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ABSTRACT The dynamic preservation in discrete simulations of the recurrent neural networks (RNNs)
with discrete and infinite distributive asynchronous time delays is addressed. Firstly, we formulate the
corresponding discrete-time model by semi-discrete technique. Secondly, we derive several mild algebra
conditions to guarantee that the discussed discrete-time system is the global exponential stability in Lyapunov
sense. It is shown analytically that the discrete-time technique is able to maintain the uniqueness of
equilibrium point and its dynamic behavior of the continuous-time model under the same conditions.
Meanwhile, we also show that there exists some degree of deviation in the spatial position among the
equilibrium points of the continuous-time model and its discrete-time analogue due to the rounding error.
Finally, we verify the validity of the main obtained results by comparing one continuous-time numerical

example with its discrete-time counterpart.

INDEX TERMS Discrete-time network, dynamic preservation, mixed delays, semi-discrete technique.

I. INTRODUCTION
As we all know, RNN is a fundamental dynamic sys-
tem, which is widely applied in the fields of optimal con-
trol, pattern recognition, prediction, and associative memory.
Many studies have investigated its applications [1]-[4] and
dynamics [5]-[16].

For a neural network, it is essential to introduce a time
delay in its model due to the limitations of switching ampli-
fier and propagation speed. Furthermore, one kind of delay
is often not enough to describe the transmission process’s
signal propagation among neurons. For instance, a driver,
his hands, feet, and eyes all exist delays during operation.
Thus, it is entirely appropriate to take into account the mixed
delays, such as the literature with mixed time delays [5]-[7].
Besides, the reaction delays in a moving vehicular system
generally vary along with the time and the drivers. It follows
that the asynchrony of time delays also needs to be consid-
ered in the model to make it more general [10]-[12], [14],
[15]. Zhou et al. investigated the stability and periodic-
ity for cellular neural networks with mixed asynchronous
delays [10]. The paper [11] studied the dynamical behaviors
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of complex-valued RNNs with variable and infinite distribu-
tive asynchronous delays.

In the study of models of complex ordinary differential
equations, we are familiar with approximating them by dif-
ference equations and expect their solutions to be similar
to those of the corresponding of differential equations. But
as pointed out in [16]-[18], the dynamic characteristics of
the discretized equations are generally not identical with
those of the original differential ones. Hence it is vital to
find a suitable discrete method to preserve the dynamical
behaviors of the continuous-time networks. Many scholars
have studied the discrete methods of differential equations,
which are generally divided into full-discretization [19]-[21]
and semi-discretization [22]-[24]. In contrast to the full dis-
cretization in which all actual time-domain states are dis-
cretized, the semi-discretization only discretizes the delay
states and the periodic coefficients. In [25], Ludovic ef al.
pointed out that the first semi-discrete method may have been
proposed by Beverton Holt in [26]. Recently, Mohamad et al.
proposed a semi-discrete technique in [27], which was shown
in [28] with more advantages than the Euler method to retain
the dynamics of the continuous system. Afterward, many
scholars investigated the dynamic preservation in discrete
simulations of continuous-time networks by semi-discrete
technique [29]-[41]. For instance, Sun and Feng [32] showed
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that the discrete analogues keep the periodicity of a class
of integro-differential equations. The paper [38] illustrated
the multi-almost periodicity of a semi-discrete neural net-
work. The stability preservation of a semi-discrete Cohen-
Grossberg impulsive neural network was presented [40].

According to the previous studies, there is no literature
on the stability preservation of the semi-discrete RNNs with
discrete and infinite distributive asynchronous time delays.
In this paper, we illustrate that the discrete model completely
remain the dynamics of the corresponding continuous one.
Meanwhile, we also show some degree of deviation in the
spatial position among the equilibrium points of continuous-
time model and its discrete-time analogue due to the round-
ing error. The main contributions of this paper is that the
semi-discrete analogues are effective to describe the discrete
networks and simulate the continuous networks. Therefore,
the obtained results are significant for the dynamical study of
the discrete and continuous networks.

Other parts are arranged as follows. In Section 2, the semi-
discrete recurrent neural networks with some reasonable
assumptions are listed. Some simple sufficient conditions for
stability of the discussed networks are given in Section 3. In
Section 4, some corollaries and comparisons are proposed.
Three numerical examples and their simulations are illus-
trated in Section 5. Finally conclusions will be drawn.

Notations: Throughout this paper, N and R denote the
set of all nature numbers and the set of all real numbers,
respectively. In addition, The superscript T denotes matrix
transposition. [-] is a ceiling function on R, and [x] denotes
a maximum integer not exceed real number x. The other
notations are standard.

Il. PRELIMINARIES
The following neural networks are considered:

dxi(1) -
= e+ ;blmx,»(r))
j:
n
+ ) et — )
Jj=1
n o0
+3 4y /0 Kyt — )ds +u, (1)
j=1
wherei =1,2,---,n;t > 0; x;(t) denotes the state variable;

a; stands for the positive behaved number; f;(-) represents
the differentiable nonlinear activation function; b;;, ¢;; and
d;j stands for the connection weights; t;; stands for the asyn-
chronous delay; Kj;(-) corresponds to the delay kernel of the
distributive asynchronous delay; u; represents the external
input. Let x;(s) = ¢i(s),s € (—o00,0] be a bounded and
continuous initial condition, i = 1,2, ---, n. In addition,
we make the following hypotheses:

(1) f;(-) satisfies that

lfiw) =W < Llu—v|, [;>0, forallu, veR, (2)

il = Mj,  M; =0, (3)

forj=1,2,---,n.
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(2) K;(-) satisfies that

K;;(+) is nonnegative continuous bounded on [0, +00);

/‘OO

Kij(s)ds = 1; 4
0o 4
/ Kij(s)e’ds < oo for u > 0,

0

fori,j=1,2,--- ,n.

Next, we use the semi-discrete method to formulate a
discrete difference equation of (1). Let 4 be a positive uniform
step-size of discretization and [-] be the ceiling function. Then
the network (1) will be reformulated:

dxi(1) - i
— = a0+ by 1)

J=1

+ 3 et 1= 1)
j=1

n o0
s t s
+ Zdl-j D K 0515, 1 = 5100 |+ i
=t L=
(5)
where KCjj([71h) = w;i(WK;;([;1h), and w;i(h) denotes the
positive weight such that IC;;([ 7 ]h) satisfies that

KCjj(+) is a nonnegative bounded on N;

> K =1

there exists a positive number

so that Zoo X Kij(p)o < oo,
p:

(6)

w>1

fori,j=1,2,--- ,n.
For convenience, let m = [£], p =[] and define that

xi(mh) 2 xi(m), [%Jh 2 )
Rewrite (5) as

dxi(1) -
T = —a;xi(t) + ; biifi(xj(m))

+ Y cifyxim — vy) + u;

=1

+ ) di | Do Kiim—p) | . (8)
j=1 p=1

Multiply (8) with ¢%?, and then integrate it over [mh, 1), t <
(m + D)h. After taking the limit t — (m + 1)h on the result,
one can get the discrete-time analogue of network (1):

xi(m 4 1) = e~ "xi(m) + Yih) | Y biifi(xj(m)

J=1
n
+ ) cyfixm — vi) + uj
j=1
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+ > dy | Y K@m—p) | |, 9

J=1 p=1

where ¥;(h) = l_f;a"h, and y;(h) ~ h + o(h®) when h is
enough small. l

Because of the initial conditions of (1), the initial condi-
tions of (9) can be written as:

sel={-,-2,—-1,0}, i=1,---,n.
(10)

xi(8) = @i(s),

Remark 1: Model (9) is a class of discrete RNNs with
mixed delays. So it is more general than the models in [27],
[29], [32], which only consider one delay.

Remark 2: It is different from those models in [36], [39]
with the discrete time-variable delays. This paper considers
the delays like [29], which will bring some convenience for
illustrating the dynamics preservation in discrete simulations
by Lyapunov function.

The following lemma and definition are extracted from the
reference [27] and are required later.

Lemma 1 [27]: Let w be a constant bigger than one so that
Z;il Kij(p)w” < oo. Then for any number A € [0, w), one
has 3702 | APpKCij(p) < oo. Especially, 372 | A KCij(p) < oo.

Assume thatx* = (x},x3, ..., x%)’ is an equilibrium point
of the discrete-time analogue (9). Then by (6) and (9), one can
obtain that

x n . n .
aiX; — ijl byfi(x;) — Zj:l ciifi(x)
n
—Z. Vi) —ui =0, i=1,23-.
]:

Definition 1 [27]: Let0 < M < 1 and y > 1 be two
constants. Then we say x* is globally exponentially stable,
if all solutions of (9) with the initial conditions (10) meet

Zn |xi(m) — x7| nger,l sup lpi(s) — X,-*I’
=1 i(h) i=lser  Yi(h)
m=1,2,3,---.

(11)

(12)

Ill. MAIN RESULTS
Theorem 1: Assume that (2), (3) and (6) hold. Then equation
(9) has a unique equilibrium point if

n
a; >l Z(lb]ﬂ + lcjil + 1djil) (13)
j=1

foralli=1,2,---,n.
Proof: Letx(t) = (x1(6), xa(t). -+, xu(r))” and

u; 1 "
O = {x(n)| () = =1 = — | Y (lbyl + legl + Idg DM
1 L ]:1
=12, .0, (4

and so ® is a closed set.
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Let g(0) = (g1(x), g2(x), -, gn(x))" , where
8i(x) = gilx1, -+, Xn)
—
= o[22 b

i
n n
Y e + Y difi) + )
i=1,2,3,---.

15)

Assume that x* is an equilibrium point of (9). Then by (3)
and (11), for Vi € N, we have

* Xi
gilx") — =

ai

1 n n n
< — | 2o IbilM;+ D eyl + 3 1dy M
L . . .
_]:1 j=1 j=1

n
< — | D byl + eyl + ldghM; | - (16)
L=t

Therefore, each equilibrium point of model (9) is in ©.

Obviously, g(x) is continuous from ® to ®. Therefore,
it follows that we have one point x* = (xf, xg, el x;)T INC)
such that

() = (910", ) = (o) =

and then x* = g;(x*) foralli = 1,2, --- , n. From (11), x* is
an equilibrium point of discrete-time system (9).

Let v = (v’l*, v’z*, e v;)T be also an equilibrium point of
(9). Then by (2) and (11),

n

ailx} = vi| = | > (b + cj + dipe) — £07)
j=1
n
< > byl + legl + ldghlxr = vil, (17
j=1
foralli = 1,2, ---,n. Sum up both sides of all inequalities

in (17), we can get that

n

> ailxt — vy

i=1

n n
< 30 byl + legl + ldghlxt — v

i=1 j=1
n n
=Y Ll + lcil + |dihlx; = vil,  (18)
i=1 j=1
and then

n n
> ai— 1Y (bl + lejil + |dil) | 1} = v < 0. (19)
i=1 j=1
By (13), one can get x* = v} foralli = 1,2, --- , n, which
imply that the equilibrium point of (9) is unique. [ ]
Remark 3: By comparing (1) and (9), it is found that
there exist some errors between t;; and v;; as well as Kj;(p)
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and KC;i(p). So there is some deviation in the spatial posi-
tion of the state curve among model (1) and model (9), but
the uniqueness of their equilibrium points are consistent by
Ref. [7], [10], [11], [14]. In other words, equation (9) pre-
serves the equilibrium point of its continuous counterpart (1).

The following will illustrate that the stability is also pre-
served in the discrete-time system (9).

Theorem 2: Suppose that (2), (3), (6) and (13) hold. Then
the discrete model (9) with the initial conditions (10) is the
global exponential stability.

Proof: Following from (2) and (9), one gets

lxi(m + 1) — x|

n
< e—a;h|xi(m) _ xl*| + wl(l’l) Z lj|bij| |xj(m) — x]-*|

j=1
n
+ i) Y Lleyllxiom — vy) — x|
j=1
n o0
+yih) Y Gldyl Y Ky(p)lxim — p) — xFl. (20)
j=1 p=1
Let si(m) = AP0 ¢ Zforalli = 1,2, ..
Then by (20)
xi(m + 1) — x|
Z(m"f_l) — )\’WH’I 1
’ i(h)
n
< xe™ U zi0m) + Y L)l bi|zim)
j=1
n
+ Y G A T eyl m — vy
j=1
n o
+ ) LA dyl Y Ki(pzim—p). (21)
j=1 p=1

In the following, we introduce a Lyapunov functional
V(m) = V(z1, 22, . . ., Z,)(m) defined by

Vim) =Y {zi(m)
i=1

m—1

>

n
+ D LAt ey

Jj=1 I=m—vjj
n 00 m—1
+ Y Gldyl YT Kyp) Y
Jj=1 p=1 k=m—p
(22)
Then,
AV(im)=Vm+1)—V(n)
< Z (e~ %" — 1)zi(m) + Z)\ljl/fj(h)|bij|zj(m)

i=1 j=1
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+ ) LA (il zi(m)

J=1

+ Y Lgldyl Y Ky(p)ziim)

Jj=1 p=l1

n n
- — Z 1 — re™ " — Alir(h) Z 1jil
i=1 ‘

Jj=1

n
—Lpi(h) Y lejil vt

j=1
— i) Y 1dill Y W) ¢ zim). (23)
j=1 p=1

From (6), we know that @ > 1 is a constant and satis-
fies Z;i] Kij(p)o? < oo. And by Lemma 1, a continuous
auxiliary function over an interval [0, w) is considered and
defined by

n
GiO) = 1 — hie™ %" —diliri(h) Y bl

j=1
n +1
Vji
— () Y Il n)]
j=1
n o
— L) > il Y AT i), (24)
j=1 p=1
foralli=1,2,---,n.
By (13), we can get
n
Gi(l) = 1— e " — L) Y |bjil
j=1
n n o0
—Lpi(h) Y lejil — Lpih) Y 1diil (Y Kii(p))
J=1 J=1 p=1
n n n
=Y Sai — LY _ bl =LY leil =LY |dil
j=1 j=1 j=1
> 0. (25)
By the continuity of G;, there is a number

A1 < AF < wsothat G;(A}) > Ofori = 1,2,--- ,n.
Given that A = max{A}, A3, -, A;} > 1, we have

n
Gi() = 1 —de™ " — Mi(h) Y bl
j=1

n
—Li(h) ) lejil A

j=1
— L) Y1l Y AT Ki(p) > 0 (26)
j=1 p=1
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foralli=1,2, .-, n. From (22), (23) and (26), one has that
AV (m) < 0 for m € N, and further,

D am <V <V©), m=12---. (27
i=1

By Lemma 1, one has Z;il )J’“ple,-(p) < o0o. Let

n
1+ lipri(h) Z lcjil 2y
J=1

y = max
1<i<n

n o
() Y |dil Y W pKi(p)
j=1 p=1
Then,

ZOESY
i=1

n -1
2i0) + Y L el > 5D

j:l l=7v,:/

n [ee] —1
+ ) Lldyl Y T Kyp) Y 7k

j=1 p=1 k=p

n n 0
=Y O + L) Y leil Y zidd)
i=1 j=1

[==vji

n 00 —1
i) Y Ndiil Y P i(p) Y 7i(k)
j=1 p=1 k=p
DA L L) D el v+ ()

i=1 j=1

n o0
lpi(s) — x7|
X E |dji|E MW pKji(p) § sup ———
=

IA

ser  Vi(h)
n
|lpi(s) — x]
<vy sup ———. (28)
; et Vih)
Combining (27) and (28), we have that
n * n . _*
Z |xj(m) — x7'| - Ly ZS“ lpi(s) — x; I7
I == IR0
where m = 1,2,3,---. On account of Definition 1, the
discrete model (9) with the initial conditions (10) is the global
exponential stability. ]

Remark 4: In [10], the authors have given some sufficient
conditions to assure the global exponential stability of model
(1). Under those conditions, Theorem 2 in this paper show
that equation (9) remains the dynamical characteristics of its
original equation (1).

IV. DISCUSSIONS
From the main results, one can get the following corollaries,
some of which had been proved in the known literature.

If bj=d;j=0fori,j=1,2,...n,(9) turns into:

xi(m 4 1) = e~ x;(m)
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n

+yih) | Y cifigim —vg) +ui |, (29)

Jj=1
and the corresponding initial conditions can be assumed that

se{_l)’""_l’o}’ i=172"" , 1,
(30)

xi(8) = @i(s),

where v = max <; j<,{v;} and ¥;(h) = l_fl:aih ~ h+ o(h?)
when /% is enough small.
Corollary 1: Assume that (2) and (3) hold. If

n
ai>lizlcji|7 i=172""’n’ (31)
j=1

then the discrete network (29) with the initial conditions (30)
is globally exponentially stable.
If bjj =c;j=0fori,j=1,2,...n, (9) becomes into

xi(m+1) = e %Mx;(m)

+ i) | Y dig| Y Kip)fi(im—p) | +ui

J=1 p=1
(32)
and (10) is the corresponding initial condition.
Corollary 2: Assume that (2), (3) and (6) hold. If
n
ai> LYy |dil, i=1,2,-n, (33)
j=1

then the discrete network (32) with the initial conditions (10)
is globally exponentially stable.

Remark 5: Corollary 1 and Corollary 2 are the same as The-
orem 4.2 and Theorem 4.3 in [27], respectively. Therefore,
the obtained results are more general than that in [27].

When djj = 0fori,j=1,2,...n, (9) becomes into

xi(m + 1) = e “Pxim) + i) | D bigfi(ej(m))

J=1

+ ) cfigm—v) +ui |, (34

J=1

and (30)is the corresponding initial condition.
Corollary 3: Assume that (2) and (3) hold. If

n
ai> LYy (bl +leil). i=12,-.n (35
j=1

then the discrete network (34) with the initial conditions (30)
is globally exponentially stable.

Remark 6: Compared with the results in [29], we see that
Corollary 3 is just Theorem 3.1 of [29]. Especially, if ¢;; = 0
in model (34) for i,j = 1,2,...n, Corollary 3 is Theo-
rem 4.1 of [27].
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When ¢;; =0fori,j=1,2,...n, model (9) changes into

xi(m+1) = e~ xim) + yilh) | Y bigfiCxim))

j=1

+ ) dy | Y Ki)fiCm—p) | +ui| . (36)

J=1 p=1

and (10) is the corresponding initial condition.
Corollary 4: Assume that (2), (3) and (6) hold. If

n
ai > LYy (bl +|di). i=1.2,-.n (37
j=1

then the discrete network (36) with the initial conditions (10)
is globally exponentially stable.

V. EXAMPLES
In this section, three numerical examples are provided to
verify the validity of the obtained results.

Example 1: Consider the following continuous-time RNN's
with mixed delays.

dxi (1) 6

ek x1(1) + 0.5f1(x1 (1)) + 0.4f2(x2(2))
+ 0.4f1 (x1(t — 711)) + 0.6f2(x2(f — 112))
+0.4/(; Ki1(s)fi(x1(t — 5))ds

[e.e]

+0.15 Kia()2(xa(t — s))ds + 3,
0
" (38)
jf’) — Txa(0) + 02011 (1) + 0.5 (x2(0))

—0.3f1(x1(t — 121)) + 0.2/(x2(t — 122))
—02 /0 K1 ()i (x1 (7 — ))ds

+ 0.7] Ko (8)fr(xa(t — s))ds + 2,
0

where f;(x;(t)) = tanh(x;(z)), 111 = w1 = 2.1, 112
T = 3.2, Ki1(1) = K21 (1) = 2e7*)/(1 — ™), K12(1)
Kn(t) = (B3e)/(1 — e™3).

After simple verification, we know that model (38) satisfies
the assumed conditions. The state trajectories of x1, x, of the
continuous-time model (38) by three different initial condi-
tions: (1) x1(s) = 0.1, x2(s) = 0.9; 2) x1(s) = —1.1, xp(s) =
—0.2; 3) x1(5) = —1.5 4 €, x2(s) = O.lsin(s) — 1,s €
[—3.2,0], are illustrated in Fig. 1, which show that all the
dynamical behaviors are converging toward the same equi-
librium point.

Example 2: Consider the following discrete-time RNNs
with mixed delays, which are the discretization for (38) by
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semi-discrete method.

x1(m + 1) = e x  (m) 4+ Y1 (W[0.5f1 (x1 (m))
+0.4f (x2(m)) + 0.4f1 (x1(t — v11(2)))

4+ 0.6f2(x2(t — v12(2)))

+04[ > K@it —p)]

+0.15[ Y7 Kiaplalrtm —p)| +3.
xa(m 4 1) = e "xp(m) + Y2()[0.2fi (x; (m))
+ 0.5/ (x2(m)) — 0.3f1 (x1(z — v11(2)))
+0.2f2(x2(t — v12(2)))

~02[ Y Ka(p)fitai(m—p))|

+07[Y2 " Knplfataalm—p) | +2.

(39)

_ ,—6h _,—Th
where Y1 (h) = 24—, Yo(h) = 54—, [L] = m, xi(mh) =
(5 1h ;i(mh Kij([£1h
xim), (U = G 2 vy, (SRR =

[@]h & Kij(m), v; = max{y;, K;}, v; = max sup v;j(m),
1<j=n s>0
Ki = max sup K;;(m). -
1<j=n s>0

Under the same conditions, the discrete-time model’s state
trajectories (39) are shown in Fig. 2 by three different initial
conditions. It is illustrated that model (39) also converges to
a unique equilibrium point. From Fig. 1 and Fig. 2, we know
that model (39) preserves the dynamic characteristics of the
corresponding continuous-time model (38). But the point is
that the convergence process of model (39) has some devia-
tion from that of the corresponding continuous model (38)
because of the rounding error of Kj(t) in the process of
discretization, which is shown in Fig. 3.

Example 3: Consider the following semi-discrete RNNs
with infinite distributive asynchronous delays.

x1(m 4 1) = € xi (m) + Y1 (WI0.8f1 (1 (m))
+0.320c2(m)) + 1.2f3(x3(m)]

+04[ > Kn@itaim —p)]

+02[ )" Kiap)atra(m — p))]

+015[Y 7 Ki@fsteim—p)] +2,
xo(m+ 1) = e (m) + Y2(W)I0.2i (x1 (m))
+0.6/2020m)) + 0.53(x3(m))]

~03[ 3" Kalfitxitm—p))| 40)
+085[ Y Kaa(p)ata(m —p))|

+07[ 3" Kas(pMfa(estm = p))] + 15,
x3(m+ 1) = e~y (m) + Y2 (W[0.2f (x1 (m))
+0.4/2(x2(m)) + 0.5f3(x3(m))]

—0.1 3" Katp)im = p)]

+09[ 3" " Kaa(phaeam — p)]

+0.7 [Zp:1 K33(p)f3(x3(m —P))] +3,
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x1-con
= = = x2-con
— x1-dis
= = = x2-dis

FIGURE 3. The state trajectories of model (39) and its continuous-time
counterpart.

[—e—6.6h

where  fi(xi(1)) = sin(x;(r)), Y1(h) = 65—, ¥2(h) =

_ —15h _ ,—69h
e s = B5—. 5] = m, ximh) = xi(m),

(B — KDy & gym), K@) = Ka@) =
K31(t) = Qe™2)/(1 — e7%), Ki2(t) = Kno(1) = K32(t) =
(2.5¢73) /(1 — ™), Ki3(1) = Kn3(t) = Kas(1) =
(3e™3) /(1 — e73). K; = max sup ICij(m).
I<5j<n ¢>0

The state trajectories for the semi-discrete system (40) by
three different initial conditions: (1) x1(s) = 2.5, x2(s) = 2,
x3(8) = 3; 2) x1(s) = —1.9, x2(s) = —0.5, x3(s) = —0.1;
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FIGURE 4. The state trajectories of discrete-time model (40).

B) x1(s) = =1 4+ €°, x(s) = 0.3¢° — 1, x3(s) = 0.5¢%, s €
[—3, 0], are rendered in Fig. 4, which illustrate the effective-
ness of the results in Corollary 4.

VI. CONCLUSION

The paper gets a discrete analogue for a class of RNNs
with discrete and infinite distributive asynchronous delays
by semi-discrete technique, and investigate its preservation
of dynamic characteristics. Some mild algebraic conditions
insure the uniqueness and global exponential stability of the
discussed discrete system’s equilibrium point. It is shown
analytically that the applied discrete technique is able to
remain the dynamic behavior of its continuous counterpart.
Meanwhile, we also show some degree of deviation in the
spatial position among the equilibrium points of the continu-
ous model and its discrete analogue due to the rounding error.
Besides, the method and technique in this paper can be further
applied to investigate other discrete neural networks, such
as multiple neural networks and impulsive neural networks.
The dynamical preserving problems for these discrete neural
networks are not still fully studied, so we will focus on this
topic in the future.
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