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ABSTRACT The generalized recursive circulant networking can be widely used in the design and imple-
mentation of interconnection networks. It consists of a series of processors, each is connected through
bidirectional, point-to-point communication channels to different neighbors. In this work, we apply the
shortest path routing concept to build independent spanning trees on the generalized recursive circulant
graphs. The proposed strategy loosen the restricted conditions in previous research and extended the result
to a more general vertex setting by design the specific algorithm to deal with the constraint issue.

INDEX TERMS Independent spanning trees, generalized recursive circulant graphs, interconnection net-
works.

I. INTRODUCTION
Interconnection networks are used to be modeled by an
undirected graph where a vertex represents a processor and
an edge represents a communication channel. The spanning
tree under a topology includes every vertex and connects
without loops, massive applications [1]–[5] applied spanning
tree structure to build efficient algorithms and solve related
research problems. A set of spanning trees are said to be
independent if they are rooted at the same root and for each
of the remaining vertices there exists internally disjoint paths
connect to the root. Considering an asynchronous system
communicates by sending messages and data through an
unreliable topology. The computation may not be able to
conduct in a single processor due to the capacity issue and the
distributed resources. To design reliable broadcasting, many
researches [6], [7] construct independent spanning trees and
restrict all message transmission through these structures.
The results reveal that the communication complexity can be
more efficient and improving the fault-tolerant ability. Secure
information distribution protocols are desirable properties in
data communication networks. Several researches [8], [9]
have exploited the existence of disjoint structures to achieve
efficient, reliable, and secure intentions. Sending different
messages safely from the distributor to different destinations,
an efficient algorithm to construct independent spanning
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trees can be applied to design a distribution protocol with
high-level security requirements.

Circulant graphs [10]–[15] have a vast number of appli-
cations in communication routing [16], VLSI building [17],
and distributed protocols [18]. Tang et al. [19] first pro-
posed a superclass of recursive circulant graphs, generalized
recursive circulant graphs (GRC graphs), which achievemore
flexibility in the cardinality of the vertex set and construct
by the circulant graph properties recursively. They investi-
gate several properties of GRC graphs, such as proposed the
shortest path routing algorithm and presented the diameter.
In this paper, we proposed an efficient algorithm to con-
struct independent spanning trees on GRC graphs. Previous
research [20] proposed a method to construct independent
spanning trees (ISTs) on a recursive circulant graph by the
concept of shortest path routing. But the graph topology
restricted under the base be greater than 2. Later, they [21]
proposed a set of different rules to deal with the condi-
tion that every bases equal 2. In this work, we apply the
shortest path routing concept and considering a more flex-
ible setting that can conduct independent spanning trees
on the GRC graphs but losing the restricted conditions on
the base.

The rest of this paper is organized as follows: the properties
and notations of GRC graphs are introduced in Section 2.
In Section 3, we present the proposed algorithm to con-
struct independent spanning trees on GRC graphs. And
Section 4 proves the correctness of our strategy and the
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FIGURE 1. General Recursive Circulant Graph: GR(4, 2, 3).

experimental results on several complex GRC graph settings.
The last section contains concluding remarks and future
works.

II. PRELIMINARIES
GRC graphs are proposed by [19] with the recursive prop-
erty as recursive circulant graphs, but a more general con-
nection between vertices, which achieve more flexibility in
the cardinality of the vertex set. GRC graphs are repre-
sented in a mixed radix number system,GR(bh, bh−1, . . . b0),
where bi ≤ 2 for 0 ≤ i ≤ h. Index i is the position
of this system and bi refers to the base number (or radix)
of corresponding position. For each vertex x labeled with
(xh, xh−1, . . . x0), where 0 ≤ xi < bi, presenting the label
form of vertex x. Each vertex is linked to those vertices with
only difference in one position by ±1 of the mixed radix
system. For instance, vertex (1, 1, 2) inGR(4, 2, 3) is adjacent
to vertices (1, 1, 1), (1, 1, 3), (1, 0, 2), (1, 2, 2), (0, 1, 2) and
(2, 1, 2). Note that carry and borrow mechanism in radix
system are still implement. For instance, vertex (1, 1, 2) in
GR(4, 2, 3) is adjacent to vertex(1, 2, 2) by +1 in position 1.
Since x1 = 2 meets b1 = 2, a carry should be added to the
next position and x1 should be reset to 0 at the same time.
Therefore, the equivalence of (1, 2, 2) and (2, 0, 2) leads to
the connection between vertices (1, 1, 2) and (2, 0, 2). As the
structure of circulant graphs, the leftmost position will carry
to the rightmost position and conduct the circulant property.
Figure 1 shows the GR(4, 2, 3).
Next, we elaborate the properties of GRC graphs and

define the notations will be used in the proposed algorithms.
Property 1: GRCgraphs are regular and vertex-symmetric.
Property 2: Given a GRC graph GR(bh, bh−1, . . . b1, b0).

The degree δh of each vertex depends on the parameter h and
the leftmost base bh:

δh =

{
2h+ 2, if bh > 2;
2h+ 1, if bh = 2.

Definition 1: Since of vertex-symmetric property of GRC
graphs, without loss of generality, we choose the vertex
r = (0, 0, . . . , 0, 0), where xi = 0, 0 ≤ i ≤ h, to be the
root vertex for each IST we built.

The connectivity of GRC graphs is δh for h > 2, we suggest
that there exists δh ISTs according to the conjecture that the
maximum number of ISTs is equal to the connectivity by
previous study [22]. To specify which IST we are referring
to thereafter, we give the definitions below:
Definition 2: We use i+ (respectively, i−) to represent a

movement in the position i from vertex (xh, ..xi, ..x0) to vertex
(xh, ..xi + 1, ..x0). (respectively, (xh, ..xi − 1, ..x0))
Definition 3: We denote the δh ISTs we built as T

{+,−}
i . If

the last movement that reach to the root is i+, we denote the
IST as T+i . On the other hand, if the last movement is i−, we
denote the IST as T−i .
Example 1: In GR(4, 2, 3), the parameter h = 2, so there

are δh = 6 ISTs in total. We denote as T+0 , T+1 , T+2 , T−0 , T−1 ,
T−2 .
Definition 4: We denote the paramter N as the cardinality

of vertices in GR(bh, bh−1, . . . , b1, b0)

N =
h∏
i=0

bi

Definition 5: Given a sequence of movements, we take a
set M = {m0, . . . ,m|M |−1} to eliminate the identical move-
ments. This set will present in ascending order according to
the number of positions, we define the relation succ(M ,mi) =
mi+1 for 0 ≤ i < |M | − 1 and succ(M ,m|M |−1) = m0.

III. CONSTRUCTING INDEPENDENT SPANNING TREES ON
GRC GRAPHS
The overview of our proposed strategy to building inde-
pendent spanning trees on a GRC graph is shown in Fig-
ure 2. According to the label form of each vertex, the
proposed strategy will find the parent vertex in the spe-
cific spanning tree structure to reach the root vertex
r . Our approach can be divided into three parts: the
SHORTEST -PATH algorithm, AUGMENTED-PATH algo-
rithm, and FIND-PARENTS algorithm. The FIND-PARENTS
algorithm will return a ParentTable, that can be used to con-
struct δh ISTs.

Algorithm 1: Main(GR)
Input : GR(bh, bh−1, . . . , b0), a GRC graph
Output: ParentTable

1 i := 1
2 while i < N do
3 SP,D := Find_shortest_path(GR, vi)
4 APs := Find_augmented_path(SP,D, vi)
5 ParentTable[v] := Find_parents(SP,APs)
6 i := i+ 1

7 return ParentTable
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FIGURE 2. Workflow for constructing ISTs of GRC graphs.

A. SHORTEST-PATH ALGORITHM
As mentioned in applications for building ISTs on intercon-
nection networks, the major challenge tends toward reducing
the heights of trees for better communication performance.
Therefore, applying the shortest path concept proposed by
previous research [20] to construct ISTs on recursive circulant
graphs. We follow the idea of a path-decomposition Latin
square and according to the label form of each vertex to con-
struct the shortest path to the root for distinct ISTs. A vertex
takes a movement to its neighbor vertex in GRC graphs, the
path decomposition means that a path can be expressed as a
sequence of movements from the starting vertex. The length
of a path is the number of movements it took, and the shortest
path from a vertex to the root means it took the minimum
movements.

For each base of a GRC graph, we consider the label form
of v and make movements according to the distance between
v and r . If the digit of position is bigger than half of the
base we considering, the movement toward the base will be
closer than it toward the 0. Therefore, we take movement i+

in the shortest path, and vice versa. For instance, the vertex
v = (1, 1, 2) inGR(4, 2, 3) will take the movement 0+ for the
rightmost position, since the digit of position is bigger than
half of the base x0 = 2 > b0/2 = 1.5. In this example,

one of the shortest paths will be (1, 1, 2)
0+
−→ (2, 0, 0)

2−
−→

(1, 0, 0)
2−
−→ (0, 0, 0) and the corresponding movements are

(0+, 2−, 2−).We can rearrange the order of movements to get
the other shortest paths.

However, the shortest path concept proposed by previous
research [20] could not be dealing with the situation for the
base equals 2. When the base equals 2 in position i, the
movements i+ and i− will conduct the identical results and
this base-2 issue leading to conflicts when constructing ISTs.
Therefore, previous research only constructed ISTs under
restricted conditions that the base of the recursive graph needs

Algorithm 2: Shortest-Path(GR, v)
Input : GR(bh, bh−1, . . . , b0), a GRC graph

v = (xh, . . . , x0), given vertex in label form
Output: SP, a set of shortest path movements.

D, a list of directions for each position.
1 SP := ∅; D := []; i := 0; carry := false
2 while i <= h do
3 if carry is true then
4 xi := xi + 1
5 carry := false

6 if xi = 0 then
7 D.Append(’empty’)

8 else if xi = bi then
9 D.Append(’full’)

10 carry := true

11 else if i = h then
12 if bh ≥ 2xh then
13 SP ∪ {i−}
14 D.Append(’down’)

15 else
16 SP ∪ {i+}
17 D.Append(’up’)

18 else if bi ≥ 2xi + 1 then
19 SP ∪ {i−}
20 D.Append(’down’)

21 else if bi = 2xi and bi+1 is even and bi+1 > 2xi+1
then

22 SP ∪ {i−}
23 D.Append(’down’)

24 else
25 k := Find_pivot(i, v,GR)
26 if k 6= null and bk ≥ 2xk + 2 then
27 SP ∪ {i−}
28 D.Append(’down’)

29 else
30 SP ∪ {i+}
31 D.Append(’up’)
32 carry := true

33 i := i+ 1

34 return SP,D

74030 VOLUME 9, 2021



D.-W. Cheng et al.: Constructing Independent Spanning Trees on GRC Graphs

Algorithm 3: Find_pivot(i, v,GR)

1 k := i
2 if xk = bk/2 then
3 k := k + 1
4 while k < h do
5 if 2xk + 1 = bk then
6 k := k + 1

7 else
8 return k

9 return h

10 else
11 return null

to be greater than 2. In this work, we extend to the generalized
recursive circulant graphs and loss this restricted condition.
In the next section, we propose the AUGMENTED-PATH
algorithm to find the nearly shortest path for each vertex to
connect to the root that would deal with the situation that
base equals 2 on GRC graphs. But before we discuss further,
we need to introduce a new concept named ‘‘directions’’ for
the SHORTEST -PATH algorithm. There are four directions
{‘up‘, ‘down‘, ‘full‘, ‘empty‘} for each position based on the
SHORTEST -PATH algorithm.

• ‘up‘

– This position’s digit is counting upward to the base,
and produces a carry to the next position.

• ‘down‘

– This position’s digit is counting downward to ‘0‘.

• ‘full‘

– This position’s digit meets the base after adding
carry from former position, then also produces a
carry to the next position.

• ‘empty‘

– This position’s digit is ‘0‘.

According to the label form of vertex v, the modified
SHORTEST -PATH outputs a set SP conduct from a sequence
of movements through this shortest path. We also record a
list of directions D for each position which will be used to
construct ISTs for the rest part of our strategy. For instance,
the vertex v = (1, 1, 2) in GR(4, 2, 3), this algorithm outputs
SP = {0+, 2−} and D = [‘down‘, ‘full‘, ‘up‘] for each
corresponding position.

B. AUGMENTED-PATH ALGORITHM
We propose the AUGMENTED-PATH algorithm to find a
nearly shortest path for each vertex to connect to the root
that would deal with the situation that base equals 2 on GRC
graphs. We conduct several patterns to construct augmented
path AP, which is similar to SP but the premise is that APwill
not take the same movement in SP.

Algorithm 4: Augmented-Path(SP,D, v)
Input : SP, a set of shortest path movements.

D, a list of directions for each position.
v = (xh, . . . , x0), given vertex in label form

Output: APs, augmented paths we constructed.
1 APs,AP := ∅,∅
2 i, carry := 0, false
3 while i < h do
4 if carry is true then carry := false, xi := xi + 1
5 if xi = bi then carry := true
6 else
7 if AP.isEmpty() then
8 // meets half property
9 if xi = bi/2 then

10 if i− ∈ SP then
11 AP.Append(i+)
12 carry := true

13 else if i+ ∈ SP then
14 AP.Append(i−)

15 else if D[i] is ‘up‘ then
16 carry := true

17 else
18 // pattern matching
19 if bi = 2 and bi+1 = 2 then
20 Let p be xi+1(D[i+ 1])xi(D[i])

21 else if bi = 2 and bi+1 6= 2 then
22 Let p be xi+1(D[i+ 1])xi(D[i])
23 APs,AP, carry :=

pattern_match_second(p)

24 else if bi 6= 2 then
25 Let p be xi(D[i])
26 APs,AP, carry :=

pattern_match_third(p)

27 i := i+ 1

28 return APs

From the shortest path concept, we observe a ‘‘half-
property’’ for GRC graphs. When the digit of the position
is exactly half of the base (xi = vi/2), the distance toward
the base is equal to the distance toward the 0. Therefore,
in that position, we took an opposite direction to conduct an
augmenting path with the same distance to reach the 0. In
the AUGMENTED-PATH algorithm, we make an opposite
movement when the position satisfying the half-property.
Leading the augmented path to take distinct movements with
SP. Note that this algorithmwill match the appropriate pattern
according to the digit and direction of each position, and the
digit will change by the carry from the previous movement.

When designing the AUGMENTED-PATH algorithm, we
apply the symmetric property of GRC graphs to construct
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Algorithm 5: pattern_match_first(p)
Input : p, the pattern xi+1(D[i+ 1])xi(D[i])
Output: APs,AP,carry

1 begin
2 if p is 1(up)1(empty) then
3 /* case 1:counting up to connect

to SP with the same length */
4 APs,AP := AppendClear(APs,AP, i,+)

5 else if p is 0(down)1(full) then
6 /* case 1’:counting down to

connect to SP with the same
length */

7 APs,AP := AppendClear(APs,AP, i,−)
8 carry := true

9 else if p is 1(full)1(full) then
10 /* case 2:counting up to connect

to SP/AP with length+1, then
meet another half property */

11 APs,AP := AppendClear(APs,AP, i,+)
12 AP.Append(i−)

13 else if p is 0(empty)1(empty) then
14 /* case 2’:counting down to

connect to SP/AP with
length+1, then meet another
half property */

15 APs,AP := AppendClear(APs,AP, i,−)
16 AP.Append(i+)
17 carry := true

18 else if p is 1(down)1(empty) then
19 /* case 3:counting up and not

connect to SP */
20 AP.Append(i+)
21 carry := true

22 else if p is 0(up)1(full) then
23 /* case 3’:counting down and not

connect to SP */
24 AP.Append(i−)

25 return APs,AP,carry

the augmented paths. The symmetric property will lead to
a mirror case for each pattern, that is the directions are
corresponding from up to down (vice versa) and from empty
to full (vice versa). Illustrating the algorithm, we find the
first position that satisfies the half property and the base of
the next two positions both equals 2. Assuming the position
that satisfies the half property took i− movement in SP. Then
according to the half property, the augmented path will take
the opposite movement i+ and conduct a carry for the next
position. When the next two positions of vertex v match the
pattern 1(up)1(empty), which is case 1 in this algorithm. Since
the base of these two positions both equals 2, the augmented

path will take an upwardmovement (+) and conduct the same
result as the SHORTEST -PATH algorithm with the same
length. There will be a mirror case assuming the position
that satisfies the half property took i+ movement in SP. Then
according to the half property, the augmented path will take
the opposite movement i−. When the next two positions of
vertex v match the pattern 0(down)1(full), which is case 1’
in this algorithm. Since the base of these two positions both
equals 2, the augmented pathwill take a downwardmovement
(−) and conduct the same result as the SHORTEST -PATH
algorithm with the same length.

In the AUGMENTED-PATH algorithm, we divide each
position of the GRC graphs into two groups according to
the base value. When the base value equals 2, we assign
this position into the ‘‘2-factor group.’’ And besides those
positions, we also assign one left more position into the
‘‘2-factor group.’’ The rest of the positions will be assigned
to the ‘‘N-factor group.’’ For instance, GR(4, 8, 6, 2, 2, 2, 5),
the 2-factor group will be {1, 2, 3, 4}(b1 = 2, b2 = 2, b3 =
2, b4 = 6) and the N-factor group will be {0, 5, 6}(b0 =
5, b5 = 8, b6 = 4). According to the half property and the
movements in SP, the AUGMENTED-PATH algorithm con-
structs augmented paths to connect to the root with the nearly
shortest path.We divided the bases of the GRC graph into two
groups and concluded several patterns and their mirror case to
construct those paths. Each augmented path will take distinct
movement based on the digit and direction in the correspond-
ing positions. For instance, the vertex v = (0, 1, 1, 0, 1)
in GR(8, 2, 2, 2, 2) will conduct SP = {0−, 2+, 4−} and
D = [‘down‘, ‘full‘, ‘up‘, ‘empty‘, ‘down‘]. At posi-
tion 0, which satisfies the half property. The SHORTEST -
PATH algorithm took the movement 0−. Therefore,
the AUGMENTED-PATH algorithm takes the opposite move-
ment 0+ and connects to vertex v′ = (0, 1, 1, 1, 0) by adding
carry from previous position. The next two positions match
the pattern for case 1 and taking the movement 1+. The
AP = {0+, 1+} and we keep checking the next position for
another augmented path. At position 2, which also satisfies
the half property. The SHORTEST -PATH algorithm took the
movement 2+. Therefore, the AUGMENTED-PATH algo-
rithm takes the opposite movement 2− and connects to vertex
v′′ = (0, 1, 0, 0, 0). The next two positions match the pattern
for case 1’ and taking the movement 3−. In this instance the
APs = {{0+, 1+}, {2−, 3−}}.

C. FIND-PARENTS
The FIND-PARENT algorithm conducts the δh distinct par-
ents for each vertex and returns the results to form the
ParentTable for constructing the δh ISTs. The previous
two algorithms conduct the movement set SP and APs for
each vertex in the GRC graphs. In this section, we apply
the subroutine CLASSIFIER to find four variation paths
according to the previous movement results. The variations
SP∗ and AP∗ will be the extension of the previous move-
ment results; the variation SP takes the opposite move-
ment in the ‘‘N-factor’’ position; and the last variation
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Algorithm 6: pattern_match_second(p)
Input : p, the pattern xi+1(D[i+ 1])xi(D[i])
Output: APs,AP,carry

1 begin
2 // X:an arbitrary digit
3 else if p is X (up)1(empty) then
4 /* case 4:similar to case 1 */
5 APs,AP := AppendClear(APs,AP, i,+)

6 if p is X (down)1(full) then
7 /* case 4’:similar to case 1’ */
8 APs,AP := AppendClear(APs,AP, i,−)

9 else if p is X (full)1(full) then
10 /* case 5:similar to case 2 */
11 APs,AP := AppendClear(APs,AP, i,+)
12 AP.Append(i−)

13 else if p is 0(empty)1(empty) then
14 /* case 5’:similar to case 2’ */
15 APs,AP := AppendClear(APs,AP, i,−)
16 AP.Append(i+)

17 else if p is X (down)1(empty) then
18 /* case 6:counting down and

connect to SP, then meet
another half property */

19 APs,AP := AppendClear(APs,AP, i,−)
20 AP.Append(i+)

21 else if p is X (up)1(full) then
22 /* case 6’:counting up and

connect to SP, then meet
another half property */

23 APs,AP := AppendClear(APs,AP, i,+)
24 AP.Append(i−)

25 return APs,AP,carry

others conduct movements that belong to this GRC graph
but not have been used in the previous situations. Here,
we use the notation

⊕
to represent that the vertex v takes

the movement m and the opposite of movement m can be
denoted as −m. For instance, the vertex v = (0, 1, 1, 0, 1)
in GR(8, 2, 2, 2, 2) will conduct SP = {0−, 2+, 4−} and
APs = {{0+, 1+}, {2−, 3−}}. The parents_for_ISTs =
[(1, 0, 0, 0, 1), (0, 1, 0, 1, 1), (0, 0, 1, 0, 1), (0, 1, 0, 0, 1),
(0, 1, 1, 0, 0), (1, 1, 1, 0, 1), (1, 0, 1, 0, 1), (7, 1, 1, 0, 1),
(0, 1, 1, 1, 0), (0, 1, 1, 1, 1)]. The index of parents_for_IST
from 0 to δh − 1 are referring to IST and list below in order.
T−0 ,T

−

1 ,T
−

2 ,T
−

3 ,T
−

4 ,T
+

4 ,T
+

3 ,T
+

2 ,T
+

1 ,T
+

0 .

IV. CORRECTNESS
Lemma 1: Each subgraph we constructed is a spanning

tree on the GRC graph.

Algorithm 7: pattern_match_third(p)
Input : p, the pattern xi(D[i])
Output: APs,AP,carry

1 begin
2 if p is 1(empty) then
3 /* case 7:counting down to

connect to SP/AP with
lenght+1 */

4 APs,AP := AppendClear(APs,AP, i,−)

5 else if p is X (full) and X = bi − 1 then
6 /* case 7’:counting up to

connect to SP/AP with
lenght+1 */

7 APs,AP, carry := AppendClear(APs,AP, i,+);
carry := true

8 else if p is X (down) then
9 if AP.Length() = 1 then

10 AP.Append(i+)
11 if X < bbi/2c then
12 APs.Append(AP);AP.Clear()

13 else if X = bbi/2c then
14 carry := true

15 else if AP.Length() > 1 then
16 APs.Append(AP);AP.Clear()

17 else if p is X (up) then
18 if AP.Length() = 1 then
19 APs,AP, carry :=

AppendClear(APs,AP, i,−)
20 carry := true

21 else if AP.Length() > 1 then
22 APs.Append(AP)
23 AP.Clear(); carry := true

24 if i ∈ N − factor then
25 if xi = bi/2 then
26 APs,AP, carry :=

AppendClear(APs,AP, i,−)
27 carry := true

28 else if p is 1(empty) then
29 APs,AP, carry :=

AppendClear(APs,AP, i,−)

30 else if p is N − 1(full) then
31 APs,AP, carry :=

AppendClear(APs,AP, i,+)
32 carry := true

33 else
34 AP.Clear()

35 return APs,AP,carry
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Algorithm 8: AppendClear(APs,AP, i, s)
Input : APs, AP

i, the position.
s ∈ {+,−}, denote counting up/down.

output: APs, AP
1 begin
2 AP.Append(is)
3 APs.Append(AP)
4 AP.Clear()
5 return APs,AP

Algorithm 9: Find_parents(SP,APs)
Input : SP,APs
Output: parents_for_ISTs

1 parents_for_ISTs := []
2 SP∗,AP∗, SP, others, dict := Classifier(SP,APs, δh)
3 while i < δh do
4 m := dict[i]
5 if m is a movement exists in AP then
6 parents_for_ISTs[i] := v

⊕
succ(AP,m)

7 else if m ∈ SP then
8 parents_for_ISTs[i] := v

⊕
succ(SP,m)

9 else if m ∈ SP ∪ SP∗ ∪ AP∗ then
10 parents_for_ISTs[i] := v

⊕
m

11 else
12 parents_for_ISTs[i] := v

⊕
m

13 i := i+ 1

14 return parents_for_ISTs

Proof: First, we find a parent vertex for each vertex
in distinct δh subgraphs we constructed. Since this algorithm
iterates each vertex in the GRC graphs once. It guarantees the
δh spanning subgraphs on the GRC graph. Then, we prove
that this spanning subgraph is a tree structure. There is only
one path in each subgraph we constructed that connects this
vertex to the root. Considering the following cases, we denote
Tm as the IST that the last movement connects to the root ism:

Case 1: Suppose SP = {m0,m1, . . . ,mt−1} and
mi ∈ SP, we have its decomposition with
(mi+1,mi+2, . . . ,mi) for Tmi . By FIND-PARENT ,
we can get the vertex’s parent vp1 after taking
mi+1 and the length of decomposition will minus
one. As for vertex vp1, its decomposition become
(mi+2, . . . ,mi). In the end, with the same operation,
the vertex can be routed to the child vertex of root
with decomposition (mi) then connect to root after
taking the movement.

Case 2: Suppose SP = {m0,m1, . . . ,mt−1} and mi ∈
others. The vertex will take −mi as the first move-
ment to its parent vp1 in Tmi by FIND-PARENT .
Then vp1’s SP must contain mi and its decomposi-

Algorithm 10: Classifier(SP,APs, δh)
Input : SP,APs, δh
Output: SP∗,AP∗, SP, others, dict

1 i := 0
2 sign := null
3 dict := null
4 while i < δh do
5 if 2 ∗ i ≤ δh − 1 then
6 sign := −
7 u := i

8 else
9 sign := +

10 u := δh − 1− i

11 m := usign

12 dict[i] := m
13 if m /∈ (AP ∪ SP) then
14 if u ∈ 2− factor and (u+ 1){+,−} ∈ SP then
15 SP∗.Append(m)

16 else if u ∈ 2− factor and (u+ 1){+,−} ∈ AP
then

17 AP∗.Append(m)

18 else if u ∈ N − factor and −m ∈ SP then
19 SP.Append(m)

20 else
21 others.Append(−m)

22 i := i+ 1

23 return SP∗,AP∗, SP, others, dict

tion is (mi+1, . . . ,mi). By taking the movements in
order like Case 1, the vertex will be routed to the
child vertex of root with decomposition (mi) then
connect to root after taking the movement.

Case 3: Suppose SP = {m0,m1, . . . ,mt−1} and mi ∈ SP,
that is, −mi in SP. By FIND-PARENTS, the vertex
will take mi at first to its parent vp1 in Tmi . If mi
still /∈ SP of vp1, the vertex will keep taking the
movementmi until to the ancestor whose SP contain
mi. Then like Case 1, the decomposition becomes
(. . . ,mi) with mi be the last movement. In the end,
the vertex will be route to the child vertex of root
with decomposition (mi) then connect to root after
taking the movement.

Case 4:Suppose mi ∈ AP,AP = {. . . ,mi,mi+1 . . . , }. The
vertex will take mi+1 to its parent vp1 in Tmi by
FIND-PARENT . At vp1, eithermi ∈ SP ormi ∈ AP.
If mi ∈ SP, like Case 1, the decomposition will
be (. . . ,mi). In the end, the vertex will be routed
to the child vertex of root with decomposition (mi)
then connect to root after taking the movement. If
mi ∈ AP, using the same way to its parent vp2 after
taking movement by FIND-PARENT . Eventually,
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TABLE 1. experiment results.

TABLE 2. Experimental environment.

mi will belong to SP at one ancestor. In the end, the
vertex will be routed to the child vertex of root with
decomposition (mi) then connect to root after taking
the movement.

Case 5:Suppose mi ∈ SP∗ and mi’s position is i, Because
the movement at position i + 1 ∈ SP. If D[i +
1] = ‘up‘, by taking mi and routed to its parent
result in xi from 0 to 1, and it will make mi ∈ SP.
Otherwise, if D[i+ 1] = ‘down‘, the vertex also is
routed to parent whose SP contain mi. Like Case 1,
the decomposition becomes (. . . ,mi) with mvi be
the last movement. In the end, the vertex will be
routed to the child vertex with decomposition (mi)
then connect to root after taking the movement.

Case 6:Suppose mi ∈ AP∗ and mi’s position is i, Because
there’s a movement at position i+1∈ AP. By taking
mi and routed to its parent in Tmi , which result in
xi from 0 to 1, and it will make mi ∈ AP. Like
Case 4, eventually the routed path will reach to the
ancestor that contain mi in its SP. In the end, the
vertex will be routed to the child vertex of root with
decomposition (mi) then connect to root after taking
the movement.

Lemma 2: According to the algorithm we proposed, if
there are two paths from one vertex to the root and the first
movement of one path would not exist in the movements of
the other path, then these two paths are internally disjoint.

Proof: Let the decompositions of these two paths be
Pa = (ma1,ma2 . . .mat ) and Pb = (mb1,mb2 . . .mbn). The

FIGURE 3. ISTs T−0 and T+0 we constructed on GR(4, 2, 3).

FIGURE 4. ISTs T−1 and T+1 we constructed on GR(4, 2, 3).

vertex set Za and Zb denote the vertices that each path passed.
These two paths starting from the same vertex to root are
internally disjoint if and only if the vertices they passed can’t
be equivalent. That is, ∀x ∈ Za,∀y ∈ Zb, x 6≡ y. Due
to ma1 as the first movement in Pa, we know that v must
took ma1 to x. However, since ma1 /∈ Pb, if the combination
of ma1 with other movements in Pa could not equivalent to
movements in Pb, then x 6≡ y. If the combination of ma1 with
other movements in Pa could equivalent to movements in Pb,
because there must be one movement in the combination as
the last movement in Pa, from definition of Za, combination
can’t be met, so x 6≡ y.
Theorem 1: According to the algorithm we proposed, we

construct δh independent spanning trees on the generalized
recursive circulant graphs.

Proof: Given a vertex, from Lemma 1 we can construct
each path to root for all spanning trees. And by Lemma 2,
it can prove all these paths are pairwise internally disjoint.
Therefore, the δh spanning trees we constructed are indepen-
dent to each other.

In the SHORTEST -PATH algorithm, it takes O(h) time by
iterating every position in GRC. And in the AUGMENTED-
PATH algorithm, it also takesO(h) to construct all augmented
path for the same reason. In the FIND-PARENT algorithm,
it decides parents through every i, where 0 ≤ i < δh. In
addition, δh is actually O(h). Therefore, it takes O(h) time in
the FIND-PARENT algorithm. Lastly, since all vertices have
to do all the procedures above. The aggregate of time in this
strategy to construct δh ISTs in a GRC graph takes O(Nh).
We also discuss the experimental results that implementing

the proposed strategy to construct δh ISTs on the various
GRC graphs. Table 1 reveals that the cardinality of the GRC
graphs we experimenting with from the simplest 8 vertices to
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FIGURE 5. ISTs T−2 and T+2 we constructed on GR(4, 2, 3).

22,059 vertices. The running time of each experiment took
under one second, the experiment environment is showing
in Table 2, and most simple GRC graphs took less than
one nanosecond to construct δh ISTs. Note that δh is the
maximum number of ISTs that a GRC graph can construct.
And in Table 1, we count the height information of each
ISTs and remark the average height and the maximal height
we built. As mention before, in applications for building
ISTs on interconnection networks, the major challenge tends
toward reducing the heights of trees for better communication
performance. The experiment results reveal that the average
heights of ISTs we constructed on complex GRC graphs (the
cardinality of the vertex set is higher than 10,000 vertices)
is less than 30 levels. Figure 3, Figure 4, and Figure5 are the
δh = 6 ISTs constructed according to our proposed algorithm
on GR(4, 2, 3). Since in GR(4, 2, 3), the cardinality of the
vertex set is 24, we label each vertex from 0 to 23.

V. CONCLUSION
In this work, we apply the shortest path routing concept to
build independent spanning trees on the generalized recursive
circulant graphs. The proposed strategy loosen the restricted
conditions in previous research and extended the result to a
more general vertex setting by design a specific algorithm to
deal with the constraint issue. The GRC graphs can be widely
used in the implementation of interconnection networks, mas-
sive applications applied spanning tree structure to build effi-
cient algorithms and solve related applications such as reli-
able broadcasting and secure distributed protocols. The major
challenge tends toward reducing the heights of trees for better
communication performance. According to the label form
of each vertex, our proposed strategy follows the shortest
path routing concept and finds a parent vertex in the specific
spanning tree structure to reach the root. We also propose the
AUGMENTED-PATH algorithm to find the nearly shortest
path for each vertex to connect to the root that would deal
with the situation that base equals 2 on GRC graphs.

The aggregate of time in this strategy to construct δh ISTs
in a GRC graph takes O(Nh) and satisfying the conjecture
that the connectivity is equal to the number of vertex-disjoint
spanning trees. We discuss the experimental results that
implementing the proposed strategy to construct δh ISTs
on the various GRC graphs. The cardinality of the GRC

graphs we experimenting with from the simplest 8 vertices
to 22,059 vertices and the running time of each experiment
took under one second. The experiment results also reveal
that the average heights of ISTs we constructed on complex
GRC graphs. When the cardinality of the vertex set is higher
than 10,000 vertices, the average height of δh ISTs is less
than 30 levels. We will consider the optimal height of ISTs
as our future work, to conduct a more efficient algorithm for
the GRC related graph structures.
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