IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 30, 2021, accepted May 9, 2021, date of publication May 14, 2021, date of current version June 3, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3080456

MADMAX: Browser-Based Malicious Domain
Detection Through Extreme Learning Machine

KAZUKI IWAHANA™, TATSUYA TAKEMURA ~, JU CHIEN CHENG~, NAMI ASHIZAWA ~,
NAOKI UMEDA ™, KODAI SATO ~, RYOTA KAWAKAMI, REI SHIMIZU,
YUICHIRO CHINEN, AND NAOTO YANAI“, (Member, IEEE)

Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
Corresponding author: Kazuki Iwahana (k-iwahana@ist.osaka-u.ac.jp)

This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) “Innovation Platform for
Society 5.0 Program under Grant JPMXP0518071489.

ABSTRACT Fast and accurate malicious domain detection is an essential research theme to prevent
cybercrime, and machine learning is an attractive approach for detecting unseen malicious domains in the
past decade. In this paper, we present MADMAX (MAchine learning-baseD MAlicious domain eXhauster),
a browser-based application leveraging extreme learning machine (ELM) for malicious domain detection. In
contrast to the existing work of ELM-based domain detection, MADMAX newly introduces two methods,
i.e., selection of optimized features to provide higher accuracy and throughput based on permutation
importance and real-time training to retrain a model with an updated malicious dataset for continuous
malicious domain detection. We demonstrate that MADMAX fairly outperforms the existing work with
respect to accuracy and throughput by virtue of the selection of optimized features. Moreover, we also
confirm a model with real-time training stably detects even unseen malicious domains, whereas accuracy of
a model without the real-time training decreases due to the unseen domains. The source codes of MADMAX
is publicly available via GitHub.

INDEX TERMS Browser application, extreme learning machine, feature selection, malicious domain

detection, machine learning, real-time training.

I. INTRODUCTION

A. BACKGROUNDS

The use of malicious domains rapidly increases in cybercrime
in recent years. For example, an adversary often utilizes
his/her generated malicious domains to operate command
and control (C&C) servers or sets up phishing sites. A typ-
ical countermeasure against such malicious domains is to
prepare for a deny list of these domains. Nevertheless, new
domains continuously appear since domain generation algo-
rithms (DGAs), which automatically generate new domains,
are often utilized. Consequently, countermeasures based on
a deny list are insufficient, and hence a framework to cover
even unseen domains is crucial.

Based on the background described above, domain detec-
tion based on machine learning has attracted attention in
the past years [1]. Meanwhile, a machine learning-based
domain detection tool on a browser, which is the closest
interface for a user, has never been proposed so far, to the

The associate editor coordinating the review of this manuscript and

approving it for publication was Mostafa M. Fouda

VOLUME 9, 2021

best of our knowledge. Although there is VT4Browsers!

which is an add-on of Google Chrome to detect malicious
domains on a browser automatically, it is just a deny list-based
approach. Namely, existing browser-based applications may
be ineffective against unseen domains. In contrast, existing
works [2]-[6] on (browser-independent) malicious domain
detection methods based on machine learning often utilizes
a complex and large-sized architecture. The training time
becomes longer in proportion to the architecture complexity
despite providing a high inference accuracy. In other words,
they are somewhat tough to introduce in a browser environ-
ment such that a user utilizes them in real-time.

In this paper, we propose MADMAX (MAchine learning-
baseD MAlicious domain eXhauster), a novel application
of malicious domain detection based on machine learn-
ing together with browsing. Loosely speaking, MADMAX
enables a user to detect malicious domains automatically by
installing the application as an add-on in his/her browser.

1 https://chrome.google.com/webstore/detail/vtdbrowsers/
efbjojhplkelaegfbieplglfidafgoka

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 78293

https://orcid.org/0000-0003-0749-3613
https://orcid.org/0000-0001-8925-694X
https://orcid.org/0000-0002-8730-5741
https://orcid.org/0000-0003-3911-338X
https://orcid.org/0000-0001-7129-5836
https://orcid.org/0000-0001-6914-4991
https://orcid.org/0000-0002-0817-6188
https://orcid.org/0000-0003-1790-8640

IEEE Access

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

MADMAX is able to provide substantial advantages because
it can cover even unseen malicious domains that a deny list
does not contain.

In general, there are two technical problems for incorpo-
rating machine learning into an environment requiring the
real-time process, e.g., browsing. First, domain detection
based on machine learning may consume a long time com-
pared to a standard deny list-based tool since the machine
learning needs additional overheads such as feature extraction
about domains. Second, the trade-off between throughput and
accuracy of machine learning should be considered carefully.
Generally speaking, the throughput of a model decreases due
to the complicated computation of machine learning, whereas
a complicated machine learning model is often necessary for
providing high accuracy.

Besides, machine learning for cybersecurity may cause
concept drift [7], which is a change of essential features
because of the appearance of new malicious domains. Hence,
re-training to catch up with new domains, i.e., real-time
training, is necessary as well. For real-time training,
the throughput of the training is an essential factor. However,
complicated and large-sized architectures utilized in the exist-
ing works require the training time to be overlong, and hence
are unsuitable for real-time training. Whereas machine learn-
ing research does often not take the training time into account,
the training time is crucial when introducing machine learn-
ing in a browser is considered. Thus, it is considered that
machine learning is no longer introduced into a browser as
far as we know.

A potential solution for the aforementioned problems is
malicious domain detection [8] based on extreme learning
machine (ELM) [9]. Informally, ELM is a neural network
with a single hidden layer, which can learn features without
backpropagation whose computational cost is heavy. Namely,
both learning and inferring domains can be run quite fast, and
thus the above problems can be solved potentially. In recent
years, ELM has been pointed out as the renaming of early
neural networks with random weights, and there are many
extensions so far [10].

Nonetheless, the existing work [8] just evaluated whether
ELM can infer malicious domains or not. In other words,
the existing work did not implement domain detection as an
application, and thus throughput and accuracy of malicious
domain detection with respect to features on the application
level are uncertain. More concretely, features should often
be extracted in real-time when an application is deployed
in the real world. Hence, the performance, including feature
extraction on an application-level implementation, needs to
be evaluated. Furthermore, a model should be updated follow-
ing the update of malicious domains. In doing so, we need to
confirm if the updated model can continuously and precisely
detect unseen malicious domains, which are newly generated
and rapid training. The results shown in the existing work are
thus insufficient for the feasibility of a web browser.

In contrast, we develop MADMAX as an application-level
implementation. Furthermore, through the use of more

78294

features described in our previous works [11], we rigorously
select features such that a model providing a fast inference
and high accuracy is constructed. Consequently, MADMAX
outperforms the existing work [8] in terms of accuracy and
throughput. Moreover, via discussion on real-time training
in accordance with the update of a model, we confirm that
MADMAX can cover the update of malicious domains. In
comparison with the existing malicious domain detection
methods based on neural networks [2]-[6], MADMAX is
expected to reduce the training and inference time by virtue
of ELM.

To sum up, we make the following contributions:

« We present MADMAX, a browser-based applica-
tion for malicious domain detection. Notably, a pro-
totype is implemented as a browser add-on. The
implementation is publicly available via GitHub
(https://github.com/kzk-IS/MADMAX).

« We shed light on optimized features for accuracy and
throughput of domain detection by rigorously selecting
the features. As aresult, we demonstrate that MADMAX
outperforms existing work [8] with respect to the accu-
racy of malicious domain detection.

« We confirm that a model can learn features in real-
time; that is, it can continuously detect even unseen
malicious domains by virtue of introducing real-time
training. By contrast, we also show that accuracy of a
model without the real-time training decreases due to a
drift of malicious domains.

B. PAPER ORGANIZATION

The rest of this paper is organized as follows. Section II
describes domain names and a machine learning-based mali-
cious domain detection, including its formulation. Section III
presents the system requirements of MADMAX and then
explains the key questions to realize MADMAX. Section IV
describes the methodology for the design of MADMAX to
tackle the key questions. Section V evaluates the performance
of MADMAX, and then the discussions and limitations are
described in Section VI. Section VII describes related works,
and finally, the conclusion and future directions are presented
in Section VIIIL.

Il. PRELIMINARIES

In this section, we describe domain names and malicious
domain detection based on machine learning as background
knowledge to understand this work.

A. DOMAIN NAMES

Domain names are texts correlated to network hosts and are
operated via the domain name system (DNS). In general,
domain names are hierarchically managed under namespaces
called a zone, and the highest domain is called root. The
most popular domains are .com, .us, and . jp, and such
domains are called top-level domains (TLDs). There are plu-
ral domains under each TLD, and these domains are managed
hierarchically and distributively through their zones.

VOLUME 9, 2021

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

IEEE Access

B. MALICIOUS DOMAIN DETECTION BASED ON MACHINE
LEARNING

Domain detection model based on machine learning makes
inferences to determine if the given domains are malicious
or not. Informally, the objective model is obtained whereby
a machine learning model learns features of domains and
their labels that represent the domains as benign or malicious.
Afterward, the model takes features of a target domain as
inputs and then infers its label. A typical approach for domain
detection in recent years is based on neural networks.

1) PROBLEM FORMULATION

We formalize our approach against the problem of domain
detection based on machine learning as follows. Let F =
{fi,---,fi} be a set of features. Each domain d; € D has
features F; = {fi.1,---,fi1}, where D denotes a set of
domains, and / € N denotes the size of F}, i.e., the number of
features of each domain. In addition, each d; € D has a label
L; € {0,1} € L, where 0 of each label denotes a benign
domain and 1 of each label denotes a malicious domain.
Given the size of D, i.e., the number of domains, DFL =
{(dy, F1, Ly), - - - (d,, Fy, L,)} denotes the combinations with
domains, features of each domain, and labels of each domain.
Let Model = M(DFL) denotes a trained model, where M
denotes a learning algorithm. Our goal is to get the results
of inference, L, = Model(F;), by extracting features F; =
{ft.1, -+, fi.1} from unlearned domain d;.

C. EXTREME LEARNING MACHINE

We describe the development of extreme learning machine
(ELM) [9] which is a fast machine learning algorithm to
train single hidden layer feedforward neural networks [12].
Roughly speaking, ELM can obtain generalization perfor-
mance efficiently and, according to the paper [12], is able
to compute a global optimization equal to or better than
support vector machine (SVM) [13]. Also, ELM is much
faster and easier to implement than most state-of-the-art
machine learning approaches [14]. Consequently, there are
many applications of ELM in various areas, e.g., life sci-
ence or computer vision. Meanwhile, ELM has never been
utilized in the context of malicious domain detection except
for Shi et al. [8], to the best of our knowledge. As described
in Section I, concept drift is essential for malicious domain
detection, and hence the real-time training discussed in this
paper is a different problem from the above works.

The original ELM [9] is used in the context of supervised
learning for both classification tasks and regression tasks.
Although we focus on the original ELM in this paper, there
are many extensions of ELM to deal with imbalanced data
and errors in the real world. For instance, Xiao ef al. [15]
proposed a class-specific cost regulation extreme learning
machine (CCR-ELM) to deal with imbalanced classifica-
tion data introducing a class-specific regulation cost into
the classification. Also, Zhang et al. [16] proposed residual
compensation ELM (RC-ELM) to deal with the prediction

VOLUME 9, 2021

error of ELM due to causes, e.g., non-linearity. The main
idea of RC-ELM is to introduce a multilayer structure to
build a feature mapping between input and output. Similarly,
Zhang et al. [17] proposed robust ELM (R-ELM) to deal
with highly complicated noise. According to Zhang et al.,
an objective function of R-ELM is constructed to fit the
noise using a mixture of Gaussian distribution to approxi-
mate any continuous distribution between Gaussian noise and
non-Gaussian noise.

Furthermore, online sequential ELM (OS-ELM) [18]
learns data that is continuously obtained instead of prepar-
ing for the data in advance. OS-ELM is utilized in actual
applications such as stock price and weather forecasting.
Afterward, Zhao et al. [19] proposed FOS-ELM, a method
of retraining a model by sliding window [20] for each data
block, which is similar to the real-time training in this paper.
Matias et al. [21] also proposed an extension of OS-ELM to
deal with time-series data by introducing a forgetting factor.
New data is then biased rather than the old data. The methods
described above are beneficial because both past and future
data should be considered for the concept drift. Although we
utilize the original ELM [9] in this paper, the existing ELM
algorithms described above can be used for MADMAX.

Ill. MADMAX

MADMAX (MAchine learning-baseD MAlicious domain
eXhauster) is a browser-based application for malicious
domain detection based on machine learning. In this section,
we first present the system requirements of MADMAX. Next,
malicious domain detection based on ELM is described as a
potential approach, and then the key questions in this paper
are described.

A. SYSTEM REQUIREMENTS
MADMAX is a malicious domain detection application
based on machine learning, which runs on a web browser
with high accuracy in a short time. Concretely, MADMAX
is a client-server application, where a machine learning
model deployed on a server infers domains sent from a
browser extension. The overview of MADMAX is shown
in Figure 1. Preventing threats on web browsers is quite
important because users are commonly accessing websites
through web browsers. Meanwhile, add-ons are widely avail-
able on various web browsers. Therefore, the use of add-ons
is an easily deployable approach for malicious domain
detection.

Functions that MADMAX provides to users and servers
are shown as follows:

1) USER-SIDE FUNCTIONS

A user benefits from a function that automatically outputs
a warning by deploying the add-on when he/she accesses
a malicious site. Concretely, at first, MADMAX extracts a
domain from a URL of a website and then sends the domain
data to the server. Afterward, MADMAX displays a warning
if the domain data represents a malicious domain. On the

78295

IEEEACCGSS K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

server

web site

——

———| 1)Features extraction

inference phase

e

lget domain domain

result

browser

‘.-n"‘

Swhoi
extension
3)Update of a model /

training phase
Features
$nslookup
W
2)Inference \'nternet

on a model
$nslookup

I:::] Features %

user

2 :
=8 training&:‘,‘l extraction pull % @

real-time domains

dataset Open

FIGURE 1. The overview of MADMAX.

other hand, MADMAX allows access to the website when
the domain data indicates that the website is benign.

2) SERVER-SIDE FUNCTIONS

A server provides the following functions as a part of
MADMAX. The server first receives a domain as input from
a user and then returns whether it is malicious by utiliz-
ing a trained model controlled by the server. At that time,
the server executes domain detection through the following

three functions:
1) Features extraction from a domain: A domain itself

has few features generally. Consequently, extract-
ing features based on DNS records for a domain is
expected since the information itself is insufficient.
However, in real-time domain detection through an
add-on, the throughput of feature extraction should be
considered because the above feature extraction is a
time-consuming task in general.

2) Inference on a model: The server infers Model(F;) from
features F; of a domain d; with a trained model Model
and then identifies if d; is benign L; = 0 or malicious
L; = 1. The throughput of inference on the trained
model should be high because the latency of a user is
influenced by the throughput of the inference itself as
well as the feature extraction.

3) Update of a model: The server needs to continuously
detect unseen malicious domains through retraining a
model to be stored in the server with the latest mali-
cious domains. If the update based on retraining takes
a long time, a user may be exposed to threats of new
malicious domains. Consequently, a real-time trained
model should continuously detect malicious domains

78296

databases

with high accuracy, and hence the update of the model
should be finished within a short time.

B. MALICIOUS DOMAIN DETECTION BY ELM
We focus on the malicious domain detection [8] based
on extreme learning machine (ELM) [9] for the design of
MADMAX. ELM has been proposed for training single hid-
den layer feedforward neural networks. The training pro-
cess of neural networks is roughly divided into three kinds
of layers, i.e., an input layer, one or more hidden layers,
and an output layer. The performance of neural networks
is commonly improved by increasing the number of hid-
den layers and neurons in each layer. However, the training
and inference processes consume time in proportion to the
increase of the hidden layers. In contrast, ELM incorporates
a pseudo-inverse matrix for computing weight matrices in
a single hidden layer. Therefore, ELM realizes significantly
fast learning and is suitable for malicious domain detection
on a web browser that needs the real-time process because
ELM provides fast inference.

The inference process of ELM is formalized as follows.
Given features F; = {f;1,---,fiy} of a domain d;, ELM
calculates the following:

N
> BAW; - Fi + by = 0, ()
Jj=1

where N denotes the number of nodes in a hidden layer, A(-)
denotes the activation function, W; denotes the weight vector
on the input layer for the j-th node, b; the j-th bias term, and O;
denotes the output of the inference. In addition, B; denotes the
parameter given by training ELM.

VOLUME 9, 2021

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

IEEE Access

The training process of ELM is to solve the minimization

problem defined as ||HB—L||, where B = (BT, ---, BI)T,
and H is defined as follows:
AW, - Fy +by) AWy - F1 + by)
H = : (2

AWy -Fy+by) AWy - F, + by)

ELM randomly generates W; and b; as the beginning step
of the training process, and then the minimization prob-
lem is regarded as the problem of finding 8 that satisfies
[|[HB—L|| = 0. Namely, ELM can find 8 by computing
B = H TL, where ELM utilizes a pseudo-inverse matrix
to calculate Hf. ELM then computes inverse matrices just
one time and finishes all the training process. Therefore,
the learning algorithm of ELM can obtain W, b, g in a shorter
time than backpropagation.

C. KEY QUESTIONS

The primary motivation for the design of MADMAX is to
allow users to distinguish benign domains from malicious
domains through an add-on on web browsers. To do this,
MADMAX needs to detect malicious domains in a short time
and continuously detect unseen malicious domains. Con-
cretely, we have two main key questions for the design of
MADMAX as follows:

The first key question is a trade-off between the accu-
racy of the trained model and throughput on the server,
including feature extraction. Higher accuracy is generally
obtained from extracting more features. It also means that the
throughput of feature extraction becomes worthy in propor-
tion to the number of features. Although early literature [8]
empirically showed a high throughput of inference on their
model, the throughput of the inference for application-level,
including the feature extraction, was not explicitly shown.
Namely, a set 7' C F of features to provide inference with
high accuracy and high throughput are still not evident.

The second key question is whether the inference model
can detect unseen malicious domains with high accuracy.
More specifically, a model should be trained and updated
in real-time because malicious domains are constantly gen-
erated, e.g., by domain generation algorithms (DGAs) as
described in Section I. Despite that ELM can provide a high
throughput of the training according to the early literature [8],
the model should also be continuously trained with the latest
malicious domains. Existing works do not clarify if the con-
tinuously training and detecting unseen malicious detection
is feasible.

The goal of this paper is to answer the two key questions
described above.

IV. METHODOLOGY

In this section, we describe the concrete methodology of
MADMAX. First, we describe how we tackle the key ques-
tions described in the previous section and then describe
selection of optimized features and real-time training as con-
crete methods.

VOLUME 9, 2021

A. OVERVIEW OF METHODOLOGY

To realize MADMAX, we describe two methodologies to
answer the key questions described in Section III-C. At the
beginning step of the discussion, we answer the first question,
i.e., a trade-off between accuracy and throughput, by select-
ing an optimized set of features. Next, we answer the second
question, i.e., continuous detection for malicious domains,
by incorporating the optimized features into an ELM inside
MADMAX. We describe more details below.

To answer the first key question, we focus on a set of
features presented in our previous work [11] and then, for
each subset of the features in [11], evaluate a trade-off
between throughput, including feature extraction, and accu-
racy of inference on ELM with the subset. More specifically,
we select the optimized features by leveraging the permuta-
tion importance algorithm [22] for each subset. We call the
above process the selection of optimized features. Intuitively,
the permutation importance algorithm can clarify which fea-
ture is practical to increase the accuracy of domain detection,
i.e., providing an importance ranking of features. Therefore,
we can decide the set F' of optimized features that provide
domain detection with high accuracy and high throughput by
determining the relationship between features, accuracy, and
throughput with respect to inference from the ranking. (See
Section I'V-B for detail.)

Next, for the second key question, we introduce the
real-time training that enables MADMAX to continu-
ously maintain high accuracy in detecting unseen mali-
cious domains generated in the future. In particular, a server
updates malicious domain dataset DFL and then retrains the
model Model = M(DFL). Intuitively, the real-time training
is expected to enable the model to detect the unseen malicious
domains, e.g., the concept drift [7]. For the update of the mali-
cious domain dataset, the domains are continuously pulled
in real-time from the open databases utilized in our previous
work [11]. Then the optimized features 7/ C F obtained
from the first methodology, the selection of optimized fea-
tures, are extracted for each newcomer malicious domain d;.
In doing so, the model Model is retrained using the updated
dataset. (See Section IV-C for detail.)

B. SELECTION OF OPTIMIZED FEATURES
We describe how to select the optimized features by utilizing
the importance of the features below.

1) LIST OF FEATURES

We follow the features utilized in our previous work [11].
These features are defined from three perspectives,
i.e., text-based features, DNS-based features, and web-based
features. We describe these features in detail below.

a: TEXT-BASED FEATURES

Text-based features represent information obtained from
strings of domain names and discuss whether mali-
cious domains can be detected from the domain names.

78297

IEEE Access

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

13 ontroy Py
14 stdev TTL
max_consecutive_chars 15 nip
entropy

n_ip 17 n_vowels
n_mx
n ptr

ns_similarity

n_countries

mean_TTL

stdov_TTL

n_labels 2
lifo_time

active_time

Threshold 7
Select
Rank features based on 5 optimized
permutation importance i Experiment features

N[ofa]ae[n][]

FIGURE 2. The flow of the selection of optimized features in MADMAX: First, the features are ranked through the permutation importance. Second,
the accuracy and throughput of a model are measured by utilizing the features chosen by a threshold T. An appropriate threshold T is then decided

based on the above experiments.

In particular, there are 14 features, i.e., the length of a domain
name, rate of vowels, the number of vowel characters, the
number of consonants, the number of consonant characters,
conversions of vowels and consonants, the number of numeric
characters, rate of numeric characters, conversions of numer-
als and alphabets, the number of other characters, the length
of max consecutive characters, the entropy [23], and the
reputation value [24].

b: DNS-BASED FEATURES

DNS-based features represent information obtained from
DNS records of their corresponding domains and discuss the
difference of DNS records between malicious domains and
benign domains. In particular, there are eight features, i.e., the
number of different IP addresses, the number of distinct PTR
records, the number of name servers, the number of MX
servers, the similarity between name servers, the number
of countries, the mean of TTL, and the standard deviation
of TTL.

¢: WEB-BASED FEATURES

Web-based features represent information obtained from con-
tents on domains and discuss characteristics of the contents
provided by malicious domains. In particular, there are three
features, i.e., the number of HTML tags of contents in the cor-
responding web pages, the WHOIS lifetime to represent the
difference of expiration date and creation date, the WHOIS
active time to represent the difference of update date and
creation date.

2) OPTIMIZED FEATURES

We describe how to optimize the features described above.
First, we utilize the dataset in our previous work [11]
including the above features and then adopt the permutation
importance [22] as a computation for the importance of fea-
tures. Hence, the importance for each feature f; among a set
F = {f1./2, - -- . fi} of features is computed. Their resulting

78298

features are represented under the importance, and we call it
the feature importance ranking.

Next, we choose a threshold 7 to decide features to be
utilized through the feature importance ranking. The top T
features are then utilized from the ranking, and the accuracy
of a model trained with the features and the computational
overhead for detecting domains are measured. In other words,
through computing the permutation importance for each fea-
ture in advance, combinations of beneficial features for mali-
cious domain detection can be discovered. The aforemen-
tioned process is shown in Figure. 2.

C. REAL-TIME TRAINING

This section describes the real-time update of the dataset and
the method of retraining with the updated dataset. The flow
of the real-time training is shown in Figure 3.

1) REAL-TIME DATA COLLECTION

We describe how to update the dataset for the retraining in
real-time. Loosely speaking, the training dataset is updated
by pulling the latest malicious domain data from the public
databases utilized in our previous work [11]. In particular,
benign domains are pulled from the top of Tranco,” and
malicious domains are continuously pulled from URLhaus,’
CyberCrime Tracker,* and PhishTank’ in real-time, respec-
tively. The trained dataset DFL is continuously updated in
real-time by extracting a set F' of the optimized feature
shown in Section IV-B with respect to an unseen domain d;.

2) RETRAINING

We describe the proposed retraining method with an updated
dataset. The retraining with the dataset updated in real-time
will enable a machine learning model to detect even unseen

2https://tranco-list.eu/

3 https://urlhaus.abuse.ch/
4https://cybercrime—tracker.net/
5 https://www.phishtank.com/

VOLUME 9, 2021

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

IEEE Access

benign dataset

7 benign data

Zrnreal-time
training data

mdata

before update

2 retrain
7 malcious data

ranking domain at
% top 7 data example.com
extract
Tranco features
real-time malicious dataset
S time] domains
SrapaSe 4/3 0:00
CyberCrime Tracker
pull
by real time 4/8 1:16
extract 4/8 1:16
features 4/8 1:16
URLhaus PhishTank 4/8 1:18
4/8 1:18

updated rr data
at4/8 1:18

FIGURE 3. The flow of the real-time training in MADMAX: The real-time malicious domain dataset is updated from the databases, and then a model is
retrained by utilizing the latest n malicious data, i.e., domains, and the n benign data. The red box and the green box represent datasets to update a

model in each period, respectively.

malicious domains, which are newly generated in the future,
with high accuracy as soon as possible. In the design of the
real-time training for MADMAX, n benign domains and n
malicious domains for some n € N are given to an ELM as
input. More specifically, n benign domains are given only at
the initial process. In other words, the benign domains are
no longer updated. On the other hand, malicious domains are
constantly updated, and the ELM learns the latest n domains
in the updated dataset as inputs following some regular sched-
ule, e.g., for every ten minutes.

Although one might think of a retraining method such that
an ELM is retrained with only the latest n domains when n
unseen domains appear. The retraining in MADMAX is fast
even with such the retraining method.

D. ETHICAL CONSIDERATION
In this section, we discuss cybersecurity ethics for the design
of MADMAX.

First, we utilize Tranco [25], a pubic list for cybersecurity
research, which is based on commercial services such as
Alexa. According to the paper [11], Tranco is utilized as
benign domains. Domains included in both Tranco and the
public databases of malicious domains are dealt with as both
benign and malicious. Since services such as Alexa are for
the commercial purpose, MADMAX may potentially degrade
the effectiveness of those products by giving their domains
malicious labels. However, MADMAX may still bring mer-
its to their service providers. In particular, via analysis on
domains that are detected as malicious, the providers may be
able to find potential malicious services that were undetected.
Likewise, MADMAX will be beneficial for improving the
ranking of related services as well.

Besides, the features used in this paper are selected since
we focus on the general characteristics of malicious domains.

VOLUME 9, 2021

From this perspective, we recommend providing feedback to
the owners or organizations whose domains are unfortunately
detected as malicious to encourage the update of their config-
urations. As described above, we aim to support the detection
of potentially malicious services. Namely, to prevent benign
domains from unfortunately detected as malicious domains
in the future, we strongly suggest a reconsideration of con-
figurations of domains.

V. EXPERIMENTS

In this section, we conduct two experiments to evaluate the
performance of MADMAX from the perspective of the key
questions described in Section III-C. In particular, we discuss
the selection of optimized features and the real-time training.
We first describe the experimental purposes and experimental
settings, including the implementation of MADMAX, and
then show the experimental results.

A. EXPERIMENTAL PURPOSES
We describe the experimental purposes.

First, we aim to evaluate the trade-off between throughput
and well-known metrics for detection, i.e., F'I score, G-mean,
accuracy, precision, and recall, and then find an optimized set
F’ of features whereby malicious domains can be detected
with high throughput and high scores of the metrics for
inference. In particular, the permutation importance [22] is
utilized to find F' from results of malicious domain detection.

Second, we confirm that MADMAX can continuously
detect unseen domains by utilizing the real-time training
described in Section IV-C. More concretely, by using the set
F’ of features obtained in the first experiment, we compare
the scores of the metrics described above of a retrained
model with those of a model without the retraining. Hence,
we confirm that the real-time training supports the detection

78299

IEEE Access

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

of unseen malicious domains for MADMAX as well as pro-
viding high scores of the metrics. Hereafter, we denote by
normal model a model without the real-time training, and by
retrained model a model with the real-time training for the
sake of convenience.

B. EXPERIMENTAL SETTINGS

1) IMPLEMENTATION

Implementation of MADMAX is shown below. All the
user-side functions of MADMAX are implemented as a Fire-
fox (version 81.0.2) add-on with JavaScript.6 On the other
hand, all the server-side functions of MADMAX are imple-
mented on Amazon EC2 c4.8x large with Python’ and Flask®
library. Especially, an ELM is implemented by utilizing the
NumPy? library. The permutation importance to compute the
feature importance is implemented using the scikit-learn'?
library.

2) EVALUATION METRICS

In this section, we define evaluation metrics in this paper
below. To do this, we first describe the four terms, i.e., true
positive (TP), true negative (TN), false positive (FP), false
negative (FN), to evaluate the detection performance. TP is
the number of malicious domains that are correctly detected
as malicious. TN is the number of benign domains that are
correctly detected as benign. FP is the number of benign
domains that are wrongly detected as malicious, and FN is
the number of malicious domains that are wrongly detected
as benign.

We then define the following evaluation metrics based on
the above four terms.

Accuracy: Itis the ratio of correctly detected domains to the
total number of domains. The accuracy is defined as follows:

TP + TN
TP+ TN + FP+FN’

Precision: It is the ratio of the number of correctly detected
domains as malicious to the total number of detected domains
as malicious. The precision is defined as follows:

TP
TP + FP’

Recall: Tt is the ratio of the number of correctly detected
domains as malicious to the total number of malicious
domains. The recall is defined as follows:

TP
TP+ FN’

F1 Score: 1t is the harmonic mean of the precision and the

recall. The F1 score is defined as follows:
Precision x Recall

Accuracy =

Precision =

Recall =

F1 score =2 x — .
Precision + Recall

6https://developer.mozilla.org/ ja/docs/Web/JavaScript

7https://www.python.org/

8https://ﬂask.palletsprojects.com/en/ 1.1.x/

9https://numpy.org/

10https :/[scikit-learn.org/stable/modules/generated/sklearn.inspection.
permutation_importance.html

78300

G-Mean: Tt is the geometric mean of the precision and the
recall. The G-mean is defined as follows:

G-mean = «/Precision x Recall.

3) PROCESS OF EXPERIMENTS

We describe the process and settings of experiments for the
selection of optimized features and the real-time training
below.

a: SELECTION OF OPTIMIZED FEATURES
This experiment has three steps below.

First, we rank the features in a high order of impor-
tance based on permutation importance. Then, we uti-
lize a dataset in our previous work [11], which includes
24,126 benign domains and the 24,126 malicious domains,
i.e., the 48,252 domains in total.

Second, we evaluate the accuracy with respect to the
threshold 7 and the number N of nodes in a hidden layer.
Then, we use the five-fold cross-validation, which provides
numerical stability for the evaluation.

Finally, we evaluate the throughput of MADMAX for T
based on the optimized value N. Then, 100 benign domains
and 100 malicious domains are randomly chosen from the
dataset. We measure the average time to receive results
from the server for benign domains and malicious domains
by utilizing these domains. Based on the above process,
the throughput of MADMAX from the user’s perspective can
be evaluated.

b: REAL-TIME TRAINING

The retained model is trained with the real-time training
using an updated dataset, and then scores of the metrics by
the retrained model are compared with those by the normal
model. In this experiment, whereas a dataset for malicious
domains is updated as time goes on, benign domains are no
longer updated.

At the beginning of the experiment, we first col-
lect time-series data from the open databases shown in
Section IV-C1 similarly to our previous work [11]. In par-
ticular, we collect top 25,000 domains from Tranco [25] on
November 25 as benigns, and extract the twenty-five fea-
tures shown in Section IV-B. We then shuffle the benign
dataset, and 20,000 domains are used as the training data,
and the remaining 5,000 domains are used as the test
data, respectively. Likewise, we collect the 35,000 malicious
domains from URLhaus, CyberCrime Tracker, and Phish-
Tank, including the time of malicious domain, observed from
January 29 to November 25. The domain data from the
three databases described above are merged and then sorted
in chronological order. Finally, the twenty-five features are
extracted in the same manner as the benign domains. Here-
inafter, we define the dataset of 35,000 malicious domains as
di —dzs,000 for the sake of convenience. Using the time-series
data described above, we evaluate how much the F1 score,

VOLUME 9, 2021

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

IEEE Access

G-mean, and the accuracy of the retrained model are different
from those of the normal model.

More specifically, both the normal model and the
retrained model are trained with 20,000 benign domains and
20,000 malicious domains, i.e., (d1-d20,000) as the training
data, where the malicious domains were generated from
22:48:07 29, Jan. and 15:10:52, 25 Aug. The real-time train-
ing is then performed with malicious domains observed from
15:15:05, 25 Aug. to 12:01:15, 28 Oct. following the time
series. In doing so, d; is corresponding to the latest malicious
domain data then, where a domain on the last row is used if
multiple malicious domains exist simultaneously.

Whereas the normal model is kept until the end of
the experiments, the retrained model is retrained itera-
tively by shifting to the latest 20,000 malicious domains,
i.e., (di—20,000-d;), for every thirty seconds. Then, we evaluate
the scores of metrics for detection, i.e., F1 score, G-mean, and
accuracy, of the two models for every thirty seconds by uti-
lizing 5,000 benign domains and the future 5,000 malicious
domains, i.e., di-dij+5000, as the test data. We also measure
the training time on a server to evaluate the throughput for
MADMAX, where throughput is computed as the average
of 10,000 iterations.

C. RESULTS
The experimental results are shown below.

1) SELECTION OF OPTIMIZED FEATURES

First, we measure the permutation importance [22] for each
model with respect to the number N of nodes in a hid-
den layer. The result on the feature importance is shown
in Table 1. The rankings are almost stable. For instance,
the top three important features are common for each number
of nodes except for N = 100.

Next, based on the feature importance ranking in Table 5,
the F1 score, the G-mean, the accuracy, the recall, and the
precision for 7" and the number N of nodes in a hidden layer
are shown in Figure 4, where the value of 7 means the use
of the top T features in Table 5. The score of the precision
is higher than that of the recall. It means that the number
of malicious domains wrongly detected as benign is fewer
than that of benign domains wrongly detected as malicious.
Meanwhile, the F1 score, the G-mean, and the accuracy have
numerical stability, and then we focus on the F1 score. The
highest F1 score is 0.885 for N = 600 and T = 10. Moreover,
the F1 score, the G-mean, and the accuracy are improved
by selecting the important features rather than using all the
features. According to Cao et al. [26], more hidden layer
nodes on ELM cannot guarantee the best performance of the
ELM. Our result described above is identical to the finding
by Cao et al. [26].

Following the above results, the model with 600 nodes is
utilized for evaluating the throughput of MADMAX because
the highest F1 score is achieved. The result of the through-
put is shown in Figure 5, where throughput is measured

VOLUME 9, 2021

with respect to the threshold 7'''. Entirely, the throughput
decreases in proportion to the number of the threshold T,
i.e., the number of features increases. For instance, while
the detection time is 1.0 seconds for benign domains and
1.5 seconds for malicious domains for 7 = 6, those are
3.3 seconds for benign domains and 4.6 seconds for malicious
domains for T = 10.

As a result, we first choose N = 600 and T = 10 as the
selection of optimized features from the perspective of the
F1 score. Meanwhile, also throughput should be considered
as a browser-based application. In the case of throughput,
the values of 5 < T < 10 in the column of N = 600 seem
to provide high F1 scores. For these values of T, the highest
throughput is provided for T = 5 according to Figure 5.
Therefore, we measure the performance of the real-time train-
ing for N = 600 and 5 < T < 10 in the next paragraph. (See
Table 1 for the selected features.)

2) REAL-TIME TRAINING

We show the results of the F1 score, G-mean, and the accuracy
of the two models, i.e., the normal model and the retrained
model, for each setin Figures 6, 7, and 8, where the retraining
is conducted 6,136 times totally during the real-time training.
Note that, as described in the previous paragraph, we adopt
N = 600 as the number of nodes in a hidden layer and
5 < T < 10 as the number of optimized features in this
experiment. According to the figures, the F1 score, G-mean,
and the accuracy for each model increase entirely. Also,
the results of the F1 score and the G-mean are almost the same
as each other.

Meanwhile, from early October, the F1 score, G-mean, and
accuracy of the normal model become lower than those of the
retrained model for each result. Namely, the retrained model
can provide a better F1 score, G-mean, and accuracy than the
normal model.

Meanwhile, the training time of the ELM model inside
MADMAX is shown in Figure 9. The training times are stable
for every threshold T and are 1.6 seconds.

VI. DISCUSSION

In this section, we discuss the results for each experiment
and then compare the performance of MADMAX with the
existing work [8] of the ELM-based malicious domain detec-
tion. Next, we discuss results if an imbalanced dataset is
utilized as a more real-world application. We then discuss the
initialization of weight matrices of ELM inside MADMAX.
Finally, we explain the limitations of MADMAX.

A. SELECTION OF OPTIMIZED FEATURES

We discuss the results on the selection of optimized features
in terms of the feature importance, the improvement of accu-
racy, the throughput on malicious domains, and the trade-off
between accuracy and throughput.

1I'We do not take into account changing the number N of nodes for T = 10

because the primary key question in this paper is to find a set of optimized
“features”.

78301

IEEE Access

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

the threshold T

2524 23 2221 20 19 18 17 16 15 14 13 12 11 10

the threshold T

the threshold T

9 8

9

2524 23 22 21 20 19 18 17 16 15 14 13 12 11 10

0.867
0.874
0.874
0.883
0.882

0.881

0.879
0874
0.869.
0.868.
0.863
0.866.
0.866.
0.87
0.862
0.866.
0.865

0881
0.884
0883

0388

0.809
0.815
0.849
0.867
0.869

0.867

0.879

0.875
875
0.872
0.869
0.863
0.872
.872
0.868
0.869
0.868

0.853
0872
0.873
0871
0.882
0.886
0.884
0.881
0.882
038

0.87
0.865
0.872
0.872
0.865
0.867
0.866

0686

0883

0883

0.854.
0872

0.884.
0883

0878
0879
0874
(X
0872
0.874
(X
0.87
0.869.
0.868

(a) F1

0852
0852
0.869.
0.867
0.867
0879
0879
0.88

0.879
0.879
0878
0878
0.876
0.874
0.875
0.875
(X
(X
0872

700

300 400 500 600
the number N of nodes

0855
0855
0874
0871
0871
0.882

0.882
0879
0388
0877
0875
0875
0.874
0.87
(X
0.87

00

400 500 6
the number N of nodes

81
76

0.872
0.873

0.874

score

(c) Accuracy

0.876
0871
0874
0.874
0874
0874
0875

0.863.
0.866.
0.884
0388
0879
0883
0881
0881
0881

~ 0.865 0.86 0.861 0.852
o 0.876 0.875 0.875 0.872 0.87 0.86 0.851
-« 0.868 0.871 0.881 0.881 0.877 0.878 0.876
n 0.901 0.895 0.88 0.871 0.872 0.87 0.874 0.873
© 0.899 0.894 0.882 0.897 0.897 0.872 0.87 0.897 0.867
~ 0.896 0.892 0.904 0.899 0.9 0.882 0.899 0.899 0.879
© 0.886 0.9 0.903 0.894 0.901 0.903 0.897 0.895 0.881
o 0.888 0.9 0.9 0.901 0.902 0.901 0.897 0.895 09
El 0.892 0.897 0.898 0.901 0.902 0.9 0.902 0.9 0.895
=) 0.888 0.901 0.896 0.899 0.901 0.899 0.899 0.897 0.895
o 0.888 0.898 0.892 0.893 0.898 0.895 0.898 0.892 0.894
) 0.883 0.901 0.894 0.896 0.9 0.892 0.891 0.89 0.891
E1 0.873 0.897 0.898 0.897 0.897 0.892 0.892 0.893 0.89
0 0.875 0.891 0.892 0.891 0.889 0.894 0.891 0.889 0.89
9 0.877 0.89 0.889 0.887 0.889 0.891 0.894 0.892 0.89
5 0.871 0.886 0.885 0.885 0.884 0.885 0.892 0.881 0.891
E) 0.863 0.882 0.879 0.873 0.875 0.88 0.892 0.887 0.89
) 0.865 0.874 0.878 0.875 0.88 0.881 0.883 0.885 0.884
s 0.848 0.877 0.882 0.875 0.876 0.883 0.882 0.885 0.883
= 0.836 0.872 0.874 0.871 0.88 0.879 0.874 0.881 0.884
N 0.846 0.852 0.863 0.869 0.867 0.87 0.874 0.877 0.878
Q 0.831 0.848 0.85 0.854 0.866 0.861 0.868 0.874 0.872
z 0.827 0.841 0.855 0.86 0.862 0.867 0.867 0.865 0.87
n 0.826 0.85 0.854 0.857 0.861 0.861 0.863 0.867 0.869
160 260 360 460 560 660 760 360 960
the number N of nodes

(e) Precision

0.878
0.882
0.877
0.877
0.875
0.876
0.871
0.876
0.873

0.875

0.850

- 03825

- 0.800

-0775

0.750

0725

0.700

0.875

0.850

- 03825

- 0.800

-0.775

0.750

0725

0.700

0.95

- 090

-085

0.80

075

the threshold T

2524 23222120 19 18 17 16 15 14 13 12 11 10

the threshold T

5 43 2

6

7

9 8

98 7 6

2524 23222120 19 18 17 16 15 14 13 12 11 10

0.815
0.849
0854
0854
0.854.

0873
0.866.
0.862
0.865
0.864
0.861
0.859.
0.856.
0.854.
0854
0.85
0852

0757
0.799
0.811
0.811

0.844
0856
0855
0.862
0.865
0873
0857
0847
0859
0.866
03857

0.869

0.815

0.863
0.871
0.871

0.876
0.873
0.866.
0.866
0.866
0.86
0.864
0.864
0.864
0.862
0.858
0.863

o.

0758
0.824.
0832
0.848
0.851
0.862
0.861
0.862

0.86
0.862
0.856.
0.854
0.855
0.843
0.847
0.85

0.846
0.851
0.856
0.876

0.859.
0.862
0881
088
0879
0.8!
0881
0879
088
0.8!
0879
0874
0.869
0.868.
0863
0.866.
0.866.
087
0.863
0.867
0.865

0831
0839
0.841
0859
0858
0858
0.866
0.866
0.865
0.869
0863
0.867
0386
03853
0858
0.849
0385
0.859
0876
0876
0879

0877

0.811
0.817
0.849
0.868

0.872
0.869
0.863
0.872
0.872
0.868
0.869
0.868

0.828
084
0.841
0.841
0.859

0.866.

0885
0883
0.884
088
0.8!
0881
0878
0877
0878
0874
0387
0872
0873
0872
0.87
(X
0.87

300 400 500 600
the number N of n

400 500 6
the number N

0879
038
0879
038
0878
0.878
0876
0875
0876
0875
0871
0871
0872

700

odes

0833
0834
0.842
0839
0838
0857
0386
0.868
0.868
0.868
0.868
0.866
0.864.
0.865

0881

00

of nodes

(d) Recall

81

(b) G-mean

0832
0.842
0.843
0.841
0.839
0.858
0.86

0.854.

086
0863
0881
0879
0877
0881
0879

0.876
0871
0874
0874
0874
0874
0875

(X
0876
0878

0.881

0875
0854 0850
- 0.825
0.861
- 0.800
-0.775
0.750
0.725
0.872
0.700
0.876
0.874
0.85
LX:EL
0.825
[X:77) - 0.80
0.822
0.822
0.845
0.861 -0.75
0.87
0871
0871
-0.70
065
0.861
.867
0.873
087 0.60

0.87

FIGURE 4. F1 score, G-mean, accuracy, recall, and precision for T and N: The heatmaps are introduced in measuring the five evaluation
metrics described in Section V-B2. The above maps are colored in accordance with the feature importance measured by the permutation
importance. The bar on the right side for each map represents colors based on the feature importance. The red color and blue color mean high
score and low score, respectively.

78302

VOLUME 9, 2021

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

IEEE Access

TABLE 1. Feature importance ranking based on the permutation importance with respect to the number N of nodes: The rankings are sorted in
accordance with the permutation importance. A higher position represents more important for malicious domain detection. Each column represents the
ranking based on the number N of nodes.

[[[100 [200 [300 [400 [500 [600 [700 [800 [900 [1000
1 Number of NS Length of domain | Length of domain | Length of domain | Length of domain | Length of domain | Length of domain | Length of domain | Length of domain | Length of domain
2 Length of domain | Number of NS Number of NS Number of NS Number of NS Number of NS Number of NS Number of NS Number of NS Number of NS
3 Number of nu- | Number of con- | Number of con- | Number of con- | Number of con- | Number of con- | Number of con- | Number of con- | Number of con- | Number of con-
meric characters sonants sonants sonants sonants sonants sonants sonants sonants sonants
4 Mean of TTL WHOIS life time | WHOIS life time | Number of vow- | Number of vow- | Number of vow- | Number of vow- | Number of vow- | Number of vow- | Number of vow-
els els els els els els els
5 Number of MX Mean of TTL Number of | WHOIS life time | WHOIS life time | WHOIS life time | WHOIS life time | WHOIS life time | WHOIS life time | WHOIS life time
HTML elements
6 Number of vow- | Number of MX Number of vow- | Mean of TTL Mean of TTL Rate of numeric | Rate of numeric | Mean of TTL Number of con- | Number of con-
els els characters characters sonant characters | sonant characters
7 Rate of numeric | Rate of numeric | Mean of TTL Rate of numeric | Number of | Number of | Mean of TTL Rate of numeric | Number of | Entropy
characters characters characters HTML elements HTML elements characters HTML elements
8 Rate of vowel Number of | Rate of numeric | Number of nu- | Number of MX Mean of TTL Rate of vowel Number of con- | Rate of numeric | Rate of vowel
HTML el characters meric characters sonant characters | characters
9 Number of | Number of nu- | Number of nu- | Number of | Rate of numeric | Number of con- | Number of con- | Rate of vowel Mean of TTL Rate of numeric
HTML elements meric characters meric characters HTML elements characters sonant characters | sonant characters characters
10 WHOIS life time Rate of vowel Number of MX Number of MX Number of nu- | Number of MX Number of | Number of | Entropy Number of
meric characters HTML elements HTML elements HTML elements
11 Number of con- | Standard Number of con- | Rate of vowel WHOIS active | Rate of vowel Number of nu- | Number of nu- | Rate of vowel Mean of TTL
sonants deviation of | sonant characters time meric characters meric characters
TTL
12 Standard Number of vow- | Rate of vowel Number of con- | Rate of vowel Number of nu- | Number of MX Entropy Number of MX Number of MX
deviation of | els sonant characters meric characters
TTL
13 Number of con- | Number of IP Standard Number of IP Standard Entropy Entropy Number of MX Number of nu- | Reputation Value
sonant characters deviation of deviation of meric characters
TTL TTL
14 Number of other | Conversions Number of TP Standard Number of con- | Standard Number of TP Number of TP Reputation Value | Number of nu-
characters of vowels and deviation of | sonant characters | deviation of meric characters
consonants TTL TTL
15 WHOIS active | Number of con- | Entropy Entropy Entropy Number of IP WHOIS active | Reputation Value Number of IP Number of IP
time sonant characters time
16 || Number of IP WHOIS active | NS similarity WHOIS active | Number of IP WHOIS active | Standard Standard WHOIS active | NS similarity
time time time deviation of | deviation of | time
TTL TTL
17 Conversions of | Conversions of | WHOIS active | Reputation Value | Reputation Value | Number of vowel | NS similarity Number of vowel | NS similarity WHOIS active
numerals and | numerals and | time characters characters time
alphabets alphabets
18 || Entropy Entropy Reputation Value | Number of vowel | Number of vowel | Reputation Value | Reputation Value | NS similarity Standard Standard
characters characters deviation of | deviation of
TTL TTL
19 Conversions NS similarity Conversions Conversions NS similarity NS similarity Number of vowel | WHOIS active | Number of vowel | Number of vowel
of vowels and of vowels and | of vowels and characters time characters characters
consonants consonants consonants
20 || Number of vowel | Number of other | Conversions of | NS similarity Conversions of | Conversions Conversions of | Conversions Conversions Conversions
characters characters numerals and numerals and | of vowels and | numerals and | of vowels and | of vowels and | of vowels and
alphabets alphabets consonants alphabets consonants consonants consonants
21 Reputation Value | Number of vowel | Number of vowel | Number of other | Conversions Conversions of | Number of other | Conversions of | Conversions of | Conversions of
characters characters characters of vowels and | numerals and | characters numerals and | numerals and | numerals and
consonants alphabets alphabets alphabets alphabets
22 || NS similarity Reputation Value | Number of other | Conversions of | Number of other | Number of other | Conversions Number of other | Number of other | Number of other
characters numerals and | characters characters of vowels and | characters characters characters
alphabets consonants
23 Length of max | Length of max | Length of max | Length of max | Length of max | Length of max | Length of max | Length of max | Length of max | Length of max
consecutive char- | consecutive char- | consecutive char- | consecutive char- | consecutive char- | consecutive char- | consecutive char- | consecutive char- | consecutive char- | consecutive char-
acter acter acter acter acter acter acter acter acter acter
24 Number of coun- | Number of PTR Number of PTR Number of PTR Number of PTR Number of PTR Number of PTR Number of PTR Number of PTR Number of PTR
tries
25 Number of PTR Number of coun- | Number of coun- | Number of coun- | Number of coun- | Number of coun- | Number of coun- | Number of coun- | Number of coun- | Number of coun-
tries tries tries tries tries tries tries tries tries

1) FEATURE IMPORTANCE

First, we discuss the feature importance. Our feature impor-
tance based on the permutation importance for MADMAX
is different from that based on the LightGBM [27] shown
in our previous work work [11]. In particular, in comparison
with the top 13 important features presented in [11], there
are only seven common features for MADMAX, i.e., the
length of a domain, the number of NS, the WHOIS lifetime,
the number of HTML elements, the mean of TTL, the number
of MX, and the entropy [23]. The difference indicates several
considerations for malicious domain detection as described
below.

According to our previous work [11], the length of
domains and the entropy are essential as the text-based fea-
tures because they represent the characteristics of malicious
domain names generated by DGA. More specifically, names
of benign domains are usually composed of one or two words,

VOLUME 9, 2021

the second-level domain (SLD) and the top-level domain
(TLD). On the other hand, malicious domains generated
by DGA are often composed of long-and-random strings
to avoid collision of domain names [28]. In other words,
the generated domains are no longer registered as long as
they have a collision with existing domains. Consequently,
malicious domains tend to provide longer names and higher
entropy than benign domains.

Meanwhile, for DNS-based features, the number of NS
and the number of MX for malicious domains are less
than those for benign domains. The reason is that mali-
cious domains provide fewer functions compared to benign
domains. Although we omit the detail of domains from the
perspective of ethics, many multinational organizations are
top benign domains.

Likewise, for the web-based features, the number of
HTML elements in malicious domains tends to be fewer than

78303

IEEE Access

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

6.0
—— benign domains
559 malicious domains
5.0 4
4.5
4.0
3.5 A
g
W 3.0 4
©
E 2.5
2.0
154
1.0+
0.5
0.0 4

T T T T T T T T T T T T T T T T T T T T
123456 78 91011121314151617 18 19202122232425
the thresheld T

FIGURE 5. The detection time with respect to the threshold: Features are
sorted in high order in accordance with the feature importance.

that in benign domains. Indeed, when we investigate the aver-
age number of HTML elements in the 24,126 benign domains
and the 24,126 malicious domains, the average numbers are
724 for the former and 136 for the latter. It is considered that
several malicious domains, which only distribute malware,
do not care about the provided web contents’ designs. There-
fore, the number of HTML elements is less for malicious
domains than benign domains.

2) IMPROVEMENT OF ACCURACY

Second, MADMAX provides better scores for both the
F1 score and the accuracy by selecting several important fea-
tures, rather than utilizing all the features shown in Figure 4.
It means that unnecessary features, which are removed by the
selection of optimized features, perturb essential character-
istics of malicious domains. Accordingly, the F1 score and
the accuracy of MADMAX can be improved by virtue of the
selection of optimized features.

3) THROUGHPUT ON MALICIOUS DOMAINS

Third, Figure 5 shows that the detection time for malicious
domains is longer than that for benign domains. The reason
is that malicious domains are often unregistered because they
are newly generated. Namely, DNS records for malicious
domains should be requested from a browser with MADMAX
to DNS servers and hence consumes the time for extracting
the DNS-based features. Accordingly, Figure 5 shows that the
detection time for malicious domains much increases from
T=1toT =2andfromT = 9toT = 10 than those of
benign domains. The above insight is identical to our previous
work [11].

Meanwhile, the throughput decreases as the threshold T’
increases according to Figure 5. For instance, the throughput
for both malicious and benign domains decreases from 7 = 6
to T = 7. Indeed, the reason is different for benign domains
and malicious domains. Generally speaking, benign domains
provide well-designed web content with numerous HTML

78304

tags, so the time is consumed to obtain the contents. On
the other hand, HTML tags for several malicious domains
cannot be gained because they provide no HTML contents
as described above.

4) TRADE-OFF

Finally, we conclude the trade-off between accuracy and
throughput for MADMAX. According to Figures 4 and 5,
the setting with 7 = 6 and N = 600, i.e., the length
of domains, the number of NS, the number of consonants,
the number of vowels, WHOIS lifetime, and the rate of
numeric characters, is optimal for MADMAX. Besides, if the
highest detection rate is necessary, the setting with 7 = 7 and
N = 600, i.e., the number of HTML elements in addition to
the six features described above, is the best for MADMAX.

B. REAL-TIME TRAINING

We discuss the effect of the real-time training on detecting
unseen malicious domains below. According to the experi-
mental results shown in Section V-C2, since some concept
drifts occurred during the period, the accuracy of the normal
model decreased after early October for all the patterns. In
contrast, the retrained model was able to learn features of
newly appeared malicious domains.

TABLE 2. The difference of metrics between the retrained model and the
normal model for T = 5.

\ Metrics | Flscore | G-mean | Accuracy | Precision | Recall |
[Thenormalmodel | 0819 | 082 | 0811 | 078 [0857 |
| The retrained model | 0.829 [0.831 | 0818 | 0781 [0.884 |
[difference [0.00076 | 0.01057 | 0.0067 | -0.00441 [00272]

TABLE 3. The difference of metrics between the retrained model and the
normal model for T = 6.

‘ Metrics | Flscore | G-mean | Accuracy | Precision | Recall |
[The normalmodel | 0828 | 0817 | 082 | 0792 | 0868 |
| The retrained model | 0.837 [0826 | 083 | 0.802 [0.875 |
[difference | 0.00855 | 0.00878 | 00095 | 001048 | 0.0062 |

TABLE 4. The difference of metrics between the retrained model and the
normal model for 7 = 7.

\ Metrics | Flscore | G-mean | Accuracy [Precision | Recall |
[The normalmodel [0.808 [0.808 [0.804 [0.791 [0.8256 |
[The retrained model | 0.818 | 0819 | 0812 | 0790 | 0849 |

[difference | 0.01058 | 0.0109 | 0.0082 | -0.00016 | 0.0234 |

For further discussion, we measure the precision and
the recall on the experiments and the results are shown in
Figures 10 and 11. According to these figures, the normal
model has higher precision but lower recall than those of
the retrained model. The above fact means that the normal
model has fewer false positives but more false negatives about
malicious domains than the retrained model. In other words,
the normal model missed unseen malicious domains while
the retrained model could detect them. Tables 2- 7 show the

VOLUME 9, 2021

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

IEEE Access

09

normal model

0.88 - retrained model

0.36

0.84

0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/9/26 2020/10/12 2020/10/28

12:01:13

2020/9/10

@T=>5
0.9

normral model

0.88 ~ retrained model

0.86
0.84 /_//
0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

©T=17
09

normal model

088 - retrained model

0.86

d

034

0.82

..4-"—//“\1

0.8
0.78

0.76

2020/8/25
15:15:05

2020/9/26 2020/10/12 2020/10/28

12:01:13

2020/9/10

©T=9

0.9
normal model

~ retrained model

0.88
0.36
0.84
0.82

0.8

L

0.78
0.76

2020/8/25
15:15:05

2020/10/12 2020/10/28

12:01:13

2020/9/10 2020/9/26

b)T =6

0.9
nornral model

~ retrained model

0.88
0.86
0.84
0.82 i
f"“”v’hf

08

0.78

0.76

2020/8/25
15:15:05

2020/10/12 2020/10/28

12:01:13

2020/9/10 2020/9/26

T =8
09

normal model

088 - retrained model

0.86

034

0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/10/12 2020/10/28

12:01:13

2020/9/10 2020/9/26

)T =10

FIGURE 6. F1 score of the normal model and the retrained model for each threshold T: The blue lines represent the precisions for the normal model, and
the orange line represents the precisions for the retrained model, respectively.

TABLE 5. The difference of metrics between the retrained model and the
normal model for T = 8.

TABLE 6. The difference of metrics between the retrained model and the
normal model for 7 = 9.

[Metrics [Flscore | G-mean | Accuracy [Precision | Recall | [Metrics [Flscore [G-mean [Accuracy | Precision | Recall |
[The normalmodel | 0825 | 0825 | 0826 | 0831 | 0318 | [Thenormalmodel | 0838 | 0838 | 0841 | 0853 [0.824 |
| The retrained model | 0.834 | 03834 | 0832 [0823 | 0.845 | | The retrainedmodel | 0.849 [0.849 | 0849 | 0849 [085 |
[difference | 0.00931] 000935 | 00057 | -0.0082 | 0.027 | [difference | 0.01104 | 0.01092 | 0.0082 | -0.00421 | 0.0258]

metrics by each model at the time when the F1 score of the
normal model and the retrained model is the most distant for
each threshold 7. Each time for any T is within the period
after early October, i.e., the concept drift has occurred. The
F1 score and G-mean of the retrained model are at most 0.011

VOLUME 9, 2021

higher than those of the normal model. At that time, the recall
of the retrained model is at most 0.025 higher than that of
the normal model as a ratio of missing malicious domains.
In the experiments, the dataset of 2,500 malicious domains is
used as the test data. Then, the difference in the recall values

78305

IEEE Access

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

09

normal model

0.88 retrained model

0.36

0.84

0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/10/12 2020/10/28

12:01:13

2020/9/10 2020/9/26

@T=>5
0.9

normral model

0.88 retrained model

0.86

0.84

0.82

08

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

©T=17
09

normal model

088 retrained model

0.86

034

0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/10/12 2020/10/28

12:01:13

2020/9/10 2020/9/26

©T=9

0.9
normal model

retrained model

0.88

0.36

0.84

0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/10/28
12:01:13

2020/9/10 2020/9/26 2020/10/12

b)T =6

0.9
nornral model

retrained model

0.88

0.86

0.84

0.82

08

0.78

0.76

2020/8/25
15:15:05

2020/10/28
12:01:13

2020/9/10 2020/9/26 2020/10/12
T =8

09

normal model

088 retrained model

0.86

034

0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/10/28
12:01:13

2020/9/10 2020/9/26 2020/10/12

7T =10

FIGURE 7. G-mean of the normal model and the retrained model for each threshold T: The blue lines and the orange lines are defined in the same

manner in Figure 7.

TABLE 7. The difference of metrics between the retrained model and the
normal model for T = 10.

\ Metrics | Flscore | G-mean | Accuracy [Precision | Recall |
[Thenormalmodel | 0820 | 0820 | 0383 0832 [0826 |
| The retrained model | 0.839 [0.839 | 0838 | 0835 [0.844 |
[difference [0.01026 | 0.01027 | 0.0087 | 0.0236 [00182]

between the retrained model and the normal model implies
that the normal model misses 625 malicious domains more
than the retrained model.

Next, we discuss an update of the benign domain
dataset. In our real-time training experiment, only the data

78306

of malicious domains were updated from August 25 to
October 28, while the data of benign domains were used
from Tranco [25] on November 25 statically, i.e., without
the update of the 24,126 domains. Thus, it is considered that
both the F1 score and the accuracy for each model increase
entirely toward November 25. This result indicates that the
data of benign domains should be updated for the real-time
training.

Next, we discuss the throughput of the real-time training.
Although the retrained model was trained for every thirty sec-
onds in the experiment, we believe that the model would
be retrained only when a new malicious domain is pulled

VOLUME 9, 2021

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

IEEE Access

0.9
normal model

- retrained model

0.88

0.36

0.84

0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

@T =5

0.9
normral model

~ retrained model

0.88
0.86
0.84
0.82
0.8 M

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

©T=17
09

normal model
- retrained model

0.88
0.85 /
0.84
0.82

08

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

©T=9

09

normal model
~ retrained model

0.38
0.6
084
0.82

08
078 "
0.76

2020/8/25
15:15:05

2020/10/28
12:01:13

2020/9/10 2020/9/26 2020/10/12
b)T =6

0.9

nornral model
~ retrained model

0.88

0.86

0.84

.o eiiiind

082

08

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

T =8
0.9
normal model
- retrained model

0.88

0.86

034

0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/10/28
12:01:13

2020/9/10 2020/9/26 2020/10/12

)T =10

FIGURE 8. Accuracy of the normal model and the retrained model for each threshold T: The blue lines and the orange lines are defined in the same

manner in Figure 6.

from a malicious database in an actual use case. Indeed,
in the three databases for malicious domains used in our
experiments, domains are updated every twelve minutes on
average. In doing so, there are many cases where two or three
domains are newly given, and the variance is considerably
significant, e.g., in the maximized case, 64 domains are given
in just one update. The frequency of new domains in one
update is shown in Figure 12.

More concretely, we discuss the time required for pulling
data of the new domains from the databases to update the
retrained model, i.e., we call the time vulnerable slot against
unseen domains for the sake of convenience. As shown

VOLUME 9, 2021

in Figure 9, the training time of ELM with 600 nodes is
generally within 1.6 seconds. We also measure the training
time with typical backpropagation for neural networks, which
is the same architecture as ELM used in the experiment above,
i.e., a neural network with 600 nodes in a hidden layer in the
same server setting. The time required for updating an ELM
model and a neural network model is then shown in Table 8,
where the time includes feature extraction for domains and
the training with its resulting features. According to Table 8,
MADMAX has a significantly higher throughput and dras-
tically shortens the vulnerable slot against unseen domains
than those of neural networks.

78307

IEEE Access

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

16

14

12

08

0.6

training time [sec]

04

0.2

1 2 3 45 6 7 8 910111213 141516 17 18 19 20 21 22 23 24 25
the threshold T

FIGURE 9. The training time for the real-time training of MADMAX:
The training time for the threshold T is measured by that of the ELM
model on a server. Here, the number N of nodes in the ELM model is 600.

TABLE 8. Time to update the ELM and neural network model: As the
number of newly pulled domains in one update, we show for frequent
one and two, and up to sixty-four, respectively. We denote by ELM(X) the
time to update an ELM for X new domains in one update for any X.
Similarly, we denote by NN(X) the time to update a neural network in the
same manner.

[Scheme [T=5[T=6[T=7[T=8[T=9][T=10|
ELM (1) 3.02 3.09 5.34 6.35 5.85 6.22
ELM (2) 4.47 4.61 9.11 11.13 10.13 10.87
ELM (3) 5.92 6.13 12.88 15.91 14.41 15.52

ELM (64) | 94.37 98.85 | 242.85 | 307.49 | 27549 | 299.17
NN (1) 101.45 | 90.52 90.77 171.78 | 199.28 | 283.65
NN (2) 102.9 92.04 94.54 176.56 | 203.56 288.3
NN (3) 104.35 | 93.56 98.31 181.34 | 207.84 | 292.95
NN (64) 192.8 186.28 | 328.28 | 472.92 | 468.92 576.6

C. COMPARISON WITH EXISTING WORK

We discuss the performance of MADMAX in comparison
with the existing work [8] of the ELM-based malicious
domain detection. Table 9 shows the results of comparing
each evaluation index with the throughput using the fea-
tures used in existing work [8] and the features selected by
MADMAX. Note that since a different dataset is used in [8],
the comparison here is conducted using the dataset in our pre-
vious work [11]. In the model of 600 nodes, the detection time
of the malicious domains is 0.7 seconds faster when utilizing
the 6 features in MADMAX compared to the features of the
existing work [8]. On the other hand, in the model of 500
nodes, the F1 score is 0.2 higher with the same throughput
when utilizing the 6 features in MADMAX compared to the
features of the existing work [8].

Consequently, MADMAX can provide better performance
than trivially introducing the existing work [8] by virtue of
our selection of the optimized features as a browser-based
application.

D. EVALUATION BY USING IMBALANCED DATASET

We discuss the performance of MADMAX with a bal-
anced dataset and an imbalanced dataset. Table 10 shows
the results of comparing the F1 scores in training a model
with each of the balanced dataset and the imbalanced dataset
in which the number of benign and malicious domains

78308

is biased. Concretely, the experiment is conducted in a
total of three datasets, i.e., the balanced dataset with the
24,126 benign domains and the 24,126 malicious domains,
the imbalanced dataset with the 6,050 benign domains and the
19,500 malicious domains, and the imbalanced dataset with
the 19,500 benign domains and the 6,050 malicious domains.
In addition, all twenty-five features are used, and the F1 score
is shown.

From Table. 10, in any model, the F1 score is higher
utilizing the UMD than the UBD and BD. It is likely to
capture malicious domains more accurately due to the small
number of benign domains. In other words, more accurate
detection is possible by constructing a dataset that collects
more malicious domains.

E. INITIALIZATION OF WEIGHT MATRICES

We discuss the initialization of weight matrices of ELM
inside MADMAX. We assumed that weight matrices of ELM
are randomly chosen in the experiments in Section V but did
not concern the impact of the initialization of weight matrices
on model performance. Stochastic parameters, i.e., weight
matrices, of ELM may potentially affect the instability of
malicious domain detection in general.

Fortunately, the above concern can be overcome by lever-
aging existing techniques [29], [30]. In particular, initializ-
ing ELM with the Gaussian distribution can help the model
have a faster convergence rate than the uniform distribu-
tion. Besides, both a convergence rate and generalization
performance become better as long as a distribution with
more minor variances is provided. Thus, when MADMAX
is deployed in a real-world environment, the performance
will become stable by initializing weight matrices with the
Gaussian distribution suitable for the environment.

F. LIMITATIONS

We describe several limitations of the current specification of
MADMAX below.

1) FEATURE IMPORTANCE

MADMAX leverages the permutation importance to deter-
mine the feature importance. However, the permutation
importance has a limitation, whereby particular feature
importance degrades due to variance on features. For exam-
ple, the number of countries is one of the most important
features for detecting malicious domains [11]. Nonetheless,
the feature importance of the number of countries is relatively
low for MADMAX under the permutation importance. This
reason is that most of the malicious domains have “0” as the
value about the number of countries, and therefore the values
are stable even if they are shuffled randomly. In other words,
the number of countries does not have an impact on accuracy
as long as the permutation importance is utilized. Future work
will thus explore more possibilities by other methods for the
feature importance.

VOLUME 9, 2021

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

IEEE Access

09

normal model
- retrained model

0.88

0.36

0.84

0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

@T =5
0.9

normral model
- retrained model

0388
0.86
084
0.82
0.8 gy
e

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

©T=17

0.9
normal model

- retrained model

0.88
0.86
"
0.82

08
0.78
0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

©T=9

09

normal model
- retrained model

0.88

0.36

0.84

0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

b)T =6
0.9

nornral model
- retrained model

0.88

0.86

0.84

0.82

08

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

T =8
09

normal model
- retrained model

0.88

0.86

034

0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

)T =10

FIGURE 10. Precision for the normal model and the retrained model for each threshold T: The blue lines and the orange lines are defined in the same

manner in Figure 6.

TABLE 9. Comparison with the existing work [8]: Time of benign domains and time of malicious domains indicate the average time to send each domain

to the server and receive its result for repeating 100 times.

[Scheme [Flscore [Accuracy [Precision | Recall | Time of benign domains(s) | Time of malicious domains(s) |
Shi et al. [8](/N = 500) 0.848 0.85 0.855 0.841 0.8 2.4
Shi et al. [8](/N = 600) 0.85 0.851 0.856 0.843 0.9 2.3
MADMAX(T = 6, N = 500) 0.868 0.872 0.897 0.84 1.1 2.2
MADMAX(T = 10, N = 500) 0.883 0.886 0.902 0.865 3.5 4.5
MADMAX(T = 6, N = 600) 0.85 0.854 0.872 0.83 1.0 1.5
MADMAX(T = 10, N = 600) 0.885 0.885 0.9 0.867 3.3 4.6

2) SERVER MANAGEMENTS
MADMAX is a client-server application, so it is necessary to
prepare and deploy a server that detects malicious domains to

VOLUME 9, 2021

use MADMAX in advance. Furthermore, since a user needs
to send domain data to the server through the browser add-on,
the server should be maintained continuously to provide the

78309

IEEE Access

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

09

normal model
retrained model

0.88

0.36

0.84

0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

@T =5

0.9
normral model

retrained model

0.88

0.86

0.84

0.82

08

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

T =17

0.9
normal model

retrained model

0.88

0.86

034

0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

©T=9

09

normal model
retrained model

0.88

0.36

0.84

0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

b)T =6
0.9

nornral model
retrained model

0.88

0.86

0.84

0.82

08

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

T =8

0.9
normal model

retrained model

0.88

0.86

034

0.82

0.8

0.78

0.76

2020/8/25
15:15:05

2020/9/10 2020/9/26 2020/10/12 2020/10/28

12:01:13

7T =10

FIGURE 11. Recall of the normal model and the retrained model for each threshold T: The blue lines and the orange lines are defined in the same

manner in Figure 6.

functions of MADMAX. If a user wants to utilize MADMAX
local, he/she needs to set up a localhost environment and
then manage the server by him-/herself to detect malicious
domains.

3) IMPOSSIBILITY OF EXTRACTING FEATURES

According to the experimental results in Section V-C2, in the
data collection process for the real-time training, several
features cannot be obtained, e.g., WHOIS lifetime due to the
failure of WHOIS search or the number of HTML elements
due to certificates with unavailable language. We call such
features missing values for the sake of convenience.

78310

We then replace such features with zeros in the exper-
iments. Although we have not discussed that the perfor-
mance of MADMAX is influenced rigorously, generally
speaking, a model may learn the missing values them-
selves in proportion to the number of the missing values.
Namely, the malicious domain detection by MADMAX may
have an unexpected influence caused by the missing values.
As another way to handle the missing values, when the miss-
ing values are found, the corresponding data can be excluded,
or the missing values can be replaced with a numerical value
other than 0. Further studies, which take the missing values
into account, will need to be undertaken.

VOLUME 9, 2021

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

IEEE Access

100000
10000

1000

1234867881000

AU LT A R A NS A NN AN TS 738 201041 2 34448 447
The number of new domains in one update

-
o
=]

The number of appearances

—-
o

1416202122 22 24 26 2621 20 20 W %

i1

FIGURE 12. The frequency of new domains in one update: The y-axis is
represented as a log-scale graph. For 32, 34, 36, 37, 41, 42, 50, and 64 on
the x-axis, only a new single domain appears. Meanwhile, for more than
65 on the x-axis, no new domain appears in one update.

TABLE 10. F1 score with respect to the number N of nodes and three
datasets. UBD means the imbalanced dataset with 19,500 benign
domains and 6,050 malicious domains, UMD means the imbalanced
dataset with 6,050 benign domains and the 19,500 malicious domains,
and BD means the balanced dataset with 24,126 benign domains and
malicious domains.

[N [UBD [UMD | BD |
100 [0.674 [0.928 [0.851
200 | 0.691 | 0.936 | 0.863
300 | 0.709 | 0.939 | 0.865
400 [0730 | 0.940 | 0.868
500 | 0.735 | 0.940 | 0.870
600 | 0.742 | 0.943 | 0.871
700 | 0.747 | 0.943 | 0872
800 | 0.746 | 0.944 | 0.873
900 | 0.752 | 0.944 | 0.875
1000 | 0.753 | 0.945 | 0.874

4) ACCURACY UNSTABILITY ON NONLINEAR DATA

The accuracy of the original ELM utilized in MADMAX
is often unstable, especially for nonlinear data. The dataset
utilized in the current experiments has linearity, and hence
accuracy is stable. However, nonlinear data may appear when
MADMAX is utilized in more various domains. To capture
nonlinear data, more advanced ELMs such as RC-ELM [16]
or robust-model ELM [17] can be utilized. We recommend
that further research should be undertaken on the topic men-
tioned above.

VII. RELATED WORK

In this section, we describe related works of malicious
domain detection. Malicious domain detection is classified
into two types, i.e., a domain-based approach focusing on
text strings of domain names and a behavior-based approach
focusing on other information in addition to the text strings.
Roughly speaking, the domain-based approach utilizes only
domain names as texts, and the accuracy can be improved
by utilizing a complex deep neural network. On the other
hand, the behavior-based approach can improve accuracy by
increasing the kind of inputs. We describe the details of each
approach below.

VOLUME 9, 2021

A. DOMAIN-BASED APPROACH

The major way on the domain-based approach is to lever-
age a complex and enriched model to detect malicious
domains only by domain names. Woodbridge et al. [2] took
the limitation of a deny list into account and utilized a
long short-term memory (LSTM) for the malicious domain
detection. Next, Bin et al. [31] utilized both convolution neu-
ral networks (CNN) and LSTM to leverage a large amount
of actual traffic. Bin efal. [32] also compared the accu-
racy of five models described below: a single LSTM layer
model by Woodbridge et al. [2], a combination model of
forwarding LSTM layers and backward LSTM layers by
Dhingra et al. [33], parallel CNN layers by Saxe et al. [34],
stacked CNN layers by Zhang et al. [35], and a hybrid
model of stacked CNN layers and a single LSTM layer by
Vosoughi et al. [3]. Next, Berman et al. [4] showed the first
work based on CapsNet and, as a result, a better performance
than the conventional RNN and CNN. Yanchen et al. [5]
introduced an attention mechanism that ignores parts of
domain names under some designated conditions. Further-
more, Luhui et al. [6] proposed a method based on hetero-
geneous Deep neural networks which combine paralle]l CNN
and multiple LSTMs.

The works described above have utilized complicated
architectures and hence are unsuitable for use in a browser
environment. In contrast, MADMAX focuses on introducing
into a browser, and hence ELM is utilized.

B. BEHAVIOR-BASED APPROACH
The following four types of data are mainly used in most
research of malicious domain detection [1].
o DNS information
o Certificate information
o Structures of web pages
o Auxiliary information
We briefly describe each type below.

1) DNS INFORMATION

First, we describe research utilizing DNS information to
detect malicious domains. It is shown that hosts controlled
by botnets often have similar query content and time-series
patterns [36], [37]. In other words, malicious domains
tend to have intercommunication between clients and DNS
servers [36], [38]-[43]. In several works, such information
is converted into a data form such as a matrix or graph.
For instance, Grill et al. [44] proposed a knowledge-based
malware detection algorithm for domain generation algo-
rithms (DGAs). Concurrently, Chiba et al. [45] utilized ran-
dom forests to infer domains based on the data registration
date and its reason on the list of trusted sites or denylist.
Likewise, machine learning models based on DNS traffic
information have been studied well [39], [46]-[48]. Never-
theless, MADMAX is the first browser-based application by
incorporating machine learning into a browser, to the best of
our knowledge.

78311

IEEE Access

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

2) CERTIFICATE INFORMATION

There are several works that utilize certificate information for
malicious domain detection [49], [50]. Torroledo et al. [49]
focused on data such as issuer information whereby cer-
tificates are self-signed, and successfully detected malware
with high accuracy. Meanwhile, Anderson and McGrew [51]
built a classification model based on logistic regression by
extracting features from TLS and HTTP communications
that contain certificate information. Several works [49], [50]
showed that machine learning models such as deep neural
networks (DNN) and support vector machines (SVM) could
detect malware and phishing sites by leveraging only on cer-
tificate information. However, detection based on certificates
cannot determine whether a site is malicious unless it sup-
ports HTTPS, and thus providing comprehensive detection is
difficult.

3) STRUCTURES OF WEB PAGES

Structures of web pages can be utilized to detect malicious
sites. For example, Huang et al. [52] focused on texts, fonts,
and colors of the page, and Mao et al. [53] utilized cascading
style sheets (CSS), respectively. However, these attempts are
ineffective against code obfuscation techniques [54], [55].
Meanwhile, there is research [56]-[60] using images of web
pages displayed in a browser as a practical approach against
the code obfuscation. CNN is useful for providing high accu-
racy because the above research is about image process-
ing [61], [62]. Hence, Abdelnabi et al. [63] built a model for
detecting phishing sites on CNN based on image information
from benign and malicious sites. However, the computational
cost of CNN is huge in general and thus is unsuitable for a
browser-based application.

4) AUXILIARY INFORMATION

Finally, external information publicly available is often uti-
lized for malicious domain detection [51], [64], [65]. In
particular, denylists such as URLhaus and lists of popu-
lar sites such as Tranco [25] are utilized similarly to our
work. Furthermore, geographic information obtained from IP
addresses using the MaxMind Database!? [66]-[70] can also
be utilized. The potential performance of MADMAX may
be increased by incorporating geographic information into its
features.

VIil. CONCLUSION

This paper presented MADMAX, a browser-based applica-
tion for malicious domain detection by leveraging extreme
learning machine (ELM) [9]. The key insights for MADMAX
were the selection of optimized features and the real-time
training, and MADMAX discussed these functions as an
application-level implementation for the first time, as far as
we know. We released the implementation of MADMAX via
GitHub as well.

12https://WWW.maxmind.com/

78312

In the selection of optimized features, we showed that the
accuracy of malicious domain detection could be improved
by selecting important features rather than the use of all
25 features. Notably, throughput for detection of malicious
domains and benign domains was different due to extract-
ing DNS records. We also demonstrated that MADMAX
outperformed the ELM-based existing work [8] by virtue
of the selection of optimized features. On the other hand,
in the real-time training, we demonstrated that the retrained
model could continuously detect unseen malicious domains
while the accuracy of the normal model decreases because of
missing a concept drift of malicious domains.

We also found a new problem for malicious domain detec-
tion through the design of MADMAX via the experiments,
i.e., the permutation importance, which are unavailable fea-
tures for several domains. Research into investigating the
influence of the permutation importance on domain detec-
tion and its improvement is already underway. Likewise,
we adopted the classic ELM to realize the real-time training in
this paper, but the current specification of MADMAX cannot
learn the dependencies between past and future domains.
Further studies, which take the online sequential ELM [18]
into account, will need to be undertaken to continuously learn
the stream information of malicious domains as time-series
data.

CODE AVAILABILITY

Our implementation of MADMAX is publicly available via
GitHub (https://github.com/kzk-IS'MADMAX) for repro-
ducibility and as reference for future works.

REFERENCES

[1] Y. Zhauniarovich, I. Khalil, T. Yu, and M. Dacier, “‘A survey on malicious
domains detection through DNS data analysis,” ACM Comput. Surv.,
vol. 51, no. 4, pp. 1-36, Sep. 2018.

[2] J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant,

“Predicting domain generation algorithms with long short-term

memory networks,” 2016, arXiv:1611.00791. [Online]. Available:

http://arxiv.org/abs/1611.00791

S. Vosoughi, P. Vijayaraghavan, and D. Roy, “Tweet2Vec: Learning tweet

embeddings using character-level CNN-LSTM encoder-decoder,” in Proc.

39th Int. ACM SIGIR Conf., 2016, pp. 1041-1044.

[4] D. S. Berman, “DGA CapsNet: 1D application of capsule networks to

DGA detection,” Information, vol. 10, no. 5, p. 157, Apr. 2019.

Y. Qiao, B. Zhang, W. Zhang, A. K. Sangaiah, and H. Wu, “DGA domain

name classification method based on long short-term memory with atten-

tion mechanism,” Appl. Sci., vol. 9, no. 20, p. 4205, Oct. 2019.

L. Yang, G. Liu, Y. Dai, J. Wang, and J. Zhai, “Detecting stealthy domain

generation algorithms using heterogeneous deep neural network frame-

work,” IEEE Access, vol. 8, pp. 82876-82889, 2020.

[7] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“Tesseract: Eliminating experimental bias in malware classification across
space and time,” in Proc. USENIX Secur., 2019, pp. 729-746.

[8] Y. Shi, G. Chen, and J. Li, “Malicious domain name detection based

on extreme machine learning,” Neural Process. Lett., vol. 48, no. 3,

pp. 1347-1357, Dec. 2018.

G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, ‘‘Extreme learning machine: The-

ory and applications,” Neurocomputing, vol. 70, nos. 1-3, pp. 489-501,

Dec. 2006.

[10] W.Cao, X. Wang, Z. Ming, and J. Gao, ““A review on neural networks with

random weights,” Neurocomputing, vol. 275, pp. 278-287, Jan. 2018.

[11] C.-J. Chien, N. Yanai, and S. Okamura. (2021). Design of Malicious

Domain Detection Dataset for Network Security. [Online]. Available:
http://www-infosec.ist.osaka-u.ac.jp/~yanai/dataset.pdf

3

—

[5

—

[6

—

[9

VOLUME 9, 2021

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

IEEE Access

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in extreme learning
machines: A review,” Neural Netw., vol. 61, pp. 32-48, Jan. 2015.

C. Cortes and V. Vapnik, “Support vector machine,” Mach. Learn., vol. 20,
no. 3, pp. 273-297, 1995.

J. Zhang, Y. Li, W. Xiao, and Z. Zhang, “Non-iterative and fast deep learn-
ing: Multilayer extreme learning machines,” J. Franklin Inst., vol. 357,
no. 13, pp. 8925-8955, Sep. 2020.

W. Xiao, J. Zhang, Y. Li, S. Zhang, and W. Yang, ““Class-specific cost
regulation extreme learning machine for imbalanced classification,” Neu-
rocomputing, vol. 261, pp. 70-82, Oct. 2017.

J. Zhang, W. Xiao, Y. Li, and S. Zhang, “‘Residual compensation extreme
learning machine for regression,” Neurocomputing, vol. 311, pp. 126—-136,
Oct. 2018.

J. Zhang, Y. Li, W. Xiao, and Z. Zhang, “‘Robust extreme learning machine
for modeling with unknown noise,” J. Franklin Inst., vol. 357, no. 14,
pp. 9885-9908, Sep. 2020.

N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, ““A fast
and accurate online sequential learning algorithm for feedforward net-
works,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411-1423,
Nov. 2006.

J. Zhao, Z. Wang, and D. S. Park, “Online sequential extreme learn-
ing machine with forgetting mechanism,” Neurocomputing, vol. 87,
pp. 79-89, Jun. 2012.

H. Zhang, S. Zhang, and Y. Yin, “Online sequential ELM algorithm
with forgetting factor for real applications,” Neurocomputing, vol. 261,
pp. 144-152, Oct. 2017.

T. Matias, F. Souza, R. Aratdjo, N. Gongalves, and J. P. Barreto, “On-
line sequential extreme learning machine based on recursive partial least
squares,” J. Process Control, vol. 27, pp. 15-21, Mar. 2015.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

C. E. Shannon, “A mathematical theory of communication,” ACM SIG-
MOBILE Mobile Comput. Commun. Rev., vol. 5, no. 1, pp. 3-55, 2001.
H. Zhao, Z. Chang, G. Bao, and X. Zeng, ‘‘Malicious domain names detec-
tion algorithm based on N-Gram,” J. Comput. Netw. Commun., vol. 2019,
pp. 1-9, Feb. 2019.

V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczynski,
and W. Joosen, “Tranco: A research-oriented top sites ranking hardened
against manipulation,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2019,
pp. 1-15. [Online]. Available: https://www.ndss-symposium.org/ndss-
paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-
manipulation/

W. Cao, J. Gao, Z. Ming, and S. Cai, ““Some tricks in parameter selection
for extreme learning machine,” IOP Conf. Ser., Mater. Sci. Eng., vol. 261,
Oct. 2017, Art. no. 012002.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, “LightGBM: A highly efficient gradient boosting decision tree,”
in Proc. NIPS, vol. 30. Red Hook, NY, USA: Curran Associates, 2017,
pp. 3146-3154.

A. K. Sood and S. Zeadally, “A taxonomy of domain-generation algo-
rithms,” IEEE Secur. Privacy, vol. 14, no. 4, pp. 46-53, Jul. 2016.

W. Cao, J. Gao, Z. Ming, S. Cai, and H. Zheng, “Impact of probability
distribution selection on RVFL performance,” in Smart Computing and
Communication (Lecture Notes in Computer Science), vol. 10699. Cham,
Switzerland: Springer, 2018, pp. 114—124.

W. Cao, M. J. A. Patwary, P. Yang, X. Wang, and Z. Ming, “An initial study
on the relationship between meta features of dataset and the initialization
of NNRW,” in Proc. IJCNN, Jul. 2019, pp. 1-8.

B. Yu, D. L. Gray, J. Pan, M. De Cock, and A. C. Nascimento, “Inline DGA
detection with deep networks,” in Proc. ICDMW, Nov. 2017, pp. 683-692.
B. Yu, J. Pan, J. Hu, A. Nascimento, and M. De Cock, ‘““Character level
based detection of DGA domain names,” in Proc. IJCNN, Jul. 2018,
pp. 1-8.

B. Dhingra, Z. Zhou, D. Fitzpatrick, M. Muehl, and W. W. Cohen,
“Tweet2 Vec: Character-based distributed representations for
social media,” 2016, arXiv:1605.03481. [Online]. Available:
http://arxiv.org/abs/1605.03481

J. Saxe and K. Berlin, “EXpose: A character-level convolutional
neural network with embeddings for detecting malicious URLs, file
paths and registry keys,” 2017, arXiv:1702.08568. [Online]. Available:
http://arxiv.org/abs/1702.08568

X. Zhang, J. Zhao, and Y. LeCun, ‘“‘Character-level convolutional net-
works for text classification,” 2015, arXiv:1509.01626. [Online]. Avail-
able: http://arxiv.org/abs/1509.01626

VOLUME 9, 2021

(36]

(37]

(38]

[39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

H. Choi and H. Lee, “Identifying botnets by capturing group activities in
DNS traffic,” Comput. Netw., vol. 56, no. 1, pp. 20-33, Jan. 2012.

H. Choi, H. Lee, and H. Kim, “Botgad: Detecting botnets by capturing
group activities in network traffic,” in Proc. ACM COMSWARE, 2009,
pp. 1-8.

H. Choi, H. Lee, H. Lee, and H. Kim, “Botnet detection by monitoring
group activities in DNS traffic,” in Proc. ICCIT, Oct. 2007, pp. 715-720.
P. K. Manadhata, S. Yadav, P. Rao, and W. Horne, “Detecting malicious
domains via graph inference,” in Proc. ESORICS. Cham, Switzerland:
Springer, 2014, pp. 1-18.

A.Oprea, Z. Li, T.-F. Yen, S. H. Chin, and S. Alrwais, “‘Detection of early-
stage enterprise infection by mining large-scale log data,” in Proc. DSN,
Jun. 2015, pp. 45-56.

I. Prieto, E. Magaifia, D. Morat6, and M. Izal, “Botnet detection based
on DNS records and active probing,” in Proc. SECRYPT, Jul. 2011,
pp. 307-316.

B. Rahbarinia, R. Perdisci, and M. Antonakakis, ‘““Segugio: Efficient
behavior-based tracking of malware-control domains in large ISP net-
works,” in Proc. DSN, Jun. 2015, pp. 403—414.

B. Rahbarinia, R. Perdisci, and M. Antonakakis, “Efficient and accurate
behavior-based tracking of malware-control domains in large ISP net-
works,” ACM Trans. Privacy Secur., vol. 19, no. 2, pp. 1-31, Sep. 2016.
M. Grill, I. Nikolaev, V. Valeros, and M. Rehak, “Detecting DGA malware
using NetFlow,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM),
May 2015, pp. 1304-13009.

D. Chiba, T. Yagi, M. Akiyama, T. Shibahara, T. Yada, T. Mori, and
S. Goto, “DomainProfiler: Discovering domain names abused in future,”
in Proc. DSN, Jun. 2016, pp. 491-502.

X. Sun, J. Yang, Z. Wang, and H. Liu, “HGDom: Heterogeneous graph
convolutional networks for malicious domain detection,” in Proc. NOMS,
Apr. 2020, pp. 1-9.

I. Khalil, T. Yu, and B. Guan, ‘““Discovering malicious domains through
passive DNS data graph analysis,” in Proc. ACM ASIACCS, May 2016,
pp. 663-674.

X. Sun, M. Tong, J. Yang, L. Xinran, and L. Heng, ““Hindom: A robust
malicious domain detection system based on heterogeneous information
network with transductive classification,” in Proc. 22nd Int. Symp. Res.
Attacks, Intrusions Defenses (RAID), 2019, pp. 399-412.

1. Torroledo, L. D. Camacho, and A. C. Bahnsen, “Hunting malicious TLS
certificates with deep neural networks,” in Proc. 11th ACM Workshop Artif.
Intell. Secur. (AISec), 2018, pp. 64-73.

D. Herrald and R. Kovar. (2018). The ‘Hidden Empires’ of Malware.
[Online]. Available: https://www.slideshare.net/RyanKovar/the-hidden-
empires-of-malware-with-tls-certified-hypotheses-and-machine-learning
B. Anderson and D. McGrew, “Identifying encrypted malware traffic with
contextual flow data,” in Proc. ACM Workshop Artif. Intell. Secur. (AlSec),
2016, pp. 35-46.

C.-Y. Huang, S.-P. Ma, W.-L. Yeh, C.-Y. Lin, and C.-T. Liu, “Mitigate
Web phishing using site signatures,” in Proc. TENCON, Nov. 2010,
pp. 803-808.

J. Mao, W. Tian, P. Li, T. Wei, and Z. Liang, ‘‘Phishing-alarm: Robust and
efficient phishing detection via page component similarity,” IEEE Access,
vol. 5, pp. 17020-17030, 2017.

A. Y. Fu, L. Wenyin, and X. Deng, “Detecting phishing Web pages with
visual similarity assessment based on earth mover’s distance (EMD),”
IEEE Trans. Dependable Secure Comput., vol. 3, no. 4, pp.301-311,
Oct. 2006.

I.-F. Lam, W.-C. Xiao, S.-C. Wang, and K.-T. Chen, ““Counteracting phish-
ing page polymorphism: An image layout analysis approach,” in Proc.
Int. Conf. Inf. Secur. Assurance (Lecture Notes in Computer Science),
vol. 5576. Berlin, Germany: Springer, 2009, pp. 270-279.

R. S. Rao and S. T. Ali, “A computer vision technique to detect phishing
attacks,” in Proc. CSNT, Apr. 2015, pp. 596-601.

K.-T. Chen, J.-Y. Chen, C.-R. Huang, and C.-S. Chen, “Fighting phishing
with discriminative keypoint features,” IEEE Internet Comput., vol. 13,
no. 3, pp. 56-63, May 2009.

A. S. Bozkir and E. A. Sezer, “Use of hog descriptors in phishing detec-
tion,” in Proc. ISDFS, Apr. 2016, pp. 148-153.

L. Malisa, K. Kostiainen, and S. Capkun, “Detecting mobile application
spoofing attacks by leveraging user visual similarity perception,” in Proc.
ACM CODASPY, 2017, pp. 289-300.

S. Afroz and R. Greenstadt, “Phishzoo: Detecting phishing websites by
looking at them,” in Proc. ICSC, Sep. 2011, pp. 368-375.

78313

IEEE Access

K. lwahana et al.: MADMAX: Browser-Based Malicious Domain Detection Through ELM

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, vol. 1.
Red Hook, NY, USA: Curran Associates, 2012, pp. 1097-1105.

A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features
off-the-shelf: An astounding baseline for recognition,” in Proc. CVF, 2014,
pp. 512-519.

S. Abdelnabi, K. Krombholz, and M. Fritz, *“Visualphishnet: Zero-day
phishing website detection by visual similarity,” in Proc. ACM CCS, 2020,
pp. 1681-1698.

M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster, ‘“‘Build-
ing a dynamic reputation system for dns,” in Proc. USENIX Secur., 2010,
pp- 273-290.

M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou, and D. Dagon,
“Detecting malware domains at the upper DNS hierarchy,” in Proc.
USENIX Secur., 2011, pp. 1-16.

L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “EXPOSURE: Finding
malicious domains using passive DNS analysis,” in Proc. NDSS, 2011,
pp. 1-17. [Online]. Available: https://www.ndss-symposium.org/ndss
2011/exposure-finding-malicious-domains-using-passive-dns-analysis/

L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel, “Exposure: A
passive DNS analysis service to detect and report malicious domains,”
ACM Trans. Inf. Syst. Secur., vol. 16, no. 4, pp. 1-28, Apr. 2014.

I. Mishsky, N. Gal-Oz, and E. Gudes, “A topology based flow model
for computing domain reputation,” in Proc. IFIP Annu. Conf. Data Appl.
Secur. Privacy (Lecture Notes in Computer Science), vol. 9149. Cham,
Switzerland: Springer, 2015, pp. 277-292.

E. Passerini, R. Paleari, L. Martignoni, and D. Bruschi, “FluXOR: Detect-

ing and monitoring fast-flux service networks,” in Proc. Detection of

Intrusions and Malware, and Vulnerability Assessment (Lecture Notes
in Computer Science), vol. 5137. Cham, Switzerland: Springer, 2008,
pp. 186-206.

M. Stevanovic, J. M. Pedersen, A. D’ Alconzo, S. Ruehrup, and A. Berger,
“On the ground truth problem of malicious DNS traffic analysis,” Comput.
Secur., vol. 55, pp. 142-158, Nov. 2015.

KAZUKI IWAHANA received the B.Eng. degree
in engineering science from Osaka University,
Japan, in 2020, where he is currently pursuing the
M.S. degree with the Graduate School of Informa-
tion Science and Technology. His research interest
includes machine learning security.

TATSUYA TAKEMURA received the B.Eng.
degree in engineering science from Osaka Univer-
sity, Japan, in 2019, where he is currently pursu-
ing the M.S. degree with the Graduate School of
Information Science and Technology. His research
interests include machine learning and network
security.

JU CHIEN CHENG received the B.S. degree
in computer science and information engineering
from National Taiwan University, Taiwan, in 2017.
He is currently pursuing the M.S. degree with
the Graduate School of Information Science and
Technology, Osaka University, Japan. His research
interests include network security and machine
learning.

78314

NAMI ASHIZAWA is currently pursuing the M.S.
degree with the Graduate School of Information
Science and Technology, Osaka University, Japan,
in 2019. Her research interests include information
security and blockchains.

NAOKI UMEDA received the B.Eng. degree in
engineering science from Osaka University, Japan,
in 2020, where he is currently pursuing the M.S.
degree with the Graduate School of Information
Science and Technology. His research interests
include network security and machine learning.

KODAI SATO received the B.Eng. degree in engi-
neering science from Osaka University, Japan,
in 2019, where he is currently pursuing the M.S.
degree with the Graduate School of Information
Science and Technology. His research interest
includes cryptography.

RYOTA KAWAKAMI received the B.Eng. degree
in engineering science from Osaka University,
Japan, in 2020, where he is currently pursuing
the M.S. degree with the Graduate School of
Information Science and Technology. His research
interests include information security and social
engineering.

REI SHIMIZU received the B.Eng. degree in engi-
neering science from Osaka University, Japan, in
2021, where he is currently pursuing the M.S.
degree with the Graduate School of Information
Science and Technology. His research interests
include blockchains and network security.

YUICHIRO CHINEN received the M.S. degree
from the Graduate School of Information Science
and Technology, Osaka University, Japan, in 2020.
His research interest includes blockchains.

NAOTO YANAI (Member, IEEE) received the
B.Eng. degree from The National Institution for
Academic Degrees and University Evaluation,
Japan, in 2009, and the M.S.Eng. and Dr.E. degrees
from the Graduate School of Systems and Informa-
tion Engineering, University of Tsukuba, Japan,
in 2011 and 2014, respectively. He is currently an
Assistant Professor with Osaka University, Japan.
His research interest includes information security.

VOLUME 9, 2021

