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ABSTRACT A level-IV home-based sleep apnea monitoring system that utilizes alternative sensors, such as
dual respiratory inductance plethysmography (RIP) belts, is proposed to promote routine apnea monitoring.
Notably, continued excursion may occur in RIP belt signals, owing to the imperfect relationship between
thoracic and abdominal movements during obstructive events. Therefore, we propose a novel algorithm to
detect obstructive apnea based on an obstructive reciprocal divergence (ORD) continued excursion model
and to explore the possibility of a multistage breathing-effort evaluation model using only RIP signals. Using
the developed approach, we detected obstructive sleep apnea with a high accuracy of 99.83 £ 0.71% and
a slight reduction of 73.34 + 28.35% in hypopnea performance with overall combined objective metrics
of 89.38 & 10.53%. We found that introducing many stages improves specificity (p < 0.001). Furthermore,
apart from apneic detection, we detected subtle changes in RIP signals qualitatively, which can help represent
the inspiratory flow limitation (IFL) of the RIP. This study was validated by predicting an apnea hypopnea
index (AHI) based on paradoxical breathing during sleep. A strong exponential relationship was observed
between the proposed parameter based on the number of transitions with AHI (R> = 0.98; p < 0.001).
The proposed approach can assist sleep technologists in characterizing obstructive and nonobstructive
apneic events. Moreover, ORD is competent for further quantitative and qualitative IFL analysis and will
significantly benefit the automated IFL detection system studies.

INDEX TERMS Abdominal signal, breathing effort, hypopnea, inspiratory flow limitation, obstructive sleep
apnea, sleep-disordered breathing, thoracic signal.

I. INTRODUCTION

For a large majority of the population, adequate sleep helps
inhibit a wide range of health complications. However, this
is untrue for individuals that experience sleep-disordered
breathing (SDB). The most common type of SDB is the
intermittent cessation of breathing known as sleep apnea
syndrome (SAS), and it includes obstructive sleep apnea
(OSA) and the less severe case of hypopnea. Although SAS
is not considered a life-threatening condition, considerable
evidence linking SAS to cardiovascular and cerebrovascu-
lar diseases that can ultimately lead to a silent death has
been reported [1]-[4]. The increased prevalence of SAS
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today—mainly promoted by the unhealthy dietary regimen—
is alarming; however, it continues to remain one of the main
under-diagnosed sleep disorders.

The most common and effective approach for SAS diag-
nosis is multichannel recording during night sleep or a
polysomnography (PSG) assessment. Despite being consid-
ered the gold standard, public opinion regarding PSG is
inconsistent. Patients are either financially reluctant and/or
unwilling to spend an overnight session in a dedicated
sleep laboratory [5]. This further intensifies the concurrent
shortage of sleep laboratory equipment and sleep technol-
ogists (ST). Therefore, a level-IV (continuous single- or
dual-biosensor recording) home-based sleep apnea monitor-
ing system has been proposed for expediting diagnosis, and
it has gained tremendous support [6], [7]. In compliance with
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FIGURE 1. Conceptual diagram of the progressive behavior of the UA in
OSA. The black and grey regions represent concealed pharyngeal
structures (such as soft palate and epiglottis) and cross-sectional views of
the trachea straight to the lung, respectively. The dashed circle indicates a
chair-liked characteristic, and the dashed box highlights the phase
difference between thoracic (blue line) and abdomen (red line) signals.
Each is a renowned noninvasive pathophysiological hallmark of flow
limitation and obstruction of the upper airway during sleep, respectively.
The black line indicates a continued excursion of the absolute power of
the sum of thoracic and abdominal signals (refer to Eq. (2)).

this, the American Academy of Sleep Medicine (AASM) task
force has classified such respiratory sensors as recommended
or alternative [8]. Recommended sensors have garnered seri-
ous consideration and are considered adequate for critical
case findings; alternative sensors are yet to receive proper
recognition within the automated detection or monitoring
system framework. The explanation is simple: to detect a
breathing-related disease, the sensors must be placed close
to the anterior nares (or nostril) and the mouth to allow direct
measurement of nasal and oral airflow, respectively. This is
not the case for indirect sensors, such as the dual respiratory
inductance plethysmography (RIP) belt that comprises tho-
racic and abdominal sections. This equipment makes routine
respiratory event monitoring easy. Even with PSG assess-
ment, RIP is considered for SAS scoring if the signal quality
from the recommended sensors is unreliable or in the event
of failure [8].

The rationale behind developing a dual-RIP-based auto-
matic apnea detection (RAAD) system is justified by the clear
pathophysiological connection between thoracic and abdom-
inal movements, as illustrated in Fig. 1. Previous studies
have frequently shown that the minimal amplitude excursion
of the sum of thoracic and abdominal signals (RIPsum) is
commonly observed during apnea [9]-[11]. However, a con-
tinued excursion in the power transformation of the RIPsum
during OSA can occur when the summation does not produce
a zero value [8], which consequently displays a concave
characteristic, as illustrated in Fig. 1. The use of calibrated
RIPsum signals can minimize this effect; however, in one
study measuring tidal volume during sleep, even the cali-
brated RIPsum did not remain stable, owing to belt distortion
or changes in body position [12]. It is technically difficult and
impractical to perform RIP calibration with routine clinical
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PSGs [13], [14], which has led to previous RAAD studies dis-
regarding the calibration procedure entirely [15]—-[18]. Fur-
thermore, several studies have suggested that an un-calibrated
RIPsum is effective for the noninvasive evaluation of upper
airway (UA) resistance (i.e., breathing effort (BE)), owing to
the constrained airflow into the lung [19]. Moreover, it was
suggested that the deflection in the un-calibrated RIPsum
may provide a surrogate estimation of a relative change
in the tidal volume when properly compared to the base-
line condition [9], [20], [21]. Other studies have suggested
that an airflow limitation can be inferred from RIPsum sig-
nals [9], [19], [22], [23]. Despite being classified as an alter-
native counterpart, the RIPsum can provide an abundance of
clinical information in addition to apnea detection. There is
sufficient evidence to suggest that the RIPsum can be applied
to everyday use to help improve clinical diagnosis decisions.
The main propositions of this study are as follows:

« Although the continued excursion of the un-calibrated
RIPsum may lead to unfavorable outcomes, the observed
patterns can still explain breathing dynamics if mod-
eled properly. Herein, we demonstrate that it is possible
to develop a mathematical model of continued excur-
sion using the un-calibrated RIPsum signals for RAAD
application.

« If the above proposition is feasible, introducing an
intermediate stage between normal breathing and apnea
events is possible. The signal excursion must drop below
a certain percentage from a pre-baseline to indicate
apnea. However, the continued excursion of RIP signals
caused by an apnea event by no means drops below the
threshold immediately after the pre-baseline is defined.
The signals must transit at a certain level before they fur-
ther drop or remain at the current level. We hypothesize
that this intermediate stage may provide additional infor-
mation on the RIP signals. Further, a pre-baseline (also
known as pre-event baseline) is referred to a baseline
condition prior to an apnea event. That is, each event
is associated with a unique baseline value that further
complicates automatic detection.

These issues have never been considered in published
RAAD algorithms. The novelty of our study is as follows:

« To the best of our knowledge, this is the first study that
attempts to introduce an intermediate stage between nor-
mal breathing and apnea-related breathing using RIP-
sum signals. This study develops a multistage BE for
automatic apnea event detection.

« To this end, this study introduces new obstructive recip-
rocal divergence (ORD) mechanics to model the contin-
ued excursion in RIPsum signals.

Our main objective is to develop an algorithm for the
RAAD system that can detect apnea events and concomi-
tantly deliver important clinical information related to breath-
ing for improved diagnosis. In this study, we consider the
analysis performed on only RIP thoracic and abdominal
signals (i.e., dual-RAAD system). The proposed method is
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expected to improve the acquisition of noninvasive informa-
tion with a minimum number of PSG channels. This will
not only improve our understanding of the dynamic behavior
of the UA, but it will also promote more practical real-time
solutions.

The remainder of this paper is organized as follows.
Section II details the literature regarding the differences
among algorithms used in current RAAD studies. Section III
details the mathematical modeling of the continued excursion
and proposes a multistage classification approach. It also
describes the validation procedure of the proposed algorithm.
Section IV reports the results and presents a comprehensive
discussion. Finally, Section V provides concluding remarks
and discusses the limitations of this work with future research
recommendations.

Il. RELATED WORK

Although automatic SAS detection algorithms have received
considerable attention [24], the development of different
algorithms for RAAD systems is rare. Because the level-IV
system includes single- or dual- bio-sensor recordings, algo-
rithms use either thoracic, abdominal, or both belt signals
(RIPsum). For example, one study developed an OSA detec-
tion algorithm that adopts an adaptive envelope-tracking
function following the amplitude excursion of a thoracic
signal [16]. The tracking function is adaptive in that for each
breath, a new threshold is defined based on the height of
the previous peak. The algorithm was designed to exploit an
amplitude excursion rate, which, for an OSA event, occurs at
a slower rate than normal respiration. Therefore, it induces
apparent changes in the envelope. The results are signifi-
cantly correlated with manual scoring with R-square values
of 0.73 and 0.55 for training and validation sets, respectively.
However, hypopnea events were not considered in the pro-
posed work. In another study, an algorithm based on the
adaptive threshold of the power transformation of the RIPsum
was applied to detect both OSA and hypopnea events [17].
That is, a threshold was defined for every power segment
calculated dynamically from 120 s preceding the current
segment. Therefore, any observed power drop below a current
threshold is considered an OSA or hypopnea event with no
distinction between the two.

Lin et al. applied support vector machine to classify three
categories: normal, OSA, and central sleep apnea (CSA)
using novel parameters extracted from an adaptive nonhar-
monic model that simulates the thoracic and abdominal sig-
nals [15]. Although the detection of CSA was considered,
further detection was not conducted for hypopnea events.
An algorithm developed by Steenkiste et al. attempted to
detect apnea based on a deep-learning neural network using
raw thoracic and abdominal signals. They claimed that the
use of deep learning for blind feature extraction is more suit-
able than human-engineered features that may miss impor-
tant apnea information [18]. However, there is no distinction
between OSA and hypopnea events. Moreover, it is evident
that the infamous undisclosed nature of deep learning nearly
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prohibits further qualitative analysis, which could be equally
important. Even under these conditions, important informa-
tion associated with RIP signals that change during an apnea
event are not shown.

Current RAAD algorithms developed on machine-learning
platforms suffer from several limitations. First, a classifier
based on machine learning can be considered a highly com-
plex black-box system that can be considered successful if it
maintains high detection performance. However, the underly-
ing mechanics is often inaccessible, owing to its calculation
complexity. Thus, in the event of an apnea, information such
as a percentage drop from the pre-baseline is not known,
because it is not considered in the learning process. It may
be inadvertently considered, but the information is not made
transparent by the machine. This leads to the incapability
of distinguishing apnea and hypopnea events. Identifying
this information is crucial, because it supports apnea anno-
tation guidelines. Second, it is well-established that machine
learning, especially a neural-network approach as in [18],
is highly computational expensive and can impose additional
drawbacks for real-time application.

Current algorithms applied for RAAD systems cannot dis-
tinguish between OSA and hypopnea events. No algorithm
has attempted to perform apnea detection concomitantly and
analyze the qualitative changes in RIP during an apnea event.
Few mainstream studies have emphasized this necessity,
especially those that implement alternative sensors.

lil. METHOD

A. DATABASE

The data of 25 adult patients with a possible diagnosis of SDB
were randomly selected from the sleep apnea database pub-
licly available at St. Vincent’s University Hospital/University
College Dublin [25]. The patients’ demographics are summa-
rized in Table 1. The patients did not have known autonomic
dysfunctions (e.g., multiple sclerosis) or cardiac disease (e.g.,
arrhythmias). In addition, the patients did not take medica-
tions that would interfere with the heart rate prior to the PSG
assessment. The annotation of apnea onset and duration was
conducted by an experienced ST.

B. PRE-PROCESSING
Given the wide range of sensor characteristics used in PSG
studies and available commercially, linearization is highly
encouraged for reproducibility. Therefore,
4
y=—", (1)

ymax

where vector Y is derived from the linearization of any phys-
iological signal of y, and ypmax denotes the cut-off amplitude
of the sensor. The thoracic and abdominal signals from the
RIP belts were bandpass-filtered between the frequencies,
0.07-0.8 Hz, including the extreme breathing rate, which can
be between 4-48 beats per minute [17], [26]. Each signal
was segmented into a 5-s interval with a 90% overlap. The
current segment contains 4.5 s of data from the previous
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TABLE 1. Subject Demographics, Event Classification, and AHI
Characterization.

Sex 21 Male, 4 Female (N = 25)
Age 50 + 10 years; Range: 28—68 years

Body mass index (BMI) 31.6 £4.0 kg/m?

Apnea hypopnea index (AHI) 24.1 +20.3; Range 1.7-90.9

Apneas . .
Obstructive, Central, and Mixed
Hypopneas

<5 Normal; 6-15 Mild; 16-30

AHI characterization Moderate; >30 Severe

Data are shown as mean + standard deviation. AHI = “apnea
hypopnea index.”

segment. Considering such an overlapped segment is a strat-
egy commonly employed in physiological signal processing
for real-time applications. This approach allows the algorithm
to perform calculations on a per-second basis (preferably
faster), which increases the granularity of the detection [18].
A revised-absolute power expression of RIPsum was applied
to quantify the BE; it is expressed as

eij |t/’l0i,j+abdi’j|2,

1 N
P = N Zi:l eij, 0=<¢;=< (Me,-__, + Ue;,_,-) . @

Here, ¢; j and P represent the i elements of the j segment
and the power of the RIPsum per segment, respectively. One
immediate benefit of applying the revised expression is pre-
venting outliers caused by distorted belt tension. As reported
in a previous study [15], absolute power is unsuitable for OSA
detection; therefore, a ratio of the upper quartile amplitudes
between two consecutive segments (current and previous) for
both thoracic and abdominal signals was proposed for outlier
exclusion. Herein, with a minor revision of the absolute power
calculation, it is demonstrated that OSA can be detected with
acceptable accuracy.

C. PARAMETER DESIGN

In all cases, the patency of the UA is highly unstable, and it
has a higher tendency to collapse as patients sleep. The degree
of collapse presents several variations: it might be fully
opened, narrowed to some extent, or completely blocked.
Further, it may also behave erratically under these condi-
tions. A previous study demonstrated that obstructions may
develop from the collapse of either one or any combination
of pharyngeal structures [27], [28]. However, for simplifica-
tion, a cross-section of the UA was considered, as illustrated
in Fig. 1. As the patient struggles to breathe through the
fully (or nearly) collapsed UA at stage 3, a thoracoabdom-
inal paradoxical movement becomes apparent. In the ideal
case of no synchronization across the event, the remaining
excursion cancels each other. Although this is theoretically
true, realistically, as P approaches zero (black line in Fig. 1),
a characteristic scooped-out (or concave) trend is observed.
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FIGURE 2. Working mechanics of ORD, where D represents the
divergence point between two functions. The abscissa represents the
linearized input (refer to Eq. (1)), and the ordinate is ORD. Alpha («) is a
fixed threshold denoted by the black dotted line. Theta (6) is an adaptive
threshold denoted by the blue dotted line. The range of stages 2 and

3 change accordingly to the dynamic of breathing effort.

Thus,

log, (P; + 1
1iij=M,

F: < 1.
Jim 7, 0<Fj< 3)

Although a sudden collapse is possible, the expression still
applies, and it provides further insight into relevant physi-
ological information. As dictated by the AASM task force,
OSA is measured from the nadir preceding the first breath
reduced from the baseline. The concept of ORD is introduced
given the difficulty in measuring the baseline and finding the
approximate location of a nadir. That is, as P approaches zero,
the multiplicative inverse of P diverges to infinity. The ORD
of F is defined as

1 Py +1
lim Gj _ Oge (( ./) + )

, 0<G;i<l. 4
Jim TR <Gj< 4

The terms, F and G, do not present any abbreviation;
however, the range of both parameters is bounded within zero
to one. Hence, they are defined as the normalized powers of P
and a reciprocal of P, respectively. Equations (3) and (4) have
unique solutions; therefore, ' and G should always intercept
at the alpha (er) value (refer to Fig. 2). However, for simplicity,

Dy =F;j 1 <Gj_1and F; > G;. (@)

The divergence point (D) suggests that the BE starts to
increase considerably, and index k represents the number
of occurrences that satisfy Eq. (5). The theoretical work-
ing mechanics of ORD are presented in Fig. 2. Here,
P approaches zero to the left; however, in a real application,
P approaches zero following the time course of the RIPsum
(to the right). This work does not consider both events anno-
tated with apnea and hypopnea central (Table 1).
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D. CLASSIFICATION

1) BREATHING EFFORT CLASSIFICATION

The un-calibrated RIPsum is effective for the noninvasive
evaluation of the BE [19], [29]. Because the ORD relies
heavily on the paradoxical movement between the thoracic
and abdominal belts, the use of the BE term is deemed more
suitable. A key difference between the non-apneic-associated
BE and apneic-associated BE is that the latter displays con-
siderably more apparent changes in oxygen desaturation
several seconds after breathing has ceased. To distinguish
between the two, BE is defined as

stage 1 (S1),
stage 2 (S2),
stage 3 (S3),

F; < G;j
Fi>Gjand 6y <Gj<a (6)
F; > Gjand Gj < 6,

BE; =

where theta (6) is a D-adaptive threshold defined as

T
O, = |1 ~ — n . 7
k < R(G120) X 100) + MrG120) @)

Here, T and G120 represent a fixed threshold in a unit
of percentage, such as T < 0, and 120 s preceding D of
parameter G, respectively. Further, Tr(G120) represents a sam-
ple median (a revised G120), where R denotes the revised
function. It is not necessary to apply the revision on G120
for the baseline calculation; however, the AASM Chicago
Consensus highly encourages the consideration of an individ-
ual without a stable breathing pattern where the three largest
breaths are selected within 120 s preceding an onset [15].
Thus, the revised function is expressed as

R (x) = max [S(x)], (®)
Pc%

where S and x denote a sorting function and an input vector,
respectively. A maximum of 20% (i.e., Pc = 20) was selected
from the sorted input to resolve cases where there were sev-
eral events within a baseline period [17]. However, our view
on this follows the AASM Chicago definition. That is, 20% of
the sorted input should be regarded as approximately the three
largest breaths. Nevertheless, it is demonstrated that 20% is
sufficient to perform a robust evaluation for both OSA and
hypopnea. Let us consider an example to betterunderstand
Egs. (7) and (8). Assume that the first D (i.e., k = 1) is
defined 300 s after a patient falls asleep. Therefore, G120 is
simply a data vector of G within the period of 179-300 s.
Then, we apply (8) in which the input vector, x, in this case
is G120. For the example, let us define a pseudo vector of
G120 that contains 10 data samples of G in the form G720
=(0.4,0.5,0.2,0.1,0.8,0.7,0.75, 0.85, 0.95, 0.3). Applying
the sorting function, the sorted G120 takes the form S(G120)
= (0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.75, 0.8, 0.85, 0.95). Now,
we consider only the maximum 20% of the sorted elements,
i.e., R(G120) = (0.85, 0.95).

2) ACCESSING THRESHOLD USING PRIOR DISTRIBUTION
The AASM task force offers a comprehensive guideline on
how to annotate a respiratory event as apnea or hypopnea.
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A respiratory event is annotated if i) there is a drop in the
peak excursion by 90% (apnea) and 30% (hypopnea) of the
pre-baseline; ii) the duration of percentage drop is >10 s; and
iii) there is >4% oxygen desaturation from the pre-baseline.
This fundamental information is applied by an experienced
ST to annotate the onset time and duration of apneic events.
In addition to the AASM guidelines, previous evidence sug-
gests that respiratory events based on a desaturation of at
least 4% are associated with increased risk of cardiovascular
consequences [30]. Thus, we consider 4% in the analysis as
the separation point to distinguish between apnea and non-
apnea events. It is probably relevant to follow the definition
of the task force, where T = 90% and 30% (consensus) or
50% (alternative) for OSA and hypopnea detection, respec-
tively. However, because G is ORD-imposed, its characteris-
tic changes compare slightly to that of P. Consequently, 7 is
referred to as Togrp. However, only a minor shift is expected.
To determine Togrp, each reduction of G from the baseline is
quantified as

100x ~ (Mg10 — Mr(G120))
MrG120)

8a (%) = ) ©)
where g4 denotes the percentage drop of G from the baseline,
and index d is either >4% (OSA only) or <4%, representing
a drop in oxygen desaturation. Mg represents the sample
median of 10 s following D of G. To be categorized as OSA
or hypopnea, the duration of the signal excursion drop must
be >10 s. However, it is demonstrated that 10 s are adequate
to analyze the fundamental behavior of apneic events. Fur-
thermore, only OSA events are quantified for two principal
bases. First, F and G are exclusively designed for extreme
apnea cases (i.e., OSA), for which complete obstructions are
consistently observed. Second, this serves as a validation
method for hypopnea events, as an oxygen desaturation of
>4% can occur even in a narrowed UA.

One of the many challenges of SAS studies is unbalanced
datasets. In the present database, the total number of anno-
tated events for hypopnea (N = 1,567) is four times that
for apnea (N = 352); the number of non-apneic events is
far larger. This difference poses considerable difficulty for
studies that apply machine learning [18]. The number of
elements per class must be equivalent to avoid bias in the
trained model. No complex machine-leaning procedure is
performed in this study; however, we considered the probabil-
ity density function (p.d.f.) between two classes (S2 and S3)
to define Torp. The histogram was first developed for g>49
and g_4¢9, and was Gaussian-fitted. Therefore, Torp can be
defined as a mid-intersection between two fitted distributions.
Fig. 3 shows the distribution for all subjects, wherein skewed
distributions are observed. However, a Gaussian function was
applied for the following two reasons: (i) In this study, the pat-
tern related information or p.d.f. value itself is not used as part
of the Togrp definition. For example, if we consider spurious
and skewed empirical distributions developed directly from
each histogram as shown in Fig. 3 (blue line color), the Togrp
value that results from an intersection between these lines
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TABLE 2. Performance Evaluation Criteria Based on Breathing Effort (BE) Transition.

BE Transition Metric

Metric event

Physiological definition

Group 1: ip
S1—S3; S2—S3;

of the transition.

fn of the transition.
Group 2:

S1—-S1; S1-S2;
S2—S82; S3—-SI1;
$25S1; S3-S2 I

m ..
of the transition.

of the transition.

Marked by an ST as NORMAL at the end

Marked by an ST as OSA/HYPOPNEA at the end

Marked by an ST as OSA/HYPOPNEA at the end The listed transition suggests that the UA is

progressively obstructed, enough to cause 24% oxygen
desaturation (i.e., the occurrence of paradoxical
breathing).

Marked by an ST as NORMAL at the end

The listed transition suggests normal, narrowed, or
recovery breathing. (i.e., non-related to paradoxical
breathing).

(blue-filled circle) is approximately equivalent to that of an
intersection fitted by a Gaussian function (black-filled circle).
Therefore, to determine the intersection point by using a
different distribution function yields less significant changes
in the results. (ii) We seek to determine a unique intersection
between the fitted lines. It is possible to encounter multiple
intersection points in a spurious line. Therefore, a smooth
fitted line for each distribution is required to avoid such
conditions and guarantee a unique mid-intersection point.
In addition, a Gaussian fitted distribution can be considered a
direct approach. Most distribution functions cannot be fitted
directly with negative values; therefore, certain transforma-
tion calculations must be imposed on g4, which can fur-
ther complicate the direct interpretation of Tprp. Another
solution involves the application of the proper value of the
bin-width interval that can slightly reduce the spurious con-
dition. A longer interval may result in a significant loss of
information. In contrast, a short interval may further degrade
the spurious condition. In this study, 5% was empirically
chosen based on our preliminary analysis. We demonstrate
that the proposed approach is adequate for high-performance
evaluation.

3) PERFORMANCE EVALUATION BASED ON BREATHING
TRANSITION

The proposed algorithm performs an event-based evaluation
wherein metrics are associated with certain events [17]. In
this study, we considered an adjacent transition of the BE
stage as an event. For example, as illustrated in left panel of
Fig. 4 (bottom plot), if the transition from S2 to S3 is encoun-
tered within the apnea period marked by an ST, then it will
be counted as a true positive (¢p). In contrast, it will be a false
positive (fp) if the period is marked as normal (nonapnea).
The right panel (bottom plot) illustrates the transition from
S1 to S2 within the normal period; therefore, it is counted
as a true negative (#n). In contrast, it will be counted as a
false negative (fn) if it occurs within the apnea period marked
by an ST. Please refer to Table 2 for the complete transition
alongside its physiological definition.

The automated detection of apnea events may assist
in diagnostic decision-making and may provide expedited
screening; however, for real-time applications, most detection
systems are developed to provide appropriate intervention
before clinical symptoms appear. It is well-established that
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FIGURE 3. Black and white histograms for g, 40, and g_ 0. respectively.
Gaussian-fitted curves for g. 40, (solid blackTine) and g_ 40, (dotted black
line). The line developed directly from g.. 4o, (solid blue line) and g_40,,
(dotted blue line) is also shown. Statistical properties shown in the table
are associated with the original histogram (not for fitting). For
reproducibility, the bin widths of each histogram are regulated to an
interval of 5%. Statistical comparison was conducted using Welch'’s t-test
for unequal sample sizes.

continuous cessation of breathing for 10 s results in a >4%
drop in oxygen desaturation [8]. Therefore, we argue that the
detection cue should be raised after the transition from either
S1 or S2 to S3 is observed (without imposing a 10 s wait
time to determine if it as an apnea, which can help prevent
further drops in oxygen desaturation) to initiate a therapeutic
device (i.e., early intervention). For example, one device
that utilizes the early detection of abnormal physiological
changes during sleep is the auto-adjusting positive airways
pressure (APAP) device [31], [32]. Therefore, the transi-
tion S3— S3 is not evaluated assuming the intervention cue
raised previously succeeds in preventing continuous UA col-
lapse. In this study, S3 suggests that the UA has collapsed.
Moreover, the event-based (i.e., transition-based) approach
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TABLE 3. Performance for Three Different Thresholds (Averaged from 25 Iterations).

Sensitivity (%)
OSA Hypopnea

Specificity (%) Accuracy (%) Combined objective (%)

T =-30% 98.52+4.07 n.s. 73.90 +£27.38 n.s.
T =-50% 96.73 + 5.20* 49.42 £ 25.33%**
Torp = —40.75% 99.83+0.71 73.34+28.35

90.79 + 4.4 ***
05.33 +£2.52%**
98.79+0.92

90.77 £ 4.31%**
95.28 +2.45%%*
98.77 £ 0.89

84.00 £ 10.02%**
82.72 £ 9.98%**
89.38 +10.53

Data are shown as mean + standard deviation. Statistical comparison was conducted using Student’s t-test between —30 and —50% with Torp.

provides more dynamic information on the breathing state
than the temporal overlap. Performance indicators, such as
the sensitivity (SEN), specificity (SPE), and accuracy (ACC),
are respectively computed as

Ip

SEN = , 10

tp+fn (10)
n

SPE = — (11)

m+fp
1, t

ACC = —_PEtm (12)

D+t fo+

The combined objective (CO) is encouraged for consider-

ing imbalance events [33] and is defined as

SEN 0sa+SEN Hypoapnea
> Jpoap —i—SPE—i—ACC.

3

In addition, Torp is remeasured using the leave-one-
subject-out cross-validation method to prevent over-fitting.
All data from the 24 patients were utilized to measure
Torp and evaluate the performance factors (i.e., SEN, SPE,
ACC, and CO) of the patient that was not included. A total
of 25 iterations were performed, and the evaluated perfor-
mances for each patient were averaged. The leave-one-out
cross-validation strategy offers an advantage wherein it can
be considered as an inter-subject evaluation. Furthermore,
it is considerably more robust compared with intra-subject
evaluation (i.e., a threshold is measured with data collected
from a subject and then the performance is evaluated using
unobserved data from the same subject).

CO = (13)

4) ORD FOR AHI PREDICTION

The common index used to characterize the severity of SAS
is the AHI value, which is defined as the number of apnea and
hypopnea events per hour of sleep. The prediction of the AHI
value can help expedite screening before a complete manual
diagnosis is conducted with PSG. This sub-section serves as
a second-degree validation procedure that assumes the tem-
poral information of annotated apneic events (i.e., onset and
duration) except for the AHI value, which is unknown. There-
fore, all observed paradoxical breathing, as seen by ORD
(group-1 transitions), are considered. Nonrelated paradoxical
breathing (group-2 transitions) re also considered (Table 2 ).

Therefore,
pb
=1 —, 14
p %%W» (14)

where B is defined as the log transformation of the ratio
between the total count of the observed paradoxical breathing
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n.s.: Not significant; *: p<0.05; ***: p<0.001.

(pb) and the total observed nonparadoxical breathing (npb).
From a different viewpoint, high 8 values suggest increased
paradoxical breathing during sleep, which can be associated
with apnea occurrence in most cases. Low g values suggest a
low occurrence of paradoxical breathing during night sleep.
Paradoxical breathing can occur independently of obstructive
apneic events.

IV. RESULTS AND DISCUSSION

A. ORD AND HYPOPNEA DETECTION

Table 3 presents the sensitivity for both OSA and hypopnea.
A slight reduction in the hypopnea performance (73.34 +
28.35%) compared with that of OSA (99.83 + 0.71) was
observed. This is consistent with the results of previous
studies. For example, even with a more sophisticated algo-
rithm, the reported results for hypopnea detection ranged
around 70% although six physiological signals from PSG
were applied [34]. Lin et al. reported that the inclusion
of hypopnea downgraded the final analysis outcome, thus
omitting the events entirely [15]. Even in a study related to
respiration, hypopnea detection did not produce good agree-
ment with manually annotated events largely because of the
use of a thermistor airflow sensor in the PSG instead of a
polyvinylidene fluoride film [35]. It is well-established that
the excursion of the respiration signal amplitude for hypop-
nea events is not consistently visible [8]. With ORD, most
unexplained hypopnea events remained at the second stage,
owing to the low degree of paradoxical movement. Thus,
the RIPsum does not precisely sum to zero (i.e., continued
excursion does not occur). The typical behavior for failed
hypopnea detection shown in Fig. 4 (right panel) suggests that
approximately 70% of the events produce a clear continued
excursion for a successfully detected hypopnea event.

B. THRESHOLD COMPARISON

Fig. 3 shows the distributions for g>4¢9, and g a9, which
are extracted from all subjects. A significant differ-
ence is observed between each distribution (p < 0.001).
The averaged Togp result from cross-validation is
—40.75 £ 0.55%. Table 3 presents the cross-validated per-
formance comparison between the three different thresholds.
The overall evaluation of CO indicates that Torp (89.38 +
10.53%) significantly outperforms that of 30% (84.00 +
10.02%), followed by 50% (82.72 £ 09.98%). The signif-
icant drop considerably influences the lower CO for the
50% threshold in hypopnea detection (49.42 + 25.33%;
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FIGURE 4. Sample tracing of RIPsum (top left plot), parameters F and G (middle left plot), and BE (bottom left plot) depicting OSA events. The black and
white triangles represent OSA onset and offset, respectively; they are marked by an ST. The red-filled circle indicates D, which represents an approximate
peak of the last breath (/b) in the event of an apnea. A green-filled square indicates the end of the first breath (fb). The diamond-edged blue line
illustrates a theta for every respective D. A dotted line represents a constant value known as the alpha («) threshold. The right panel illustrates sample
tracing with the same order as the left panel, which indicates the transition from stage 1 to 2 and remains at the current stage. The progressive changes
the inspiratory portion of the RIPsum signals. The ordinate of the left and right panel of the RIPsum is comparable.

p < 0.001). This result is consistent with the task-force
recommendation: a 50% drop in flow is required for the
single pediatric definition of hypopnea [8]. The task force
redefined pediatric as all children < 18 years old, whereas
the patients included in this study were above 18 years old
(50 £ 10 years). Therefore, the 30% drop in the flow is
recommended by consensus for adult patients. This explains
the high CO for the 30% threshold compared with that
for 50%. Moreover, the reason Tpgp is considerably more
effective than the 30% threshold standard needs to be dis-
cussed. However, no significant difference (p > 0.05) was
observed between Tpogrp and the 30% threshold for both
OSA and hypopnea events. The higher CO for Togrp results
from the elevated specificity (98.79 &+ 0.92%) compared to
that for the 30% threshold (90.79 + 4.41%). This suggests
Torp is considerably more robust for nonapnea event detec-
tion, although it maintains comparable sensitivity with the
standard threshold for both OSA and hypopnea. However,
the direct comparison of Tpgp with the 30% threshold (also
for 50%) is not possible; therefore, redefining the standard
threshold with Togp is highly irrelevant. This is because Torp
is determined using G, which is transformed from the original
RIPsum. Thus, we conclude that the slight shift of Togrp
from the standard threshold can be attributed to the changed
properties of the parameter. The use of Tprp with different
databases is yet to be tested. Therefore, the generalization of
the Torp is currently not possible.
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C. PERFORMANCE COMPARISON BETWEEN
RAAD-RELATED STUDIES

Table 4 summarizes the comparison results between several
RAAD systems proposed previously. However, studies that
applied the RIP combination with other physiological signals
(e.g., SpO2 and respiration) were excluded. Considering the
initial development of ORD, the use of a publicly available
database with a relatively small number of patients (N = 25)
is analytically appropriate. Furthermore, the same database
was used by [17]. For all studies, separate sensitivities for
OSA and hypopnea events were not reported. When com-
paring the standard performance metrics (SEN, SPE, and
ACC), the ORD approach outperforms all previous meth-
ods. Although some studies proposed different functions to
calculate standard metrics, the definition remains the same
as the direct generalization of the binary categorical response
data [15]. The study-dependent metric (SDM) was used when
some standard metrics were not defined by the state-of-the-art
approaches. Although the SDM between studies cannot be
compared directly [33], the corresponding values are pre-
sented in Table 4 for the subjective evaluation. The SDM in
this work corresponds to CO.

Based on the proposed segment overlapping setting for
ORD, a single stage is defined for every 0.5 s (ie.,
pre-segment = 120 s; segment = 5 s; and detection rate
= 0.5 s/segment). The pre-segment was utilized in some
studies to define a pre-baseline. It is also desirable to keep the
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TABLE 4. Comparison of Several RAAD Studies using Either Thoracic or Abdominal Belt Signals or Both.

Pre-segment

(s): SEN (%) AHI
. No. of . Evaluation . ’ Prediction
Studies . Signals Classifier Segment (s); SPE (%) ACC (%) SDM (%) .
subjects approach Detecti t ) analysis
clecuonrate  OSA  Hyp. Combine (Yes/No)
(s/segment)
80% training,
0,
[15] 34 RiPsum 207150 qunt 60.10.05 8864906 —  —  794+94 81.8+94 840£906  No
25-fold cross
validation
. 50% training, Adaptive
b s .20 _ _
[16] 116 Thoracic 50% test threshold 5 30; 30 80 73.5 67 85 Yes
per subject  Adaptive s - o - -
[17] 25 RIPsum test threshold 120; 6; 0.6 72 65.2 No
Thoracic 5-fold cross- LSTM- — — 579+86 739+10 71.1+6.8 71.5+1.7
[18] 2100 alidati neural —; 30; 1 Yes
Abdominal valiqation network . 629+35 772+45 747+£3.1 769+0.8

Data are shown as mean =+ standard deviation; a: Calculation of accuracy and SDM including CSA events; b: For AHI > 15; SVM = Support vector

period short, as in [15]; however, this study adheres with the
AASM Chicago guidelines, which recommends 120 s. It is
also desirable to maintain a lower detection rate while ensur-
ing high detection performance for a speedy and accurate
intervention. This rate is comparable with that of [15], and it
is 50% lower when compared with that of [18]. Thus, a high
performance can be obtained even with a multistage approach
and a lower detection rate. Thus, it can be considered to be
an additional merit to the ORD algorithm. We do not need
to sacrifice a longer segment to obtain such performances.
Indeed, we did not consider the computational time for each
segment when they commonly considered a real-time setting.
Furthermore, in this study, no comparison analysis was con-
ducted between the ORD algorithm and the machine-learning
method. However, hypothetically, the real-time implementa-
tion of the ORD algorithm may have a lower overall compu-
tational time and use fewer resources than those developed on
machine-learning platforms.

D. AHI PREDICTION BASED ON ORD TRANSITION

We predicted the AHI based only on the number of para-
doxical breathing incidents to further validate the proposed
approach. Fig. 5 presents the fitted line of B against AHI.
The AHI value in the left panel (with central events) is
higher compared with the values in the right panel (without
central events). A reduced relationship strength is observed
(R? = 0.70) compared with the fitted line on the right panel.
The transitions for central events were not considered to
predict the associated errors. Additionally, a strong expo-
nential relationship (R = 0.98) of B against the adjusted
AHI was observed. The result suggests that it is possi-
ble to predict the AHI given only the number of observed
breathing transitions without knowing the temporal apneic
information.

VOLUME 9, 2021
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FIGURE 5. Exponential relationship between g and AHI (left panel) and
adjusted AHI (right panel). The dotted lines represent the fitted
relationship.

E. DETECTION ERROR

Paradoxical breathing is not exclusive to UA obstruction; it
can occur independently of any pathology [46]. Furthermore,
paradoxical breathing can be induced by the transition of
sleep stages, particularly rapid eye movement [46], [47].
Moreover, other studies suggest that breathing becomes less
asynchronous with age as the chest wall stiffens [48], [49].
To this end, no further analysis has been conducted on
nonapneic paradoxical breathing. However, the less asyn-
chronous breathing can be explained in the second stage,
which also helps explain the elevated specificity. In addition
to apnea annotation, the current database includes other anno-
tations, such as pb-event (i.e., periodic event), when there
is no proof of oxygen desaturation even when breathing has
ceased for a period of 10 s or more. Other annotations, such
as possible, is included for an event wherein a significant
drop was observed, although cessation of breathing occurred
in less than 10 s. Thus, it was observed that most fp were
associated with these uncertainties. The remaining fps can
be attributed to other pathologies that induce paradoxical

72789



IEEE Access

M. S. Adha, T. Igasaki: Three-Stage BE Quantification for OSA Detection

breathing (i.e., sleep stages). On the one hand, for a thera-
peutic device, fp is almost always acceptable. For example,
in the event of fp, the APAP machine will be false triggered,
thereby delivering additional humidified air into the lungs.
Thus, according to our understanding, fp may not cause
severe implications to a patient. On the other hand, fn events
are nontrivial and can cause false diagnostic decisions (i.e.,
a patient may be diagnosed as free of SAS when it is not be
the case). For real-time applications, a significant count of
fn events can results in a large number of missed interven-
tions, which can lead to serious complications. Nevertheless,
we have demonstrated that ORD can detect almost all severe
obstructive apnea events that are not hypopnea. In addition,
although fi can be observed, the ORD can predict AHI with
high accuracy and help prevent false diagnostic decisions.

F. SIGNIFICANCE OF ORD

RIP signal quantification can act as surrogate estimation for
other physiological conditions [8]. However, it may vary
slightly depending on the signal processing of the RIP and
whether the RIP calibration is considered. The calibrated and
un-calibrated values of RIPsum provide an estimate of the
tidal volume [9], [36], [37] and the relative change in tidal vol-
ume (compared to the baseline) [9], [20], [21], respectively.
Furthermore, the calibrated and un-calibrated time derivatives
of the RIPsum (RIPflow) provide semi-quantitative estimates
of the airflow and relative airflow, respectively [9], [10],
[23], [38], [39].

The key working mechanic of ORD is the dynamic mea-
surement of the baseline condition upon every occurrence of
D. Thus, the percentage change from baseline can be defined.
Therefore, the relative change of ORD may be associated with
the relative change in the tidal volume. This conclusion is
based on the empirical evidence presented in previous studies.
However, most clinical PSGs do not include numerical results
associated with pneumotachograph recordings of respiratory
gas flow to the lung. Hence, additional comparative analyses
cannot be conducted.

The novelties of ORD include the introduction of
an intermediate stage (S2) between nonapneic (S1) and
apneic-related breathing (S3) and the appropriate defini-
tion of a threshold value (Tpgrp). These implementations
result in improved specificity (p < 0.001), as presented
in Table 4. This result suggests that S2 can handle the effect of
breathing inconsistencies, a certain degree of RIP belt dis-
tortion, and/or changes in body position during sleep. Fur-
thermore, it was hypothesized that S2 can lead to additional
qualitative changes in RIPsum. Fig. 4 presents the RIPsum,
ORD, and BE sample-tracing for two different conditions.
Depending on the circumstances, D can be regarded as an
approximation of the OSA onset (or nadir), as manifested
in the first OSA event. A slight difference is observed for
the second OSA event, and further increase occurs in the
following events. This largely results from a different rate
of UA obstruction; D is defined when there are consider-
able excursions of the RIPsum amplitude. Furthermore, the
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RIPsum inspiratory portion changes are considerably more
apparent several seconds before and after D, and this is
observed for both conditions. This change may be associ-
ated with the inspiratory flow limitation (IFL). One study
suggested that airflow limitations can be inferred from subtle
qualitative changes in the RIP inspiratory portion [22].

According to the official American Thoracic Society
report, a higher sampling frequency (25-50 Hz) is required
for the qualitative analysis of the IFL pattern [40]. However,
this is not the case in several RAAD studies, which adopted
frequencies of 20 Hz [12] and 5 Hz [18]. Down-sampling
was commonly performed when subtle changes in RIP were
not of interest and/or to reduce processing speed. In this
study, the original sampling frequency was maintained at
128 Hz, and it is a highly recommended value. Furthermore,
per expert consensus, a key piece of evidence for IFL rep-
resentation is the increase in the inspiratory duty cycle [41]
and/or scooping for >75% of the inspiratory cycle dura-
tion [40]. This definition is consistent with RIPsum tracing
(right panel), and it can be classified as an intermediate IFL
(refer to the given pattern provided in [40]).

Manual visual IFL annotations require trained experts,
which are very time consuming. Morover, the absence of
IFL annotation in nearly all noninvasive PSG studies is a
primary reason the quantification of subtle UA changes has
been challenging. However, it is not our aim to perform
the automatic detection of IFL. This should be left to the
current automated IFL detection system [42]—[45]. Although
the annotation for IFL was not provided with proper physio-
logical reasoning (i.e., the S1—S2— S3 transition represents
the progressive closure of the UA) and high sensitivity and
specificity, our proposition that the region between the alpha
and theta thresholds may represent a considerable reduction
in the flow can be validated concomitantly.

V. FUTURE WORK AND CONCLUSION

This work demonstrated the state-of-the-art ORD approach.
The advantages of the ORD algorithm are highlighted as
follows:

« Finding a proper pre-baseline is difficult in automatic
SAS detection [8], [20]. The ORD algorithm manages
to ease the baseline paradox by defining a concise point
(i.e., D) for a pre-baseline measurement.

o The ORD algorithm can distinguish obstructive apnea
and hypopnea. This is possible when the pre-baseline
is known; thus, an accurate drop in the RIPsum signal
excursion can be measured. Furthermore, this algorithm
can assist categorizing obstructive events in manual clin-
ical diagnosis.

o This algorithm is suitable for real-time applications,
because it is not computationally expensive.

« ORD is competent for further quantitative and qualita-
tive IFL analysis. This finding will significantly benefit
the automated IFL detection system studies.

e Owing to higher SEN and SPE, a novel parameter
(B) can be defined from the ORD analysis to predict
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exceptionally accurate AHI value regardless of patient
demographics.

However, there are several limitations to ORD. The pro-
posed approach cannot yet automatically distinguish OSA
from hypopnea, because the three stages of transition-based
classification restrain the current work scope. A manual dis-
tinction between OSA and hypopnea events was conducted
to gain further insight into the ORD approach. However, this
can be easily resolved. The peak distribution for a bin interval
of 80-85% of g>49, distribution can be applied as additional
information to distinguish between OSA and hypopnea pre-
cisely. As such, BE is now a four-stage expression.

In this study, CSA events were excluded because of the
slight pathophysiology difference from obstructive events.
CSA is characterized by the cessation of airflow with the
absence of BE [50]. This is completely opposite to the
mechanics of ORD, which predominantly exploits the para-
doxical movement results from the increase in BE. When no
BE is observed, continued excursion never occurs. Hence,
the BE transition remains at either the first or the second
stage. Differentiating between CSA and obstructive events
using the BE has been a major concern to practitioners of the
manual annotation process [8]. Failure to detect the BE can
result in the misclassification of obstructive events, such as
CSA [51]. Thus, although ORD cannot theoretically detect
CSA, it can assist in the manual classification of obstructive
events. However, further qualitative and quantitative studies
on CSA using ORD need to be conducted.

The ORD algorithm was developed to be as generalized as
possible. We considered a linearization function as denoted
in Eq. (1). F and G are bounded parameters (i.e., normalized
in the range of zero to one) that reduce the patient’s vari-
ability. In addition, we considered inter-subject evaluation
for more robust measurements. The patient demographics
in the current database is quite dispersed (Table 1). Thus,
the averaged value of Tpgp can be considered to be an
optimal value and can be applied directly to other databases.
However, it is unclear if we can achieve the same performance
as ORD using different databases. It is possible to observe
a slight change in the Torp value because of the differ-
ent number of patients, their specific demographics (e.g.,
female only), or their specific diseases within other databases.
Therefore, confirmatory studies should be conducted with
other databases to re-determine ORD parameters, particularly
Torp, before further generalization is conducted.

It is also compelling to conduct multivariate analysis using
ORD with other physiological signals (i.e., SpO2, electroen-
cephalogram, and heart-rate variability) to further understand
the psychophysiological conditions of sleep apnea. For exam-
ple, there are a few aspects of interest in the physiology
behind heart-rate variability. Thus, it is interesting to investi-
gate the time course of parasympathetic or sympathetic acti-
vation at different ORD stages. Parasympathetic activity may
be prominent during the first stage. Meanwhile, an elevated
sympathetic activity may be observed during the second and
third stages. We intend to consider this in future work.
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