IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 28, 2021, accepted May 6, 2021, date of publication May 14, 2021, date of current version May 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3080512

DCol: Distributed Collaborative Learning for
Proactive Content Caching at Edge Networks

SUBINA KHANAL“, KYI THAR™, AND EUI-NAM HUH", (Senior Member, IEEE)

Department of Computer Science and Engineering, Kyung Hee University, Yongin 17104, South Korea

Corresponding author: Eui-Nam Huh (johnhuh @khu.ac.kr)

This work was supported by the Institute for Information and Communications Technology Planning and Evaluation (IITP)
Grant by the Korean Government through the Ministry of Science and ICT (MSIT) (Service mobility support distributed cloud technology)

under Grant 2017-0-00294.

ABSTRACT Caching popular content at the network edge, such as roadside units (RSUs), is a promising
solution that enhances the user’s quality-of-experience (QoE) and reduces network traffic. In this regard,
the most challenging issue is to correctly predict the future popularity of contents and effectively store
them in the cache of edge nodes. Thus, in this paper, we propose a distributed proactive caching scheme
at the edge to optimize the content retrieval cost and improve the QoE of the mobile users. This proactive
content caching scheme, namely Distributed Collaborative Learning (DCoL), is a non-parametric content
popularity prediction mechanism in a distributed setting. Next, we show the advantage of DCoL as two
folds: (i) it leverages distributed content popularity information to develop local content caching strategy,
and (ii) it exploits the regional database using the long short-term memory (LSTM)-based prediction model
to capture the dependency between requested contents. Simulation results using real datasets demonstrate
that our scheme yields 8.9% and 18% gains, respectively, in terms of the cache hit efficiency and content
retrieval cost, compared with a competitive centralized baseline, and outperforms other traditional caching
strategies.

INDEX TERMS Proactive content caching, mobile edge computing, distributed learning, collaborative

filtering, neural network.

I. INTRODUCTION

In a recent study made by Cisco highlights that mobile
traffic generated by videos is expected to reach 75% of
the total generated traffic by 2020.! This significant rise
in mobile traffic causes user latency to increase and puts
a heavy burden on backhaul links that connect local base
stations and the internet. In this regard, multi-access edge
computing (MEC) paradigm has been developed to cater
to this unprecedented growth of network traffic, both in
terms of communication and computation, at the network
edge [1]. In addition, the availability of MEC servers at
the network edge has unleashed opportunities for several
next-generation services, including edge caching, control,
and computation. One of which, edge caching is a promising
solution to cope with the exponential growth of data from
different internet of things (IoT) devices in edge computing,

The associate editor coordinating the review of this manuscript and
approving it for publication was Ghufran Ahmed.
1 http://tubularinsights.com/2020-mobile-video-traffic/

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

where content is usually placed on local caches for fast and
repetitive access to data [2]. In this regard, it is observed
that only a few popular contents are responsible for most
of the traffic load, and are requested by several users at
different times. Thus, with predicted content popularity, it is
advantageous to cache popular contents locally before the
requests truly arrive, directly at edge networks, e.g., Roadside
Units (RSUs). Here, the popularity of a content is defined as
the ratio of the number of requests for a particular content
to the total number of requests from users, which is usually
obtained for a certain region during a given period of time.
Then, such content popularity prediction can be used to min-
imize the content retrieval cost of edge network, which is
the latency incurred for fetching contents from the content
server located in the remote cloud, by proactively caching
the popular content before the users actually request it. How-
ever, developing proactive caching strategies and determining
pre-caching contents to serve the selected users before they
actually request it is a non-trivial problem as there exist
challenge to deal with the dynamic pattern of user requests.

73495

https://orcid.org/0000-0002-6857-0195
https://orcid.org/0000-0001-9390-6511
https://orcid.org/0000-0003-0184-6975

IEEE Access

S. Khanal et al.: DCol for Proactive Content Caching at Edge Networks

In addition, given the difficulty to appropriately capture user
preference profiles over time, the cache space limitation at
edge nodes makes it imperative to first predict the popu-
larity of contents, and then cache the most common ones
in advance [3]. Thus, it has been a challenge to design the
content caching strategy that fulfills the requirements to meet
quality-of-experience (QoE) of users. In this regard, tradi-
tional caching algorithms such as First-In-First-Out (FIFO),
Least Recently Used (LRU), and Least Frequently Used
(LFU) [4] do not focus on the potential popularity of the
content, which in result, leads to low cache effectiveness
and large cache misses. Further, though being implemented
as a distributed solution, these approaches avoid the use of
beneficial collective information on content requests made
by the users to edge nodes; and thus, ignoring the significant
notion of local content popularity and regional popularity.

To tackle these issues, we propose a novel proactive content
caching scheme, namely Distributed Collaborative Learning
(DCoL), where we cache the next most popular content in a
distributed manner. DCoL is a non-parametric content pop-
ularity prediction mechanism in a distributed setting, where
edge networks at first share knowledge about their local
popular contents with the macro base station (MBS) to build
a regional popularity database. Then, the MBS rework on
the constructed regional database to develop proactive con-
tent caching strategies at the network edge. In particular,
we develop DCoL to solve the formulated optimization prob-
lem where the objective is to find a subset of content for
caching to minimize content retrieval cost and improve cache
hit efficiency.

The main contributions of the paper are summarized as

follows:
« We investigate the problem of proactive content caching

approach at the network edge with limited cache space.
To that end, we formulate an optimization problem with
the objective to find contents to be cached proactively
at the network edge that minimize the network-wide
latency during content request for the given time
window.

o We propose a distributed collaborative learning (DCoL)
based popularity prediction mechanism to solve the for-
mulated problem that integrates local prediction models
to create a regional content popularity database.

« We combine item-based collaborative filtering and long
short-term memory (LSTM) to design a proactive con-
tent caching algorithm at the network edge. To that
end, we propose a non-parametric algorithm to meet the
objective of the formulated optimization problem.

o Experimental results based on real-world Movie
Lens datasets [5] verify that the DCoL outperforms
other well-known reference algorithms in terms of
the cache hit efficiency, content retrieval cost, and
user-satisfaction level.

The rest of the paper is organized as follows. Section II
reviews the related works, where several works on edge
caching and its application are discussed. Section III presents

73496

our proposed system model of distributed collaborative learn-
ing for proactive content caching in which we show the for-
mulated optimization problem, discuss overview of solution
approach, and present preliminaries of adopted collaborative
filtering and LSTM model. Section IV discuss the details of
our proposed approach, and present a non-parametric algo-
rithm to tackle the formulated problem. Section V provides
the performance evaluation of the proposed approach and
compares with other traditional approaches using real-world
datasets. Finally, Section VI concludes this work.

Il. RELATED WORKS

It has been a challenge to efficiently manage content caching
strategy at the network edge due to two primary rea-
sons: (i) the limited cache space at the network edge, and
(i) the dynamics of content popularity over time. Therefore,
it is imperative to acknowledge both the future popularity
prediction and the section of contents that are most likely
to be requested by the users in the local cache. In this
regard, to tackle the problem of limited cache availability,
most of the existing caching systems often use simple cache
replacement algorithms such as LRU, FIFO, and LFU [4],
[6], that update the cache during the content delivery phase.
However, these conventional algorithms do not take into
account the popularity of potential content, and therefore,
are not suitable caching strategies expected to effectively
capture the rapidly evolving popularity of content in true
sense and make caching decisions. To that end, recent works
discuss to develop innovative cache replacement algorithms
by learning trends of the popularity of contents [7]-[11].
While recent distributed machine learning approaches such
as Federated Learning (FL) [12]-[15] are still in their infancy
to learn distributed content popularity trend, particularly due
to model complexity and convergence issues, several works
opt to low-complexity solutions for jointly addressing cache
limitation issues and content replacement policies. In [16],
the authors show deep learning-based caching strategies are
more efficient and can improve the performance of caching
strategy as they can accurately predict content popularity.
However, the underlying complexities of deep learning mod-
els are still overlooked. Similarly, in [17], [18], the authors
consider user’s mobility behaviors and social impacts on
content preference that distort the performance of content
requests. They propose a long-term strategy of proactive
caching to minimize the sum of communication costs to get
the requested contents. The authors in [19] utilize the concept
of sequence prediction algorithm for mobility prediction on
vehicle’s routes to achieve proactive caching. Furthermore,
using the historical popularity of videos of the autonomous
vehicle, the authors in [20] use the non-negative matrix fac-
torization (NMF) technique to first predict the preferences of
users, which is then used to predict the future demands of
the users. The authors in [21] adopt a Q-learning algorithm
for proactive edge caching problem to minimize the content
retrieval cost at edge nodes. Similarly, the authors in [22]
uses methods like deep item-based collaborative filtering to

VOLUME 9, 2021

S. Khanal et al.: DCol for Proactive Content Caching at Edge Networks

IEEE Access

CLOUD SERVER

LEGEND

Backhaul

A

a4 ai

RSU 1 RSU 2 RSU n
Request Request
Contents Contents CR:r?t:?\?;

User Devices

User Devices

User Devices

FIGURE 1. System model: DColL.

model higher-order item relations, where multiple non-linear
layers are used to learn those item relations. In line with
these works, some approaches adopt personalized quality-
of-service (QoS) values prediction for service users using
an extended version of collaborative filtering techniques by
incorporating additional information about services and users
[23], [24]. The authors in [25] focus on mobility-aware hier-
archical collaborative caching, where caching agents share
their content caching tasks with the base stations. They also
propose a vehicle-aided edge caching scheme, where the
wireless network edge caching and computing services are
jointly scheduled. In [10], [26], the authors use the concept
of reinforcement learning for content caching to maximize
the long-term cache hit rate. Besides, the authors in [27]
exploit a transfer learning-based approach for estimating
content popularity. Similar to which, in [28], the authors
take user privacy into account to develop proactive content
caching strategy. However, unlike the existing works that
are mostly parametric and model dependent, we focus on a
distributed, non-parametric proactive caching strategy at the
network edge (RSUs) with limited cache storage. We take dis-
tributed content popularity trends into consideration, develop
a regional popularity database, and exploit neural networks
to feedback this information to the edge nodes for adjusting
local caching scheme.

lll. SYSTEM MODEL

The system model of DCoL is shown in Fig. 1 with a basic
pictorial workflow. We consider a set of cache-enabled RSUs
R of |R| = R associated with a macro base station (MBS)
M via radio links. We define a set of contents K of || = K
where the size of each content k € K is defined as zj. In the
considered model, RSUs acts as an intermediary to serve the
content requests made by the users. However, due to limited

VOLUME 9, 2021

LSTM & Radio Link
< Model *—83 + .
Regional Local MBS + Addition
Prediction Storage

Database

Feedback

i Road-Side Unit (RSU)
g Cache Storage of RSU
Basic Workflow J
(2\,) Macro Base-Station (MBS)

Cache Storage of MBS

()
A |
[

Item
Based
RSU Local
Storage Prediction

cache size at the RSUs, not all contents requested by the users
are readily available; hence, the RSU will look at the MBS
for the missing contents, and similarly fetch the requested
content from the content server to meet the users’ request.
Let C, denotes the cache capacity of RSU r,Vr € R and
x;{0, 1} is a binary variable such that

, 0, if content k is not cached at RSU r,)
X, =
k 1, otherwise.

In this regard, if x,f = 0, we consider it as a cache miss, and
therefore, the RSU r will bear additional content retrieval cost
8, to serve users fetching contents from the content server
located at the remote cloud, or the MBS. Particularly, con-
tent retrieval cost is defined as the backhaul usage function.
That means, for a missed request of content x at RSU r,
the content retrieval cost §; is the function of the content
size zx and the available link capacity) between the RUS
r and the MBS,? ie., 8, = zk/S2. Mathematically, €2
can be defined as the standard Shannon rate function [3],
[9] which is dependent on the available wireless resources,
such as the transmit power and allocated band\;vidth, and the
channel gain, ie., Q; = Bilogy(1 + %), where By
is the available bandwidth to retrieve content k, p” is the
downlink transmission power, |h"|? is the channel gain, and
no is the Gaussian noise power density. In fact, the MBS can
appropriately determine 8; ; and thus, the distributed content
caching strategy x;, Vk € K,Vr € R, and the number of
content requests made dominantly characterize the backhaul
usage, i.e., the content retrieval cost. When x,g = 1, we have

2In fact, the content retrieval cost accounts the additional information
overhead ®(z;) < zx, which be of small size (in bits) and common for all
RSUs under the current setting of DCoL; and hence, can further be eliminated
in the minimization problem, similar to [9], [13].

73497

IEEE Access

S. Khanal et al.: DCol for Proactive Content Caching at Edge Networks

a cache hit in which the requested content would be directly
delivered from the RSUs to the users. Then, at any time ¢,
we can formally define the cache capacity constraint at each
RSU as

Zke;c xp(Dz < Cp, VreR. 2

In proactive caching, at each RSU r € R, we aim to
predict a subset of contents for a time window N in order
to jointly improve cache hit ratio, optimize cache utilization,
and minimize the content retrieval cost. To that end, we define
the network-wide delay associated with cache miss at RSUs
for the next ¢ + N time slot as

bacyt +N) =3 S ((1 —x;m)az)ﬁz(t).
)

where B (¢ + N) is the number of request counts for content
k at RSU r at a N time spaced window. In (3), we observe
the overall network delay associated with the contents k € C
requested by the users depends on the caching strategy x; (¢),
which is known to RSU r, and the number of future request
counts B; (¢ + N), which is an unknown quantity. Note that
Bt + N) can be estimated following historical informa-
tion about the prior request counts, or we can predict this
information leveraging the distributed collaborative learning
approach, which will be discussed in the Section IV.

Therefore, we formulate our optimization problem to min-
imize the network-wide latency during content request for the
time window N as

L1 N
P: Mmimlze N thl Gdelay(t + N) (4a)
subject to ZkelC (N <Cr, VreR,VteT,
(4b)

PO () < Pun,
xe (@) €{0, 1},

VieR, VteT, (4c)
Ve, VreR, VteT,
(4d)

where x is a matrix which is mapping contents caching strate-
gies for each RSU over the time slots, ¢(x;(#)) is a short-
hand representation of Zlle Zszl (1 = x ()8)BL(t + N),
constraint (4b) denotes the cache capacity at each RSU, and
respectively, constraint (4c) denotes the constraint imposed
on the content retrieval cost to define the QoE for users
when requesting contents with their associated RSUs.? In
this regard, the term QoE equivalently translates into the
proportion of users served by the RSU in the formulation,
similar to [29]. We observe that the MBS can appropriately
determine the content retrieval cost 8,: in the downlink, and
then, satisfying the objective of minimizing (4a) boils down

3Note that we limit the scope of QoE evaluation at the RSU-level, and not
the “user-level", similar to several existing works [3], [9]. This is mostly
done to make the problem tractable, and further, minimizing the overall
network-wide latency can enforce the formulated optimization problem to
obtain caching decisions that satisfies delay requirements on each requested

content.

73498

to first finding the contents request count, and then imple-
menting the caching decision at the RSUs with the available
cache space. However, as we have discussed before, it is
challenging to solve the optimization problem (4a) for two
particular reasons: (i) the request count of contents B (t +N)
is unknown, and (ii) the stochastic nature of combinato-
rial constraint (4d) makes the problem NP-hard. Moreover,
the coupled constraints make it difficult to optimally find
out the caching strategy beforehand. Hence, we propose
a non-parametric distributed collaborative learning scheme,
namely DCoL, to solve the formulated optimization prob-
lem. DCoL is designed to combine collaborative filtering
technique in a distributed fashion at RSUs with LSTM* at
the MBS to efficiently build local content caching strat-
egy (detailed in Section IV), which obtains a near-optimal
solution with low-complexity than the optimal solution to
the optimization problem P. In particular, we decompose
problem P into a distributed setting where we first find the
local content popularity, and then, jointly determine the con-
tent caching strategy at the network edges. This approach
facilitates different RSUs to independently find out which
contents need to be proactively cached next by using its local
historical data and regional database at the MBS, which is
built with the collaboration of content request count infor-
mation between the RSUs. This is inline with the fact that
local content popularity follows Zipf distribution, and it is
imperative to use collaborative approach amongst RSUs to
reflect the timeliness of popularity in a region for designing
content caching strategies.

Particularly, in our system model, users request contents to
the nearby RSU, as in the illustrated cellular network (Fig. 1).
These users can be mobile users, or any [oT device, which is
a practical consideration. We also note that these requested
contents differ with respect to place, time of request, and
other features. Besides, the content request patterns may be
similar or different depending on the situation of the user. The
RSUs store these content request patterns as a historical data.
To this end, we observe RSUs are responsible for recognizing
these local content request patterns and working accordingly
to manage local content caching strategy. Moreover, to rec-
ommend the popular contents in RSU level, RSUs exploit
the principle of Item-based collaborative filtering, which is
used to find the similarity between the items, to help in local
content popularity prediction at each RSU. These contents
are then cached in the local content space of each RSU.
In addition, once getting top popular contents for all RSUs,
they are forwarded to MBS so as to build a global estimate of
content popularity by using LSTM. In this regard, the LSTM
model input will be contents sent by each RSUs, the histor-
ical contents of MBS, and popularity count of each content.
Here, the LSTM model predicts the next popularity count of
each content, which helps MBS to determine the top most

4LSTM model is executed to find the popularity count of each item
in the popular content lists obtained exploiting the distributed item-based
collaborative filtering at the MBS.

VOLUME 9, 2021

S. Khanal et al.: DCol for Proactive Content Caching at Edge Networks

IEEE Access

popular contents to be cached. Then, MBS stores these top
most popular content in its global content space, i.e., regional
database. Finally, RSUs reuses the MBS’s caching strategy
following the global estimate of content popularity to update
its caching strategy. And according to the developed caching
plan, the n most popular contents are selected for proactive
caching in each RSU.

Next, in the following subsections, we will discuss the
details of collaborative filtering and LSTM models involved
to execute distributed content popularity prediction mecha-
nism in DCoL.

A. PRELIMINARIES: COLLABORATIVE FILTERING

In recommendation systems, collaborative filtering [30], [31]
refers to a technology that predicts on its own, based on
data obtained from multiple users. Collaborative filtering
is focused on the fact that if a user A has the same opin-
ion (interest) on one content as user B, they may share similar
opinion on another content as well. Moreover, the availabil-
ity of timestamp in historical information about the con-
tents watched/requested by the users make it a practical tool
to build preference history, behavior patterns, and item-of-
interest. Hence, it is widely used in recommendation systems
to improve business value of e-commerce platforms in which
predicting the next-item for sale matters. In this regard, there
exist two popular variants of collaborative filtering: (i) user-
based, and (ii) item-based, which follows memory-based and
model-based approaches to compute similarity between users
or items [32].

In our proposed model, we use the item-based collaborative
filtering [33], [34] concept, which is one of the neighborhood
algorithms, to capture the degree of similarity between items.
In particular, we adopted this method to exploit user’s con-
tent request history as input and generate prediction of the
upcoming requests for the contents. Item-based collaborative
filtering approach looks for similar items based on the items
preferences build with the information of items users have
already liked, or positively interacted with. Then, it suggests
items based on the interests of the users, i.e., the contents
that have been previously consumed/requested. Accordingly,
recommendation system works in this manner. In doing so,
the very first step is to build the model by finding similari-
ties between all the item pairs. In this regard, the similarity
between item pairs can be found in different ways [32]. One
of the most common methods is to use cosine similarity.
In this case, two items are thought of as two vectors in the
m-dimensional user-space. Then, the similarity between them
is measured by computing the cosine of the angle between
these two vectors. Formally, considering the m x n ratings
matrix, similarity between items i and j, which is denoted by
sim(i, j), is given as

- P
sim(i, j) = cos(i,) = ——2— ©)
llill2 x jll2
where “-” denotes the dot-product of two vectors.

VOLUME 9, 2021

hy

CSt1 @ [+ csy

J
iog
fo,

- B
s

d LSTM CELL
't

. Sigmoid Fuction

tanh Function

C

0

®

ht—l

FIGURE 2. An illustration of LSTM cell.

Although collaborative filtering works well in some cases,
it has limitation in providing real-time recommendations,
primarily due to stale data and inability of collaborative
filtering to capture short-term content request patterns [35].
Hence, to overcome this prominent challenge for developing
proactive content caching strategies, we combine collabora-
tive filtering with LSTM to determine the list of contents for
proactive caching. In doing so, different from existing works,
we adopt distributed collaborative filtering in which RSUs
share local prediction information with the MBS, and MBS
deploys LSTM models to develop proactive content caching
at the RSU level.

B. LSTM MODEL

LSTM is a special type of Recurrent Neural Network (RNN)
that can learning patterns on data with long dependence
periods. RNNs are particularly designed to capture the tem-
poral dynamics of input sequential data [36]. At the core of
LSTM is the cell state, as illustrated in Fig. 2, which enables
learning from input data sequence with only a small linear
interaction. LSTM can add or remove something from the cell
state, which is carefully controlled by a gate structure. Each
LSTM cell includes gates, which are additional methods by
which information can be stored and transferred. These gates
consists of a sigmoid layer and point-wise multiplication,
and allows to protect and control the cell state. A general
LSTM cell has three specific gates: (i) input gate, (ii) output
gate, and (ii) forget gate. As discussed, these three gates
are intended to allow the flow of information selectively by
discarding or retaining information at some point.

The major innovation of LSTM is its memory cell CS;
which essentially acts as an accumulator of the state infor-
mation. The cell is accessed, written, and cleared by several
self-parameterized controlling gates. Every time a new input
comes, its information will be accumulated in the cell if the
input gate io; is activated. Also, the past cell status CS;_|
could be “forgotten” in this process if the forget gate fo, is on.
Then, whether the latest cell output CS; will be propagated to
the final state %, is further controlled by the output gate Op;.

To that end, the forget gate decides whether to discard past
information or not, i.e., to choose what information we’re
going to throw away from the cell state. As shown in Fig. 2,
it takes h;—1 and d; as inputs. Similarly, the sigmoid layer

73499

IEEE Access

S. Khanal et al.: DCol for Proactive Content Caching at Edge Networks

emits the value between 0 and 1, representing how much
information each component should convey. If the value
is 0, the previous cell state values are all 0, which means
“do not pass anything”, and that way it does not affect the
future result. If output value is 1, which means ‘“‘hand over
everything”’, we transfer all the values to the next step. Thus,
mathematically, we represent fo; as

for = oWy - [hi—1, d;] + by), (6)

where o(-) is the sigmoid activation function and Wy is the
weight matrix to be learned.

The next step is to decide whether new information will
be stored in cell state or not, which can be done following
two steps. First, the sigmoid layer, also known as the input
gate layer, is responsible for deciding which information we
want to update. Then, the tanh layer creates a new cell state
value CSt/ that can be added to the cell state. In the next step,
these two values are added together that affect the next state,
as follows:

iop =0 (W; - [h—1,d:]1+ b)), @)
and
CS; = tanh(W, - [hy—1, d;] + b). 8)

After evaluating these values, we update old cell state
CS;—1 to a new cell state CS;. To do so, we first multiply
old cell state by fo;, where we forget the data that forget gate
decided in the first step, and then add the new cell state to it,
given as

CS; = fo; x CS;—1 + io; * CS,. 9)

This is how new cell state value affect the existing values.
And finally, we have to decide which output to print. For this,
we first run a sigmoid layer that determines which values need
to pass to the output. Then, we will take the cell state through
the ranh function and extract the value in the range [—1, 1].
Next, we will multiply this value by the output of sigmoid
gate as

Opy = oW, - [hi—1, di] + by), (10)
and
h; = Op; * tanh(CS;,). (11)

In our proposed model, we feed the timestamped historical
content popularity counts as the input in the MBS to predict
the sequence of next items, and accordingly develop a proac-
tive content caching strategy at the RSU using DCoL scheme.
In the following section, we present our non-parametric solu-
tion approach to solve the formulated optimization problem
P, leveraging collaborative filtering and LSTM model in a
distributed manner.

73500

top -n popular contents in RSU X top -n popular contents in RSU Y

=

Local content space of RSU X

Local content space of RSU Y

Use item-based
CF

Use item-based

top- k contents similar to popular top- k contents similar to popular
contents contents

top-k contents from
each RSUs and
historical data of MBS

[Regional content space of MBS }

l LSTM Model
Predict next top-n
contents to cache

Contents to be proactively

cached in RSU X Contents to be proactively

cached in RSU Y

FIGURE 3. An illustration of DCol for proactive content caching.

IV. PROPOSED METHOD: DCoL FOR PROACTIVE
CONTENT CACHING

In this section, we propose the deployment design of dis-
tributed collaborative learning mechanism for proactive con-
tent caching at the network edge, DCoL. We first present
the details of processes involved in finding out the content
popularity count in a distributed fashion. Then, we discuss
the proposed non-parametric algorithm to solve the presented
problem description. In doing so, we consider a small network
with one MBS and two RSUs, RSU X and RSU Y, which is
usually a practical scenario for simulation [9].

In Fig. 3, we show an illustration of the proposed DCoL
mechanism for proactive content caching. The distributed
mechanism of DCoL runs in two coupled levels: Level I,
where collaborative filtering works on the local content space
of RSUs to build top-k similar movies of top-n popular
contents, and Level II, where MBS reuses its own histor-
ical information and the lists shared by RSUs to build a
global content space, and combines collaborative filtering and
LSTM models to build proactive content caching strategies
for RSUs. Here, local content space is defined as the local
database of historical content request information at RSU
level, whereas global content space signifies the regional
database at MBS built with shared popular historical content
request information from corresponding associated RSUs and
its own data.

At first, each RSU X and Y gets content requests from
different user devices based on their location. Primarily,
RSUs need to have those contents stored to serve the

VOLUME 9, 2021

S. Khanal et al.: DCol for Proactive Content Caching at Edge Networks

IEEE Access

requesting users. However, due to the dynamic nature of
user’s preferences and the limited storage capacity of RSUs,
not all requested contents are cached at the RSU; and there-
fore, users might not instantly receive the requested contents.
For that reason, RSUs must download these contents from
MBS in a proactive manner. Also, because of the high amount
of content requests, it is impossible to cache all the replicas of
contents in RSUs. Therefore, RSUs must select the contents
which may be proactively cached to reduce the high delivery
delay.

To that end, using historical data, we first find top-n most
popular contents in both RSUs. In our case, popular contents
are the contents with a maximum number of request count,
i.e., the popularity count. These popularity count determines
a list of popular contents in each RSU. Next, after getting the
popular contents, each RSU can individually decide to cache
them. However, caching only popular contents won’t suffice
for minimizing content retrieval cost as the requested content
depend on user preferences and change over time. That is why
we use item-based collaborative filtering to first find out the
top-k similar contents of those top-n popular contents to know
which contents we can cache proactively, other than popular
content. For this purpose, we use widely-adopted cosine sim-
ilarity metric for finding the similarity among contents. Then,
considering the local content space, contents are cached based
on each content’s similarity score, i.e., if the similarity score
is high, then these similar contents are likely to be proactively
cached. However, given high mobility of the users around
RSUs, it is impractical to solely adopt the local content
popularity trend as a key metric to design proactive content
caching strategy at the RSU level. Therefore, we need to
build a regional-level observation instead of a RSU-level local
observation in which we exploit the collaboration between
RSUs and the MBS to have the distributed local content
popularity information and the regional contents, and reuse
this knowledge to adjust the local content caching strategies
at the RSUs.

For that reason, top-k similar movies are sent to MBS,
where MBS first build regional content database exploiting
data of historical content requested, and information from
corresponding RSUs. Then, MBS uses the LSTM model to
predict the popularity count of the next popular contents to be
cached, and further ask associated RSUs to update their local
content caching scheme with the recommended contents.
In this way, leveraging regional information of requested
contents over the time period, both RSUs have knowledge
of the popular contents of different, but nearby areas. Next,
after getting the list of items to be cached proactively from
MBS, each RSU update its local content space. In the case of
MBS, it checks if these contents are available or not; if yes,
it sends these contents directly to each RSU. Else, it requests
to nearby content server for those contents to serve user
requests. Since MBS’s cache space is more significant than
RSUs, it can proactively cache more contents in its global
content space (i.e., the regional database). In Algorithm 1,
we present the pseudocode of our proposed proactive content

VOLUME 9, 2021

Algorithm 1 DCoL for Proactive Content Caching
1: Level I: Collaborative filtering for obtaining top-k items
similar to top-n popular content at each RSU.
Input: Historical data of requested contents at each RSU.
Output: Next n contents to be proactively cached.
Initialization: Initialize local content space.
Find top-n popular contents in each RSU using popularity
count.
6: Compute top-k similar contents of each popular content,
and their similarity scores using (5).
7: Send top-k similar contents to MBS.
8: Update local content space with similar contents based
on the obtained similarity scores.

10: Level II: Predict next top-n to cache combining dis-
tributed collaborative filtering and LSTM model at the
MBS.

11: Input: top-k similar contents of each RSU, historical
data of MBS, popularity count of each content, LSTM
configurations [8].

12: Output: Predict popularity count of n contents to be
proactively cached at each RSU and the MBS.

13: Initialization: Initialize regional database of MBS.

14: for each contents in regional database do

15: Predict next top-n contents using LSTM model.
16: if contents available in MBS then

17: send n contents list to each RSU.

18: else

19: fetch contents from the content server.

20: send n contents to each RSU.

21: end if

22: Update regional database.

23: end for

24: return top n contents to be cached in each RSU.
25: Update local content space.

caching scheme. As aforementioned, each RSU obtains top-
k similar contents of top-n popular contents, respectively,
using popularity count and item-based collaborative filtering,
and share the list with the MBS (line 5-7). Correspondingly,
they update their local content space with similar contents
based on the obtained similarity scores (line 8). At the MBS,
LSTM model is used to predict top-n contents and prepare
contents for proactive caching at the RSU level (line 13-24).
Based on these information, RSUs update their local content
space (line 25), and corresponding rework to determine top-k
similar contents of top-n popular contents to share with MBS
in the next round.

V. SIMULATION RESULTS
In this section, we present the results of experiments con-
ducted to evaluate the proposed approach’s performance.

A. DATASET
We have used the real-world movielens (100k) dataset [5]
for our experiments, which includes 100,000 ratings (1-5)

73501

IEEE Access

S. Khanal et al.: DCol for Proactive Content Caching at Edge Networks

TABLE 1. Summary of key parameters.

Parameters Value

Number of features 2

Type of feature Popularity Count of contents,
Title of contents

No. of LSTM layer 1

No. of LSTM cell in each layer 90

No. of neurons in dense layer 1

Batch Size 10

Output Activation Function ReLu
Optimizer Adam
Window Size [50, 500]
Cache Size [10, 50]Mb
Loss Function Mean Absolute Error (MAE)
Training Epoch 50
Training Data 70%
Validation Data 30%

from 943 users on 1682 movies. It also includes users’ demo-
graphic information such as age, gender, occupation, and zip
address. We split the dataset randomly between two different
RSUs, namely RSU X and RSU Y, to realize a practical
distributed setting. In Table 1, we show the summary of key
parameters used when conducting the experiments.

In the following subsection, we present the traditional
methods used as baselines to demonstrate the efficiency of
our proposed proactive content caching scheme.

B. TRADITIONAL METHODS
We compare our proposed approach with three traditional
algorithms [37], and the optimal, which are described below:

1) Optimal Solution (Optimal): This approach considers
optimal caching scheme where the contents receiving
the most requests is cached following an exhaustive
search algorithm [38]. Using the contents popularity
count at RSUs, and considering the available cache
space, the top-n popular content from each RSU is
known to the MBS. Then, the MBS combines those
contents with its historical data, and prioritized these
contents based on popularity count. Finally, the MBS
exploits its regional database to compare it with the
popularity count of contents at each RSU and obtain the
optimal caching strategy for contents that minimizes
the overall delay.

2) Centralized Collaborative Filtering (Centralized):
This approach considers the available of full histori-
cal information of content requests at a single place,
i.e., at the MBS. The idea of storing the whole dataset
of the particular area without sharing the distributed
data is basically impractical as it has additional com-
munication overheads, privacy issues, and cannot cap-
ture real-time content popularity trend for developing
caching strategies.

3) Least Recently Used (LRU): When making a caching
decision, this strategy discards the least recently used
items. The LRU algorithm involves keeping track of
what was used from the database for this purpose;
therefore, it is a costly method to ensure that the algo-
rithm always discards the least recently used item.

73502

4000

0
0 200

FIGURE 4. An illustration of content popularity distribution.

Number of Requests
= - N N w w
o w o wv o w
o (=] o o o o
o o o o o o

vl
o
o

400 600 800 1000 1200 1400 1600
Contents IDs

[BN

v

Duplicate Contents
w £

N

—

0
31 5 32 41 20 61 54 78 64 12
Movie Ids

FIGURE 5. Duplicate contents in MBS and RSU X.

4) Random Replacement (RR): This strategy selects a
candidate item randomly and discards it when neces-
sary to make the cache space available. This algorithm
does not need any details about the history of content
access. Basically, every other items is replaced with the
same probability in this algorithm.

C. PERFORMANCE EVALUATION

In Fig. 4, we show an illustration of the content popularity
distribution at a RSU. We observe the number of requests
are random and follows a Pareto distribution in which most
of the requests are confined for certain movies. This also
demonstrates the trend of content popularity in a local level.
For the simulation purpose, we label the content popularity
as the number of request counts for the movies and sort it
in a time-sequence data structure. In a distributed setting,
once the RSUs share their top-k similar movies of top-n
popular movies using the local content space, the MBS build
a regional database to capture distributed movie popularity
trend. Fig. 5 and Fig. 6 reflects the significance of regional
database as it can capture the duplicate requests made for
movies and adjust the caching strategy to minimize the con-
tent retrieval cost. Next, we show several observations based
on cache space utilization and content popularity. In doing
so, we use the cache hit ratio as the performance metric
to evaluate our proposed approach. Cache hit ratio is a
well-known metric to evaluate the efficiency of a caching
strategy. Particularly, it is defined as the ratio of the number
of requests served due to availability of contents in the cache

VOLUME 9, 2021

S. Khanal et al.: DCol for Proactive Content Caching at Edge Networks

IEEE Access

Duplicate Contents
N w » w)]

-

44 13 33 68 23 17 67 51 5 56
Movie Ids

s Optimal
mmm Proposed (DCol)
mmm Centralized

FIGURE 6. Duplicate contents in MBS and RSU Y.
LRU
- RR

RSU X RSU Y
RSUs

0.8

Cache Hit Ratio
o o o o o o
N w IS wn o ~

e
-

0.0

FIGURE 7. Performance comparison between DCol and baselines:
(i) Optimal, (ii) Centralized, (iii) LRU, and (iv) RR, in terms of cache hit
ratio.

space to the number of requests for such contents received,;
and thus, a higher value of cache hit ratio is desirable. Finally,
considering the cache space limitation, we show the proposed
method can well-capture the content popularity distribution
compared with other traditional methods, where we can have
several caches misses. In our experiments, we perform Monte
Carlo simulations to capture the variability of underlying
stochastic process, validate the stability of the obtained solu-
tion using Algorithm 1, and for better analysis of the proposed
mechanism.

In Fig. 7, we observe DCoL outperforms the baselines
Centralized, LRU, and RR in terms of cache hit ratio, and pro-
vides a near-optimal, low-complexity solution. In particular,
DCoL improves the cache hit ratio by a competitive margin
of 8.9% against best performing Centralized approach, which
is an offline method to decide content caching strategy. This
is quite intuitive as DCoL can well-capture popularity trend
over a region to proactively cache the candidate contents that
will be requested by the users. In fact, this result is favored
by the collaboration amongst RSUs in sharing their historical
content popularity data, where we compute similarity scores
of movies using cosine-similarity at the local level on local
content space.

In Fig. 8, we investigate the cache hit efficiency for varying
cache sizes between the range [10, 50]Mb. In this work,
cache efficiency is defined in terms of the cache hit ratio,
i.e., the number of user requests served by the RSUs following
the proactive content caching strategy. Moreover, we assume

VOLUME 9, 2021

0.9 Ee—
[G—— -
————— | -
08 B =
- —————
=} - -
507 BE =
[~4 _- ==
- f" 4”
T 06 o S
o -7 -
< Pad R .
% 0.5 e g ~p- Optimal
14 * ol - Proposed (DColL)
0.4 ,/' =& Centralized
pag LRU
0.3 v/’ -¥%. RR
10 20 30 40 50

Cache Sizes [in Mb]

FIGURE 8. Performance comparison between DColL and baselines:
(i) optimal, (ji) Centralized, (iii) LRU, and (iv) RR, in terms of different
cache sizes at the RSUs.

1.0
5 Al LRU
~

€09 w= -k RR
:E S~o y =& Centralized
408 & Sm~ay —e-: Proposed
S Sso \\\ S ~»- Optimal
Z07 "< DS ~ ~
o ~< ~ N No
> So .\\ ~ \\
'QC) 0.6 S Sl \.___~ e _
@ SS SS ST A
X o5 Sal O~ TT== *
I \\N -~
Zoa DL =
c v
/5] ~~o
Cos3 ~>

10 20 30 40 50

Cache Sizes [in Mb]

FIGURE 9. Performance comparison between DColL and baselines:
(i) optimal, (ji) Centralized, (iii) LRU, and (iv) RR, in terms of content
retrieval cost.

each movie contents to be cached is of same size, similar
to [8], [9]. As shown in Fig. 8, we observe a significant
improvement in the cache hit ratio using DCoL as compared
to baselines when the local cache size is limited. Furthermore,
with the increase in the cache size, we see other baselines
performing well in terms of improving cache hit ratio. This
is obvious as with increase in cache size, the probability of
cache hit improves given more contents proactively cached
at the RSUs reusing local content space. Besides, it is inter-
esting to realize our proposed algorithm provides an upper
bound on cache hit efficiency, while the RR algorithm per-
forms worst among the traditional baseline algorithms. In this
regard, the centralized algorithm shows better performance
compared to the LRU and RR algorithm as it is an offline
caching scheme that learns from the past requests at the MBS.
However, Centralized does not use content information of
other RSUs; and thus, results in caching the contents of that
specific area only.

In Fig. 9, we evaluate the efficiency of proposed method in
terms of content retrieval cost. As we have discussed before,
content retrieval cost is correlated with the cache miss and the
available cache size at the RSUs. We observe an improvement
of 18% in terms of content retrieval cost as compared with
the conventional Centralized approach. Notice that DCoL
outperforms other baselines with a significant margin as well.
Furthermore, with the increase in the available cache size
at the RSUs, we see the content retrieval cost also reduces.

73503

IEEE Access

S. Khanal et al.: DCol for Proactive Content Caching at Edge Networks

TABLE 2. Comparison results of cache hit ratio and content retrieval cost.

Traditional Methods DCoL: Improvements (%)
Cache Hit Ratio | Content Retrieval Cost
Centralized 8.9 18
LRU 23.19 23.63
RR 25 41

Optimal in RSU X

Optimal in RSU Y

== Proposed (DCol) in RSU X == Proposed (DCol) in RSU Y
== RRinRSU X =a= RRinRSUY

o
g

o
B

.
/"
-

- e
-
”4A’ PR
A PR
7 -
/ . e
’ u”
/ _-
4 w”
A -
7’ -

R <

&
8

User Satisfaction Level [%]
N w
3 8

s

°

50 100 200 300 400 500 50 100 200 300 400 500
Content Prediction Window [hrs]

FIGURE 10. User satisfaction level at RSUs.

—-== Training Loss
--- Validation Loss

2
0.100
£
<
& 0.075
(0]
(=}
—0.050 "
\Y
0025 | LM
. S I A RN
D R R N T . (T AN N
0.000 e WENAY) \‘_,*\,1’.\,\/\\)\’_\)“-\:',-\’\?
0 10 20 30 40 50
Epochs

FIGURE 11. Model performance during the training and validation rounds.

This is because of the increase in cache hit with availability
of cache space for proactively caching large number of con-
tents. Table 2 summarizes the improvement of our proposed
approach in case of both cache hit efficiency and content
retrieval cost.

Similarly, in Fig. 10, we measure the user satisfaction level
for different values of content prediction window N. Here,
user satisfaction is defined as the proportion of the users
served by the RSUs following the proposed proactive content
caching scheme. Practically, user satisfaction level captures
the average of satisfied content requests made by the users
with heterogeneous preference over the contents to the RSUs.
In particular, considering the dynamics of content requests
made by users associated with each RSU, we evaluate the
user’s satisfaction as the percentage of weighted value of
cache hit on the number of contents requested by each user
to the total content requested. In this regard, larger value of
user’s satisfaction accounts for the improved performance of
the proposed approach. Also, given the content prediction
window, we make sure that the cache size is the same but
the timestamp changes in the order of hours. As observed
in Fig. 10, we compare the user satisfaction level achieved
using DCoL with the baseline RR for different content predic-
tion window. We observe our proposed scheme outperforms
the baseline with up to 9% improvement for the use case
scenario. Moreover, we see an increase in the user satisfaction
level with the increase in content prediction window. This is

73504

because DCoL can recommend a larger number of possible
contents that will be requested by the users for proactive
caching; and thus, increasing the cache hit probability.

Finally, in Fig. 11, we demonstrate the performance effi-
ciency of DCoL with the evaluation of root mean square
error (rmse) at the convergence of the algorithm. We observe
the validation loss is small (below 0.025) within few epochs.
This is significant given the improvements in cache efficiency
and content retrieval cost under the proposed distributed
mechanism of proactive content caching.

VI. CONCLUSION

Caching at the network edge is a promising solution to cope
with the exponential growth of data request from different IoT
devices, where contents are usually placed on local caches
for fast and repetitive access. However, edge devices have
limited cache space and cannot appropriately decide the con-
tents to cache due to dynamic arrival of user requests for
random contents. In this work, we have studied the problem
of proactive content caching at the network edge. In doing
so, we have proposed a distributed collaborative learning
mechanism for proactive content caching at the network edge,
namely DCoL. Particularly, we have combined distributed
collaborative filtering technique with LSTM model to exploit
information related with local content popularity and deter-
mine contents to be cached at the distributed edge nodes
proactively. In doing so, we have developed a non-parametric
algorithm that first builds the regional database, and then
leverages such regional information as a feedback to tune
the local content caching strategy. As compared with the
traditional cache replacement strategies, simulations have
shown DCoL as an efficient proactive caching strategy that
can jointly improve cache hit ratio, optimize cache utilization,
and minimize the content retrieval cost.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE Commun.
Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, 4th Quart., 2017.

[2] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the wireless

edge: Design aspects, challenges, and future directions,” IEEE Commun.

Mag., vol. 54, no. 9, pp. 22-28, Sep. 2016.

E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role of

proactive caching in 5G wireless networks,” IEEE Commun. Mag., vol. 52,

no. 8, pp. 82-89, Aug. 2014.

J. Pfender, A. Valera, and W. K. Seah, “Performance comparison of

caching strategies for information-centric IoT,” in Proc. 5th ACM Conf.

Inf.-Centric Netw., 2018, pp. 43-53.

[5S] F. M. Harper and J. A. Konstan, “The MovieLens datasets: History and

context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, pp. 1-19,

Jan. 2016.

R. Fares, B. Romoser, Z. Zong, M. Nijim, and X. Qin, “Performance

evaluation of traditional caching policies on a large system with petabytes

of data,” in Proc. IEEE 7th Int. Conf. Netw., Archit., Storage, Jun. 2012,

pp. 227-234.

[7]1 S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content
caching,” in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun. (INFO-
COM), Apr. 2016, pp. 1-9.

[8] K. Thar, N. H. Tran, T. Z. Oo, and C. S. Hong, “DeepMEC: Mobile
edge caching using deep learning,” IEEE Access, vol. 6, pp. 7826078275,
2018.

3

—

[4

=

[6

—

VOLUME 9, 2021

S. Khanal et al.: DCol for Proactive Content Caching at Edge Networks

IEEE Access

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A. Ndikumana, N. H. Tran, D. H. Kim, K. T. Kim, and C. S. Hong,
“Deep learning based caching for self-driving cars in multi-access
edge computing,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 5,
pp. 2862-2877, May 2021.

L. Li, Y. Xu, J. Yin, W. Liang, X. Li, W. Chen, and Z. Han, “Deep
reinforcement learning approaches for content caching in cache-enabled
D2D networks,” IEEE Internet Things J., vol. 7, no. 1, pp. 544-557,
Jan. 2020.

Y. K. Tun, A. Ndikumana, S. R. Pandey, Z. Han, and C. S. Hong, “Joint
radio resource allocation and content caching in heterogeneous virtualized
wireless networks,” IEEE Access, vol. 8, pp. 36764-36775, 2020.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Artif. Intell. Statist., 2017, pp. 1273-1282.

S. R. Pandey, N. H. Tran, M. Bennis, Y. K. Tun, A. Manzoor, and
C. S. Hong, “A crowdsourcing framework for on-device federated learn-
ing,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3241-3256,
May 2020.

P. Kairouz et al., “Advances and open problems in federated learn-
ing,” 2019, arXiv:1912.04977. [Online]. Available: http://arxiv.org/
abs/1912.04977

S. R. Pandey, N. H. Tran, M. Bennis, Y. K. Tun, Z. Han, and C. S. Hong,
“Incentivize to build: A crowdsourcing framework for federated learning,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1-6.
W.-X. Liu, J. Zhang, Z.-W. Liang, L.-X. Peng, and J. Cai, “Content
popularity prediction and caching for ICN: A deep learning approach with
SDN,” IEEE Access, vol. 6, pp. 5075-5089, 2018.

J. Zhou, X. Zhang, and W. Wang, *“Social-aware proactive content caching
and sharing in multi-access edge networks,” IEEE Trans. Cogn. Commun.
Netw., vol. 6, no. 4, pp. 1308-1319, Dec. 2020.

S. Manzoor, S. Mazhar, A. Asghar, A. N. Mian, A. Imran, and J. Crowcroft,
“Leveraging mobility and content caching for proactive load balancing in
heterogeneous cellular networks,” Trans. Emerg. Telecommun. Technol.,
vol. 31, no. 2, Feb. 2020, Art. no. e3739.

Q. Wang and D. Grace, “Sequence prediction-based proactive caching
in vehicular content networks,” in Proc. IEEE 3rd Connected Automated
Vehicles Symp. (CAVS), Nov. 2020, pp. 1-6.

Z.Zhang, C.-H. Lung, M. St-Hilaire, and I. Lambadaris, *“Smart proactive
caching: Empower the video delivery for autonomous vehicles in ICN-
based networks,” IEEE Trans. Veh. Technol., vol. 69, no. 7, pp. 7955-7965,
Jul. 2020.

X. Xu, C. Feng, S. Shan, T. Zhang, and J. Loo, “Proactive edge caching in
content-centric networks with massive dynamic content requests,” /EEE
Access, vol. 8, pp. 59906-59921, 2020.

F. Xue, X. He, X. Wang, J. Xu, K. Liu, and R. Hong, ‘“Deep item-based
collaborative filtering for Top-N recommendation,” ACM Trans. Inf. Syst.,
vol. 37, no. 3, pp. 1-25, Jul. 2019.

Z. Zheng, L. Xiaoli, M. Tang, F. Xie, and M. R. Lyu, “Web service
QoS prediction via collaborative filtering: A survey,” IEEE Trans. Serv.
Comput., early access, May 18, 2020, doi: 10.1109/TSC.2020.2995571.
Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering beyond the
user-item matrix: A survey of the state of the art and future challenges,”
ACM Comput. Surv., vol. 47, no. 1, pp. 1-45, Jul. 2014.

K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative
content caching in 5G networks with mobile edge computing,” IEEE
Wireless Commun., vol. 25, no. 3, pp. 80-87, Jun. 2018.

C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep reinforcement
learning-based framework for content caching,” in Proc. 52nd Annu. Conf.
Inf. Sci. Syst. (CISS), Mar. 2018, pp. 1-6.

T. Hou, G. Feng, S. Qin, and W. Jiang, “Proactive content caching by
exploiting transfer learning for mobile edge computing,” Int. J. Commun.
Syst., vol. 31, no. 11, p. €3706, Jul. 2018.

Z. Yu, J. Hu, G. Min, H. Lu, Z. Zhao, H. Wang, and N. Georgalas,
“Federated learning based proactive content caching in edge computing,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1-6.
K. Hamidouche, W. Saad, and M. Debbah, ‘“Many-to-many matching
games for proactive social-caching in wireless small cell networks,” in
Proc. 12th Int. Symp. Modeling Optim. Mobile, Ad Hoc, Wireless Netw.
(WiOpt), May 2014, pp. 569-574.

M. Jalili, S. Ahmadian, M. Izadi, P. Moradi, and M. Salehi, “Evaluating
collaborative filtering recommender algorithms: A survey,” IEEE Access,
vol. 6, pp. 74003-74024, 2018.

VOLUME 9, 2021

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

R. Zhang, Q.-D. Liu, and J.-X. Wei, “Collaborative filtering for recom-
mender systems,” in Proc. 2nd Int. Conf. Adv. Cloud Big Data, Nov. 2014,
pp. 301-308.

G. Adomavicius and A. Tuzhilin, ‘““Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions,”
1EEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734-749, Jun. 2005.
M. K. Kharita, A. Kumar, and P. Singh, “‘Item-based collaborative filtering
in movie recommendation in real time,” in Proc. Ist Int. Conf. Secure
Cyber Comput. Commun. (ICSCCC), Dec. 2018, pp. 340-342.

B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-based collaborative
filtering recommendation algorithms,” in Proc. 10th Int. Conf. World Wide
Web, 2001, pp. 285-295.

R. Sharma, D. Gopalani, and Y. Meena, “Collaborative filtering-based
recommender system: Approaches and research challenges,” in Proc. 3rd
Int. Conf. Comput. Intell. Commun. Technol. (CICT), Feb. 2017, pp. 1-6.
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

T. Taleb, S. Dutta, A. Ksentini, M. Igbal, and H. Flinck, ‘“Mobile edge
computing potential in making cities smarter,” IEEE Commun. Mag.,
vol. 55, no. 3, pp. 38-43, Mar. 2017.

C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algo-
rithms and Complexity. Chelmsford, MA, USA: Courier Corporation,
1998.

SUBINA KHANAL received the bachelor’s degree
in information management from Tribhuvan Uni-
versity, Nepal. She is currently pursuing the M.E.
degree with the Department of Computer Science
and Engineering, Kyung Hee University, South
Korea. For two years, she worked as a Quality
Assurance (QA) Engineer. Her research interests
include applied machine learning, federated learn-
ing, and the Internet of Things (IoT). She was
awarded the prestigious Brain Korea 21st Century

(BK21) Scholarship and the Graduate Scholarship, in 2020.

KYI THAR received the Bachelor of Computer
Technology degree from the University of Com-
puter Studies, Yangon, Myanmar, in 2007, and
the Ph.D. degree in computer science and engi-
neering from Kyung Hee University, South Korea,
in 2019. He is currently a Postdoctoral Research
Fellow with the Department of Computer Sci-
ence and Engineering, Kyung Hee University.
His research interests include name-based routing,
in-network caching, multimedia communications,

-

scalable video streaming, wireless network virtualization, deep learning, and
future Internet. In 2012, he was awarded the Scholarship for his Ph.D. degree.

EUI-NAM HUH (Senior Member, IEEE) received
the B.S. degree from Busan National Univer-
sity, South Korea, the master’s degree in com-
puter science from The University of Texas at
Austin, TX, USA, in 1995, and the Ph.D. degree
from Ohio University, Athens, OH, USA, in 2002.
He is currently with the Department of Computer
Science and Engineering, Kyung Hee University,
South Korea, as a Professor. His research interests
include cloud computing, the Internet of Things,

future Internet, dlstrlbuted real-time systems, mobile computing, big data,
and security. He is a Review Board Member of the National Research
Foundation of Korea. He has also served many community services for
ICCSA, WPDRTS/IPDPS, the APAN Sensor Network Group, ICUIMC,
ICONI, APIC-IST, ICUFN, and SoICT, as various types of chairs. He is also
the Vice-Chairman of the Cloud/Bigdata Special Technical Group of TTA,
and an Editor of ITU-T SG13 Q17.

73505

http://dx.doi.org/10.1109/TSC.2020.2995571

