
Received April 3, 2021, accepted May 3, 2021, date of publication May 17, 2021, date of current version May 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3080931

The Disjoint Multipath Challenge: Multiple
Disjoint Paths Guaranteeing Scalability
DIEGO LOPEZ-PAJARES 1,2, (Member, IEEE), ELISA ROJAS 1, JUAN A. CARRAL 1,
ISAIAS MARTINEZ-YELMO 1, AND JOAQUIN ALVAREZ-HORCAJO 1
1Departamento de Automática, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
2Departamento de Ingeniería de Sistemas Telemáticos, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Corresponding author: Elisa Rojas (elisa.rojas@uah.es)

This work was supported in part by the Comunidad de Madrid through Project TAPIR-CM under Grant S2018/TCS-4496 and Project
IRIS-CM under Grant CM/JIN/2019-039, in part by the Junta de Comunidades de Castilla-La Mancha through Project IRIS-JCCM under
Grant SBPLY/19/180501/000324, and in part by the University of Alcalá through Programa de Formación del Profesorado
Universitario (FPU).

ABSTRACT The multipath challenge is a research line in continuous development because of its multiple
benefits, however, these benefits are overshadowed by scalability, which goes down considerably when
the paths are multiple and disjoint. The disjointness aggregates an extra value to the multiple paths, but
it also implies more complex mathematical operations that increase the computational cost. In fact, diverse
proposals exist that try to increase scalability by limiting the number of paths obtained to the minimum
possible (two-disjoint paths), which is enough for backup applications but not for other purposes. This paper
presents an algorithm that solves these drawbacks by discovering multiple disjoint paths among multiple
nodes in an efficient way, while keeping bounded the computational cost and ensuring scalability. The
proposed algorithm has been validated thoroughly by performing a theoretical analysis, bolstered afterwards
by an exhaustive experimental evaluation. The collected results are promising, our algorithm reduces the time
spent to obtain the disjoint paths regarding its competitors between one and three orders of magnitude, at the
cost of a slight decrease in the number of paths discovered.

INDEX TERMS Algorithms, disjoint, multipath, graph theory, Dijkstra’s algorithm, routing.

I. INTRODUCTION
The shortest path search is a well-known topic in graph
theory, being Dijkstra’s algorithm [1] the most renowned
solution. It has been extensively used as the basis for routing
protocols in data networks over the last 60 years. Not only
it is still in use in current telecommunications systems to
route data flows through the network [2]–[4], but is also
used in newer applications such as digital Google Maps
services [5], robot planning routes [6], or even in medical
problems [7].

The shortest path problem evolved into an even more
intricated challenge: to obtain the shortest path plus one
(or more) additional disjoint paths to the previous one, being
Suurballe and Tarjan [8] the first ones to achieve it, based,
precisely, on Dijkstra’s algorithm. In fact, just in the last
five years several authors have worked on the basis of Dijk-
stra’s algorithm to obtain multiple disjoint paths, either by
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modifying it or by the application of heuristics, hence adapt-
ing the original algorithm to the new era [9]–[16]. The design
objectives of these research works are diverse. Numerous
proposals restrict the disjoint path search to only a pair of
nodes, while others also limit the search to two-disjoint paths
exclusively, which is not enough for the latest application
requirements. Besides, scalability remains a pending issue
despite the performance improvements introduced by the
newest advances in multipath computing methods, such as
new heuristics algorithms or the Integral Linear Programming
(ILP) method. Thereby, the multiple disjoint paths problem
still constitutes an intriguing area of research for society due
to its numerous benefits (such as enhanced robustness against
failures, enhanced computation in machine learning appli-
cations, improved resource allocation or increased security),
whose main application field is usually computer network
routing, both in traditional networks and Software-Defined
Networking (SDN).

Our proposal, Multiple Disjoint Path algorithm (MDPAlg),
is able to obtain multiple disjoint paths among a given node
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and the remaining nodes in a graph. It works as a two-phase
process. The first phase performs a cost analysis following
the same principle as Dijkstra’s shortest path algorithm.
However, unlike Dijkstra’s algorithm, which focuses on col-
lecting information about the minimum-cost tree, MDPAlg
gathers cost information about the entire graph (including
cross-links) with a similar computational effort. Thereafter,
the second phase leverages this extra information to build
multiple disjoint paths, thus avoiding iterative executions
when more than one path is required as in Dijkstra and
other alike algorithms. Moreover, this methodology keeps the
number of mathematical operations bounded, guaranteeing
the scalability of the algorithm in large graphs.

In summary, the main contributions of this paper are as
follows:
• We describe MDPAlg, a novel algorithm to create multi-
ple disjoint paths among a given node and the remaining
nodes in a graph with a single full graph search.

• We analyze, implement and comprehensively evaluate
MDPAlg against its direct competitor: Dijkstra’s algo-
rithm (as well as some of its enhanced versions), obtain-
ing a drastic reduction (up to three orders of magnitude)
of the computational complexity, independently of the
graph type. To the best of our knowledge, no other state-
of-the-art algorithm yields similar performance results.

• Thanks to a comprehensive evaluation, we prove that
MDPAlg can be applied to a multitude of classic engi-
neering problems (including computing, networking,
transport, etc.).

The paper is structured as follows: Section II establishes
the background of the paper and its justification, while
Section III formally defines the proposal and describes its
behavior with an example. Afterward, Section IV studies the
computational complexity of the algorithm and confronts it to
widely-known solutions, followed by Section V, which com-
prehensively evaluates the algorithm in different scenarios.
Finally, Section VI provides the main conclusions.

II. BACKGROUND
A graph is composed by a set of objects called nodes (or ver-
tices) connected by a set of links (or edges) that characterizes
relations between such elements, whose study dates back to
the century XVIII (Könisgberg problem). According to the
directionality of the links, graphs can be classified as directed
graphs (each link has associated one or more directions to
be traversed), and non-directed graphs (the direction of the
links are not defined and they can be used in both directions).
Moreover, depending on the cost of traversing those links,
the graphs can be classified as weighted graphs (each link
has its own weight cost) or unweighted graphs (links have
no weight).

There are two main search algorithms for non-directed and
unweighted graphs, Depth First Search (DFS) and Breadth
First Search (BFS) [17], which obtain as a result a tree
rooted at a given node that spans all the nodes in the graph.
DFS performs a graph search from top to bottom, exploring

a branch of the tree as far as possible until the node processed
is the node searched for or it has no children, backtracking
then to explore other branches; while BFS performs a breadth
search, visiting all the nodes at the same hop distance before
advancing to the next depth level. Based on BFS, Dijkstra’s
algorithm [1] introduces, as a novelty, a search process on
non-directed weighted graphs that replaces the breadth search
of hop-levels by a cost-level breadth search, resulting in a
minimum-cost predecessor matrix for the root node. More-
over, from this information, it is straightforward to derive the
minimum-cost path from the root node towards the remaining
nodes. However, this solution only provides one minimum-
cost path for each pair of nodes. Thus, to obtain multiple
paths between the same pair of nodes, the process should be
repeated after deleting the previous discovered path (set of
links) from the graph.

Regarding the number of paths discovered, algorithms can
be classified as single-path (they only provide a path between
two nodes), and multiple-path (they provide more than one
path between two nodes). Multiple paths not only can be used
for routing purposes (as alternative routes to send data), but
also for back-up (just in case of failure of the main path),
security and so on. Within the multiple-path group, path
disjointness is an interesting feature that clearly improves
the benefits of multiple-path approaches. According to this
property, multiple-path algorithms can be classified as link-
disjoint (the paths obtained cannot share any link) and node-
disjoint (the paths cannot share any node, and hence any
link, except for the end nodes). Additionally, we can group
multiple-path algorithms depending on whether they provide
two or more than two paths. For example, the following
proposals only provide two disjoint paths: [8] (for directed
weighted graphs), [18], [19] (for non-directed weighted
graphs), [20]–[22] (for non-directed unweighted graphs).

Whereas having two disjoint paths may be enough to
ensure reliability or for back-up purposes in some applica-
tions, it might remain insufficient in other scenarios, such as
to increase the robustness of the connections againstMan-In-
the-Middle attacks through data diversification across disjoint
routes [23], or to improve the bandwidth speed by using
disjoint paths with Quality of Service (QoS) policies [15].
However, the calculation of multiple disjoint paths is usually
a greedy process and its computational complexity–defined
as the amount of resources required to run the algorithm–
grows exponentially with the graph size (number of nodes
and links), which limits its scalability. Aiming to reduce
this high computational cost, some approaches rely on dis-
tributing the computation among all the nodes in a graph
by exchanging local information between neighbors nodes to
build the disjoint paths, namely: [24]–[26] (for non-directed
and unweighted graphs), and [27]–[29] (for non-directed and
weighted graphs).

Also based on this distributed approach, theOne-ShotMul-
tiple Disjoint Paths (1S-MDP) [30] network protocol obtains
multiple link- or node-disjoint paths among a given node and
any other nodes in the network, boosting the path search
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process efficiency and guaranteeing its scalability in large
networks. However, due to its distributed nature, 1S-MDP
cannot be applied in many fields such as vehicular traffic
routing, emergency evacuation systems and others, where its
impact could be significant. Thus, we propose the transfor-
mation of 1S-MDP into MDPAlg, a centralized version of
the former, designed to adapt it to new challenges and encom-
passing it for as many application fields as possible. MDPAlg
works in non-directed weighted graphs and provides multiple
link and node-disjoint paths between a target node and other
nodes in the graph.

III. ONE-SHOT MULTIPLE DISJOINT PATH ALGORITHM
This section describes in detail the procedure followed by
MDPAlg to obtain multiple link- or node-disjoint paths
among multiples nodes. First, it provides a high-level
overview of the algorithm and the reasons for its develop-
ment, focusing later on the in-depth description of its multi-
path discovery procedure.

A. ALGORITHM DESCRIPTION
MDPAlg is conceived as a centralized and enhanced ver-
sion of 1S-MDP [30], which already showed good results
in terms of number of disjoint paths discovered, and low
convergence time to obtain them, in distributed environments.
The rationale behind this decision is that 1S-MDP is poten-
tially applicable to many scenarios of diverse nature, but
its distributed essence hinders its practical implementation
on some of them. In particular, MDPAlg is designed as a
centralized algorithm that, instead of exchanging topological
information in a distributed manner, operates over a graph
that symbolically represents the underlying topology. Like
1S-MDP, MDPAlg is able to obtain multiple disjoint paths
among a given node and the remaining nodes in a graph,
following a two-phase process, with just a single full graph
search.

During the first phase, MDPAlg carries out a cost analysis
on the graph starting from the given source node (s), much
like Dijkstra’s algorithm search strategy but storing some
extra information. For each target node, it stores the aggre-
gated cost from s computed through all its neighbours (not
only the minimum cost as in Dijkstra) within a cost matrix
(see Section III-B). The second phase derives multiple link-
or node-disjoint paths among s and any other node in the
graph from the information stored in the cost matrix (see
Section III-C). Additionally, the set of target nodes can be
configured by the user, including the possibility to mark as
target one single node or up to all nodes of the graph except s.

B. FIRST PHASE: ANALYSIS OF COSTS
During this phase, the algorithm performs an analysis to
obtain the aggregated cost incurred to go from s to any
other node in the graph. This analysis is a modified ver-
sion of Dijkstra’s algorithm in which a graph node not only
collects information from the minimum-cost tree, but from
all its neighbors (including cross-links). By using this extra

Algorithm 1 Dijkstra’s Algorithm
1: function DIJKSTRA’S ALGORITHM(G, s)
2: Initialize(S,P)
3: C = Initialize_single_source(G, s)
4: Q = Get nodes from G
5: while Q 6= ∅ do
6: u = extract_min(Q)
7: Insert u in S
8: for each vertex v neighbour of u do

9: R


if S ∩ v = ∅ then
w = Lc from u to v
if C(u)+ w < C(v) then
C(v) = C(u)+ w
P(v) = u

10: return C,P

Algorithm 2 Analysis of Costs of MDPAlg
1: function ANALISISOFCOSTS(G, s)
2:

3: CM = Initialize_single_source(G, s)
4: Q = Get nodes from G
5: while Q 6= ∅ do
6: u = extract_min(Q)
7:

8: for each vertex v neighbour of u do

9: R


ifv 6= s then
w = Lc from u to v
if CM [u][u]+ w < CM [v][v] then
CM [v][v] = CM [u][u]+ w

CM [u][v] = CM [u][u]+ w

10: return CM

information, MDPAlg is able to build multiple disjoint paths,
hence avoiding iterative executions when more than one path
is required, as in Dijkstra’s algorithm.

Algorithms 1 and 2, shown in parallel, present the
pseudo-code of Dijkstra and MDPAlg, respectively. They are
based on the high-level description of Dijkstra’s algorithm
from [17] so that it is easier to spot the main differences
between them. Dijkstra’s algorithm relies on two vectors,
C and P, to store the minimum cost from s to any other node,
and the parent node through which the minimum cost was
computed, respectively. From this information, obtaining the
paths included in the minimum-cost spanning tree for a given
node is straightforward, but still requires a second phase to
build them, and only provides a single path for each s-X pair
in the graph. On the other hand, MDPAlg relies on a more
complex data structure, named the Cost Matrix (CM) for
node s, to store the aggregated cost from s to any other node,
computed through all its neighbors (not only the minimum
cost as in Dijkstra). CM is a non-complete NxN cell matrix
(being N the number of nodes in the graph); an empty cell
meaning that those particular two nodes are not neighbors.
For example, for every node X, neighbor of node Y, row X
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FIGURE 1. Comparison of the search process in Dijkstra’s algorithm and MDPAlg.

column Y shows the accumulated cost to go from s to Y
through the minimum cost path from s to X plus the cost from
X to Y; hence, row X column X shows the cost associated
to go from s to node X (plus the cost from X to X, which is
zero), through the minimum cost path. From this information,
the algorithm builds multiple disjoint paths between s and any
other graph node in the second phase.

It is important to note that MDPAlg obtains multiple dis-
joint paths between s and any other/s selected node/s with
a single full graph search, while Dijkstra’s algorithm only
obtains one. A new execution of Dijkstra’s algorithm is
required to obtain one additional disjoint path between s
and another node (after removing the previous path from the
graph). For example, in a graph of N nodes, if the objective is
to compute p disjoint paths between s and every other node,
we have to execute Dijkstra’s algorithm p · (N − 1) times,
whileMDPAlg just needs to be executed once. Hence, several
iterative executions of Dijkstra’s algorithm are required to
yield similar results than MDPAlg.

Comparing Dijkstra’s algorithm and the analysis of costs
phase of MDPAlg, both functions receive a graph (G) and
a given source node (s) as input parameters, which pro-
vide a representation of the underlying topology (composed
by nodes, links and the cost of traversing each link), and
the point where the algorithm procedure starts, respectively.
First, both functions initialize their variables, S, Q, P and
C vectors in Dijkstra’s algorithm function; CM and Q in
MDPAlg. The vectors S and Q contain the nodes analyzed
by the algorithm and the remaining nodes to be analyzed,
respectively, while P stores the parent of each node in the
minimum-cost tree. Moreover, both algorithms initialize the
vector C and the matrix CM with an infinite value in all
of their entries, except for the one associated with s, set up
with zero cost, which ensures that the algorithms start the
analysis procedure at this node. Later, both proposals analyze

each node of the graph once, following a selection criteria by
cost, that extracts, in each iteration, the node with the lowest
cost from Q. Subsequently, Dijkstra’s algorithm applies the
RELAX function, as originally described in [17], to compute
the cumulative cost incurred to go from s to the target node
through all of its neighbors and selects the neighbor that
provides the lowest cost.

MDPAlg modifies the RELAX function to obtain extra
information about the cross-links that Dijkstra’s algorithm
does not consider relevant.With this modification and theCM
structure, MDPAlg obtains a complete characterization of the
graph according to the accumulated cost incurred from s, also
including theminimum-cost path in the solution. The changes
in the RELAX function consist of computing the accumulated
cost from the given node to the rest of the nodes through all
the links, so that it stores the cost incurred to get to the target
node through all its neighbors, not only through the best one.
Therefore, although applying a similar analysis procedure,
MDPAlg stores more information than Dikjstra’s algorithm
about the graph.

Figure 1 provides a graphical example illustrating the
operation of Dijkstra’s algorithm and MDPAlg in a simple
graph comprised of 7 nodes. It is vertically divided into two
parts, the top half shows the graph composed of nodes, links,
and the associated cost to each link, together with additional
data related to both algorithms; while the bottom half shows
the data structures returned by each algorithm. In particular,
Figure 1a displays the result of applying Dijkstra’s algorithm.
As previously anticipated, the top half shows, for each node,
its name, the minimum cost from s and the neighbour (parent)
used to compute this minimum cost. From this information
we can compute the minimum-cost tree spanning from s,
which is also highlighted in the figure in bold black color
lines. The bottom half depicts the Cost vector (C) and the
Parent vector (P) returned by the algorithm.
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Algorithm 3 Disjoint Path Construction Process
1: function DISJOINTPATHCONSTRUCTION(G, s,CM )
2: Initialize_variables(previous, next_hop, new_path,Paths)
3: D = GetTargetNodes(G)
4: while D 6= ∅ do
5: dst = ExtractNode(D)
6: for each neighbour of dst do
7: next_hop = GetMinCostNeighbour(CM , dst)
8: while next_hop 6= s do
9: Advance : previous = next_hop; next_hop = GetMinCostNeighbour(CM , previous)

10: Insert(next_hop, new_path)
11: ApplyDisjointnessRestrictions(CM , previous, next_hop)
12: if next_hop == s then
13: Insert(new_path,Paths)
14: if next_hop == ∅ then
15: GoBack(CM , previous, next_hop)

return Paths

Similarly, Figure 1b shows the result of executingMDPAlg
in the example graph, representing the returned Cost Matrix
(CM) returned in the bottom half. The information high-
lighted in gray in the matrix represents information not
strictly relevant or necessary for MDPAlg, as the first col-
umn symbolizes the cost to travel from s to itself, and the
diagonal values contain the information about the minimum-
cost tree, just as vector C in Dijkstra’s algorithm; as it can
be observed, these diagonal values are duplicated and equiv-
alent to the lower-cost cell of each column. As a proof of
this, in Figure 1b, the diagonal of CM is equal to vector C
shown in Figure 1a. For further elucidation, row E column E
contains the same cost value than B column E, which directly
means that the minimum-cost path from s to E is reached
through B. This can be extrapolated to the rest of the columns
of CM.

C. SECOND PHASE: DISJOINT PATH CONSTRUCTION
As already indicated in the previous section, unlike Dijkstra’s
algorithm, MDPAlg obtains many disjoint paths with a single
execution. All of these paths are computed from the informa-
tion stored in CM. This translation of the CM into specific
paths is called the construction phase, which generates the
final set of disjoint paths based on a configurable group of
target nodes (from one to all nodes in the graph).

This section explains the path construction process among
the given node and the set of predefined target nodes fol-
lowing the same structure as in Section III-B. In particular,
Algorithm 3 provides the pseudo-code for the path con-
struction phase. The path construction process function has,
as input parameters, the graph G, s, and CM obtained in
the first phase. This function starts by initializing the main
variables used during the disjoint path construction processes,
previous, next_hop, new_path and Paths. The first two are
used to build each disjoint path in a sequential way, while
the last two save the path under construction and the set of

paths generated, respectively. Moreover, variable D obtains
the target nodes from the graph. For each target node stored
in D, the procedure starts a new path construction process
towards s through each one of its neighbors, selecting them
in increasing cost order with the function GetMinCostNeigh-
bour. Moreover, due to the centralized nature of the algo-
rithm, this procedure is sequential, so a path construction
process is not started until the previous one has finalized.
The path construction process between a target node and s
requires some intermediate steps in which, the procedure,
through the functionGetMinCostNeighbour and the variables
previous and next_hop, consecutively selects the next avail-
able neighbour node with the lowest cost from CM, until
s is reached. Additionally, the function ApplyDisjointness-
Restrictions performs the operations to ensure disjointness
among paths belonging to the same s-target node tuple. More
specifically, after selecting a neighbor node to continue the
path construction towards s, the two entries representing
the link between them in CM are disabled (since the paths
obtained are bidirectional). Alternatively, if the operation
mode is node-disjoint, all the entries in CM associated to
the selected node are disabled to guaranty this node cannot
be selected for other paths. Once s is reached, the path
obtained is saved in the variable Paths, and a new disjoint
path construction process for another neighbor or target node
is started. Finally, in the case that functionGetMinCostNeigh-
bour does not return a node, meaning there is no way to con-
tinue the path construction towards s, a back trackmechanism
is invoked by calling GoBackFunction. Finally, when all the
available neighbors of the target node have been assessed,
a new target node is chosen to continue the construction
phase.

To better understand the whole procedure and the con-
cepts described above, Figures 2 and 3 illustrate a specific
example of the path construction process in link- and node-
disjoint modes, respectively, between three pair of nodes:
S-E (Figures 2a and 3a), S-D (Figures 2b and 3b), and
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FIGURE 2. Link-disjoint path construction process in MDPAlg.

FIGURE 3. Node-disjoint path construction process in MDPAlg.

S-F (Figures 2c and 3c). Both figures present the correspond-
ing graph (top half), together with a different view of the
information in CM (bottom half). This view shows the order
in which the different neighbors of a node are selected by the
GetMinCostNeighbour function during the path construction
phase, so that, for each column, the different rows are ordered
by increasing cost to s, and the corresponding neighbor node
names are listed instead of the costs.

Figure 2 exemplifies the path construction process in link-
disjoint mode. In the example, node S acts as source node s,
while the set of target nodes is comprised by three nodes,
namely E, D and F. Let us first focus on Figure 2a, which
depicts the process between nodes S and E, which is the first
target node in the list. The link-disjoint path construction
process is started at node E by selecting, as next hop, its
lowest-cost neighbor, which isB. Following the samemethod,
B will then select its lowest-cost neighbor too, node S, hence

concluding the first link-disjoint path construction process.
This path is marked in blue both in the graph and in the
CM, where the path is represented in column E, row B, with
an arrow that goes directly from column E to column B,
where s is found. During this process, node E in column B
is also disabled to satisfy the link-disjoint policies because it
represents the reverse path from E to B. This is represented
with a gray color and one asterisk after E.
When the construction process of the first path ends,

the second one repeats the same procedure, selecting in each
step the lowest-cost free neighbor and disabling the reverse
link in CM. More specifically, the second path construction
process results in a link-disjoint path composed by nodes
E, D (which is the second lowest cost at E, just after B),
A (which is the first option at D) and S; this second disjoint
paths is depicted with green arrows. Similarly, the procedure
also disables from CM the entries that describe the reverse
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TABLE 1. Computational complexity analysis.

links, marked in the figure with gray and two asterisks.
Finally, the process is repeated a third time, hence yielding the
third link-disjoint path, which is shown with orange arrows in
the figure. When the third path construction ends, as there are
no more options to build new disjoint paths between E and S,
the algorithm initiates another path building process for the
next target node, i.e., node D, whose path construction pro-
cess is illustrated in Figure 2b. Finally, the process is repeated
for the last target node, F, which is shown in Figure 2c.

In node-disjoint mode, the procedure is similar, each node
selects the lowest-cost available neighbor until s is reached.
However, the policy to ensure node-disjoint paths differs from
the link-disjoint mode. In this mode, each node selected for a
disjoint path is disabled from the entireCM. Figure 3a depicts
how node B is disabled in all columns after being selected in
the first node-disjoint path.

Up to this point, the paths were easily built, by simply
selecting the next available neighbor. However, as already
anticipated in the algorithm description, this search might
find dead ends, hence having the need to go back to look for
alternative routes. This additional mechanism implemented
by MDPAlg can be observed both in Figure 2c and Figure 3b,
which illustrate a successful and unsuccessful attempt to
avoid a dead end, respectively. In the case of Figure 2c,
belonging to the link-disjoint mode, it progresses from F to
E and B, where theGetMinCostNeighbour function returns C
as first option, as it is the next available lower-cost neighbor.
However, C has no valid neighbors because they were dis-
abled by previous steps of the link-disjoint path construction
process. Thus, the procedure goes back to node B, which exe-
cutes again theGetMinCostNeighbour function hence obtain-
ing A as the next valid lowest-cost neighbor. This alternative
route completes the third link-disjoint path construction pro-
cess. On the other hand, the third attempt to build a disjoint
path between D and S fails as shown in Figure 3b. When
the construction phase reaches B, all its entries are disabled
(because B was already selected for the second path), hence
it activates the hop back mechanism and backtracks to D.

Unfortunately, D does not have any other available neighbor
and, besides, cannot hop back again because it is the target
node, thus, finishing the construction phase with only two
disjoint paths built for this pair.

IV. THEORETICAL STUDY OF COMPUTATIONAL
COMPLEXITY
Computational complexity is a term that, in computer science,
usually relates to the efficiency of algorithms to solve a
problem in relation to the amount of physical or temporal
resources required, which constitutes a good estimator to
quantify the quality of algorithms. In this section, we study
the computational complexity of MDPAlg by comparing it to
that of a well known and proven competitor solution, namely
the primitive (naive) implementation of Dijkstra’s algorithm,
in a worst-case scenario (a full mesh graphwhere each node is
connected to each other). We quantify the number of calcula-
tions needed by both proposals to obtain a certain number of
disjoint paths. Dijkstra’s algorithm was selected for compari-
son because it is a good benchmark to positionMDPAlg in the
disjoint path ecosystem. First, the section formally defines the
mathematical problem and, afterwards, it analyzes the com-
putational complexity ofDijkstra’s algorithm versusMDPAlg
in depth. Finally, the study is extended to take into account
several enhanced implementations of Dijkstra’s algorithm,
as well as other related algorithms. In this regard, Table 1
illustrates the differences and the computational complexity
values, without delving into details to avoid extending the
article excessively.

A. MATHEMATICAL FORMULATION
The mathematical formulation of the disjoint path problem
can be defined as follows. Given a graph G = (N ,L)
(consisting of a set N of N nodes and a set L of L links) and
two nodes {s, t} ∈ N . For k > 0, find k paths P1,P2, . . . ,Pk
from s to t that do not share any links or nodes. The problem
is NP-complete in both cases, that is, link- and node-disjoint
modes [34]. Regarding the worst-case scenario, in which
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each node is connected to every other node in the graph,
the WorstCaseGraph can be defined as WCG = (N ,L),
composed by a set N of N nodes and a set L of L links,
in which each ni ∈ N is connected with all nj ∈ N ,

∀ ni 6= nj. Additionally, the worst case scenario also implies
that all the disjoint paths between all possible pair of nodes
should be discovered, so the mathematical description is as
follows: Given the WCG = (N ,L), a set of given nodes
S ∈ N / sj ∈ S, 0 < j 6 N , a set of target nodes T ∈ N ,
for each sj / ti ∈ T , sj 6= ti, 0 < i 6 N , find k paths
(P1(sj,ti),P2(sj,ti), . . .Pk(sj,ti), 0 < k 6 N − 1) for each pair of
nodes {sj, ti} that do not share any common link or node.

B. DIJKSTRA’S ALGORITHM
Dijkstra’s algorithm determines the minimum-cost tree from
a given node towards the remaining nodes in a graph. There-
fore, to obtain multiple disjoint paths between a pair of nodes,
Dijkstra’s algorithm must be executed several times after
removing from the graph the path discovered in the previous
iteration. In this way, each newly found minimum-cost path
guarantees the disjointness condition with the previous ones.
After several runs, all the disjoint paths for a given pair of
nodes will be discovered in an increasing cost order, since
the lowest-cost paths were erased previously from the graph.
Finally, to discover all the disjoint paths between every pair
of nodes in the graph, this process must be repeated as many
times as pairs of nodes in the network.
Theorem 1: To obtain the minimum-cost path between a

pair of nodes, the computational complexity of Dijkstra’s
algorithm is O(N 2) [17]. Thus, inWCG, in which all the nodes
are connected between them, Dijkstra’s algorithm requires
O(N 3) time to find all the disjoint paths between a pair of
nodes {s, t} ∈ N , s 6= t .

Proof: To discover all the disjoint paths between a pair
of nodes, Dijkstra’s algorithm must be executed as many
times as disjoint paths exist between that pair of nodes. In a
WCG all nodes are interconnected among them, hence each
node has N − 1 neighbours through which is possible to
obtain N − 1 disjoint paths with each target node. There-
fore, to obtain all the disjoint paths between a pair of nodes
{s, t}, s ∈ S, t ∈ T , s 6= t , Dijkstra’s algorithmmust be exe-
cuted as many times as possible disjoint paths exist between
that pair of nodes {s, t}, i.e., N − 1 times. Accordingly, as the
computational complexity of each Dijkstra’s run is O(N 2),
the complexity to discover all the disjoint paths between a
pair of nodes is O(N 2) · (N − 1) ' O(N 3). �
Theorem 2: To obtain all the disjoint paths between a

given node s ∈ S and all the target nodes ti ∈ T , ∀ti 6= s,
0 < i 6 N in WCG, the computational complexity of
Dijkstra’s algorithm is O(N 4).

Proof: Theorem 1 defines that the computational com-
plexity to discover all the disjoint paths between a pair of
nodes is O(N 3). To obtain all the disjoint paths between a
given node s ∈ S and all the target nodes ti ∈ T , ∀ti 6= s,
0 < i 6 N , the process described in Theorem 1 must be

repeated N − 1 times, once per each ti ∈ T , ti 6= sj. Hence,
this complexity is O(N 3) · (N − 1) ' O(N 4). �
Theorem 3: InWCG, usingDijkstra’s algorithm, the result-

ing computational complexity to obtain all the disjoint paths
between all sj ∈ S, 0 < j 6 N and all ti ∈ T , 0 < i 6 N,
is O(N 5).

Proof: On the basis of Theorem 2, the computational
complexity of Dijkstra’s algorithm is O(N 4) to discover the
disjoint paths between a given node s ∈ S and all ti ∈
T , ∀ ti 6= s, 0 < i 6 N . Therefore, to discover the paths
between all sj ∈ S, 0 < j 6 N and all ti ∈ T , 0 <

i 6 N , the Theorem 2 must be applied as many times as the
number of sj nodes are (N times). Accordingly, the resulting
is O(N 4) · N = O(N 5) �

As a conclusion, to obtain all the disjoint paths in the worst-
case scenario (a hyper-connected mesh graph), Dijkstra’s
algorithm computational complexity is related to the number
of nodes in the graph in a fifth-order exponential function.

C. MDPALG
MDPAlg looks for disjoint paths between a given node and
a set of target nodes in an efficient way, aiming to lessen
the computational complexity. As described in Section III,
MDPAlg provides link-disjoint or node-disjoint paths by per-
forming a search process in two steps: an initial analysis of
cost phase, followed by a multi-node path selection phase.
Therefore, to calculate MDPAlg’s computational complexity,
these two phases must be analyzed. The total computational
complexity is the result of adding the computational complex-
ity of each phase. Since the exploration phase is common in
both modes (link- and node-disjoint) it will be analyzed first.
The study is subsequently performed for the link-disjoint
confirmation phase and for the node-disjoint confirmation
phase, respectively.
Theorem 4: In WCG, to perform an analysis of the accu-

mulated cost incurred from a given node s ∈ S with MDPAlg,
the computational complexity cost is O(N 2). If the analysis
is extended to obtain the accumulated cost from each node
sj ∈ S, 0 < j 6 N, the resulting computational complexity
is O(N 3).

Proof: The analysis of costs of MDPAlg uses the
same search structure as Dijkstra’s algorithm to character-
ize the graph according to the accumulated cost incurred
from a given node. In particular, MDPAlg does not add new
operations implying the evaluation of new nodes or links,
hence the resulting computational complexity is the same as
the one obtained by executing Dijkstra’s algorithm (O(N 2)).
Additionally, considering that a single analysis of costs
allows for the computation of all disjoint paths between a
given node s ∈ S and all the target nodes ti ∈ T , ∀ti 6= s,
0 < i 6 N , this process must be repeated as many times as
nodes exist in WCG to obtain all the disjoint paths between
{sj, ti}, sj ∈ S, ti ∈ T , ∀ti 6= sj, 0 < {i, j} 6 N . Therefore,
as S contains all the nodes of WCG, the cost analysis phase
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must be repeated N times, yielding a computational complex-
ity of O(N 2) · N = O(N 3). �
Theorem 5: In WCG, to discover all link-disjoint paths

between all sj ∈ S, 0 < j 6 N and all ti ∈ T , 0 < i 6 N,
the computational complexity of MDPAlg’s construction
phase is O(N 4).

Proof: In link-disjoint mode, the worst-case scenario in
terms of computational complexity occurs when the disjoint
paths obtained between a pair of nodes {s, t} ∈ N use all the
links li ∈ L available inWCG, since it involves processing all
links in the graph. In WCG, as all nodes are interconnected,
each node is connected with the rest of the nodes in the graph
(N − 1 nodes), which provides N · (N − 1) = N 2

− N links
in total. However, as links are bidirectional, in practice,WCG
has half of the links, N

2
−N
2 , because of the previous calcula-

tion assumed both directions of each link. Therefore, to obtain
all the disjoint paths between a pair of nodes {s, t}, s ∈ S, t ∈
T , s 6= t , the computational complexity is proportional to the
number of links, which involves a computational complexity
O(N 2). To obtain all the disjoint paths between a given node
s ∈ S and all the target nodes ti ∈ T , ∀ ti 6= s, 0 < i 6 N ,
the previous process must be repeated as many times as target
nodes ti are in T (N − 1), whose resulting computational
complexity is O(N 2) · (N − 1) = O(N 3). Finally, to discover
the paths between all sj ∈ S, 0 < j 6 N and all ti ∈ T , 0 <

j 6 N , the previous steps must be executed as many times as
sj are in S (N nodes), giving a final computational complexity
of O(N 3) · N = O(N 4). �
Theorem 6: In WCG, to discover all the node-disjoint

paths between all sj ∈ S, 0 < j 6 N and all ti ∈ T ,
0 < i 6 N, the computational complexity of MDPAlg’s con-
struction phase is O(N 3).

Proof: In node-disjoint mode, the worst-case scenario in
terms of computational complexity occurs when the disjoint
paths obtained between a pair of nodes {s, t} ∈ N use all the
nodes ni ∈ N available in WCG, since it involves processing
all nodes of the graph. The number of nodes in a WCG
graph is N , therefore, to obtain k node-disjoint paths between
{s, t}, s ∈ S, t ∈ T , s 6= t , the computational complexity is
O(N ). To obtain all the disjoint paths between a given node
s ∈ S and all the target nodes ti ∈ T , ∀ ti 6= s, 0 < i 6 N ,
the previous process must be repeated as many times as target
nodes ti are in T (N − 1), whose resulting computational
complexity is O(N ) · (N − 1) = O(N 2). Finally, to discover
the paths between all sj ∈ S, 0 < j 6 N and all ti ∈ T ,

0 < j 6 N , the previous steps must be executed as many
times as sj are in S (N nodes), giving a final computational
complexity of O(N 2) · N = O(N 3). �
The resulting computational complexity of MDPAlg is

given by the sum of the computational complexity of its
phases (analysis of cost and paths construction). In link-
disjoint mode the final result is O(N 3) + O(N 4) ' O(N 4),
while in node-disjoint mode is O(N 3) + O(N 3) ' O(N 3),
which decreases up to two orders of magnitude the computa-
tional complexity regarding Dijkstra’s algorithm.

D. COMPARATIVE RESULTS
In this section, we provide a quick overview about how the
theoretical study performed in the previous section has been
extended to analyze other algorithm approaches, under the
same restrictions (i.e., to obtain all the disjoint paths between
all sj ∈ S, 0 < j 6 N and all ti ∈ T , 0 < j 6 N in a WCG).
This extended analysis firstly includes the implementation
improvements of Dijkstra’s algorithm (min-priority queue
withmin-heap and Fibbonaci-heap), and afterwards it focuses
on other relevant works found in the literature. All the results
are collected in Table 1, omitting the in-detail analytical study
because of its length.

In view of the results of Table 1, none of the improvements
of Dijkstra’s algorithm outperforms MDPAlg. The same
occurs with Robertson’s, Kawarabayasi’s and Karaata’s,
algorithms, whose computational complexity is at least one
order of magnitude higher than MDPAlg for the same oper-
ation mode (node-disjoint). Eppstein’s algorithm could be
considered the closest competitor to MDPAlg, as it is the
only one providing a similar computational complexity than
MDPAlg’s link-disjoint (O(N 4)) but it does not guarantee
path disjointness.

V. EVALUATION
This section aims to evaluate the implementation of MDPAlg
in terms of: (1) computational complexity, with a particular
focus on its scalability considering the network size, (2) the
number of disjoint paths discovered, and (3) the time needed
to obtain all disjoint paths (convergence time), in direct com-
parison to Dijkstra’s algorithm. First, this section presents the
selected testbed and the implementation, it then explains the
experimental setup and, finally, it collects, represents, and
analyzes the obtained results.

A. TESTBED AND IMPLEMENTATION
To perform the evaluation of MDPAlg, we selected the
MATLAB software tool [35] because of its versatility, its
coding speed and debugging properties, its friendly interface,
and its powerful toolboxes for graphical representation.

For the comparison, we chose Dijkstra’s algorithm because
it is a well-proven solution, if not the most popular.
Furthermore, as its computational complexity was studied
theoretically in Section IV, this evaluation will serve to val-
idate it. More specifically, we leveraged Xiaodong Wang’s
library [36], available for MATLAB, because it implements
Dijkstra’s algorithm based on a matrix of costs, which sim-
plifies the coding process of MDPAlg. This is particularly
relevant since the first phase of MDPAlg is inspired by
Dijkstra’s algorithm search process, and besides, it computes
the cumulative cost from the given node in a cost matrix.
However, as Dijkstra’s algorithm does not provide disjoint
paths by definition, we must execute Dijkstra’s algorithm
iteratively to obtain the disjoint paths between a given pair
of nodes. After each run, we remove from the graph the
minimum-cost path obtained, launching Dijkstra’s algorithm
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FIGURE 4. Computational complexity in WorstCaseGraph.

FIGURE 5. Computational complexity in the rest of graphs (mesh and random).

with themodified graph again to calculate a new disjoint path.
The process ends when nomore paths are discovered between
the pair of nodes. In this way, the disjointness among paths
is guaranteed. To obtain all the disjoint paths available in

a graph this process is repeated as many times as pairs of
nodes are in the graph.

MDPAlg was implemented in MATLAB platform modi-
fying Xiaodong Wang’s library to develop the first phase of
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the algorithm. Moreover, the second phase of MDPAlg was
implemented from scratch trying to optimize the generated
code.

Finally, regarding the hardware platform, all the experi-
ments were executed in a Intel(R) Core(TM) i7-8700K CPU
computer with 32 GB RAM.

B. EXPERIMENTAL SETUP
To fully characterize MDPAlg, the experimental setup
includes different scenarios in which it was comprehensively
evaluated. Our intention was to validate that the performance
of MDPAlg remained excellent compared to Dijkstra’s, from
the most complex to the simplest scenario.

To this purpose, we first evaluated both protocols (MDPAlg
and Dijkstra’s algorithm) in the WorstCaseGraph to validate
the theoretical analysis performed in Section IV. Afterward,
the tests were repeated in 2-dimension (2D) square mesh
graphs ranging from 4 to 36 nodes (2 × 2 to 6 × 6), and
in random graphs ranging from 20 to 100 nodes to complete
the analysis. On the one hand, square mesh graphs provide a
regular structure that maintains a medium-high connectivity
ratio among nodes, hence keeping the multipath choice while
simplifying the structure of the WorstCaseGraph. On the
other hand, random graphs aim to synthesize real scenar-
ios consisting of heterogeneous connections among nodes,
such as Metropolitan Area Network (MAN) with hyper-
connected urban nodes or peripheral not-so-well-connected
nodes. Furthermore, tomaintain themultipath choice, the ran-
dom graphs generated have an average of two, four and six
links per node. However, for the sake of simplicity, the paper
only shows the results of four links per node for two reasons:
(1) an average of four paths between a pair of nodes is
enough for multipath application requirements, such as in
networking [37] or evacuation route planning [38] scenarios,
and additionally (2) the results for two and six neighbors per
node are very similar and do not provide further insights.
In summary, this set of three types of graphs was selected
to illustrate the evolution of both algorithms when executed
both in regular (hyper-connected) and irregular (non so well-
connected) graphs, including an intermediate transition sce-
nario (represented by the 2D square meshes).

The random graph generator tool chosen was Boston uni-
versity Representative Topology gEnerator (BRITE) [39]
as it has also been used in the evaluation phase of the
original 1S-MDP [30]. This tool provides two random
connection models, Waxman model [40] and Barabási–
Albert model [41], which covers a wide range of heteroge-
neous graphs; Waxman connects nodes randomly based on
Euclidean distance, while Barabási–Albert follows a power-
law model.

Each test was repeated 30 times to compute 95% confi-
dence intervals, ensuring that the deviation of the confidence
intervals regarding the average values did not exceed the
10%. The cost per link was set randomly except for the
WorstCaseGraph, in which the cost of all links were the same

FIGURE 6. Number of paths discovered in WorstCaseGraph.

and the test was repeated just once, in order to check the
hypotheses raised in Section IV.

C. RESULTS
This section presents the results and analyzes them classified
according to the parameters previously defined: (1) compu-
tational complexity, (2) number of disjoint paths discovered,
and (3) convergence time. All values obtained for MDPAlg
are compared to Dijkstra’s algorithm. Moreover, this section
also serves to experimentally validate the theoretical study
performed in Section IV.

1) COMPUTATIONAL COMPLEXITY
This first stage of the evaluation aimed to validate the
hypotheses raised in Section IV, while quantifying and
comparing the computation complexity of both algorithms,
Dijkstra’s and MDPAlg. The computational complexity is
an estimator related to the amount of physical or temporal
resources consumed by the algorithms to obtain the solution.
Given that the amount of memory required is negligible in
both cases, we decided to measure the time invested by
both algorithms to obtain the disjoint paths, as a function of
the number of nodes in the graph. Then, we computed the
regression function that fits best those results and compared
it to the results of the theoretical study of Section IV.

Figure 4 depicts the evolution of the computational com-
plexity for Dijkstra’s algorithm and MDPAlg, as the number

74432 VOLUME 9, 2021



D. Lopez-Pajares et al.: Disjoint Multipath Challenge: Multiple Disjoint Paths Guaranteeing Scalability

FIGURE 7. Number of paths discovered: link-disjoint mode (top), node-disjoint mode (bottom).

of nodes increases in the WorstCaseGraph. Please note that,
for the sake of simplicity, the y-axis is different for Dijkstra’s
and MDPAlg. So even if the graphs look similar, the values
differ in several orders of magnitude, indeed. As there are
two modes to generate the disjoint paths, Figure 4a shows
the results for link-disjoint mode, while Figure 4b displays
those for node-disjoint mode. Moreover, solid lines repre-
sent the experimental data measurements, while dotted lines
depict the regression function associated to those experimen-
tal results, whose mathematical function (the computational
complexity), is located at the top of each figure.

As depicted in Figure 4, the results validate the compu-
tational complexity study of Dijkstra’s algorithm elaborated
in Section IV, since the computational complexity function
evolves in both cases (theoretically and experimentally) as a
power of 5 function of the graph size.

A similar conclusion can be reached for MDPAlg, as it fol-
lows a cubic function in both modes (node- and link-disjoint),
which validates the theoretical study for node-disjoint mode.
However, it slightly differ for link-disjoint mode, since the
measured values further reduce by one the exponent of the
computational complexity function (from O(N 4) to O(N 3)).
This is due to the combination of the high-connectivity of
WorstCaseGraph together with the MDPAlg’s path construc-
tion phase algorithm, which chooses the lowest-cost avail-
able option for each new disjoint path. The combination of
these two features causes the path construction process to
obtain disjoint paths with only one or two hops, since the
high connectivity provides alternative paths with a very short
length. Therefore, only a small subgroup of links of the graph

FIGURE 8. Convergence time in WorstCaseMesh.

are eventually used, which drastically reduces the compu-
tation complexity compared to the worst case of the link-
disjoint problem, in which all the links of the graph are used.
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FIGURE 9. Convergence time: link-disjoint mode (top), node-disjoint mode (bottom).

As a matter of fact, the solution obtained is closer to a typical
node-disjoint solution, as the procedure is finding paths that
rarely share any node.

Before checking the rest of graph scenarios, we would like
to provide an additional remark about Figure 4 related to the
regression function. As it can be observed, the values are
slightly higher than the ones from the theoretical analysis
(e.g. 5.07 instead of a 5, 3.10 instead of 3, etc.). This is
mainly caused by concurrent processes running in the oper-
ating system in the computer, which slows down the overall
procedure. Nevertheless, the values are still consistent and
close to the theoretical ones, which validates the behavior of
both algorithms.

Once the WorstCaseGraph has been analyzed, Figure 5
displays the computational complexity for the rest of the
evaluated graphs (square mesh and random models). We can
observe a similar behaviour in all cases: MDPAlg decreases
approximately by a half the computational complexity com-
pared to Dijkstra’s algorithm. This effect occurs because
MDPAlg optimizes the analysis of cost phase by gathering
more information in a single execution, which, as a result,
reduces the computational load and improves the scalability
of the algorithm.

2) NUMBER OF PATHS AND CONVERGENCE TIME
In this second stage of the evaluation, we examined both the
number of disjoint paths obtained by each proposal and the
time invested to obtain them in the set of graphs under study.

Figures 6 and 7 depict the number of paths discovered for
WorstCaseGraph and the rest of the evaluated graphs, respec-
tively, while Figures 8 and 9 focus on the convergence time.
All figures present at the top half the results for link-disjoint
mode, and at the bottom half the results for node-disjoint
mode. Moreover, Figures 7 and 9 displays from left to right
the results obtained in square mesh, and the two random
graphs, respectively. As seen in Figure 6, WorstCaseGraph,
the number of paths discovered by both algorithms is the
same due to the high-connectivity degree of the graph, which
causes that, independently of the number of cost analyses
performed, both solutions always found the very same paths.

However, the number of paths discovered by MDPAlg,
compared to Dijkstra’s algorithm, slightly decreases in the
rest of the evaluated graphs, as seen in Figure 7.

This effect is caused by the simplified cost analysis imple-
mented by MDPAlg, which only collects information once
and uses it to obtain the whole set of paths for a given source
node, while Dijkstra’s algorithm does it several times, once
per computed path. This gap ranges from 0% up to 10-12%,
depending on the type and size of the graph. Nevertheless,
this slight decrease of performance is overcompensated by
the gain obtained in the convergence time, which is reduced
by two to three orders of magnitude compared to Dijkstra’s
algorithm. Indeed,MDPAlg drastically reduces the number of
mathematical calculations needed to obtain the disjoint paths.

The great reduction in convergence time yielded by
MDPAlg in all graphs is particularly higher in large graphs,
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independently of their type. Again, this is due to the single
cost analysis phase of MDPAlg, which successfully deals
with the increment in the number of links with the graph size.
However, it produces an exponential growth of mathemati-
cal operations in the case of Dijkstra’s algorithm, which is
responsible for the exponential growth in convergence time.

Therefore, the small reduction in the number of paths
obtained by MDPAlg is overcompensated by the dras-
tic convergence time reduction, which exhibits exceptional
scalability in this regard.

VI. CONCLUSION
In this paper we have studied MDPAlg, an algorithm that
searches multiple (link- or node-) disjoint paths among a
given source node and a set of target nodes, in two phases.
The first phase analyzes the graph according to the accumu-
lated cost incurred from the source node, while the second
phase leverages the information of the previous phase to
build the disjoint paths in an increasing cost order. Moreover,
we have studied the computational complexity of MDPAlg
and compared the results to other solutions, and concluded
that MDPAlg drastically decreases the computational com-
plexity compared to its opponents.

MDPAlg has been tested in graphs of different nature (from
structured meshes up to random models) to experimentally
validate the theoretical study of the computational complexity
carried out in the paper, and to study its behaviour in different
scenarios. The results obtained are promising, as MDPAlg
reduces the computational complexity up to three orders of
magnitude while keeping the number of paths discovered
close to its rivals, independently of the graph type.

As future work, we want to study the quality of the disjoint
paths obtained in terms of load balancing or failure resilience,
as well as other scenarios in which MDPAlg could fit, such
as vehicular networks, path planning problems, biomedical
applications, or evacuation tasks.
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