
Received April 5, 2021, accepted May 5, 2021, date of publication May 17, 2021, date of current version June 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3080836

Web-SpikeSegNet: Deep Learning Framework for
Recognition and Counting of Spikes From
Visual Images of Wheat Plants
TANUJ MISRA1,5, ALKA ARORA 1, SUDEEP MARWAHA1, RANJEET RANJAN JHA2,
MRINMOY RAY1, RAJNI JAIN 3, A. R. RAO1, ELDHO VARGHESE4, SHAILENDRA KUMAR5,
SUDHIR KUMAR 6, ADITYA NIGAM 2, RABI NARAYAN SAHOO6,
AND VISWANATHAN CHINNUSAMY6
1ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
2School of Computing and Electrical Engineering (SCEE), IIT Mandi, Mandi 175005, India
3ICAR—National Institute of Agricultural Economics and Policy Research (NIAP), New Delhi 110012, India
4ICAR-Central Marine Fisheries Research Institute, Kochi 682018, India
5Department of Computer Science, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, India
6ICAR-Indian Agricultural Research Institute, Library Avenue, New Delhi 110012, India

Corresponding author: Alka Arora (Alka.Arora@icar.gov.in)

This work was supported in part by the National Agriculture Science Fund (NASF) through ICAR under Grant NASF/Phen-6005/2016-17,
and in part by National Agricultural Higher Education Project-Centre of Advanced Agricultural Science and Technology (NAHEP
CAAST) under Grant NAHEP/CAAST/2018/19/07. The work of Tanuj Misra was supported by the Fellowship from the Indian Council of
Agricultural Research-Indian Agricultural Statistic Research Institute (ICAR-IASRI), New Delhi, India.

ABSTRACT Computer vision with deep learning is emerging as a significant approach for non-invasive
and non-destructive plant phenotyping. Spikes are the reproductive organs of wheat plants. Detection and
counting of spikes considered the grain-bearing organ have great importance in the phenomics study of
large sets of germplasms. In the present study, we developed an online platform, ‘‘Web-SpikeSegNet,’’ based
on a deep-learning framework for spike detection and counting from the wheat plant’s visual images. The
architecture of the Web-SpikeSegNet consists of 2 layers. First Layer, Client-Side Interface Layer, deals
with end user’s requests and corresponding responses management. In contrast, the second layer, Server Side
Application Layer, consists of a spike detection and counting module. The backbone of the spike detection
module comprises of deep encoder-decoder network with hourglass network for spike segmentation. The
Spike counting module implements the ‘‘Analyze Particle’’ function of imageJ to count the number of spikes.
For evaluating the performance of Web-SpikeSegNet, we acquired the wheat plant’s visual images, and
the satisfactory segmentation performances were obtained as Type I error 0.00159, Type II error 0.0586,
Accuracy 99.65%, Precision 99.59% and F1 score 99.65%. As spike detection and counting in wheat
phenotyping are closely related to the yield, Web-SpikeSegNet is a significant step forward in the field
of wheat phenotyping and will be very useful to the researchers and students working in the domain.

INDEX TERMS Computer vision, deep learning, deep encoder-decoder, hourglass, image analysis, spike
detection and counting, Web-SpikeSegNet, wheat.

I. INTRODUCTION
Wheat is one of the major food crops grown yearly
on 215 million hectares globally [Wheat in the world
CGIAR: https://wheat.org/wheat -in-the-world/]. It super-
sedes maize and rice in terms of protein sources in low-
and middle-income nations. Climate change and associated
abiotic stresses are the key factors of yield loss in Wheat.
Generic improvement in yield and climate resilience is

The associate editor coordinating the review of this manuscript and

approving it for publication was Tallha Akram .

critical for sustainable food security. One of the key aspects
of genetic improvement is the determination of complex
genome × environment × management interactions [1].
High-dimensional plant phenotyping is needed to bridge the
genotype-phenotype gap in plant breeding and plant health
monitoring in precision farming. Visual imaging is the most
commonly used cost-effective method to quantitatively study
plant growth, yield, and adaptation of biotic and abiotic
stresses. Besides, it is strongly reasoned that the imminent
trend in plant phenotyping will depend on imaging sensors’
combined tools and machine learning [2]. Yield estimation

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 76235

https://orcid.org/0000-0003-0999-1077
https://orcid.org/0000-0002-8493-7858
https://orcid.org/0000-0002-1089-7435
https://orcid.org/0000-0003-4755-0619
https://orcid.org/0000-0003-4578-3849


T. Misra et al.: Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes

in Wheat has received significant attention from researchers.
The number of spikes/ears determines the grain number per
unit area and thus yield. Counting spikes of a large number
of genotypes through traditional methods using naked-eye is
a tedious and time-consuming job. Presently, non-destructive
image analysis-based phenotyping is gaining momentum and
proves as the less laborious and fast method. A cluster of
research works available in the area of computer vision
to detect and characterize spikes and spikelets in wheat
plants [3]–[8]. High-resolution image dataset with signifi-
cant quantity is a major constraint to develop the computer
vision based approaches. In this context, Pound et al. [6]
and David et al. [9] contributed ACID (Annotated Crop
Image Dataset) and GWHD (Global Wheat Head Detec-
tion) dataset respectively. In computer vision, the problem
of spike detection lies under the domain of pixel-wise seg-
mentation of objects. Bi et al. [4], Qiongyan et al. [5] and
Sadeghi-Tehran et al. [7] used manually defined color inten-
sities and textures for spike segmentation. Pound et al. [6]
and Hasan et al. [8] used Autoencoder [10] and Region-based
Convolutional Neural Network (R-CNN) [10] deep-learning
technique, respectively, to detect and characterize spikes
with greater than 90 percent accuracy. Xiong et al. [11]
proposed a deep-learning model ‘‘TasselNetV2’’ to char-
acterize the maize tassels with around 91% accuracy.
Sadeghi-Tehran et al. [12] developed a methodology using
Simple Linear Iterative Clustering and Deep Convolu-
tional Neural Networks for the spike quantification in
the wheat plant. Recently, Misra et al. [3] developed a
deep learning model known as SpikeSegNet, which was
reported as an effective and robust approach for spike
detection (accuracy: 99.91 percent) and counting (accuracy:
95 percent) from visual images irrespective of various illu-
mination factors. In this paper, a web solution is presented
as ‘‘Web-SpikeSegNet’’ for spike segmentation and count-
ing from wheat plants’ visual images for easy accessibil-
ity and quick reference. The developed web solution has
a wide application in the plant phenomics domain and
will be useful for researchers and students working in
the field of wheat plant phenotyping. Web-SpikeSegNet is
platform-independent and is readily accessible by at theURL:
http://spikesegnet.iasri.res.in/.

II. IMPLEMENTATION
Web_SpikeSegNet is developed based on the approach given
byMisra et al. [3]. The approach is based on the convolutional
encoder-decoder deep-learning technique for pixel-wise seg-
mentation of spikes from the wheat plant’s visual images.
The architecture of the network was inspired by UNet [13],
SegNet [14], and PixISegNet [15], which are popularly used
in various sectors for pixel-wise segmentation of objects.
SpikeSegNet consists of two modules viz., Local Patch
extraction Network (LPNet) and Global Mask Refinement
Network (GMRNet), in sequential order. The details of the
approach are given in [3]. Input images were divided into
patches before entering into the LPNet module to facilitate

local features’ learning more effectively than the whole input
image. LPNet was used in extracting and understanding the
contextual and local features at the patch level. Output images
of the LPNet are further refined at GMRNet to better segment
the spikes, as given in Figure 1. SpikeSegNet network was
trained using visual images of the wheat plant and its cor-
responding ground-truth segmented mask images with class
labels (i.e., spike regions of the plant image). Details of
the dataset preparation for training the network were given
in [3]. SpikeSegNet provides significant segmentation per-
formance at pixel-level in spike detection and counting and
is also proved as a robust approach when tested for different
illumination levels that may occur in the field conditions.

A. ARCHITECTURE OF THE PROPOSED SOFTWARE —
‘‘Web-SpikeSegNet’’
Web-SpikeSegNet is web-based software for the detection
and counting of spikes from visual images of the wheat plant.
It is developed and implemented on the Linux operating sys-
tem with 32 GB RAM and NVIDIA GeForce GTX 1080 Ti
graphics card (with 11 GB). PyCharm version 5.0 integra-
tive development environment [https://www.jetbrains.com/]
was used to develop the software. The software architecture
consists of two layers: Client-Side Interface Layer (CSIL)
and Server Side Application Layer (SSAL). The architec-
ture of Web-SpikeSegNet is given in Fig. 2. End-users
(especially the plant physiologist) will interact with the
Web-SpikeSegNet available at http://spikesegnet.iasri.res.in/
through CSIL using internet. CSIL deals with the end-users
requests and its corresponding responses management and
implemented using HyperText Markup Language (HTML)
[16], Cascading Style Sheets (CSS) [17], Flask [18], and
JavaScript [19] technologies. HTML, CSS, and Flask were
used to design the front-end view of the webpages, and
JavaScript was used for the client-side validation. End-users
will upload wheat image in the software through CSIL and
then it will be forwarded to the SSAL for spike detection and
counting. SSAL consists of two modules: spike detection and
spike counting module. SpikeSegNet deep learning model
will be applied on the input image for the spike segmentation
in the Spike Detection module, and it will be forwarded to
the spike counting module for counting the segmented spikes.
After completion of the process, the segmented spikes along
with spike count will be shown in the end-users window
through CSIL. Spike detection module was developed using
python libraries such as Tensorflow [20], Keras [21], Numpy
[22], Scipy [23], Matplotlib [24] and OpenCV [25] for con-
structing and implementing the deep learning model. Con-
volutional encoder network [10] (Encoder_SpikeSegNet),
decoder network [10] (Decoder_SpikeSegNet), and bottle-
neck network ([10], [15]) using stacked hourglasses (Bot-
tleneck_SpikeSegNet) are the backbone of LPNet, GMR-
Net and correspondingly the SpikeSegNet. The number of
encoders, decoders, and stacked hourglasses was estimated
empirically, as given in [3], to produce the best results by con-
sidering the optimum performances. Encoder_SpikeSegNet

76236 VOLUME 9, 2021



T. Misra et al.: Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes

FIGURE 1. Flow diagram of SpikeSegNet: Here, input is visual image of wheat plant of size 1656*1356. The input image is divided into patches of size
256*256 before entering into the LPNet. The output of LPNet are patch-by-patch segmented mask images which are then combined to form the mask
image as per the size of the input visual image. This image may contain some sort of inaccurate segmentation of the object (or, spikes) and are refined at
global level using GMRNet network. The output of GMRNet network is nothing but the refined mask image containing spike regions only.

consists of 3 encoder blocks, and the output feature-maps of
each encoder block are forwarded to the next encoder block
for further feature extraction. Each encoder block consists of
two convolution layers, each with the square filter of size 3*3
[26] with a varying number of filters (16, 64, 128) followed
by ReLU [27] and max-pooling layer with a window size
of 2*2 [28]. Square filters are popularly used in state-of-art
methods [29], and the mentioned window size is considered
as standard [13], [30]. Batch Normalization, a statistical pro-
cedure, is done to improve the performance as well as stability
of the network. Input and output feature description of each
encoder block in the Encoder_SpikeSegNet is presented in
the tabular form (Table 1) and the algorithm for implementing
the Encoder_SpikeSegNet network is given in Algorithm 1.

Decoder_SpikeSegNet network facilitates a special oper-
ation called transpose convolution [31], which up-sampled
the incoming features to regenerate or decode the same. The
resulting up-sampled feature maps are then concatenated/

merged with the corresponding encoded feature maps of the
Encoder_SpikeSegNet. Merge operation helps in transferring
the spatial information across the network for better localiza-
tion of the segmentedmasks. TheDecoder_SpikeSegNet con-
tains three decoder blocks, and each decoder block consists
of two convolution layers (with filter size 3*3) with a varying
number of filters (128, 64, 16) as opposite to each encoder
block in Encoder_SpikeSegNet and followed by ReLU oper-
ation to decode the features. The output of the final decoder
was fed into the ‘‘SoftMax’’ [32] activation layer for classi-
fying objects (or spikes). Input and output feature descrip-
tion of each decoder block in the Decoder_SpikeSegNet
is presented in the tabular form (Table 2) and the algo-
rithm for implementing the Decoder_SpikeSegNet network
is given in Algorithm 2. Bottleneck_SpikeSegNet network
contains three hourglasses, which provide more confident
segmentation by concentrating the essential features cap-
tured at various occlusions, scale, and view-points [8], [13].

VOLUME 9, 2021 76237



T. Misra et al.: Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes

TABLE 1. Input and output feature description of each encoder block in the Encoder_SpikeSegNet Network.

TABLE 2. Input and output feature description of each decoder block in the Decoder_SpikeSegNet Network.

FIGURE 2. Architecture of Web-SpikeSegNet: The software architecture
consists of two layers, namely Client-Side Interface Layer (CSIL) and
Server Side Application Layer (SSAL). CSIL deals with the end-user’s
requests and its corresponding responses management. SSAL consists of
two modules: spike detection and spike counting module.

Each hourglass comprises a sequence of residual blocks
containing three convolution layers of filter size 1*1, 3*3,
and 1*1 sequentially with depth (or the number of filters)
128, 128, and 256, respectively, estimated empirically on the
basis of optimal performances. Algorithms for implementing

Bottleneck_SpikeSegNet, LPNet, andGMRNet are presented
in Algorithm 3, 4, and 5, respectively. The Spike counting
module is integrated with the output of the Spike detection
module in SSAL. For this purpose, the ‘‘Analyze Particle’’
functions of imageJ [33] was applied to the output image of
GMRNet, which is a segmented mask image or binary image
containing spike region only. ‘‘Analyze Particle’’ function
implements a flood-fill technique [34] for counting of object.

B. TRAINING OF WEB-SpikeSegNet
For training the spike-detection module of Web-SpikeSegNet
using the algorithms [1-5], 600 wheat plant’s visual images
were captured using the LemnaTec imaging facility installed
at Nanaji Deshmukh Plant Phenomics Center, New Delhi,
India. We have considered 3-directions (00, 1200, 2400)
visual images w.r.t the initial position of the plant to overcome
the problem of overlapping of ears. The image dataset was
randomly divided into training and testing at 85% and 15%,
respectively. Web-SpikeSegNet was trained for 300 epochs
with batch size 32 due to the system platform constraints.
Binary Cross-entropy loss function was used as it is a binary
classification problem (i.e., pixels with either spike pixels
or non-spike pixels) in the domain of image segmentation.
Details of the hyper-parameters used to train the network are
given in Table 3.

C. PERFORMANCE MEASUREMENT OF WEB-SpikeSegNet
For evaluating the segmentation performance to detect
the spikes, the resulting segmented images (Ipred) using
the Web-SpikeSegNet software are compared with the

76238 VOLUME 9, 2021



T. Misra et al.: Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes

Algorithm 1 Encode_SpikeSegNet: Encoding Operation of SpikeSegNet
1: I: Input image/feature
2: Conv(input feature, filter_size, no. of filters): Convolution operation F for generating feature maps
3: BatchNorm(): Batch normalization operation F for improving the performance as well as stability of the network
4: Pool(): Pooling operation or down-sampling with window size 2*2
5: procedure Encoder_SpikeSegNet(I ) F input image of size 256*256
6: //First Encoder Block
7: E_conv_1_1← Conv(I, 3 ∗ 3, 16) F generates 16 feature maps of size 256*256
8: E_batch_1_1← BatchNorm(E_conv_1_1) F batch normalization of the features
9: E_conv_1_2← Conv(E_batch_1_1, 3 ∗ 3, 16) F generates 16 feature maps from the batch normalized features
10: E_batch_1_2← BatchNorm(E_conv_1_2)
11: I_Encoded_block_1← Pool(E_batch_1_2) F size of each feature map reduced by half and returns 16 feature maps of

size 128*128
12: //Second Encoder Block. Here input is the output of First encoder block
13: E_conv_2_1← Conv(I_Encoded_block_1, 3 ∗ 3, 64) F generates 64 feature maps of size 128*128
14: E_batch_2_1← BatchNorm(E_conv_2_1) F batch normalization of the features
15: E_conv_2_2← Conv(E_batch_2_1, 3 ∗ 3, 64)
16: E_batch_2_2← BatchNorm(E_conv_2_2)
17: I_Encoded_block_2← Pool(E_batch_2_2) F return 64 feature maps of size 64*64
18: //Third Encoder Block. Here input is the output of second encoder block
19: E_conv_3_1← Conv(I_Encoded_block_2, 3 ∗ 3, 128) F generates 128 feature maps of size 64*64
20: E_batch_3_1← BatchNorm(E_conv_3_1)
21: E_conv_3_2← Conv(E_batch_3_1, 3 ∗ 3, 128)
22: E_batch_3_2← BatchNorm(E_conv_3_2)
23: I_Encoded_block_3← Pool(E_batch_3_2) F return 128 feature maps of size 32*32
24: return I_Encoded_block_3

TABLE 3. Hyper-parameters.

corresponding ground-truth mask images (Igrtr), which were
prepared by ensuing the steps mentioned in [3]. Segmentation
performances are calculated using the following [Eq. (1) to
Eq. (10)] statistical parameters [35]–[37]:

Type I Error (E1): For any r th test image, exclusive-OR
operation is done to compute pixel-wise classification error
(PixErrr) between (Ipred) and the corresponding (Igrtr) image
of size p×q,

PixErrr(Ipred, Igrtr) =
1

p ∗ q

q∑
l=1

p∑
k=1

[Ipred(k, l)⊕ Igrtr(k, l)]

(1)

E1 is computed by averaging the PixErrr of all the test
images:

E1 =
1
n

n∑
r=1

PixErrr (2)

where, n is the total number of test images. E1 lies within
[0, 1]. If the value of E1 is close to ‘‘0’’, it refers minimum
error, whereas if E1 is close to ‘‘1’’, it signifies large error.

Type II error (E2): For any r th test image, the error rate E2r

is computed by the average of false-positives (FPR) and false
negatives (FNR) rates at the pixel level defined as:

Er2 = 0.5 ∗ FPR+ 0.5 ∗ FNR (3)

where,

FPR =
1

p ∗ q

q∑
l=1

p∑
k=1

[(Igrtr(k, l). ∗ Ipred(k, l))⊕ Ipred(k, l)]

(4)

FNR =
1

p ∗ q

q∑
l=1

p∑
k=1

[(Igrtr(k, l). ∗ Igrtr(k, l))⊕ Ipred(k, l)]

(5)

E2 is computed by taking the average errors of all the input
test images as given below:

E2 =
1
n

n∑
r=1

Er2 (6)

Following performance parameters are also used for
measuring the segmentation performance of the Web-
SpikeSegNet at pixel level to identify/detect spikes as
follows:
• True positive (TP): number of pixels correctly classified
as spikes.

• True Negative (TN): number of pixels correctly
classified as non-spikes (other than spike pixels).

VOLUME 9, 2021 76239



T. Misra et al.: Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes

Algorithm 2 Decoder_SpikeSegNet: Decoding Operation of SpikeSegNet
1: I: Output of Bottleneck_SpikeSegNet (for LPNet) or, output of Encoder_SpikeSegNet (for GMRNet).
2: Conv(input feature, filter_size, no. of filters): Convolution operation
3: BatchNorm(): Batch normalization operation
4: Tr_conv(input feature, filter_size, no. of filters): Transpose convolution F to up-sample the feature maps
5: Merge(): Merge/concatenation operation F for transferring the spatial information across the network
6: procedure Decoder_SpikeSegNet(I ) F here input is 128 feature maps of size 32*32
7: //First Decoder Block
8: T_conv_1← Tr_Conv(I, 3 ∗ 3, 128) F Up-sampling done and return 128 decoded feature maps of size 64*64
9: D_batch_1_1← BatchNorm(T_conv_1) F batch normalization of the features

10: M_1← Merge(D_batch_1_1, I_Encoded_block_3) F concatenation operation with the output of third Encoder block
[refer Algorithm 1 Line no.: 23]

11: D_conv_1_1← Conv(M_1, 3 ∗ 3, 128)
12: D_batch_1_2← BatchNorm(D_conv_1_1) F batch normalization of the features
13: D_conv_1_2← Conv(D_batch_1_1, 3 ∗ 3, 128)
14: I_Decoded_block_1← BatchNorm(D_conv_1_2) F Output of the 1st Decoder Block is 128 decoded feature maps of

size 64*64
15: //Second Decoder Block. Here input is the output of First Decoder block
16: T_conv_2← Tr_Conv(I_Decoded_block_1, 3 ∗ 3, 64) F Up-sampling done and return 64 decoded feature maps of

size 128*128
17: D_batch_2_1← BatchNorm(T_conv_2) F batch normalization of the features
18: M_2← Merge(D_batch_2_1, I_Encoded_block_2) F concatenation operation with the output of second Encoder

block [refer Algorithm 1 Line no.: 17]
19: D_conv_2_1← Conv(M_2, 3 ∗ 3, 64)
20: D_batch_2_2← BatchNorm(D_conv_2_1)
21: D_conv_2_2← Conv(D_batch_2_2, 3 ∗ 3, 64)
22: I_Decoded_block_2← BatchNorm(D_conv_2_2) F Output of the second Decoder Block is 64 decoded feature maps

of size 128*128
23: //Third Decoder Block. Here input is the output of Second Decoder block
24: T_conv_3← Tr_Conv(I_Decoded_block_2, 3 ∗ 3, 16) F Up-sampling done and return 16 decoded feature maps of

size 256*256
25: D_batch_3_1← BatchNorm(T_conv_3) F batch normalization of the features
26: M_3← Merge(D_batch_3_1, I_Encoded_block_1) F concatenation operation with the output of First Encoder block

[refer Algorithm 1 Line no.: 11]
27: D_conv_3_1← Conv(M_3, 3 ∗ 3, 16)
28: D_batch_3_2← BatchNorm(D_conv_3_1)
29: D_conv_3_2← Conv(D_batch_3_2, 3 ∗ 3, 16)
30: I_Decoded_block_3← BatchNorm(D_conv_3_2)F Output of the third Decoder Block is 16 decoded feature maps of

size 256*256
31: return I_Decoded_block_3

• False Positive (FP): number of non-spike pixels classi-
fied as spikes pixels.

• False Negative (FN): number of spike pixels classified
as non- spikes pixels.

Then Precision, Recall, F-measure and Accuracy can be
defined as:

Precision = TP/(TP+ FP) (7)

measures the percentage of detected pixels are actually spikes

Recall = TP/(TP+ FN ) (8)

measures the percentage of actually spikes spike pixels are
detected

Accuracy = (TP+ TN )/(TP+ TN + FP+ FN ) (9)

measures performance of the Web-SpikeSegNet

F1Score = 2(Precision ∗ Recall)/(Precision+ Recall)

(10)

measures robustness of the Web-SpikeSegNet in detecting or
identifying spikes

III. RESULTS AND DISCUSSION
To demonstrate the working environment of Web-
SpikeSegNet, a case study is presented here. The architecture
of Web-SpikeSegNet mentioned in section 3, and the design
of the software consists of 5 sections, namely ‘‘Home page’’,
‘‘Spike Detection and Counting’’, ‘‘Help’’, ‘‘Contact Us’’,
and ‘‘Sample Data set’’. The ‘‘Home page’’ contains basic

76240 VOLUME 9, 2021



T. Misra et al.: Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes

Algorithm 3 Bottleneck_SpikeSegNet
1: I: Input image/feature
2: Conv(input feature, filter_size, no. of filters): Convolution operation
3: BatchNorm(): Batch normalization operation
4: Tr_conv(input feature, filter_size, no. of filters): Transpose convolution operation
5: Pool(): Pooling operation or down-sampling with window size 2*2
6: Merge(): Merge/concatenation operation
7: procedure Bottleneck_SpikeSegNet(I ) F here, input is output of ENCODER_SPIKESEGNET, 128 feature maps of size 32*32
8: H_1← HOURGLASS_SPIKESEGNET (I) F Call HOURGLASS_SPIKESEGNET procedure and return, 128 feature maps of

size 32*32
9: Scale_up_← SCALE_UP(H_1) F Call SCALE_UP procedure and return, 128 feature maps of size 64*64

10: H_2← HOURGLASS_SPIKESEGNET (Scale_up)
11: Scale_down_← SCALE_DOWN (H_2) F Call SCALE_DOWN procedure and return, 128 feature maps of size 32*32
12: H_3_← HOURGLASS_SPIKESEGNET(Scale_down)
13: return H_3 F return, 128 refined feature maps of size 32*32

F Hourglass gives more confident segmentation by concentrating on the essential features
14: procedure Hourglass_SpikeSegNet(I )
15: res_1← RESIDUAL_BL(I ) F returns, 256 feature maps of size 32*32
16: pool_1←Pool(res_1) F down-sampling done and returns, 256 feature maps of size 16*16
17: res_2← RESIDUAL_BL(pool_1) F returns, 256 feature maps of size 16*16
18: pool_2←Pool(res_2) F down-sampling done and returns, 256 feature maps of size 8*8
19: res_3← RESIDUAL_BL(pool_2) F returns, 256 feature maps of size 8*8
20: pool_3←Pool(res_3) F down-sampling done and returns, 256 feature maps of size 4*4
21: res_4← RESIDUAL_BL(pool_3) F returns, 256 feature maps of size 4*4
22: res_5← RESIDUAL_BL(res_4)
23: T_conv_1←Tr_conv(res_5, 3 ∗ 3, 256) F up-sampling done and returns, 256 feature maps of size 8*8
24: M_1←Merge(T_conv_1, res_3)
25: res_6← RESIDUAL_BL(M_1) F returns, 256 feature maps of size 8*8
26: T_conv_2←Tr_conv(res_6, 3 ∗ 3, 256) F up-sampling done and returns, 256 feature maps of size 16*16
27: M_2←Merge(T_conv_2, res_2)
28: res_7← RESIDUAL_BL(M_2) F returns, 256 feature maps of size 16*16
29: T_conv_3←Tr_conv(res_7, 3 ∗ 3, 256) F up-sampling done and returns, 256 feature maps of size 32*32
30: M_3←Merge(T_conv_3, res_1)
31: res_8← RESIDUAL_BL(M_3) F returns, 256 feature maps of size 32*32
32: return res_8
33: procedure Residual_bl(I )
34: res_conv_1←Conv(I , 1 ∗ 1, 128)
35: res_conv_2←Conv(res_conv_1, 3 ∗ 3, 128)
36: res_conv_3←Conv(res_conv_2, 1 ∗ 1, 256)
37: return res_conv_3 F returns, 256 feature maps F Scale up and scale down operations help in finding the relationships

among aggregate features at different scales which further helps in getting the robust features
38: procedure Scale_up(I )
39: sc_up_conv_1←Conv(I , 3 ∗ 3, 128)
40: sc_up_batch_1←BatchNorm(sc_up_conv_1)
41: sc_up_conv_2←Conv(sc_up_batch_1, 3 ∗ 3, 128)
42: sc_up_batch_2←BatchNorm(sc_up_conv_2)
43: sc_up_pool ←Tr_Pool(sc_up_batch_2)
44: return sc_up_pool
45: procedure Scale_down(I )
46: sc_down_pool_1←Pool(I )
47: sc_down_conv_1←BatchNorm(sc_down_pool_1, 3 ∗ 3, 128)
48: sc_down_batch_1←BatchNorm(sc_down_conv_1)
49: sc_down_conv_2←Conv(sc_down_batch_1, 3 ∗ 3, 128)
50: sc_down_batch_2←BatchNorm(sc_down_conv_2)
51: return sc_down_batch_2

VOLUME 9, 2021 76241



T. Misra et al.: Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes

Algorithm 4 LPNet Local Patch Extraction Network
1: I: Input image/feature
2: procedure LPNet(I ) F here input is visual image patches of size 256*256
3: Encoded_I ← ENCODER_SPIKESEGNET(I ) F Call Algorithm 1. Return encoded feature maps of the input image
4: Bottleneck_I ← BOTTLENECK_SPIKESEGNET(Encoded_I ) F Call Algorithm 3. Return refined feature maps of the

input features
5: Decoded_I ← DECODER_SPIKESEGNET(Bottleneck_I ) F Call Algorithm 2. Return decoded feature maps of the input

features
6: return Decoded_I F Segmeted mask image of size 256*256 containing spikes regions corresponding to the input patches.

Algorithm 5 GMRNet
1: I: Input image/feature
2: procedure GMRNet(I ) F here input is the output image/feature of LPNet
3: Encoded_I ← ENCODER_SPIKESEGNET(I ) F Call Algorithm 1. Return encoded feature maps of the input image
4: Decoded_I ← DECODER_SPIKESEGNET(Encoded_I ) F Call Algorithm 2. Return decoded feature maps of the input

features
5: return Decoded_I F Refined segmented mask image of size 256*256 containing spikes regions corresponding to the

input image/feature.

TABLE 4. Segmentation performance analysis of Web-SpikeSegNet.

information about SpikeSegNet, and the flow diagram of the
steps needs to be followed to recognize and count the spikes
of the uploaded wheat plant image (Fig. 3). The ‘‘Sample
Data set’’ section facilitates sample visual images of wheat
plants for the experiment. Spike Detection and Counting
module is the center of attention of the software. The user
has to follow the following steps to detect and count the
spikes and the output of each steps are pictorially presented
in Supplementary 1:

1) Select and upload visual image of wheat plant of size
1656*1356 consisting of above ground parts only as
discussed in [3].

2) Click on ‘‘Generate Patches’’ button for dividing the
whole image into patches. Here, the visual image
is divided into 100 pixel overlapping patches (each
patches of size 256*256) which work as input to the
LPNet module. Therefore, from one visual image of
size 1656*1356, 180 patches of size 256*256 will be
generated.

3) Click on ‘‘Run LPNet’’ to run the LPNet module for
extracting contextual and spatial features at patch level.
Output of the LPNet are the segmented images of size
256*256 corresponding to the patch images.

4) The output of LPNet are merged to generate the
segmented image of size 1656*1656 that contains
some inaccurate segmentation of spikes and further
refined at global level by clicking on ‘‘Run GMRNet’’
button.

5) For counting the wheat spikes, click on ‘‘Count’’button
and the corresponding spikes count will be displayed on
the next window.

The final output of Web-SpikeSegNet after detection and
counting of spikes from the visual images of wheat plant is
given in Fig. 4.

A. PERFORMANCE ANALYSIS OF WEB-SpikeSegNet
Web-SPikeSegNet was trained using the training dataset con-
sisting of randomly selected 85% of the total images cap-
tured (i.e., 510 images among 600 images). Although the
network was trained for 300 epochs, the training losses were
plateaued around 100 epoch as given in Fig 5. Segmentation
performances of the Web-SpikeSegNet has been computed
on the testing dataset consists of 90 images. The mentioned
statistical parameters (eq. 1 to eq. 10) are computed, and the
average values are presented in Table 4. As the performance
of spike detection is calculated at the pixel level, the value
of E1 (=0.00159) depict that on an average only 104 pixels
are misclassified among 65,536 pixels which is the pixel size
of one image, i.e., 65,536 (256 * 256). The accuracy of the
approach as well as the developed software is around 99.65
%. The average precision value reflects that 99.59% of the
detected spikes are actually spike pixels and the robustness
of the approach is also ∼ 100 %.

B. COMPARATIVE ANALYSIS WITH ACID (Annotated
CROP IMAGE Dataset) DATASET AVAILABLE AT
https://plantimages.nottingham.ac.uk/
We ran the developed software on the ACID (Annotated
Crop Image Dataset) dataset for the comparative study. The
dataset consisted of 415 training images and 105 testing
images and was contributed by Pound et al. [6]. They pro-
posed a multi-task deep learning architecture for localizing

76242 VOLUME 9, 2021



T. Misra et al.: Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes

FIGURE 3. Home page of Web-SpikeSegNet contains basic information about SpikeSegNet and the flow diagram of the steps need to be followed to
recognize and counting the spikes of the uploaded wheat plant image.

FIGURE 4. The final output of Web-SpikeSegNet after detection and counting of spikes from the visual images of wheat plant.

wheat spikes and spikelets and achieved 95 % accuracy in
spike detection. As the Web-SpikeSegNet model was trained
using the wheat’s visual images with a consistent white

background, we converted the background of the test images
in the mentioned website from black to white to conduct
the comparative study. The output of Web-SpikeSegNet on

VOLUME 9, 2021 76243



T. Misra et al.: Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes

TABLE 5. Segmentation performance analysis of the ACID dataset.

FIGURE 5. Graphical representation of training Loss.

FIGURE 6. Comparative study with ACID (Annotated Crop Image Dataset)
dataset available at https://plantimages.nottingham.ac.uk/: (a) test
images (b) black background converted into white (c) detected spikes
using Web-SpikeSegNet software.

the ACID dataset is presented in Fig. 6. For computing the
segmentation performance, the ground-truth mask images
corresponding to the testing dataset were prepared using

the procedure mentioned in [3]. The average segmentation
performances are given in Table 5. The value of the type
I error (0.00164) reflects that, on average, only 107 pix-
els are wrongly classified among 65,536 pixels (the size
of one image is 256*256 pixels). The accuracy (99.55%),
precision (99.62%), and F1 value (99.62%) depict that the
Web-SpikeSegNet approach is comparatively generalized
and robust than the approach presented by Pound et al. [6].
It is due to the training criteria of Web-SpikeSegNet,
where the deep learning model is trained at patch level for
understanding the local as well as global features efficiently.

IV. CONCLUSION
Recognition and counting of spikes for the large set of
germplasms in a non-destructive way is an enormously
challenging task. This study developed web-based soft-
ware ‘‘Web-SpikeSegNet’’ using the robust SpikeSegNet
approach, which is based on digital image analysis and
deep-learning techniques. The software is freely available
for researchers, and students are working particularly in
the field of wheat plant phenotyping. Further, it is a useful
tool in the automated phenomics facility to automate the
phenology-based treatment. Web-SpikeSegNet is a signifi-
cant step toward studying the wheat crop yield phenotyping
and can be extended to the other cereal crops.

ACKNOWLEDGMENT
Tanuj Misra acknowledges the Nanaji Deshmukh Plant
Phenomics Facility, ICAR-IARI, New Delhi, for the facili-
ties. Dr. Jahangeer A. Bhat from RLBCAU-Jhansi is highly
acknowledged for assisting in the rebuttal preparation.

REFERENCES
[1] J. R. Porter and S. Christensen, ‘‘Deconstructing crop processes and mod-

els via identities,’’ Plant, cell Environ., vol. 36, no. 11, pp. 1919–1925,
Nov. 2013.

[2] S. A. Tsaftaris, M. Minervini, and H. Scharr, ‘‘Machine learning for plant
phenotyping needs image processing,’’ Trends Plant Sci., vol. 21, no. 12,
pp. 989–991, Dec. 2016.

[3] T. Misra, A. Arora, S. Marwaha, V. Chinnusamy, A. R. Rao, R. Jain,
R. N. Sahoo, M. Ray, S. Kumar, D. Raju, R. R. Jha, A. Nigam, and S. Goel,
‘‘SpikeSegNet—A deep learning approach utilizing encoder-decoder net-
work with hourglass for spike segmentation and counting in wheat plant
from visual imaging,’’ Plant Methods, vol. 16, no. 1, pp. 1–20, Dec. 2020.

[4] K. Bi, P. Jiang, L. Li, B. Shi, and C. Wang, ‘‘Non-destructive measurement
of wheat spike characteristics based on morphological image processing,’’
Trans. Chin. Soc. Agricult. Eng., vol. 26, no. 12, pp. 212–216, 2010.

[5] L. Qiongyan, J. Cai, B. Berger, M. Okamoto, and S. J. Miklavcic, ‘‘Detect-
ing spikes of wheat plants using neural networks with laws texture energy,’’
Plant Methods, vol. 13, no. 1, p. 83, Dec. 2017.

[6] M. P. Pound, J. A. Atkinson, D. M.Wells, T. P. Pridmore, and A. P. French,
‘‘Deep learning for multi-task plant phenotyping,’’ in Proc. IEEE Int. Conf.
Comput. Vis. Workshops (ICCVW), Oct. 2017, pp. 2055–2063.

[7] P. Sadeghi-Tehran, K. Sabermanesh, N. Virlet, and M. J. Hawkesford,
‘‘Automated method to determine two critical growth stages of wheat:
Heading and flowering,’’ Frontiers Plant Sci., vol. 8, p. 252, Feb. 2017.

76244 VOLUME 9, 2021



T. Misra et al.: Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes

[8] M. M. Hasan, J. P. Chopin, H. Laga, and S. J. Miklavcic, ‘‘Detection
and analysis of wheat spikes using convolutional neural networks,’’ Plant
Methods, vol. 14, no. 1, p. 100, Dec. 2018.

[9] E. David, S. Madec, P. Sadeghi-Tehran, H. Aasen, B. Zheng, S. Liu,
N. Kirchgessner, G. Ishikawa, K. Nagasawa, M. A. Badhon, C. Pozniak,
B. de Solan, A. Hund, S. C. Chapman, F. Baret, I. Stavness, and W. Guo,
‘‘Global wheat head detection (GWHD) dataset: A large and diverse
dataset of high-resolution RGB-labelled images to develop and benchmark
wheat head detection methods,’’ Plant Phenomics, vol. 2020, pp. 1–12,
Aug. 2020.

[10] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning,
vol. 1. Cambridge, MA, USA: MIT Press, 2016.

[11] H. Xiong, Z. Cao, H. Lu, S. Madec, L. Liu, and C. Shen, ‘‘TasselNetv2:
In-field counting of wheat spikes with context-augmented local regression
networks,’’ Plant Methods, vol. 15, no. 1, pp. 1–14, Dec. 2019.

[12] P. Sadeghi-Tehran, N. Virlet, E. M. Ampe, P. Reyns, andM. J. Hawkesford,
‘‘DeepCount: In-field automatic quantification of wheat spikes using sim-
ple linear iterative clustering and deep convolutional neural networks,’’
Frontiers Plant Sci., vol. 10, p. 1176, Sep. 2019.

[13] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image Com-
put. Comput.-Assist. Intervent. Cham, Switzerland: Springer, Oct. 2015,
pp. 234–241.

[14] V. Badrinarayanan, A. Kendall, and R. Cipolla, ‘‘SegNet: A deep convolu-
tional encoder-decoder architecture for image segmentation,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017.

[15] R. R. Jha, G. Jaswal, D. Gupta, S. Saini, andA.Nigam, ‘‘PixISegNet: Pixel-
level iris segmentation network using convolutional encoder–decoder with
stacked hourglass bottleneck,’’ IET Biometrics, vol. 9, no. 1, pp. 11–24,
Jan. 2020.

[16] T. Berners-Lee, ‘‘Tim berners-lee,’’ Bloomberg Businessweek, 1989.
[17] E. A. Meyer, Cascading Style Sheets: The Definitive Guide. Newton, MA,

USA: O’Reilly Media, 2004.
[18] G. Mainland, M. Welsh, and G. Morrisett, ‘‘Flask: A language for data-

driven sensor network programs,’’ Harvard Univ., Cambridge, MA, USA,
Tech. Rep. TR-13-06, 2006.

[19] S. Yehuda and S. Tomer, ‘‘Advanced javascript programming,’’ BPB,
New Delhi, India, 1998.

[20] T. Hope, Y. S. Resheff, and I. Lieder, Learning TensorFlow: Guide to
Building Deep Learning Systems. Newton, MA, USA: O’Reilly Media,
2017.

[21] A. Gulli and S. Pal, Deep Learning With Keras. Birmingham, U.K.: Packt,
2017.

[22] E. Bressert, SciPy and NumPy: An Overview for Developers. Newton, MA,
USA: O’Reilly Media, 2012.

[23] E. A. Christensen, F. J. Blanco-Silva, Learning SciPy for Numerical and
Scientific Computing. Birmingham, U.K: Packt, 2015.

[24] S. Tosi,Matplotlib for PythonDevelopers. Birmingham,U.K.: Packt, 2009.
[25] J. Howse, OpenCV Computer Vision With Python. Birmingham, U.K.:

Packt, 2013.
[26] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, ‘‘A convolutional neu-

ral network for modelling sentences,’’ 2014, arXiv:1404.2188. [Online].
Available: http://arxiv.org/abs/1404.2188

[27] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, ‘‘Learning activa-
tion functions to improve deep neural networks,’’ 2014, arXiv:1412.6830.
[Online]. Available: http://arxiv.org/abs/1412.6830

[28] B. Graham, ‘‘Fractional max-pooling,’’ 2014, arXiv:1412.6071. [Online].
Available: http://arxiv.org/abs/1412.6071

[29] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556

[30] S. P. Mohanty, D. P. Hughes, and M. Salathé, ‘‘Using deep learning for
image-based plant disease detection,’’ Frontiers Plant Sci., vol. 7, p. 1419,
Sep. 2016.

[31] V. Dumoulin and F. Visin, ‘‘A guide to convolution arithmetic for
deep learning,’’ 2016, arXiv:1603.07285. [Online]. Available: http://
arxiv.org/abs/1603.07285

[32] W. Liu, Y. Wen, Z. Yu, and M. Yang, ‘‘Large-margin softmax loss for
convolutional neural networks,’’ in Proc. ICML, 2016, vol. 2, no. 3, p. 7.

[33] M. D. Abràmoff, P. J. Magalhães, and S. J. Ram, ‘‘Image processing with
ImageJ,’’ Biophoton. Int., vol. 11, no. 7, pp. 36–42, 2004.

[34] A. Asundi and Z. Wensen, ‘‘Fast phase-unwrapping algorithm based on a
gray-scale mask and flood fill,’’ Appl. Opt., vol. 37, no. 23, pp. 5416–5420,
1998.

[35] H. Proenca, S. Filipe, R. Santos, J. Oliveira, and L. A. Alexandre,
‘‘The UBIRIS.v2: A database of visible wavelength iris images captured
on-the-move and at-a-distance,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 8, pp. 1529–1535, Aug. 2010.

[36] M. Haindl and M. Krupička, ‘‘Unsupervised detection of non-iris occlu-
sions,’’ Pattern Recognit., vol. 57, pp. 60–65, May 2015.

[37] Z. Zhao and A. Kumar, ‘‘An accurate iris segmentation framework under
relaxed imaging constraints using total variation model,’’ in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 3828–3836.

TANUJ MISRA received the Ph.D. degree in com-
puter application from ICAR-IARI, New Delhi.
He is currently working as a Teacher cum
Research Associate in computer science with
Rani Lakshmi Bai Central Agricultural University,
Jhansi. He has authored many research articles
in national/international journals of repute. His
research interests include applications of machine
learning, deep learning, data mining, image analy-
sis, especially on RGB, IR, and NIR sensors, and

techniques in plant phonemics domain.

ALKA ARORA received the Ph.D. degree in data
mining with a focus on cluster characterization
using rough set theory.

She is currently working as a Principal Scientist
with the Indian Agricultural Statistics Research
Institute (IASRI), which is a premier institute in
the area of statistics, computer applications, and
bio-informatics under the Indian Council of Agri-
cultural Research (ICAR). She is also a Research
Guide and a Faculty Member of the PG School,

IARI, New Delhi, which has the status of an International University
(Deemed). She has more than 23 years of experience in research, teaching,
and training. She contributed toward strengthening of agricultural informat-
ics through designing and implementing number of e-governance applica-
tions, Web applications, and mobile applications operational at National
level. Her students are pursuing research in the areas of deep learning and
data mining using image processing data. Her research interests include
applications of machine learning, deep learning, data mining, image anal-
ysis techniques for agriculture domain along with development of decision
support system, and mobile applications for e-governance.

SUDEEP MARWAHA received the B.Sc. degree
in electronics from the University of Delhi, New
Delhi, India, in 1995, theM.Sc. degree in computer
applications from the IndianAgricultural Research
Institute, New Delhi, and the Ph.D. degree in
computer science from the University of Delhi,
in 2008. He is currently a Principal Scientist and
a Professor with the Division of Computer Appli-
cations, ICAR-IASRI, New Delhi. He completed
following projects solution architect for seman-

tic Web enabled systems, management information systems, ERP (Oracle
Apps), knowledge base systems, and image analysis based systems. He has
published more than 50 research articles. His research interests include
artificial intelligence, semantic Web, and ontologies.

VOLUME 9, 2021 76245



T. Misra et al.: Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes

RANJEET RANJAN JHA received the master’s
degree in computer science from the Department
of Computer Science and Engineering, NIT Goa.
He is currently pursuing the Ph.D. degree with the
School of Computing and Electrical Engineering,
IITMandi. He has authored many research articles
in national/international journals of repute. His
research interests include medical image analysis,
biometrics, deep learning, computer vision, and
security.

MRINMOY RAY received the Ph.D. degree in
agricultural statistics from the ICAR-Indian Agri-
cultural Research Institute, New Delhi, India,
in 2017. He is currently working as a Scien-
tist with the Division of Forecasting and Agri-
cultural Systems Modeling, ICAR-Indian Agri-
cultural Statistics Research Institute, New Delhi.
He has got more than 35 publications to his credit
in nationally and internationally reputed journals.
His current research interests include time series

modeling, technology forecasting, and machine learning.

RAJNI JAIN received the Ph.D. degree in com-
puter science from Jawaharlal Nehru University,
New Delhi, India, in 2005. She is currently a
Principal Scientist with ICAR-NIAP and a Fac-
ulty Member with the Post Graduate School,
ICAR-IARI for teaching and guiding students of
M.Sc. and Ph.D. in computer application. She
has organized four 21 days training programs
and many short duration training programs for
the capacity development of national agricultural

research systems. She has published more than 100 research articles in
reputed national and international journals. Her research interests include
data mining, development of optimal crop plans using evolutionary comput-
ing, deep learning, image processing, plant disease diagnosis, rough sets,
decision tree induction, classification techniques, machine learning, and
agricultural policy research.

A. R. RAO has been a Principal Scientist and a
Professor of bioinformatics with the ICAR-Indian
Agricultural Statistics Research Institute, and a
fellow of the National Academy of Agricultural
Sciences (NAAS), NewDelhi, since January 2016.
He is also a fellow of the Indian Society of Genet-
ics and Plant Breeding, NewDelhi, and the Society
for Applied Biotechnology, India. He completed
more than 30 international and national funded
projects. He has published more than 150 research

articles. His research interests include bioinformatics and computational
biology, statistical genetics, and genomics.

ELDHO VARGHESE received the Ph.D. degree
(Hons.) in agricultural statistics from the Indian
Agricultural Research Institute, New Delhi. He is
currently working as a Scientist (Senior Scale)
with the Central Marine Fisheries Research Insti-
tute, Kochi, Kerala, (formerly, Indian Agricultural
Statistics Research Institute, New Delhi). He has
developed several packages and Web solutions
for generation of statistical designs. He has pub-
lished around 150 research articles, 83 abstracts in

various conferences, one book, one policy series document, 23 reference
manual/technical bulletins, five book chapters, nine e-manuals, and sev-
eral popular articles. His main research interests include statistical designs
for competition effects, mating designs for plant breeding trials, statistical
designs for product and process optimization, fish stock assessment, sta-
tistical modeling in fisheries, and remote sensing applications in fisheries.
Hewas awardedwith the prestigious Lal Bahadur Shastri Outstanding Young
Scientist Award—2017 from ICAR, India; the NAASYoung Scientist Award
from the National Academy of Agricultural Sciences, India, in the field of
social sciences for the biennium 2017 to 2018; and the IARI Gold Medal for
his Ph.D. degree.

SHAILENDRA KUMAR received the Ph.D.
degree in statistics from the University of Luc-
know, Lucknow, India, in 2018. He is currently
working as a Teaching cum Research Associate
with the Department of Computer Science, Col-
lege of Horticulture and Forestry, Rani Lak-
shmi Bai Central Agricultural University, Jhansi.
His research interests include Bayesian infer-
ence, machine learning, and survival analysis.
He received the Chancellor Silver Medal for his
M.Phil. degree.

76246 VOLUME 9, 2021



T. Misra et al.: Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes

SUDHIR KUMAR received the Ph.D. degree in
plant physiology from ICAR-IARI, New Delhi.
He served with the Indian Institute for Farm-
ing System Research, Modipuram, and the Indian
Institute of Agricultural Research, New Delhi.
He is currently working as a Scientist in plant
physiology with the Indian Agricultural Research
Institute. He is also associated with teaching for
PG students for plant physiology courses. He is
also working on RGB, IR, NIR, and Crop reporter

sensors with the Nanaji Deshmukh Plant Phenomics Centre for drought
and nutrient tolerance in wheat in high throughput manner with the help
of the imaging sensors under artificial environmental conditions for devel-
oping climate resilient varieties. He has authored many research articles in
national/international journals of repute. He has published training manu-
als, technical bulletins popular articles, and books. He has developed new
course on phenomics for PG student. He has organized several trainings
and workshop on image-based phenotyping for faculty and students. His
main research interests include abiotic stress, plant phenotyping, cropping
system management, image based phenotyping, and sensor-based plant trait
dissection.

ADITYA NIGAM received the M.Tech. and Ph.D.
degrees from IIT Kanpur, in 2009 and 2014,
respectively. In August 2014, he joined SCEE,
as a Teaching Fellow. He is currently working
as an Assistant Professor with the School of
Computing and Electrical Engineering (SCEE),
IIT Mandi. He has authored many research arti-
cles in national/international journals of repute.
He has designed deep-learning courses and pub-
lished related training manuals. He is also working

in the areas of biometrics, image processing, computer vision, and machine
learning.

RABI NARAYAN SAHOO is currently a Prin-
cipal Scientist with the Division of Agricul-
tural Physics, CAR-Indian Agricultural Research
Institute, Library Avenue, New Delhi, India.
He associated with many multidisciplinary and
multi-institutional collaborative national and inter-
national research projects on remote sensing
research programs, as PI or Co-PI with total fund-
ing of INR 105 crores over last 19 years. His
major accomplishments in applications of remote

sensing and GIS in agriculture includes monitoring biotic and abiotic stresses
for assessing crop conditions, remote sensing-based drought monitoring and
early warning, quantitative assessment of soil attributes for fertility and
quality assessment, modeling for site specific nutrient requirement, precision
agriculture, image and spectral-based high throughput plant phenotyping,
targeting resource conserving technologies, technologies to reduce agricul-
tural fallow lands through biophysical monitoring, and identifying produc-
tion constraints of marginal lands and land use cover change modeling.
He has published more than 180 research articles. His major research inter-
ests include hyperspectral remote sensing for soil and crop health monitoring
for precision farming, plant phenomics, and UAV remote sensing.

VISWANATHAN CHINNUSAMY received the
B.Sc. degree from the Agricultural College and
Research Institute, TNAU, Killikulam, in 1990,
and the M.Sc. and Ph.D. degrees from the
ICAR-Indian Agricultural Research Institute, New
Delhi, in 1993 and 1996, respectively. He was
a Senior Scientist, from 1996 to 2010, and a
BOYSCAST Fellow, from 2001 to 2002. From
2008 to 2010, he was a Visiting Researcher with
the Department of Botany and Plant Sciences, Uni-

versity of California. In 2009, he was a Visiting Scholar with the Department
of Molecular Biology, Harvard Medical School, Harvard University, Boston.
He has been a Principal Scientist, since 2010, and the Head of the Division of
Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi,
since 2013. He is a fellow of the Indian Society for Plant Physiology. His
awards/honours include the ICAR Jawaharlal Nehru Award, in 2001; the
DSTBOYSCAST Fellowship Award, in 2001; and the ISPP J.J. ChinoyGold
Medal.

VOLUME 9, 2021 76247


