2 18.09 12.78
L2softmax [78] 9.20 18.80 16.80 14.93
CCA [102] 9.79 14.85 20.69 15.11
DCA [33] 12.19 18.44 25.53 18.72
LM Softmax [117] 14.00 16.00 18.00 16.00
AM Softmax [98] 14.80 20.8 18.4 18.00
C-RSDA [18] 15.77 18.08 18.46 17.44
RIDN [19] 23.0 66.0 74.0 24.96
LDMDS [108] 62.7 70.7 65.5 66.30
VGG-Face* [67] 41.3 75.5 88.8 68.53
LightCNN* [67] 35.8 79.0 93.8 69.53
Centreface* [67] 36.3 81.8 94.3 70.87
VGG-Face-FT [67] 46.3 78.5 91.5 72.10
ResNet50-ArcFace™* [67] 48.0 92.0 99.3 79.77
LightCNN-FT [67] 49.0 83.8 93.5 75.43
Centreface-FT [67] 54.8 86.3 95.8 78.97
FAN* [113] 62.0 90.0 94.8 82.27
ShuffleFaceNet* [67] 55.5 95.3 99.3 83.37
MobileFaceNetV1* [40] 57.0 95.3 99.8 84.03
ResNet50-ArcFace-FT [67] 67.3 93.5 98.0 86.27
MobileFaceNetV2* [67] 68.3 97.0 99.8 88.37
DCR-FT [62] 73.3 93.5 98.0 88.27
TCN-ResNet-FT [115] 74.6 94.9 98.6 89.37
FAN-FT [112] 71.5 95.0 98.3 90.27
ShuffleFaceNet-FT [67] 86.0 99.5 99.8 95.10

MobileFaceNetV2-FT [67] 95.3 100.0 100.0 98.43

max pooling operations. Due to their intended application,
the network depth and width become the most significant
limitations of these networks. Furthermore, these fast down-
sampling strategies are not the best when dealing with native
low resolution imagery due to the inherent loss of data. In the
case of ShuffleFaceNet, the more aggressive stride step can
lead to additional loss of information. As such, it is necessary
to use different upsampling methods to simulate different low
resolution scenarios in order to overcome these limitations.

Ill. RESULTS AND DISCUSSION ON STATE-OF-THE-ART
FACE RECOGNITION PERFORMANCE ON
UNCONSTRAINED SURVEILLANCE SCENARIOS

In this section, we present, discuss, and analyze the state-of-
the-art results of the methods mentioned in the previous sec-
tions in the context of unconstrained very low resolution face
recognition. We present results for the SCFace and UCCS-
Face datasets in particular, as they are very representative of
the heterogeneous VLRFR problem with the research chal-
lenges mentioned in Section III-C. We also present results
for the QMUL-SurvFace and QMUL-TinyFace, which are
newer benchmarks representing the native VLR homoge-
neous face recognition problem. These datasets contain native
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TABLE 6. Face verification results on the UCCS dataset, taken from [16].

Method TAR@FAR AUC

30% 10% 1% 0.1% | (%)
DeepID2 [16] 93.1 83.4 617 379 | 93.8
CentreFace [16] | 99.6 97.0 878 755 | 99.0
FaceNet [16] 98.2 93.8 794 634 | 9738
VGGFace [16] | 97.1 90.6 724 551 | 967
SphereFace [16] | 94.0 84.9 602 247 | 94.1

TABLE 7. Face identification results on the UCCS dataset, taken from [90]
and [54], for matching HR (80 x 80) vs. VLR (16 x 16) images.

Method | Mean Acc(%)
Robust Partially Coupled Nets [100] 59.03
Selective Knowledge Distillation [28] 67.25
LMSoftmax for VLR [54] 64.90
L2Softmax for VLR [54] 85.00
Centreface [54] 93.40
DualDirectedCapsNet [90] 95.81

very low resolution imagery of 32 x 32 pixels of facial
region-of-interest or below, which make them suitable for
representing the unconstrained VLR FR problem.

A. RESULTS AND DISCUSSION ON VLR FACE
RECOGNITION PERFORMANCE

We compiled the mean recognition accuracy results for
the SCface dataset in Table 5 to better illustrate the state-
of-the-art heterogeneous VLR FR panorama. The SCface
dataset contains 130 subjects and 4,160 images from differ-
ent surveillance camera distances: d1(4.2m), d2(2.6m), and
d3(1.0m). For this dataset, d1 is the most challenging setting,
where the average facial region-of-interest is below 32 x 32
pixels.

For the UCCS dataset, we show the results of state-of-
the-art face recognition methods for face verification and face
identification, shown in Table 6 and Table 7. The UCCS
dataset setting represents a real-world surveillance setting,
where the image resolution varies from VLR to HR.

For the homogeneous variant of the problem, we show
the face identification results of the QMUL-TinyFace
dataset in Table 8 and the face verification results of the
QMUL-Survface dataset in Table 9. The TAR@FAR veri-
fication results were calculated as per the specifications in
the original paper [16] and the provided code [15]. The
QMUL-TinyFace dataset contains unconstrained face images
from the web with 5,139 identities and 169,403 images. The
QMUL-Survface contains native surveillance images from
15,573 subjects and 463,507 images. The image input res-
olution of both datasets is variable but always below 32 x 32
pixels.

For the results reported in this section, we discuss
three critical areas of opportunity regarding the state-
of-the-art concerning face recognition performance: train-
ing methodologies, generalization capabilities, and type of
approach.
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TABLE 8. Face identification results on the QMUL-TinyFace dataset, taken
from [67]. ShuffleFaceNet and MobileFaceNet were trained on the
MS1-Celeb-A dataset and fine-tuned on the QMUL-TinyFace training set.

Method Rank-1  Rank-20 Rank-50 mAP
DeeplID2 [14] 17.4 25.2 28.3 12.1
SphereFace [14] 22.3 35.5 40.5 16.2
VGG-Face [14] 30.4 40.4 42.7 23.1
CentreFace [14] 32.1 44.5 48.4 24.6
ShuffleFaceNet [67] 43.1 58.9 64.5 34

MobileFaceNet [67] 48.7 63.9 68.2 40.3

TABLE 9. Face verification results on the QMIUL-SurvFace for TAR@FAR
1% and 0.10%, taken from [67]. ShuffleFaceNet and MobileFaceNet were
trained on the MS1-Celeb-A dataset and fine-tuned on the
QMUL-SurvFace training set.

Method TAR@FAR AUC | Mean Acc
1% 0.1%

VGG-Face [16] 20.1 4 85.0 78
DeeplD2 [16] 28.2 134 84.1 76.1
SphereFace [16] 34.1 15.6 85.0 77.6
FaceNet [16] 40.3 12.7 93.5 85.3
CentreFace [16] 53.3 26.8 94.8 88.0
ShuffleFaceNet [67] 38.5 11.9 89.9 82.3
MobileFaceNet [67] 52.9 33.1 89.9 83.2

1) DISCUSSION ON TRAINING METHODOLOGIES

Face identification and verification performance are heavily
affected by the experimental methodology of every study.
Even though we can see that Lightweight CNN approaches
achieve the best mean accuracy results, there are still areas of
opportunity present within their training and testing method-
ologies. In order to achieve the best accuracy in the SCface
dataset, the authors of [67] pre-trained the networks in the
MS1-Celeb-1M dataset and then fine-tuned them using the
SCface dataset with different upsampling strategies. In the
rest of the evaluations, these different upsampling method-
ologies were not employed and, as such, we do not see any
performance increase. In other methods, such as in Deep
Coupled ResNet [62], the images from the SCface dataset
were upsampled to three different resolutions, to add robust-
ness to the learned representation, effectively synthesizing the
dataset to three times its original size with no previous pre-
training. Another method, DMDS [108], randomly selects
50 subjects from the SCface dataset and uses them to train,
without upscaling the VLR images. This generates a gap
in evaluating the real limitations of the methods. In conse-
quence, there always exists a compromise when selecting a
scaling approach for every different method, thus, making
them difficult to compare even when using the same datasets.
This is true for both the heterogeneous and homogeneous
variants of the problem.

We recognize that one of the limitations of deep learn-
ing methods is the need of having very large datasets in
order to train the networks effectively, which is why we
support the idea of pre-training the networks on other face
recognition datasets such as LFW [41] or MS-Celeb-1M
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[32] and other benchmark datasets. As such, another area
of opportunity exists in analyzing if a particular pre-trained
dataset yields better results for VLR face recognition before
fine-tuning to a specific benchmark dataset. As per the results
of Tables 5, 6, 8, 9, we can see that VGG Face [74] is unable
to learn effective representations for the very low resolution
settings even after fine tuning. In contrast, newer and more
efficient feature extraction methods can these representations
very well. Using VGG Face-like architectures as a base for
VLREFR is not an effective strategy and not all the seminal
face recognition CNN architectures perform well under this
context even after fine-tuning. Such is the case of the TCN
variant with VGG Face used in the feature extraction process.

2) DISCUSSION ON GENERALIZATION CAPABILITIES
Furthermore, to bring these methods to a real-world applica-
tion scenario, the generalization capabilities of these methods
need to be tested as completely as possible for different
evaluation metrics. Cross-dataset evaluations are needed
when fine-tuning to a particular dataset, to avoid report-
ing results based on the CNN dataset memorization. This
would lead to a more fair analysis of which methods effec-
tively mitigate the challenges presented in Section III-C and
compare them under the same generalization conditions.
Due to the extremely challenging nature of the problem at
hand, it is essential that the learned representations are as
robust as possible for an open-set identification scenario.
In Tables 5,9, and 8, we can see independent evaluations
for VGG-Face, CentreFace, ShuffleFaceNet, and Mobile-
FaceNet. However, the results are higher on d1 for the SCface
dataset for ShuffleFaceNet and MobileFaceNet than the rest
of the datasets, even when fine-tuning, due to the interpola-
tion methods used in [67]. This clearly shows the limitations
of the state-of-the-art methods at VLR without simulating
VLR conditions beforehand. Furthermore, verification met-
rics of the SurvFace and UCCS datasets in Tables 9 and 6
show that even though the mean accuracy and the AUC can
be very high, the True Acceptance Rate at 0.1% remains a
challenge.

3) DISCUSSION ON APPROACH TYPES

We can also appreciate from Table 5 that the top performing
solutions in average accuracy performance for the SCface
dataset are CNN-based approaches. Furthermore, the best
approaches in terms of mean accuracy performance are the
robust homogeneous feature extraction using lightweight
CNN architectures. CNN-based methods tend to generalize
very well at distances d2 and d3, which are the lesser chal-
lenging distances compared to d1. Explaining why they yield
a higher mean accuracy than traditional methods. Traditional
methods tend to be more consistent across the three distance
settings, with LDMDS [108] standing out as the best for
Coupled Mappings. This method has a consistent accuracy
performance across camera distances, reaching a 62.7% accu-
racy for the most challenging scenario. This method effec-
tively demonstrates that enforcing the large margins between

75485



l E E E ACC@SS L. S. Luevano et al.: Study on Performance of Unconstrained VLR Face Recognition

TABLE 10. Inference time for Lightweight Convolutional Neural Networks, by CPU inference descending time in milliseconds. The methods yielding
inference time of less than 100ms are viable for servicing at least one surveillance camera in real-time. At this time, ShuffleFaceNet with 1.5 of depth
multiplier [66] provides the best mean accuracy-efficiency trade-off for real-time CPU performance as per the efficiency results in this table and the

results of the previous subsection.

Network # Params. | 2x GTX | GTX GTX Quadro Laptop GTX | Laptop Intel
(Millions) 1080ti 1080Ti 1660Ti P2000 1050Ti i7 7700HQ
Light CNN - 4 [106] 6.8 M 5.49 ms 12.67 ms 14.09 ms 41.00 ms 55.50 ms 2,653.76 ms
Light CNN - 9 [106] 8.1 M 6.22 ms 14.36 ms 15.88 ms 4096 ms | 56.17 ms 2,106.72 ms
VGG [89] 1449 M 3.39 ms 7.83 ms 108.97 ms 25.17ms | 35.29 ms 1,523.40 ms
VGGFace [74] 41.1M 3.99 ms 9.22 ms 14.24 ms 19.64 ms 21.61 ms 433.39 ms
Resnet100 [34] 65.2M 2.76 ms 5.26 ms 12.96 ms 48.14 ms 59.61 ms 285.64 ms
Light CNN - 29 [106] 31.0M 2.01 ms 4.63 ms 2.38 ms 7.95 ms 7.93 ms 126.71 ms
VarGFaceNet [107] 49 M 0.85 ms 1.48 ms 3.48 ms 5.10 ms 27.09 ms 126.59 ms
MobileNetv2 [83] 1.8M 0.80 ms 1.46 ms 4.50 ms 11.08 ms 14.76 ms 103.69 ms
MobileNetv1 [40] 32M 0.69 ms 1.21 ms 1.88 ms 5.56 ms 20.06 ms 98.99 ms
VarGNet [121] 42M 0.68 ms 1.18 ms 2.16 ms 4.21 ms 5.42 ms 70.40 ms
MobileFaceNetV2 [13] 2.0M 0.88 ms 1.48 ms 3.27 ms 5.55 ms 7.28 ms 62.45 ms
MobileFaceNetV1 [13] 33 M 0.74 ms 1.31 ms 1.61 ms 491 ms 8.23 ms 53.49 ms
ShuffleNet - 2.0 [64] 53 M 1.10 ms 1.96 ms 18.79 ms 25.05 ms N/A 42.92 ms
ShuffleFaceNet - 2.0 [66] | 4.5M 1.00 ms 1.77 ms 2.41 ms 6.36 ms 6.95 ms 37.46 ms
ShuffleNet-1.5 [123] 25M 0.77 ms 1.33 ms 2.77 ms 5.29 ms 12.25 ms 32.98 ms
ShuffleFaceNet-1.5 [66] 2.6 M 0.77 ms 1.34 ms 1.86 ms 4.75 ms 4.68 ms 29.08 ms

classes is an effective strategy, a similar notion to the additive
margin loss functions [98] and [21], used for face recognition
CNNS. Super resolution methods tend not to be present in this
table because they are trained and tested in other datasets,
such as the UCCS dataset. Furthermore, most of the time,
these approaches are focused on improving the SSIM and
PSNR metrics rather than recognition performance. However,
a clear standout is the FAN architecture, which demonstrates
the effectiveness of using a GAN-like approach by super
resolving images after performing the disentangled feature
learning steps. Table 7 shows face identification results in
the UCCS dataset for the Super Resolution methods Robust
Partially Coupled Nets and Dual Directed Capsule Network.
The Dual Directed Capsule Network is a clear standout for
its accuracy performance in this challenging scenario, out-
performing CentreFace, performing closer to MobileFaceNet
in the QMUL-SurvFace verification results of Table 9.

B. RESULTS AND DISCUSSION ON EFFICIENCY
PERFORMANCE

From the methods in the previous face recognition per-
formance subsection, we report the run-time for the effi-
cient lightweight convolutional neural networks in Table 10.
This efficiency table gives a general panorama of where
lightweight neural networks stand for real-world inference
time performance.

When comparing efficiency performance, it is very impor-
tant to run tests standardized to hardware architectures.
Hardware-agnostic metrics such as FLOPs and the number
of parameters of a network are often used as indicators to
compare network efficiency between proposed architectures.
This poses a problem since these metrics do not translate
linearly to real run-time performance metrics at any spe-
cific hardware configuration. Other considerations, such as
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the number of times any given architecture has to access
memory, GPU/CPU memory size, and memory bandwidth,
are significant bottlenecks that affect real-time performance.
Furthermore, some authors from earlier literature do not refer
to the specific hardware configuration used when reporting
time performance in seconds. Even though it is hard to
compare the performance between different hardware, even
across different CPU generations from the same vendor,
it still provides a better idea of which hardware implemen-
tation can run the proposed methods at any given scenario
successfully.

Focusing on real-time hardware performance, Table 10
shows specific hardware configurations for GPUs and
one laptop CPU. Using the same hardware configura-
tions as the authors of [66], we included run-time eval-
uations for VarGFaceNet, which was featured at the
LFR@ICCV2019 Challenge [22], and its base network
VarGNet [121]. For affordable hardware, it is possible to
achieve real-time recognition performance using low-power
GPUs such as a Laptop GTX 1050Ti for almost all the
networks described in the table, except for ShuffleFaceNet,
which has a larger memory footprint. MobileFaceNetV1,
MobileFaceNetV2, and ShuffleFaceNet are the best can-
didates for running a recognition application in real-time
on affordable laptop CPU hardware. Approaches such as
MobileNetV1 and ShuffleFaceNet are able to service two
cameras at the same time, at least at ten frames-per-second for
each one of them, where the accuracy performance detailed
in Table 5 favors ShuffleFaceNet. The compact 128-D face
descriptor of ShuffleFaceNet favors a substantial increase
in performance, while preserving the identity information,
favoring a fine-tuned scenario. MobileFaceNetV2 general-
izes better, as per Table 5 and can achieve real-time per-
formance for servicing one camera on the Laptop CPU
described. As such, MobileFaceNetV?2 is a better choice in
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terms of accuracy performance, if we use the SCface dataset
for fine-tuning and compare face descriptors for other identi-
ties foreign to that specific dataset.

Studying the structures of these networks, we can observe
that the critical element to balancing the accuracy and effi-
ciency trade-off using is focusing the recognition process
on the center part of the aligned face image, using a fast
downsampling strategy, such as the one in ShuffleFaceNet,
and using a low-dimension face descriptor.

In general, traditional Coupled Mapping methods are
more efficient than Super Resolution methods. Deep
Learning-based approaches have surpassed the accuracy of
traditional methods, however, an interesting case is LMCM
[116]. The authors report an inference time of 8.5 microsec-
onds on an older CPU than the one used in our test. This
approach is more efficient than any of the Deep Learning
approaches shown in Table 10. It also holds a better accuracy
performance at the d1 scenario than the lightweight CNNs
without fine-tuning, except for MobileFaceNetV2. In the case
of Super Resolution methods, the efficiency performance is
worse due to the need for more complex networks to up-scale
the image to HR resolution and then perform identification or
verification tasks. The FAN [112] approach, a Super Resolu-
tion method, has an inference time of 0.016s for inference in
a much more powerful single GPU than the ones used in our
tests, the Nvidia Titan X GPU. This inference time is com-
parable to the inference time performance of ShuffleNet with
1.5 depth on a laptop GTX 1050Ti GPU, far less powerful
than the Titan X GPU.

C. DISCUSSION ON THE RESEARCH CHALLENGES
AFFECTING PERFORMANCE ON UNCONSTRAINED VERY
LOW RESOLUTION FACE RECOGNITION SCENARIOS

In this section, we discuss and analyze the specific research
challenges at very low resolution settings. These challenges
include dataset availability for real-world examples, lack of
discriminative features, domain discrepancy, and the current
landscape on efficient solutions.

1) LACK OF DATASET AVAILABILITY FOR REAL-WORLD
NATIVE EXAMPLES AT VERY LOW RESOLUTIONS
One of the hardest challenges to train and evaluate at VLR
native settings is the small number of publicly available
datasets of native real-world VLR imagery. In the case of
homogeneous face recognition, datasets such as TinyFace
[14] and QMUL-Survface [16], are publicly available. For
the heterogeneous variant, datasets such as SCface [29], Point
and Shoot (PaSC) [4], and UCCSface [84], are publicly avail-
able. Another dataset, the IJB-S dataset [48], is not available
to the public at the time of writing. These datasets were
just assembled in recent years to represent a more grounded
application for face identification on surveillance scenarios.
Due to the limited availability for real-world datasets, most
of the evaluations at VLR were performed on datasets such as
LFW [41], CASIA Webface [111], YouTube Faces [105], and
Celeb-A [56]. However, when comparing the performance of
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these same models on other very challenging datasets, such
as SCface [29], these models perform very poorly in terms
of accuracy. The same effect happens when testing models
trained on datasets with data from controlled environments,
such as CMU-PIE [31] and FERET [76].

To improve the VLR robustness of the methods using
deep face recognition, several augmentation strategies were
proposed in recent years. For example, the authors in [28]
rely on bilinear interpolation to synthesize the dataset for
very low resolution. However, this method by itself is not
effective at unconstrained settings. Lu et al. [62], on the
other hand, resized the images into three different resolutions,
to allow the network to learn more mappings due to the
varying low resolution present in real-world applications. The
study performed by Martinez-Diaz et al. [67], concluded that
in order to use synthetic datasets, it is necessary to employ
various downsampling strategies, to effectively simulate dif-
ferent real-world settings.

Due to the domain gap between synthetic and native
datasets, it is harder for super resolution methods to gener-
alize and become effective in true unconstrained scenarios.
Super resolution methods are supervised-learning methods
by nature, where usually a ground truth higher resolution
image is needed in order to learn a mapping for synthetic
low resolution to high resolution, in an effort to match the
target HR domain. Attempting to remedy this domain gap,
the authors of [14] have opted to use synthetic datasets com-
bined with native images. They map the super resolution
relationship using the synthetic dataset and hallucinating an
HR counterpart of the native VLR face images. The achieve
this by sharing weights between these two super resolution
sub-networks and keeping the classification sub-networks
with their own weights exclusively.

2) LACK OF DISCRIMINATIVE INFORMATION AND POSE
VARIATIONS

Another challenge in this context is the lack of discrimina-
tive information at very low resolutions. Due to the lighting
conditions, pose and blurriness, it becomes harder to extract
useful features for classification purposes. Current low res-
olution face recognition methods do not use face alignment
for optimizing performance. Usually, face alignment is a
dataset pre-processing step for training any method [32] or the
recognition method relies on its ability to generalize identities
from its feature extraction capabilities. This leaves an area
of opportunity for methods to include face normalization
modules to further improve recognition performance. As evi-
denced in [26], synthesizing pose and expression variations
can lead to an improvement in poses from £60 degrees and
beyond. Convolutional Neural Networks can be used to effec-
tively generate feature maps estimating pose and expression
to further aid in face hallucination or classification. However,
the act of encoding and decoding each image at the synthesis
step can negatively affect inference runtime performance,
as in the case of Super Resolution approaches.
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In order to extract more robust features, most VLR face
recognition methods usually tailor the loss function and
optimization steps of the network to the VLR problem,
along with designing multiple branch architectures. In the
homogeneous VLR face recognition scenario, previous meth-
ods used feature extraction techniques based on SIFT [57],
LBP [24], or Gabor [17]. Most of the methods are based
on residual network architectures or in architectures that
already work for general-purpose recognition problems, such
as AttentionNets. A study conducted by Sandler ef al. [82]
explains the importance of the internal network layer res-
olution and the need for designing networks for the spe-
cific resolution of the problem at hand. In their paper, they
introduce the concept of isometric networks, which retain
their size throughout the network. This design yields a better
performance regardless of the input resolution. However, they
note that at extreme resolutions (14 x 14 and below), input
resolution does matter as it affects the rest of the internal
network layer sizes.

3) DOMAIN GAP BETWEEN HIGH RESOLUTION AND LOW
RESOLUTION: MATCHING FEATURES FROM DIFFERENT
SPACES

In the heterogeneous variant of the problem, for datasets
such as Point-and-Shoot [4], UCCS [84], and SCface [29],
a domain gap exists between images taken in HR controlled
environments and the VLR images taken from the surveil-
lance cameras. The images from surveillance cameras can
present varying lighting conditions, blurriness, heavy pose
variations, and varying resolutions. Extracting features from
varying resolutions in particular becomes a problem. A single
image from the native space has different dimensions from the
rest of the images, including those from the gallery reference
images. Firstly, the input image must be standardized to
one or more predefined sizes. It becomes a decision for the
image scaling process, where super resolution methods aim
to scale the native images to the HR gallery image domain.
Secondly, features extracted from the HR gallery images have
richer and clearer information [63] than those from native
VLR images. As such, the extracted features from a given
algorithm greatly vary from one another. Coupled mappings
and homogeneous feature extraction methods are the two
strategies that have a more robust abstraction of the extracted
features to match them under the same domain conditions.
However, this domain gap does not exist in the homogeneous
variant of the problem. In this variant, the recognition step
is performed from images coming from the same domain.
Datasets such as QMUL-Tinyface [14] and QMUL-Survface
[16] are suitable for training these homogeneous approaches.

4) EFFICIENCY CHALLENGES

Generally, the inference time for classical Coupled Mappings
methods is short, even using CPU only [116]. These methods
perform very accurately on constrained scenarios. However,
when testing them on unconstrained low resolution face
recognition scenarios, their accuracy performance rapidly
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decays. Newer and more accurate deep learning methods for
high resolution unconstrained face recognition [85], [93] are
not suitable for run-time applications due to their increased
computation requirements for inference. Furthermore, these
methods do not perform as accurately in very low resolution
unconstrained face recognition scenarios, as other state-of-
the-art alternatives do [19], [62], [67]. To achieve state-of-
the-art accuracy deep learning methods such as [62] and
[14], use solutions based on multi-architecture networks,
which still have heavy computation requirements. Due to
the general efficiency requirements for deep learning appli-
cations, mainly on mobile and embedded systems, areas
such as lightweight face recognition and quantization have
emerged as well [45], [79]. These methods explore deep
learning techniques using alternative data representations,
such as binary and k-bit floating-point, with small accuracy
performance penalty. However, no solutions aiming to bridge
the domain gap present on VLR face recognition or using
lightweight network design principles have been proposed.
The only efficient approach specific for VLR face recognition
was proposed by Ge et al. [28], which uses Knowledge
Distillation.

Furthermore, the vast majority of the methods utilized for
VLR face recognition report results based on accuracy and
very few do on efficiency. The authors that do report run-time
performance, sometimes omit the employed hardware config-
uration. Omitting this information makes efficiency assess-
ments challenging to perform and compare against other
methods.

D. DISCUSSION ON FUTURE RESEARCH DIRECTIONS

As per the reported results and previous discussion regarding
face recognition performance in identification, verification,
and efficiency metrics, we discuss future research directions
in this section. We cover areas of opportunity of current state-
of-the-art approaches and detail how they can significantly
contribute to the very low resolution face recognition area.

1) CAPSULE NETWORK OPPORTUNITY AREAS ON
EFFICIENCY AND FACE RECOGNITION ACCURACY
PERFORMANCE

For the particular context of VLR FR, the Dual Directed
Capsule Network approach has shown potential by outper-
forming other methods in the VLR FR Super Resolution
literature such as the Robust Partially Coupled Network and
CentreFace for VLR in terms of accuracy performance [90].
However, as shown in the rest of the results for CentreFace
and the SurvFace dataset, the TAR @FAR=1% verification
results still present a challenge. Furthermore, efficient Cap-
sule Network architectures have not been proposed at the
time of writing. This completely disregards the novel gen-
eralization ideas behind this approach type. The Capsule
Network [38] concept proposed by Hinton ef al. and later
refined by Sabour et al. [80] is a niche research technique
with much potential. Capsule networks have the potential for
extracting focused information from different components.
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These extractors, called capsules, later concatenate their out-
put with the other capsules, effectively building a more robust
descriptor. Some of the guidelines for Capsule Networks,
or CapNets, include rejecting the idea of max pooling due
to the loss of information and instead model activity vectors,
which for any given class yields a vector of values. This vector
is later used as a representation for posterior classification.
However, they represent a challenge for mobile and embed-
ded systems due to the cost of performing classification with
high-dimensional feature vectors. Efficient CapsNet research
is not present in the state of the art and can benefit from
adding robustness and more accurate performance for face
recognition in embedded systems. Early research on efficient
Capsule Networks [122] has suggested that the major bot-
tleneck is the dynamic routing procedure (which determines
which capsule is a vector going to connect). This procedure is
very intensive on memory calls. The authors have proposed a
novel low-level framework and CapsNet architecture design
to remedy this problem; however, further research is needed
in this area.

2) LEVERAGING CNN MULTI-BRANCH ARCHITECTURES

AND LOSS FUNCTIONS TAILORED FOR VLFR

The domain gap relationship and evaluation can be modeled
at the CNN architecture level and the loss function level.
Modeling these relationships has shown a more effective
and more generalized feature extraction. Methods such as
FAN [112], CSRI [14], among others, have highlighted the
importance and effectiveness that inputs for VLR and HR
imaging, synthetic or native and even sharing parameters
for extracting features across different domain imagery. This
principle needs to be extended to the very robust and efficient
feature extraction capabilities of the more recent lightweight
convolutional neural networks for face recognition. As of
now, we can only utilize lightweight CNNs by up-scaling the
very low resolution, effectively creating a synthetic image,
not representative of the real domain. We identify this as a
critical area of opportunity for these already robust feature
extractors. We are confident that introducing and processing
native VLR and HR images separately and using the efficient
design principles of lightweight CNNs can aid generalization
considerably. The most common loss functions used for the
rest of the deep learning methods are Centerloss (Centreface)
[104], Cross-Entropy Softmax [10], and Arcface [21]. These
loss functions encourage the inter-class discriminative ability
and a homogenized feature extraction process. However, they
do not model or consider the native domain space of the
heterogeneous source images in the same way some Coupled
Mappings and Super Resolution methods do. The CNN meth-
ods using tailored loss functions for VLR and HR imagery are
Deep Coupled ResNet [62], TCN [115], CSRI [14], and Dual
Directed Capsule Networks [90]. For instance, the coupled
mapping loss of DCR consists of a combination of softmax
loss and center loss for HR and LR feature sets independently
and a Euclidean loss for all the extracted feature vectors to
the center of each domain. This kind of loss functions effec-
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tively enforce the network to learn feature representations
based on the data from the same domain only. This principle
makes the feature extraction process robust to cross-domain
discrepancies.

3) UNTAPPED POTENTIAL OF KNOWLEDGE DISTILLATION
APPROACHES

Knowledge Distillation approaches can provide knowledge
from a more complex neural network architecture to a
more simple one, used only at the testing phase. We have
already discussed that methods, such as DCR, FAN, and Dual
Directed CapsNet, are not suitable for real-time applications.
However, they provide generalization capabilities not present
in lightweight convolutional neural networks. We consider
that Knowledge Distillation approaches [25], [92] can pro-
vide competent generalizations using the heavier networks.
This methodology allows to leverage the robust and effi-
cient feature extraction capabilities of the most successful
lightweight convolutional neural networks. The heavier net-
works act as teacher networks to transfer the domain knowl-
edge needed for lighter networks to extract features more
robust to resolution and unconstrained condition changes.

IV. CONCLUSION

In this paper, we have reviewed the most successful
approaches for unconstrained very low resolution face recog-
nition, while discussing the limitations and advantages of
each approach type in the state-of-the-art. We discussed the
factors affecting accuracy and inference time performance
and the caveats of using different training methodologies.
We analyzed the impact of bridging the domain gap at the
architecture level, loss function design, and image represen-
tation level. With this in mind, we have also discussed the
most important tendencies in the deep learning convolutional
neural networks as a whole, with approaches such as Capsule
Networks, CNN Multi-branch architectures, and Knowledge
Distillation.
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