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ABSTRACT This paper presents a tuned positive position feedback controller (TPPF) to overcome the dual
high peaks of the classical PPF. This control signal is merged with a proportional-derivative (PD) control
signal to suppress the vibrations of a constant-stiffness 16-poles rotor active magnetic bearings (AMBs)
system. Another benefit of the applied TPPF is turning the rotor’s quasiperiodic unstable motion into a
periodic stable motion by eliminating both saddle-node and Hopf points. The whole group equations of
motion are derived and their approximate solutions are sought with the aid of the multiple scales method.
Different response curves are plotted to clarify the difference between the rotor’s vibratory behaviors before
and after PPF and also with TPPF.

INDEX TERMS Tuned positive position feedback controller, proportional derivative controller, active
magnetic bearings, quasiperiodic motion, saddle-node points locus, Hopf points locus.

I. INTRODUCTION
Several dynamical structures may suffer from unwanted
vibrations because they can harm or even destroy the struc-
tures. Huge number of research papers focus on analyzing
and controlling these vibrations via passive and/or active
techniques. One of the most successful techniques in the
field of active vibration control is the positive position
feedback (PPF) active controller. Many researchers have
devoted their entire time to improve the PPF controller per-
formance. Shan et al. [1] analyzed the application of PPF
control algorithm on the piezo actuators in order to mit-
igate the vibrations of a single-link flexible manipulator.
Gospodarič et al. [2] dealt with the electromagnetic active
damping of a clamped-cantilever lateral vibration. They pro-
duced a simulation of the control system and confirmed the
results by experimental work. Liu and Hu [3] proposed a sys-
tematic approach in order to stabilize the unstable or critically
stable equilibrium of linear undamped systems using position
feedbacks (without and with time delays). Mahmoodi and
Ahmadian [4] presented a modified PPF as an alternative
to the classical PPF. They employed a first-order oscillator
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for damping and a second-order oscillator for suppression.
Orszulik and Shan [5] developed an active control scheme for
a flexible manipulator with a piezo-electric sensor/actuator
pair. They combined the PPF with a recursive-least-squares
adaptive parameter estimator so as to update the structure’s
natural frequencies online.Warminski et al. [6] applied differ-
ent control strategies for a nonlinear flexible beamwithmacro
fiber composite actuator. They have tried out the PPF which
gave them remarkable results for suppressing the vibrations.
Kandil et al. [7], [8] involved the time delay in the PPF
to examine its effects on the stability of both an excited
magnetically-levitated body and a rotating blade. Huang and
Xu [9] investigated the performance of a delayed PPF on
a viscoelastic isolation system with a real-power restoring
force. They chose the feedback parameters by combining the
desired stability conditions. Garcia-Perez et al. [10] proposed
a multiple PPF to deal with the asymptotic trajectory tracking
on a flexible-link robot which was modeled and validated
via finite element methods and experimental modal analysis.
Bin et al. [11] determined optimal parameters of PPF to
be used for suppressing flexible structures vibrations based
on solving the H∞ synthesis problem. Hamed et al. [12]
applied the PPF through a macro fiber composite actuator
to control a rotating blade vibratory behavior. They adopted
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an asymptotic analysis to understand the resulting nonlinear
phenomena.

Regarding the dynamical structures that may suffer from
unwanted vibrations, our case of study here is a suspended
rotor in an active magnetic bearings (AMBs) system. This
vibratory system has been analyzed in many researches.
Ji and Hansen [13], [14] investigated the nonlinear dynamical
behavior of a suspended rotor via AMBs. They studied the
effects of the absence and presence of time delays in the
feedback control loop. Zhang and Zhan [15] utilized a pertur-
bation method to look for the chaotic motions in a rotor-AMB
system with a periodic time-varying stiffness. Ji et al. [16]
summarized the development on the nonlinear dynamics of
AMBs and its relation to the nonlinear properties and time
delays. Inoue et al. [17] considered a vertically-supported
rotor in an AMBs system, and investigated the time delay
effects on the dynamical characteristics. Li et al. [18] applied
the multiple scales method to analyze the response of dual
modes of a rotor-AMBs system near the primary resonance
case. Yang et al. [19] found that the in-unison motions did not
exist for the suspended rotor in an AMBs system, while the
elliptic motions were located. Wu et al. [20] investigated the
nonlinear dynamics of a rotor-AMBs system with 16-poles
and periodic time-varying stiffness near resonances. Jha and
Dasgupta [21] studied the effects of an eccentric shaft-disk
systemwith an internal damping excited by a non-ideal power
source which revealed instability in high speed rotors. Sun
et al. [22] applied a cell mapping method in order to analyze
the nonlinear characteristics of an AMBs system at which
the instability was due to the parameters bifurcation. Wang
et al. [23] introduced a hybrid feedback control method to
overcome theHopf bifurcation behavior of the AMBs system.
Fang et al. [24] explored, for worn oil-lubricated rolling bear-
ings, the nonlinear dynamical behavior and response includ-
ing the trajectory effect of the film thickness, the axis center,
and the accelerated speed. Kandil et al. [25]–[28] studied con-
trolling the vibrations of 8-poles and 16-poles rotor-AMBs
with constant stiffness. They tried to show the effects of
parameters on the solutionsmultiplicity and themotion asym-
metry and stability. Ma et al. [29] investigated a 16-poles
rotor-AMBs system for its stability and Shilnikov-type multi-
pulse jumping chaotic motions. It is worthy to mention
that Sun et al. [33]–[35] focused on modelling the maglev
vehicle–guideway interaction vibration problem during oper-
ation. They discussed the control parameters effects of both
fuzzy control and fuzzy adaptive tuning PID control on the
vehicle–guideway coupling system. Also, they proposed an
amplitude saturation controller for only saturated unidirec-
tional attractive force as the neural network learned the con-
trol trend. To overcome some control problems, they applied
a semi-supervised controller based on deep belief network
algorithm where unknown external disturbances existed.

All the aforementioned researches have discussed analyz-
ing and controlling the 4-pole, 8-pole, 16-pole rotor-AMBs
systems via adjusting the system physical parameters or via
different active control algorithms. All of these algorithms

FIGURE 1. Plan view of a vertically-supported 16-pole rotor-AMB model.

were useful in reducing vibrations for only one or few operat-
ing conditions at both fixed rotor’s speed and/or eccentricity.
In this work, we are applying the PPF controller with the
possibility of tuning it to reach the minimum vibratory levels
of a rotor in an AMBs system involving 16 poles and constant
stiffness. We are adapting the PPF controller in the face of
sudden changes in both rotor’s speed and/or eccentricity. This
can be done by tuning the PPF’s natural frequency ωc to the
rotor’s speed �. The PPF control signal is merged with the
original PD signal to extend the control job. Approximate
solutions of the whole set are extracted via the multiple scales
perturbation technique. Different response curves are plotted
in order to clarify the difference between the system before
and after using PPF.

II. SYSTEM MODELLING AND MULTIPLE SCALES
ANALYSIS
For a vertically-supported rotor as shown in Fig. 1, its weight
is not be considered. The motion of its center is governed by
the following equations:

mẍ + ζ ẋ − Rx = mE�2 cos (�t) (1a)

mÿ+ ζ ẏ− Ry = mE�2 sin (�t) (1b)

wherem, E ,� are the mass, eccentricity, and rotating angular
speed of the studied rotor, respectively. ζ is an assumed small
viscous damping factor. Rx and Ry are the horizontal and
vertical magnetic restoring forces that will be computed later.
Equation (1) is valid in case of considering the rotor as a one
rigid (non-elastic) mass with two degrees of freedom.

The rotor is suspended and supported magnetically as
shown by 16 uniformly-distributed poles (electromagnets)
with an angle 2α = π/8 between each two poles. Every
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opposed pair of poles produces an electromagnetic force Fn
(n = 1, . . ., 8) which is defined as [30]:

Fn = K

[
(I0 − In)2

(δ − wn)2
−
(I0 + In)2

(δ + wn)2

]
(2)

where K is a constant depending on the poles design, I0 is the
constant initial current for magnetization, δ is the clearance
fit between the stator and the rotor, In is the variable control
current to be applied in every nth pair of poles,wn is the radial
position of the rotor’s center in the nth direction. Equation (2)
is already applicable to a 16-pole magnetic bearing based on
Refs. [20], [26]–[30]. It is valid in case of neglecting the eddy
current losses, the hysteresis and saturation of the magnetic
core material, and the magnetic coupling between the poles.
The currents In are computed due to PD control algorithm
plus an additional control signal as follows

In = kpwn + kd ẇn − k1Wn (3)

where kp, kd are the PD gains, k1 is the additional control
signal gain. The quantities wn and Wn are proposed as

wn = x cos ((2n− 1) α)+ y sin ((2n− 1) α)⇒ ẇn
= ẋ cos ((2n− 1) α)+ ẏ sin ((2n− 1) α) (4a)

Wn = u cos ((2n− 1) α)+ v sin ((2n− 1) α) (4b)

where u, v are the output signals generated from two virtual
oscillators (PPF oscillators) that are in the form

ü+ ζcu̇+ χ2
c u = k2x (5a)

v̈+ ζcv̇+ χ2
c v = k2y (5b)

where ζc, χc are the damping factor and natural frequency
of the proposed oscillator, k2 is the feedback signals gain.
Substituting Eqs. (3) and (4) into (2) then computing the
Cartesian components of the resultant magnetic restoring
forces into a third order Maclaurin expansion as

Rx =
8∑

n=1

Fn cos [(2n− 1) α]

= η1kd ẋ + η2x + η3
(
x3 + xy2

)
+η4kd

(
ẋy2 + 2xyẏ+ 3x2ẋ

)
+η5k2d

(
xẏ2 + 2ẋy doty+ 3xẋ2

)
−η4k1

(
uy2 + 2vxy+ 3ux2

)
−2η5k1kd (uyẏ+ vẋy+ vxẏ+ 3uxẋ)

+η5k21
(
v2x + 2uvy+ 3u2x

)
− η1k1u (6a)

Ry =
8∑

n=1

Fn sin [(2n− 1) α]

= η1kd ẏ+ η2y+ η3
(
y3 + x2y

)
+η4kd

(
x2ẏ+ 2xẋy+ 3y2ẏ

)
+η5k2d

(
ẋ2y+ 2xẋẏ+ 3yẏ2

)

−η4k1
(
vx2 + 2uxy+ 3vy2

)
−2η5k1kd (vxẋ + uxẏ+ uẋy+ 3vyẏ)

+η5k21
(
u2y+ 2uvx + 3v2y

)
− η1k1v (6b)

where

η1 = −
16KI0
δ2

η2 =
16K
δ3

[
I20 − kpδI0

]
η3 =

12K
δ5

[
2I20 − 3kpδI0 + k2p δ

2
]

η4 =
4K
δ4

[
2kpδ − 3I0

]
η5 =

4K
δ3

To increase the comprehensibility, we will normalize the
rotor’s horizontal (x) and vertical (y) displacements by com-
paring them to the stator-rotor’s gap δ. This can be done to
the controller signals u and v too. A further simplification
is reached by normalizing the time t and the rotor’s speed
�. Substituting Eqs. (6) into (1) with using x∗ = x/δ,

y∗ = y/δ, u∗ = u/δ, v∗ = v/δ, t∗ = t
√
KI20 /
√
mδ3,

�∗ = �
√
mδ3/

√
KI20 in order to normalize the results and

Eqs. (5). The asterisks are removed for brevity to obtain

ẍ + µẋ + ω2x + α1
(
x3 + xy2

)
+α2

(
ẋy2 + 2xyẏ+ 3x2ẋ

)
+α3

(
xẏ2 + 2ẋyẏ+ 3xẋ2

)
+β1

(
uy2 + 2vxy+ 3ux2

)
+β2 (uyẏ+ vẋy+ vxẏ+ 3uxẋ)

+β3

(
v2x + 2uvy+ 3u2x

)
= f�2 cos (�t)+ 16λu (7a)

ÿ+ µẏ+ ω2y+ α1
(
y3 + x2y

)
+α2

(
x2ẏ+ 2xẋy+ 3y2ẏ

)
+α3

(
ẋ2y+ 2xẋẏ+ 3yẏ2

)
+β1

(
vx2 + 2uxy+ 3vy2

)
+β2 (vxẋ + uxẏ+ uẋy+ 3vyẏ)

+β3

(
u2y+ 2uvx + 3v2y

)
= f�2 sin (�t)+ 16λv (7b)

ü+ µcu̇+ ω2
cu = λx (7c)

v̈+ µcv̇+ ω2
cv = λy (7d)

where

p =
δkp
I0

d =
kd
√
K

√
mδ

c =
ζ δ
√
δ

I0
√
mK

f =
E
δ
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FIGURE 2. Effects of varying the parameters p and d on the rotor’s
vibratory amplitudes at σ = 0: (a) varying p, (b) varying d .

λ =
δk1
I0
=
k2mδ3

KI20
µc =

ζcδ
√
mδ

I0
√
K

ω2
c =

χ2
cmδ

3

KI20
µ = c+ 16d

ω2
= 16 (p− 1) α1 = −12 (p− 1) (p− 2)

α2 = −4d (2p− 3) α3 = −4d2

β1 = 4λ (2p− 3) β2 = 8λd β3 = −4λ

Equations (7) represent a constant-stiffness coefficients
model due to the time-invariant stiffness coefficients α1, α2,
α3, β1, β2, β3. These coefficients depend on p, d , λ that are
constant during every individual rotor’s operation. This is
unlike some previous works of time-varying stiffness where
they treated p, d as time-varying periodic coefficients during
every individual rotor’s operation. With the benefit of the
multiple scales method [31], first-order approximate solu-
tions of Eqs. (7) are generated when � ≈ ω and ωc ≈ ω.
We have determined the equations governing the amplitudes

(ai) and phases (φi) modulations of the rotor’s vibrations and
the controller. The result is,

ȧ1 = −
µ

2
a1 −

α1 + α3ω
2

8ω
a1a22sin (2φ1 − 2φ2)

−
α2

8
a1a22cos (2φ1 − 2φ2)−

3β3
8ω

a1a23sin (2φ1 − 2φ3)

−
β3

8ω
a1a24sin (2φ1 − 2φ4)−

3β2
8
a21a3cos (φ1 − φ3)

+

[
−
3β1
8ω

a21 −
β1

4ω
a22 +

8λ
ω

]
a3sin (φ1 − φ3)

−
β1

4ω
a1a2a4sin (2φ1 − φ2 − φ4)

−
β1

8ω
a22a3sin (φ1 − 2φ2 + φ3)

−
β2

8
a22a3cos (φ1 − 2φ2 + φ3)

−
β3

4ω
a2a3a4 [sin (φ1 − φ2 − φ3 + φ4)

+sin (φ1 − φ2 + φ3 − φ4)+ sin (φ1 + φ2−φ3−φ4)]

−
β2

4
a1a2a4cos (φ2 − φ4)−

3α2
8
a31 −

α2

4
a1a22

+
f�2

2ω
sin (φ1) (8a)

φ̇1 = σ −
α1 + α3ω

2

8ω
a22cos (2φ1 − 2φ2)

+
α2

8
a22sin (2φ1 − 2φ2)−

3β3
8ω

a23cos (2φ1 − 2φ3)

−
β3

8ω
a24cos (2φ1 − 2φ4)

+

[
−
9β1
8ω

a1 −
β1

4ω

a22
a1
+

8λ
ωa1

]
a3cos (φ1 − φ3)

−
3β2
8
a1a3sin (φ1 − φ3)−

β1

4ω
a2a4cos (2φ1−φ2−φ4)

−
β1

8ωa1
a22a3cos (φ1 − 2φ2 + φ3)

+
β2

8a1
a22a3sin (φ1 − 2φ2 + φ3)

−
β3

4ωa1
a2a3a4 [cos (φ1 − φ2 − φ3 + φ4)

+cos (φ1 − φ2 + φ3 − φ4)+ cos (φ1+φ2 − φ3−φ4)]

−
β2

4
a2a4sin (φ2 − φ4)−

β1

2ω
a2a4cos (φ2 − φ4)

−
3α1 + 3α3ω2

8ω
a21 −

α1 + α3ω
2

4ω
a22 −

3β3
4ω

a23 −
β3

4ω
a24

+
f�2

2ω
cos (φ1)
a1

(8b)

ȧ2 = −
µ

2
a2 +

α1 + α3ω
2

8ω
a21a2sin (2φ1 − 2φ2)

−
α2

8
a21a2cos (2φ1 − 2φ2)−

3β3
8ω

a2a24sin (2φ2 − 2φ4)

−
β3

8ω
a2a23sin (2φ2 − 2φ3)
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FIGURE 3. Effects of varying the rotor’s speed � (σ = �− ω ) and eccentricity f on its vibratory amplitudes at: (a, b) p = 1.04, (c, d) p = 1.22, (e, f) p = 1.8,
(g, h) p = 2.8.
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FIGURE 3. (Continued.) Effects of varying the rotor’s speed � (σ = �− ω ) and eccentricity f on its vibratory amplitudes at: (a, b) p = 1.04, (c,
d) p = 1.22, (e, f) p = 1.8, (g, h) p = 2.8.

FIGURE 4. Effects of varying the parameter p on the (a) rotor and
(b) controller amplitudes at σ = 0, and λ = 0.15.

+

[
−
3β1
8ω

a22 −
β1

4ω
a21 +

8λ
ω

]
a4sin (φ2 − φ4)

FIGURE 5. Effects of varying the parameter d on the (a) rotor and
(b) controller amplitudes at σ = σc = 0, p = 1.04, and λ = 0.15.

−
3β2
8
a22a4cos (φ2 − φ4)

+
β1

4ω
a1a2a3sin (φ1 − 2φ2 + φ3)

73862 VOLUME 9, 2021



A. Kandil, Y. S. Hamed: TPPF Control of AMBs System

FIGURE 6. Effects of varying λ on the amplitudes-speed curves at: (a, b) p = 1.04, (c, d) p = 1.22, (e, f) p = 1.8, (g, h) p = 2.8.
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FIGURE 6. (Continued.) Effects of varying λ on the amplitudes-speed curves at: (a, b) p = 1.04, (c, d) p = 1.22, (e, f) p = 1.8, (g, h) p = 2.8.

+
β1

8ω
a21a4sin (2φ1 − φ2 − φ4)

−
β2

8
a21a4cos (2φ1 − φ2 − φ4)

+
β3

4ω
a1a3a4 [sin (φ1 − φ2 − φ3 + φ4)

+sin (φ1 − φ2 + φ3 − φ4)

−sin (φ1 + φ2 − φ3 − φ4)]−
β2

4
a1a2a3cos (φ1 − φ3)

−
3α2
8
a32 −

α2

4
a21a2 −

f�2

2ω
cos (φ2) (8c)

φ̇2 = σ −
α1 + α3ω

2

8ω
a21cos (2φ1 − 2φ2)

−
α2

8
a21sin (2φ1 − 2φ2)−

3β3
8ω

a24cos (2φ2 − 2φ4)

−
β3

8ω
a23cos (2φ2 − 2φ3)

+

[
−
9β1
8ω

a2 −
β1

4ω

a21
a2
+

8λ
ωa2

]
a4cos (φ2 − φ4)

−
3β2
8
a2a4sin (φ2 − φ4)−

β1

4ω
a1a3cos (φ1−2φ2+φ3)

−
β1

8ωa2
a21a4cos (2φ1 − φ2 − φ4)

−
β2

8a2
a21a4sin (2φ1 − φ2 − φ4)−

β3

4ωa2
a1a3a4

× [cos (φ1 − φ2 − φ3 + φ4)+cos (φ1 − φ2+φ3−φ4)

+cos (φ1 + φ2 − φ3 − φ4)]−
β2

4
a1a3sin (φ1 − φ3)

−
β1

2ω
a1a3cos (φ1 − φ3)−

3α1 + 3α3ω2

8ω
a22

−
α1 + α3ω

2

4ω
a21 −

3β3
4ω

a24 −
β3

4ω
a23

+
f�2

2ω
sin (φ2)
a2

(8d)

ȧ3 = −
µc

2
a3 −

λ

2ωc
a1sin (φ1 − φ3) (8e)

φ̇3 = σ − σc +
λ

2ωca3
a1cos (φ1 − φ3) (8f)

ȧ4 = −
µc

2
a4 −

λ

2ωc
a2sin (φ2 − φ4) (8g)

φ̇4 = σ − σc +
λ

2ωca4
a2cos (φ2 − φ4) (8h)

where σ = �− ω and σc = ωc − ω. The fixed points of the
equations above are tested for stability via the well-known
Hartman-Grobman theorem [32].

III. SYSTEM BEHAVIOR IN RELATION TO PPF

In this section, the AMB system behavior is discussed for two
cases. The first one is without applying the PPF controller i.e.
λ = 0, while the other one is with applying this controller
i.e. λ 6= 0. The adopted values of the whole group are as
follows: p = 1.04, d = 0.005, c = 0.001, f = 0.02,
λ = 0.15, µc = 0.01, σc = 0. The rotor’s vibrational
amplitudes are denoted by a1 for horizontal vibration and
a2 for vertical vibration. As we can see from Eq. (8), the
quantities a1 and a2 are mathematically symmetrical. Hence,
we combine them in the same figure to ease the readability for
the reader. Figure 2 shows the effect of varying the parameters
p and d on the rotor’s vibrational amplitudes when � = ω

(σ = 0) and λ = 0. In Fig. 2a, it can be noticed that p
should be more than 1 becauseω = 4

√
p− 1 for a reasonable

rotor operation. In the range 1 < p < 2, the nonlinear
parameter α1 = −12 (p− 1) (p− 2) is positive denoting a
hardening effect. This hardening effect decays as p → 2
(α1 → 0) which makes the rotor’s vibrational amplitudes
a1,2 increase at σ = 0. At p = 2 (α1 = 0), there is no
hardening effect where the response is at its peak and the
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FIGURE 7. Numerical simulations of the rotor’s and controller’s vibratory behavior at p = 1.04, σ = σc = 0, f = 0.02, and λ = 0.15: (a, b) time responses,
(c, d) orbit and Poincare maps, (e, f) amplitude spectra.

amplitudes are greater than 1 (theoretically) whichmeans that
the rotor impacts with the pole legs (practically). Moreover

for p > 2 (α1 < 0), the hardening effect is transformed into
softening effect where the amplitudes begin to decrease as p

VOLUME 9, 2021 73865
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FIGURE 8. Effects of applying PPF on the rotor’s and controller’s amplitudes versus eccentricity f at σ = σ c = 0 and λ = 0.15: (a, b) p = 1.04, (c, d)
p = 1.22, (e, f) p = 1.8, (g, h) p = 2.8.
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FIGURE 8. (Continued.) Effects of applying PPF on the rotor’s and controller’s amplitudes versus eccentricity f at σ = σ c = 0 and λ = 0.15: (a, b) p = 1.04,
(c, d) p = 1.22, (e, f) p = 1.8, (g, h) p = 2.8.

FIGURE 9. Influence of the PPF damping µc on the undesired high peaks
at f = 0.02, λ = 0.15: (a) rotor, (b) PPF.

increases. We are looking on this curve for a point where the
vibrations are small enough for a safer operation. We have

FIGURE 10. Block diagram of TPPF control process.

done several numerical simulation trials with different values
of p. We found that p = 1.04 is the lower value of the p-
range at which the rotor has exhibited a bounded response.
For values less than 1.04, the rotor has started to exhibit an
unbounded response. Hence, we adopted p = 1.04 as the
lower value of p. On the other hand in Fig. 2b, it is clear that
increasing the parameter d enhances the damping influence
on the amplitudes at different values of p. The plotted circles
with each curve represent numerical simulation of the rotor’s
equilibrium amplitudes indicating a good agreement with the
analytical solid curves.

Based on Fig. 2, we are investigating the effects of varying
the rotor’s speed � and eccentricity f on its amplitudes at
different values of p as shown in Fig. 3. In Figs. 3a and 3b
where p = 1.04, the rotor’s vibratory amplitudes respond
linearly with both σ (at several f ) and f (at several σ ).
In Fig. 3c where p = 1.22, the saddle-node bifurcation points
locus appears (purple branch) and intersects with the response
curves at saddle-node bifurcation points. It surrounds the
whole unstable branches at different f . In Fig. 3d, this
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FIGURE 11. Comparison between the performances of pre-PPF, PPF, and TPPF at f = 0.02 and λ = 0.15: (a, b) p = 1.04, (c, d) p = 1.22, (e, f) p = 1.8, (g, h)
p = 2.8.
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FIGURE 11. (Continued.) Comparison between the performances of pre-PPF, PPF, and TPPF at f = 0.02 and λ = 0.15: (a, b) p = 1.04, (c, d) p = 1.22, (e, f)
p = 1.8, (g, h) p = 2.8.

FIGURE 12. Bifurcation diagrams of the (a) rotor’s and (b) controller’s
vibrations versus σ without PPF, with PPF, and with TPPF at f = 0.02,
p = 1.8.

locus (purple branch) intersects with the response curves
at saddle-node bifurcation points without surrounding the
whole unstable branches at different σ . The unstable branches
here lie between the intersection points of the response curves
and the locus. As the eccentricity f increases, the curves

bend to the right gradually denoting a hardening case and
jump phenomena because of the positivity of α1. Once the
parameter p increases to 1.8 in Figs. 3e and 3f, the amplitudes
are raised much more leading to the possibility of impacting
with the pole legs (in case of a1,2 ≥ 1). Figures 3g and 3h
have been plotted at p = 2.8 where α1 is negative which
makes the curves bend to the left denoting a softening case
as well as jump phenomena.

In case of applying the PPF controller (λ 6= 0), we are
discussing its effect on the variations of p, d , σ , f with the
rotor’s vibrational amplitudes a1,2. Figure 4 shows the differ-
ence between the absence and presence of the PPF controller
on varying the parameter p at σ = 0 and λ = 0.15. It seems
that the PPF controller dominates the rotor’s vibrations in the
studied range 1 < p < 3 even at p = 2 where the rotor cannot
impact with the pole legs anymore. The switching between
hardening and softening effects at σ = 0 is no longer existent
to be an advantage of the PPF control. Also in Fig. 5, the effect
of PPF is clear in reducing the vibrations to minimum levels
(almost zero) all over the studied range 0 < d < 0.1.

As discussed in Fig. 3, Fig. 6 shows the application of
PPF controller on the rotor’s amplitudes versus its speed at
different values of the PPF gain λ. From Eqs. (8e-h), the
parameter λ can increase the PPF’s steady-state amplitudes
where this can widen the range of rotor’s small amplitudes.
It is clear from the figure that adjusting the value of λ
controls the bandwidth of low amplitudes around the point
σ = 0 and between the two undesired high peaks. Fig-
ures 6a and 6b show a linear form of the curves without
any bifurcations or jump phenomena at p = 1.04. Also,
the point σ = 0 is the minimum amplitude point where it is
desired to keep the rotor in its neighborhood. At p = 1.22
in Figs. 6c and 6d, the right peaks of the response curves
are intersecting with the saddle-node points locus leading
to multiple solutions and jump phenomena. In Figs. 6e and
6f at p = 1.8, the saddle-node points locus intersects also
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FIGURE 13. Numerical simulations of the rotor’s and controller’s vibratory behavior at p = 1.8, σ = 0.15, f = 0.02: (a, b) time responses, (c, d) orbit
and Poincare maps, (e, f) amplitude spectra.

the left peaks of the response curves at which the issue of
jump phenomena exists at both of the high peaks. Another
issue is the existence of Hopf points locus which intersects

the response curves exhibiting unstable behaviors for the
rotor and controller as we will treat later. Figures 6g and 6h
show the response curves at p = 2.8 where the hardening
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effect turns to softening effect because of the sign change
of the parameter α1. Figure 7 clarifies the difference before
and after using PPF by supporting the discussion with time
responses, orbit and Poincare maps, and amplitude spectra
at p = 1.04 and σ = σc = 0. These plots tell us about
the periodic behavior of the rotor’s motion before and after
using PPF at the mentioned parameters values. Also, they
explain the exposition of the PPF principle based on Eqs. (8).
If σ = σc in Eqs. (8f) and (8h), the steady-state PPF’s
amplitudes (a3&a4) will have their minimum values and
so the rotor’s steady-state vibrational amplitudes (a1&a2).
Since σc is kept constant at 0, the amplitudes increase grad-
ually once σ − σc increases. Later, we are going to treat
this issue.

Figure 8 shows the rotor’s amplitudes versus its eccentric-
ity f at λ = 0.15, σ = σc = 0, and different values of p.
In the whole figure, we can see the difference between using
PPF or not. The PPF controller mitigates the rotor’s vibrations
efficiently regardless of its eccentricity f in Figs. 8a and 8b
at p = 1.04. At p = 1.22 in Figs. 8c and 8d, the vibrations
amplitudes increase slightly with f . As p increases in Figs. 8e
to 8h, the rate of vibrations increases proportionally with f
and this guides us to use lower values of p.
There is a way to suppress the undesired peaks by increas-

ing the PPF dampingµc as shown in Fig. 9. The two undesired
peaks can be suppressed by raising µc which adds to the
damping of the whole system as depicted. Another advantage,
besides suppressing the peaks, is to avoid the intersection
with the saddle-node points locus in order to make the rotor
safe from sudden jumps (jump phenomena).

As mentioned above that if σ = σc = 0, the rotor
exhibits its minimum vibratory behavior. Due to Refs. [7],
[8], [12], [25], this called perfect tuning mechanism which
guarantees the minimum vibratory behavior while using PPF
if and only if σ = σc, or in other words, in case of � = ωc.
This can be done by measuring the rotor’s speed � via a
shaft encoder then providing the PPF control unit with this
value to tune its natural frequency ωc with the measured �.
We have named the new approach a tuned PPF (TPPF). This
is illustrated in Fig. 10. Figure 11 assures, with comparison,
that the tuned PPF (TPPF) is the best controller to deliver
minimum vibratory amplitudes in a wide range of rotor’s
speeds � at different studied values of p. Moreover, Figs.
12 and 13 show the bifurcation diagrams, time responses,
orbit and Poincare maps, and amplitudes spectra for three
cases of the rotor’s vibrations without PPF, with PPF, and
with TPPF. As can be seen in the bifurcation diagram of
Fig. 12, the rotor exhibits a periodic response without PPF
which appears as a single branch across different values of σ .
With PPF, the response is periodic except for 0.08 ≤ σ ≤

0.165 where the response is either quasiperiodic (multiple
branches) or sometimes chaotic (scattered dots). With TPPF,
the response reverts back to its periodicity (single branch).
Figure 13 assures the importance of TPPF, rather than PPF,
for turning the rotor’s quasiperiodic unstable motion into a
periodic stable motion.

IV. CONCLUSION
This work explored the application of the PPF controller with
the possibility of tuning it to reach the minimum vibratory
levels of a rotor in an AMBs system involving 16 poles and
constant stiffness. The PPF control signal has been merged
with the original PD signal to extend the control job. Approx-
imate solutions of the whole set were sought via the multiple
scales method. Different response curves were plotted in
order to clarify the difference between the system before and
after PPF and also with TPPF. We can summarize some notes
as follows:

• The optimum value for p was chosen to be 1.04 in order
to reach small rotor vibrations.

• After applying PPF (λ 6= 0), it has dominated the rotor’s
vibrations in the studied range 1 < p < 3 even at p = 2
where the rotor could not impact the pole legs anymore.

• Adjusting the PPF gain λ controlled the bandwidth of
low amplitudes around the point σ = 0 lying between
two undesired high peaks.

• The PPF’s damping µc could be increased to suppress
its undesired peaks.

• Tuned PPF could be applied if and only if� = ωc where
it could be done by measuring the rotor’s speed � and
tuning it with PPF’s natural frequency ωc.

• The extreme importance of TPPF was in turning the
rotor’s quasiperiodic unstable motion into a periodic
stable motion.

• Another importance of TPPF was suppressing the dual
high peaks of the classical PPF controller.

• The only obstacle of applying TPPF was the delay in
acquiring the rotor’s speed � from the shaft encoder
which made TPPF unable to do its job.
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