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ABSTRACT Computer vision with deep learning is emerging as a significant approach for non-invasive
and non-destructive plant phenotyping. Spikes are the reproductive organs of wheat plants. Detection and
counting of spikes considered the grain-bearing organ have great importance in the phenomics study of
large sets of germplasms. In the present study, we developed an online platform, ‘‘Web-SpikeSegNet,’’ based
on a deep-learning framework for spike detection and counting from the wheat plant’s visual images. The
architecture of the Web-SpikeSegNet consists of 2 layers. First Layer, Client-Side Interface Layer, deals
with end user’s requests and corresponding responses management. In contrast, the second layer, Server Side
Application Layer, consists of a spike detection and counting module. The backbone of the spike detection
module comprises of deep encoder-decoder network with hourglass network for spike segmentation. The
Spike counting module implements the ‘‘Analyze Particle’’ function of imageJ to count the number of spikes.
For evaluating the performance of Web-SpikeSegNet, we acquired the wheat plant’s visual images, and
the satisfactory segmentation performances were obtained as Type I error 0.00159, Type II error 0.0586,
Accuracy 99.65%, Precision 99.59% and F1 score 99.65%. As spike detection and counting in wheat
phenotyping are closely related to the yield, Web-SpikeSegNet is a significant step forward in the field
of wheat phenotyping and will be very useful to the researchers and students working in the domain.

INDEX TERMS Computer vision, deep learning, deep encoder-decoder, hourglass, image analysis, spike
detection and counting, Web-SpikeSegNet, wheat.

I. INTRODUCTION
Wheat is one of the major food crops grown yearly
on 215 million hectares globally [Wheat in the world
CGIAR: https://wheat.org/wheat -in-the-world/]. It super-
sedes maize and rice in terms of protein sources in low-
and middle-income nations. Climate change and associated
abiotic stresses are the key factors of yield loss in Wheat.
Generic improvement in yield and climate resilience is
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critical for sustainable food security. One of the key aspects
of genetic improvement is the determination of complex
genome × environment × management interactions [1].
High-dimensional plant phenotyping is needed to bridge the
genotype-phenotype gap in plant breeding and plant health
monitoring in precision farming. Visual imaging is the most
commonly used cost-effective method to quantitatively study
plant growth, yield, and adaptation of biotic and abiotic
stresses. Besides, it is strongly reasoned that the imminent
trend in plant phenotyping will depend on imaging sensors’
combined tools and machine learning [2]. Yield estimation
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in Wheat has received significant attention from researchers.
The number of spikes/ears determines the grain number per
unit area and thus yield. Counting spikes of a large number
of genotypes through traditional methods using naked-eye is
a tedious and time-consuming job. Presently, non-destructive
image analysis-based phenotyping is gaining momentum and
proves as the less laborious and fast method. A cluster of
research works available in the area of computer vision
to detect and characterize spikes and spikelets in wheat
plants [3]–[8]. High-resolution image dataset with signifi-
cant quantity is a major constraint to develop the computer
vision based approaches. In this context, Pound et al. [6]
and David et al. [9] contributed ACID (Annotated Crop
Image Dataset) and GWHD (Global Wheat Head Detec-
tion) dataset respectively. In computer vision, the problem
of spike detection lies under the domain of pixel-wise seg-
mentation of objects. Bi et al. [4], Qiongyan et al. [5] and
Sadeghi-Tehran et al. [7] used manually defined color inten-
sities and textures for spike segmentation. Pound et al. [6]
and Hasan et al. [8] used Autoencoder [10] and Region-based
Convolutional Neural Network (R-CNN) [10] deep-learning
technique, respectively, to detect and characterize spikes
with greater than 90 percent accuracy. Xiong et al. [11]
proposed a deep-learning model ‘‘TasselNetV2’’ to char-
acterize the maize tassels with around 91% accuracy.
Sadeghi-Tehran et al. [12] developed a methodology using
Simple Linear Iterative Clustering and Deep Convolu-
tional Neural Networks for the spike quantification in
the wheat plant. Recently, Misra et al. [3] developed a
deep learning model known as SpikeSegNet, which was
reported as an effective and robust approach for spike
detection (accuracy: 99.91 percent) and counting (accuracy:
95 percent) from visual images irrespective of various illu-
mination factors. In this paper, a web solution is presented
as ‘‘Web-SpikeSegNet’’ for spike segmentation and count-
ing from wheat plants’ visual images for easy accessibil-
ity and quick reference. The developed web solution has
a wide application in the plant phenomics domain and
will be useful for researchers and students working in
the field of wheat plant phenotyping. Web-SpikeSegNet is
platform-independent and is readily accessible by at theURL:
http://spikesegnet.iasri.res.in/.

II. IMPLEMENTATION
Web_SpikeSegNet is developed based on the approach given
byMisra et al. [3]. The approach is based on the convolutional
encoder-decoder deep-learning technique for pixel-wise seg-
mentation of spikes from the wheat plant’s visual images.
The architecture of the network was inspired by UNet [13],
SegNet [14], and PixISegNet [15], which are popularly used
in various sectors for pixel-wise segmentation of objects.
SpikeSegNet consists of two modules viz., Local Patch
extraction Network (LPNet) and Global Mask Refinement
Network (GMRNet), in sequential order. The details of the
approach are given in [3]. Input images were divided into
patches before entering into the LPNet module to facilitate

local features’ learning more effectively than the whole input
image. LPNet was used in extracting and understanding the
contextual and local features at the patch level. Output images
of the LPNet are further refined at GMRNet to better segment
the spikes, as given in Figure 1. SpikeSegNet network was
trained using visual images of the wheat plant and its cor-
responding ground-truth segmented mask images with class
labels (i.e., spike regions of the plant image). Details of
the dataset preparation for training the network were given
in [3]. SpikeSegNet provides significant segmentation per-
formance at pixel-level in spike detection and counting and
is also proved as a robust approach when tested for different
illumination levels that may occur in the field conditions.

A. ARCHITECTURE OF THE PROPOSED SOFTWARE —
‘‘Web-SpikeSegNet’’
Web-SpikeSegNet is web-based software for the detection
and counting of spikes from visual images of the wheat plant.
It is developed and implemented on the Linux operating sys-
tem with 32 GB RAM and NVIDIA GeForce GTX 1080 Ti
graphics card (with 11 GB). PyCharm version 5.0 integra-
tive development environment [https://www.jetbrains.com/]
was used to develop the software. The software architecture
consists of two layers: Client-Side Interface Layer (CSIL)
and Server Side Application Layer (SSAL). The architec-
ture of Web-SpikeSegNet is given in Fig. 2. End-users
(especially the plant physiologist) will interact with the
Web-SpikeSegNet available at http://spikesegnet.iasri.res.in/
through CSIL using internet. CSIL deals with the end-users
requests and its corresponding responses management and
implemented using HyperText Markup Language (HTML)
[16], Cascading Style Sheets (CSS) [17], Flask [18], and
JavaScript [19] technologies. HTML, CSS, and Flask were
used to design the front-end view of the webpages, and
JavaScript was used for the client-side validation. End-users
will upload wheat image in the software through CSIL and
then it will be forwarded to the SSAL for spike detection and
counting. SSAL consists of two modules: spike detection and
spike counting module. SpikeSegNet deep learning model
will be applied on the input image for the spike segmentation
in the Spike Detection module, and it will be forwarded to
the spike counting module for counting the segmented spikes.
After completion of the process, the segmented spikes along
with spike count will be shown in the end-users window
through CSIL. Spike detection module was developed using
python libraries such as Tensorflow [20], Keras [21], Numpy
[22], Scipy [23], Matplotlib [24] and OpenCV [25] for con-
structing and implementing the deep learning model. Con-
volutional encoder network [10] (Encoder_SpikeSegNet),
decoder network [10] (Decoder_SpikeSegNet), and bottle-
neck network ([10], [15]) using stacked hourglasses (Bot-
tleneck_SpikeSegNet) are the backbone of LPNet, GMR-
Net and correspondingly the SpikeSegNet. The number of
encoders, decoders, and stacked hourglasses was estimated
empirically, as given in [3], to produce the best results by con-
sidering the optimum performances. Encoder_SpikeSegNet
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FIGURE 1. Flow diagram of SpikeSegNet: Here, input is visual image of wheat plant of size 1656*1356. The input image is divided into patches of size
256*256 before entering into the LPNet. The output of LPNet are patch-by-patch segmented mask images which are then combined to form the mask
image as per the size of the input visual image. This image may contain some sort of inaccurate segmentation of the object (or, spikes) and are refined at
global level using GMRNet network. The output of GMRNet network is nothing but the refined mask image containing spike regions only.

consists of 3 encoder blocks, and the output feature-maps of
each encoder block are forwarded to the next encoder block
for further feature extraction. Each encoder block consists of
two convolution layers, each with the square filter of size 3*3
[26] with a varying number of filters (16, 64, 128) followed
by ReLU [27] and max-pooling layer with a window size
of 2*2 [28]. Square filters are popularly used in state-of-art
methods [29], and the mentioned window size is considered
as standard [13], [30]. Batch Normalization, a statistical pro-
cedure, is done to improve the performance as well as stability
of the network. Input and output feature description of each
encoder block in the Encoder_SpikeSegNet is presented in
the tabular form (Table 1) and the algorithm for implementing
the Encoder_SpikeSegNet network is given in Algorithm 1.

Decoder_SpikeSegNet network facilitates a special oper-
ation called transpose convolution [31], which up-sampled
the incoming features to regenerate or decode the same. The
resulting up-sampled feature maps are then concatenated/

merged with the corresponding encoded feature maps of the
Encoder_SpikeSegNet. Merge operation helps in transferring
the spatial information across the network for better localiza-
tion of the segmentedmasks. TheDecoder_SpikeSegNet con-
tains three decoder blocks, and each decoder block consists
of two convolution layers (with filter size 3*3) with a varying
number of filters (128, 64, 16) as opposite to each encoder
block in Encoder_SpikeSegNet and followed by ReLU oper-
ation to decode the features. The output of the final decoder
was fed into the ‘‘SoftMax’’ [32] activation layer for classi-
fying objects (or spikes). Input and output feature descrip-
tion of each decoder block in the Decoder_SpikeSegNet
is presented in the tabular form (Table 2) and the algo-
rithm for implementing the Decoder_SpikeSegNet network
is given in Algorithm 2. Bottleneck_SpikeSegNet network
contains three hourglasses, which provide more confident
segmentation by concentrating the essential features cap-
tured at various occlusions, scale, and view-points [8], [13].
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TABLE 1. Input and output feature description of each encoder block in the Encoder_SpikeSegNet Network.

TABLE 2. Input and output feature description of each decoder block in the Decoder_SpikeSegNet Network.

FIGURE 2. Architecture of Web-SpikeSegNet: The software architecture
consists of two layers, namely Client-Side Interface Layer (CSIL) and
Server Side Application Layer (SSAL). CSIL deals with the end-user’s
requests and its corresponding responses management. SSAL consists of
two modules: spike detection and spike counting module.

Each hourglass comprises a sequence of residual blocks
containing three convolution layers of filter size 1*1, 3*3,
and 1*1 sequentially with depth (or the number of filters)
128, 128, and 256, respectively, estimated empirically on the
basis of optimal performances. Algorithms for implementing

Bottleneck_SpikeSegNet, LPNet, andGMRNet are presented
in Algorithm 3, 4, and 5, respectively. The Spike counting
module is integrated with the output of the Spike detection
module in SSAL. For this purpose, the ‘‘Analyze Particle’’
functions of imageJ [33] was applied to the output image of
GMRNet, which is a segmented mask image or binary image
containing spike region only. ‘‘Analyze Particle’’ function
implements a flood-fill technique [34] for counting of object.

B. TRAINING OF WEB-SpikeSegNet
For training the spike-detection module of Web-SpikeSegNet
using the algorithms [1-5], 600 wheat plant’s visual images
were captured using the LemnaTec imaging facility installed
at Nanaji Deshmukh Plant Phenomics Center, New Delhi,
India. We have considered 3-directions (00, 1200, 2400)
visual images w.r.t the initial position of the plant to overcome
the problem of overlapping of ears. The image dataset was
randomly divided into training and testing at 85% and 15%,
respectively. Web-SpikeSegNet was trained for 300 epochs
with batch size 32 due to the system platform constraints.
Binary Cross-entropy loss function was used as it is a binary
classification problem (i.e., pixels with either spike pixels
or non-spike pixels) in the domain of image segmentation.
Details of the hyper-parameters used to train the network are
given in Table 3.

C. PERFORMANCE MEASUREMENT OF WEB-SpikeSegNet
For evaluating the segmentation performance to detect
the spikes, the resulting segmented images (Ipred) using
the Web-SpikeSegNet software are compared with the
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Algorithm 1 Encode_SpikeSegNet: Encoding Operation of SpikeSegNet
1: I: Input image/feature
2: Conv(input feature, filter_size, no. of filters): Convolution operation F for generating feature maps
3: BatchNorm(): Batch normalization operation F for improving the performance as well as stability of the network
4: Pool(): Pooling operation or down-sampling with window size 2*2
5: procedure Encoder_SpikeSegNet(I ) F input image of size 256*256
6: //First Encoder Block
7: E_conv_1_1← Conv(I, 3 ∗ 3, 16) F generates 16 feature maps of size 256*256
8: E_batch_1_1← BatchNorm(E_conv_1_1) F batch normalization of the features
9: E_conv_1_2← Conv(E_batch_1_1, 3 ∗ 3, 16) F generates 16 feature maps from the batch normalized features
10: E_batch_1_2← BatchNorm(E_conv_1_2)
11: I_Encoded_block_1← Pool(E_batch_1_2) F size of each feature map reduced by half and returns 16 feature maps of

size 128*128
12: //Second Encoder Block. Here input is the output of First encoder block
13: E_conv_2_1← Conv(I_Encoded_block_1, 3 ∗ 3, 64) F generates 64 feature maps of size 128*128
14: E_batch_2_1← BatchNorm(E_conv_2_1) F batch normalization of the features
15: E_conv_2_2← Conv(E_batch_2_1, 3 ∗ 3, 64)
16: E_batch_2_2← BatchNorm(E_conv_2_2)
17: I_Encoded_block_2← Pool(E_batch_2_2) F return 64 feature maps of size 64*64
18: //Third Encoder Block. Here input is the output of second encoder block
19: E_conv_3_1← Conv(I_Encoded_block_2, 3 ∗ 3, 128) F generates 128 feature maps of size 64*64
20: E_batch_3_1← BatchNorm(E_conv_3_1)
21: E_conv_3_2← Conv(E_batch_3_1, 3 ∗ 3, 128)
22: E_batch_3_2← BatchNorm(E_conv_3_2)
23: I_Encoded_block_3← Pool(E_batch_3_2) F return 128 feature maps of size 32*32
24: return I_Encoded_block_3

TABLE 3. Hyper-parameters.

corresponding ground-truth mask images (Igrtr), which were
prepared by ensuing the steps mentioned in [3]. Segmentation
performances are calculated using the following [Eq. (1) to
Eq. (10)] statistical parameters [35]–[37]:

Type I Error (E1): For any r th test image, exclusive-OR
operation is done to compute pixel-wise classification error
(PixErrr) between (Ipred) and the corresponding (Igrtr) image
of size p×q,

PixErrr(Ipred, Igrtr) =
1

p ∗ q

q∑
l=1

p∑
k=1

[Ipred(k, l)⊕ Igrtr(k, l)]

(1)

E1 is computed by averaging the PixErrr of all the test
images:

E1 =
1
n

n∑
r=1

PixErrr (2)

where, n is the total number of test images. E1 lies within
[0, 1]. If the value of E1 is close to ‘‘0’’, it refers minimum
error, whereas if E1 is close to ‘‘1’’, it signifies large error.

Type II error (E2): For any r th test image, the error rate E2r

is computed by the average of false-positives (FPR) and false
negatives (FNR) rates at the pixel level defined as:

Er2 = 0.5 ∗ FPR+ 0.5 ∗ FNR (3)

where,

FPR =
1

p ∗ q

q∑
l=1

p∑
k=1

[(Igrtr(k, l). ∗ Ipred(k, l))⊕ Ipred(k, l)]

(4)

FNR =
1

p ∗ q

q∑
l=1

p∑
k=1

[(Igrtr(k, l). ∗ Igrtr(k, l))⊕ Ipred(k, l)]

(5)

E2 is computed by taking the average errors of all the input
test images as given below:

E2 =
1
n

n∑
r=1

Er2 (6)

Following performance parameters are also used for
measuring the segmentation performance of the Web-
SpikeSegNet at pixel level to identify/detect spikes as
follows:
• True positive (TP): number of pixels correctly classified
as spikes.

• True Negative (TN): number of pixels correctly
classified as non-spikes (other than spike pixels).
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Algorithm 2 Decoder_SpikeSegNet: Decoding Operation of SpikeSegNet
1: I: Output of Bottleneck_SpikeSegNet (for LPNet) or, output of Encoder_SpikeSegNet (for GMRNet).
2: Conv(input feature, filter_size, no. of filters): Convolution operation
3: BatchNorm(): Batch normalization operation
4: Tr_conv(input feature, filter_size, no. of filters): Transpose convolution F to up-sample the feature maps
5: Merge(): Merge/concatenation operation F for transferring the spatial information across the network
6: procedure Decoder_SpikeSegNet(I ) F here input is 128 feature maps of size 32*32
7: //First Decoder Block
8: T_conv_1← Tr_Conv(I, 3 ∗ 3, 128) F Up-sampling done and return 128 decoded feature maps of size 64*64
9: D_batch_1_1← BatchNorm(T_conv_1) F batch normalization of the features

10: M_1← Merge(D_batch_1_1, I_Encoded_block_3) F concatenation operation with the output of third Encoder block
[refer Algorithm 1 Line no.: 23]

11: D_conv_1_1← Conv(M_1, 3 ∗ 3, 128)
12: D_batch_1_2← BatchNorm(D_conv_1_1) F batch normalization of the features
13: D_conv_1_2← Conv(D_batch_1_1, 3 ∗ 3, 128)
14: I_Decoded_block_1← BatchNorm(D_conv_1_2) F Output of the 1st Decoder Block is 128 decoded feature maps of

size 64*64
15: //Second Decoder Block. Here input is the output of First Decoder block
16: T_conv_2← Tr_Conv(I_Decoded_block_1, 3 ∗ 3, 64) F Up-sampling done and return 64 decoded feature maps of

size 128*128
17: D_batch_2_1← BatchNorm(T_conv_2) F batch normalization of the features
18: M_2← Merge(D_batch_2_1, I_Encoded_block_2) F concatenation operation with the output of second Encoder

block [refer Algorithm 1 Line no.: 17]
19: D_conv_2_1← Conv(M_2, 3 ∗ 3, 64)
20: D_batch_2_2← BatchNorm(D_conv_2_1)
21: D_conv_2_2← Conv(D_batch_2_2, 3 ∗ 3, 64)
22: I_Decoded_block_2← BatchNorm(D_conv_2_2) F Output of the second Decoder Block is 64 decoded feature maps

of size 128*128
23: //Third Decoder Block. Here input is the output of Second Decoder block
24: T_conv_3← Tr_Conv(I_Decoded_block_2, 3 ∗ 3, 16) F Up-sampling done and return 16 decoded feature maps of

size 256*256
25: D_batch_3_1← BatchNorm(T_conv_3) F batch normalization of the features
26: M_3← Merge(D_batch_3_1, I_Encoded_block_1) F concatenation operation with the output of First Encoder block

[refer Algorithm 1 Line no.: 11]
27: D_conv_3_1← Conv(M_3, 3 ∗ 3, 16)
28: D_batch_3_2← BatchNorm(D_conv_3_1)
29: D_conv_3_2← Conv(D_batch_3_2, 3 ∗ 3, 16)
30: I_Decoded_block_3← BatchNorm(D_conv_3_2)F Output of the third Decoder Block is 16 decoded feature maps of

size 256*256
31: return I_Decoded_block_3

• False Positive (FP): number of non-spike pixels classi-
fied as spikes pixels.

• False Negative (FN): number of spike pixels classified
as non- spikes pixels.

Then Precision, Recall, F-measure and Accuracy can be
defined as:

Precision = TP/(TP+ FP) (7)

measures the percentage of detected pixels are actually spikes

Recall = TP/(TP+ FN ) (8)

measures the percentage of actually spikes spike pixels are
detected

Accuracy = (TP+ TN )/(TP+ TN + FP+ FN ) (9)

measures performance of the Web-SpikeSegNet

F1Score = 2(Precision ∗ Recall)/(Precision+ Recall)

(10)

measures robustness of the Web-SpikeSegNet in detecting or
identifying spikes

III. RESULTS AND DISCUSSION
To demonstrate the working environment of Web-
SpikeSegNet, a case study is presented here. The architecture
of Web-SpikeSegNet mentioned in section 3, and the design
of the software consists of 5 sections, namely ‘‘Home page’’,
‘‘Spike Detection and Counting’’, ‘‘Help’’, ‘‘Contact Us’’,
and ‘‘Sample Data set’’. The ‘‘Home page’’ contains basic
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Algorithm 3 Bottleneck_SpikeSegNet
1: I: Input image/feature
2: Conv(input feature, filter_size, no. of filters): Convolution operation
3: BatchNorm(): Batch normalization operation
4: Tr_conv(input feature, filter_size, no. of filters): Transpose convolution operation
5: Pool(): Pooling operation or down-sampling with window size 2*2
6: Merge(): Merge/concatenation operation
7: procedure Bottleneck_SpikeSegNet(I ) F here, input is output of ENCODER_SPIKESEGNET, 128 feature maps of size 32*32
8: H_1← HOURGLASS_SPIKESEGNET (I) F Call HOURGLASS_SPIKESEGNET procedure and return, 128 feature maps of

size 32*32
9: Scale_up_← SCALE_UP(H_1) F Call SCALE_UP procedure and return, 128 feature maps of size 64*64

10: H_2← HOURGLASS_SPIKESEGNET (Scale_up)
11: Scale_down_← SCALE_DOWN (H_2) F Call SCALE_DOWN procedure and return, 128 feature maps of size 32*32
12: H_3_← HOURGLASS_SPIKESEGNET(Scale_down)
13: return H_3 F return, 128 refined feature maps of size 32*32

F Hourglass gives more confident segmentation by concentrating on the essential features
14: procedure Hourglass_SpikeSegNet(I )
15: res_1← RESIDUAL_BL(I ) F returns, 256 feature maps of size 32*32
16: pool_1←Pool(res_1) F down-sampling done and returns, 256 feature maps of size 16*16
17: res_2← RESIDUAL_BL(pool_1) F returns, 256 feature maps of size 16*16
18: pool_2←Pool(res_2) F down-sampling done and returns, 256 feature maps of size 8*8
19: res_3← RESIDUAL_BL(pool_2) F returns, 256 feature maps of size 8*8
20: pool_3←Pool(res_3) F down-sampling done and returns, 256 feature maps of size 4*4
21: res_4← RESIDUAL_BL(pool_3) F returns, 256 feature maps of size 4*4
22: res_5← RESIDUAL_BL(res_4)
23: T_conv_1←Tr_conv(res_5, 3 ∗ 3, 256) F up-sampling done and returns, 256 feature maps of size 8*8
24: M_1←Merge(T_conv_1, res_3)
25: res_6← RESIDUAL_BL(M_1) F returns, 256 feature maps of size 8*8
26: T_conv_2←Tr_conv(res_6, 3 ∗ 3, 256) F up-sampling done and returns, 256 feature maps of size 16*16
27: M_2←Merge(T_conv_2, res_2)
28: res_7← RESIDUAL_BL(M_2) F returns, 256 feature maps of size 16*16
29: T_conv_3←Tr_conv(res_7, 3 ∗ 3, 256) F up-sampling done and returns, 256 feature maps of size 32*32
30: M_3←Merge(T_conv_3, res_1)
31: res_8← RESIDUAL_BL(M_3) F returns, 256 feature maps of size 32*32
32: return res_8
33: procedure Residual_bl(I )
34: res_conv_1←Conv(I , 1 ∗ 1, 128)
35: res_conv_2←Conv(res_conv_1, 3 ∗ 3, 128)
36: res_conv_3←Conv(res_conv_2, 1 ∗ 1, 256)
37: return res_conv_3 F returns, 256 feature maps F Scale up and scale down operations help in finding the relationships

among aggregate features at different scales which further helps in getting the robust features
38: procedure Scale_up(I )
39: sc_up_conv_1←Conv(I , 3 ∗ 3, 128)
40: sc_up_batch_1←BatchNorm(sc_up_conv_1)
41: sc_up_conv_2←Conv(sc_up_batch_1, 3 ∗ 3, 128)
42: sc_up_batch_2←BatchNorm(sc_up_conv_2)
43: sc_up_pool ←Tr_Pool(sc_up_batch_2)
44: return sc_up_pool
45: procedure Scale_down(I )
46: sc_down_pool_1←Pool(I )
47: sc_down_conv_1←BatchNorm(sc_down_pool_1, 3 ∗ 3, 128)
48: sc_down_batch_1←BatchNorm(sc_down_conv_1)
49: sc_down_conv_2←Conv(sc_down_batch_1, 3 ∗ 3, 128)
50: sc_down_batch_2←BatchNorm(sc_down_conv_2)
51: return sc_down_batch_2

VOLUME 9, 2021 76241



T. Misra et al.: Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes

Algorithm 4 LPNet Local Patch Extraction Network
1: I: Input image/feature
2: procedure LPNet(I ) F here input is visual image patches of size 256*256
3: Encoded_I ← ENCODER_SPIKESEGNET(I ) F Call Algorithm 1. Return encoded feature maps of the input image
4: Bottleneck_I ← BOTTLENECK_SPIKESEGNET(Encoded_I ) F Call Algorithm 3. Return refined feature maps of the

input features
5: Decoded_I ← DECODER_SPIKESEGNET(Bottleneck_I ) F Call Algorithm 2. Return decoded feature maps of the input

features
6: return Decoded_I F Segmeted mask image of size 256*256 containing spikes regions corresponding to the input patches.

Algorithm 5 GMRNet
1: I: Input image/feature
2: procedure GMRNet(I ) F here input is the output image/feature of LPNet
3: Encoded_I ← ENCODER_SPIKESEGNET(I ) F Call Algorithm 1. Return encoded feature maps of the input image
4: Decoded_I ← DECODER_SPIKESEGNET(Encoded_I ) F Call Algorithm 2. Return decoded feature maps of the input

features
5: return Decoded_I F Refined segmented mask image of size 256*256 containing spikes regions corresponding to the

input image/feature.

TABLE 4. Segmentation performance analysis of Web-SpikeSegNet.

information about SpikeSegNet, and the flow diagram of the
steps needs to be followed to recognize and count the spikes
of the uploaded wheat plant image (Fig. 3). The ‘‘Sample
Data set’’ section facilitates sample visual images of wheat
plants for the experiment. Spike Detection and Counting
module is the center of attention of the software. The user
has to follow the following steps to detect and count the
spikes and the output of each steps are pictorially presented
in Supplementary 1:

1) Select and upload visual image of wheat plant of size
1656*1356 consisting of above ground parts only as
discussed in [3].

2) Click on ‘‘Generate Patches’’ button for dividing the
whole image into patches. Here, the visual image
is divided into 100 pixel overlapping patches (each
patches of size 256*256) which work as input to the
LPNet module. Therefore, from one visual image of
size 1656*1356, 180 patches of size 256*256 will be
generated.

3) Click on ‘‘Run LPNet’’ to run the LPNet module for
extracting contextual and spatial features at patch level.
Output of the LPNet are the segmented images of size
256*256 corresponding to the patch images.

4) The output of LPNet are merged to generate the
segmented image of size 1656*1656 that contains
some inaccurate segmentation of spikes and further
refined at global level by clicking on ‘‘Run GMRNet’’
button.

5) For counting the wheat spikes, click on ‘‘Count’’button
and the corresponding spikes count will be displayed on
the next window.

The final output of Web-SpikeSegNet after detection and
counting of spikes from the visual images of wheat plant is
given in Fig. 4.

A. PERFORMANCE ANALYSIS OF WEB-SpikeSegNet
Web-SPikeSegNet was trained using the training dataset con-
sisting of randomly selected 85% of the total images cap-
tured (i.e., 510 images among 600 images). Although the
network was trained for 300 epochs, the training losses were
plateaued around 100 epoch as given in Fig 5. Segmentation
performances of the Web-SpikeSegNet has been computed
on the testing dataset consists of 90 images. The mentioned
statistical parameters (eq. 1 to eq. 10) are computed, and the
average values are presented in Table 4. As the performance
of spike detection is calculated at the pixel level, the value
of E1 (=0.00159) depict that on an average only 104 pixels
are misclassified among 65,536 pixels which is the pixel size
of one image, i.e., 65,536 (256 * 256). The accuracy of the
approach as well as the developed software is around 99.65
%. The average precision value reflects that 99.59% of the
detected spikes are actually spike pixels and the robustness
of the approach is also ∼ 100 %.

B. COMPARATIVE ANALYSIS WITH ACID (Annotated
CROP IMAGE Dataset) DATASET AVAILABLE AT
https://plantimages.nottingham.ac.uk/
We ran the developed software on the ACID (Annotated
Crop Image Dataset) dataset for the comparative study. The
dataset consisted of 415 training images and 105 testing
images and was contributed by Pound et al. [6]. They pro-
posed a multi-task deep learning architecture for localizing

76242 VOLUME 9, 2021



T. Misra et al.: Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes

FIGURE 3. Home page of Web-SpikeSegNet contains basic information about SpikeSegNet and the flow diagram of the steps need to be followed to
recognize and counting the spikes of the uploaded wheat plant image.

FIGURE 4. The final output of Web-SpikeSegNet after detection and counting of spikes from the visual images of wheat plant.

wheat spikes and spikelets and achieved 95 % accuracy in
spike detection. As the Web-SpikeSegNet model was trained
using the wheat’s visual images with a consistent white

background, we converted the background of the test images
in the mentioned website from black to white to conduct
the comparative study. The output of Web-SpikeSegNet on
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TABLE 5. Segmentation performance analysis of the ACID dataset.

FIGURE 5. Graphical representation of training Loss.

FIGURE 6. Comparative study with ACID (Annotated Crop Image Dataset)
dataset available at https://plantimages.nottingham.ac.uk/: (a) test
images (b) black background converted into white (c) detected spikes
using Web-SpikeSegNet software.

the ACID dataset is presented in Fig. 6. For computing the
segmentation performance, the ground-truth mask images
corresponding to the testing dataset were prepared using

the procedure mentioned in [3]. The average segmentation
performances are given in Table 5. The value of the type
I error (0.00164) reflects that, on average, only 107 pix-
els are wrongly classified among 65,536 pixels (the size
of one image is 256*256 pixels). The accuracy (99.55%),
precision (99.62%), and F1 value (99.62%) depict that the
Web-SpikeSegNet approach is comparatively generalized
and robust than the approach presented by Pound et al. [6].
It is due to the training criteria of Web-SpikeSegNet,
where the deep learning model is trained at patch level for
understanding the local as well as global features efficiently.

IV. CONCLUSION
Recognition and counting of spikes for the large set of
germplasms in a non-destructive way is an enormously
challenging task. This study developed web-based soft-
ware ‘‘Web-SpikeSegNet’’ using the robust SpikeSegNet
approach, which is based on digital image analysis and
deep-learning techniques. The software is freely available
for researchers, and students are working particularly in
the field of wheat plant phenotyping. Further, it is a useful
tool in the automated phenomics facility to automate the
phenology-based treatment. Web-SpikeSegNet is a signifi-
cant step toward studying the wheat crop yield phenotyping
and can be extended to the other cereal crops.
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