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ABSTRACT Anomaly detection uses various machine learning techniques to identify and classify defective
data on the production line. The autoencoder-based anomaly detection method is an unsupervised method
that classifies abnormal samples using an autoencoder trained only from normal samples and is useful in
environments where it is difficult to obtain abnormal samples. This method uses an abnormal score based
on the reconstruction loss function, making it difficult to detect defects, such as stains, having a similar
texture to a normal sample. To solve this problem, we propose an anomaly detection method using a vector
quantized variational autoencoder and a feature vector frequencymap.We use the prototype vector histogram
and its frequency for anomaly detection instead of the reconstruction loss function. The prototype vector
histogram is obtained from the vector quantized variational autoencoder’s codebook in the training stage.
The feature vector frequency map of the input image is generated using the prototype vector histogram in
the inference stage. We calculated the abnormal score using the generated frequency map and classified
the abnormal samples. The experimental results showed that the proposed method has a higher Area Under
Receiver Operating Characteristics (AUROC) than the previous method in stain and scratch defects.

INDEX TERMS Anomaly detection, automatic optical inspection, deep learning.

I. INTRODUCTION
The method of distinguishing abnormal samples in a data
set is known as anomaly detection. It uses various modeling
techniques to detect and identify abnormal samples or data.
Common examples of this method are the detection of people
with specific features using closed-circuit television (CCTV)
and defect detection in the manufacturing industry. They
generally use feature-based classifier, generative adversarial
network and autoencoder.

The classifier -based anomaly detection uses a classifi-
cation model that detect abnormal samples based on fea-
tures extracted from input samples. The classifier-based
anomaly detection method creates a classifier that divide
input data into normal samples and other samples using
features extracted from input data [1]–[10], [23]–[28]. The
One-Class Support Vector Machine (OC-SVM) [1] method
assumes that the abnormal sample’s feature vector exists at
the origin. It learns a hyperplane that distinguishes abnormal
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samples from the feature vector of the normal sample. Taking
one stage further from the OC-SVM method, the Support
Vector Data Description (SVDD) method [2] classifies nor-
mal and abnormal samples by defining hyperspheres with
a minimum volume. The deep-SVDD method [3] changes
the feature vector extraction method in the SVDD method
from a handcraft-based to a convolutional neural network.
In addition, transfer learning [6], metric learning [7], vot-
ing [8], geometric transform [9], and adversarial training [10]
based method is used to detect abnormal samples. However,
these methods only classify normal and abnormal samples
and cannot obtain information on the defect’s location.

The Generative Adversarial Network (GAN)-based
anomaly detection method uses a generator and a discrimi-
nator learned from normal samples [11]– 14]. The generator
creates a normal sample from the probability distribution of
normal samples, and the discriminator classifies the gener-
ated sample and the real-world normal sample. The sample
generated by the generator is similar to the normal sample, but
there is a slight difference, which can be viewed as a kind of
abnormal sample. The discriminator is trained to classify the
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sample generated by the generator and the normal sample.
This discriminator is used to classify normal and abnormal
samples. There is a method that uses the Deep Convolutional
GAN (DCGAN) loss function as an anomaly score [11], and
a method that uses a discriminator to classify anomaly and
normal samples [14]. However, the GAN-based method is
difficult to train using complex images due to model collapse
problem.

The autoencoder-based anomaly detection uses the autoen-
coder trained by the dataset which only include normal
samples. It uses a data set consisting only of normal samples,
which is its deep learning network training data instead of
an abnormal sample to construct a detection model. This
method classifies an abnormal sample using the difference
in a loss function or mutual information between normal
sample and abnormal sample. The autoencoder-basedmethod
is an unsupervised-based method composed of an encoder
and a decoder [15]–[22]. The autoencoder-based anomaly
detection method uses the image difference between input
and output images [16], [18], [20], a latent space-based
score [15], [17], a loss-based score [19], and themethod using
the autoencoder-based GAN structure [20]. The autoencoder-
based anomaly detection method has higher learning sta-
bility than the GAN-based method, making it possible to
classify abnormal samples simply by reconstructing the input
image and the output image. In addition, autoencoder-based
anomaly detection method can identify the defect loca-
tion by using the difference image between input and out-
put image. However, the reconstruction loss-based anomaly
detection method has difficulty detecting stains and scratches
defect. In the autoencoder-based anomaly detection method,
the L1 and L2 reconstruction loss values in the 2D image are
compared with the normal sample’s values to determine an
abnormal sample. However, stain and scratch defects have a
subtle difference compared with normal samples and making
it difficult to distinguish using the L1 and L2 reconstruction
loss–based methods.

This paper proposes an anomaly detection method based
on a prototype vector histogram and a feature vector fre-
quency map. We extracted the prototype vector histogram
from the vector quantized variational autoencoder’s prototype
vector on codebook and used it to extract the input image’s
feature vector frequency map. Then, we calculate abnormal
score from feature vector frequency map of the input image
in the inspection stage and use it as a measure for anomaly
detection.

The contribution of this paper can be defined as follows:
1. We propose a novel method using the frequency of

latent vector for anomaly detection. To determine
abnormal samples, the previous method uses a decoder
result, but the proposed method uses a frequency map
derived from latent space.

2. We propose the feature vector frequency map as a
new anomaly detection measure. The prototype vector
histogram extracted in the training stage were used in
the inspection stage. Using this method, we achieved

a higher Area Under Receiver Operating Character-
istics (AUROC) compared to the reconstruction loss
method using the feature vector frequency map-based
defect detection method.

The thesis is organized as follows. Chapter I describes
the background description, necessity, and proposal method
for the proposed method. Chapter II describes the
autoencoder-based anomaly detection problem. Chapter III
describes the vector quantized variational autoencoder, and
Chapter IV describes the proposed vector quantized varia-
tional autoencoder and anomaly detection using the feature
vector frequency map. In Chapter V, the performance of the
existing method and the proposed method is compared based
on the experimental results in an actual defective dataset.
Chapter VI describes the conclusion of this paper.

II. AUTOENCODER–BASED ANOMALY DETECTION
PROBLEM
The autoencoder-based anomaly detection problem involves
classifying the input image into normal and abnormal sam-
ples based on the abnormal score calculated by the autoen-
coder. This score is computed using a score function based
on the autoencoder loss function, such as reconstruction loss
and latent vector distance. As the learning progresses, the
output image of the autoencoder becomes the same as the
input image, the abnormal score uses this characteristic. In the
training stage, the autoencoder is trained using only normal
samples. The autoencoder’s output image for the trained nor-
mal sample is reconstructed almost similar to the input image,
so the reconstruction loss for the normal sample is small.
In contrast, the autoencoder’s output image for the abnormal
sample has much difference from the input image, because it
is not learned in the training stage. The reconstruction loss for
the abnormal sample is high. The autoencoder-based anomaly
detection method determines the samples using the recon-
struction loss difference score. Fig. 1 shows the structure of
an anomaly detection in defect detection problem based on an
autoencoder. The input image is converted into a latent vector
through the encoder, then the decoder converts it, generating
an output image. After calculating the abnormal score using
the input image and the output image, it is classified into
normal samples and abnormal samples based on abnormal
score.

The anomaly detection problem consists of a training stage
and an inspection stage. In the training stage, the autoencoder
adjusts the weight of the network so that the output image is
the same as the input image. In the inspection stage, the input
image’s abnormal score is calculated with the trained autoen-
coder, and the abnormal score is used to determine whether
the input image is a normal sample or an abnormal sample.

A. TRAINING STAGE
In the training stage, the output image of autoencoder is
the same as the normal sample by updating the weight of
autoencoder. Since the training data set consist of only normal
samples, the autoencoder only learns the reconstruction task
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FIGURE 1. Structure of autoencoder based anomaly detection.

for the normal samples. The autoencoder consists of encoder
network E(·) and decoder network D(·). Encoder E(·) con-
verts the input image to a latent vector, and decoder D(·)
restores the latent vector to the same size as the input image.
The autoencoder uses a reconstruction loss function to learn
so that the decoder’s output result is the same as the input
image.

In the training stage, the sample of training data set x is
converted into a latent vector z through E(·). The encoding
process can be expressed as follows.

z = E(x) (1)

The latent vector z output from the encoder network is
converted to an output image x̂ of the same size as the input
image through D(·). This process can be expressed as the
following equation.

x̂ = D(z) (2)

The autoencoder output should be the same as the
input image. Therefore, reconstruction loss functions such
as L1/L2-distance and structural similarity index mea-
sure (SSIM) for the input image and output image are used as
the loss function. We used the autoencoder using L2-distance
as the reconstruction loss as an example. Let x (r, c) and
x̂ (r, c) are the brightness values of xn and x̂n at the pixel (r, c)
position,H andW is height and width of image, respectively.
The L2-distance loss function for input image x and output
image x̂ can be expressed as

Ll2 =
∑H

r=0

∑W

c=0

(
xn (r, c)− x̂n (r, c)

)2 (3)

B. INSPECTION STAGE
The inspection stage identifies defects in the input image
using the autoencoder. In the inspection stage, the autoen-
coder extracts the output image for the input image. Then,
by calculating the abnormal score function for the output
image and the input image, the input image is classified as
a normal sample or an abnormal sample.

As described above, the abnormal score function is mostly
based on reconstruction loss. In more detail, it varies accord-
ing to each method, such as a method using L1-distance of
the output image and input image [16], [19], method of using

the distance of probability distribution in latent space [15],
a method using SSIM [18]. The threshold value is defined
based on the normal sample’s abnormal score value in the
training stage.

III. VECTOR QUANTIZED VARIATIONAL AUTOENCODER
BASED ANOMALY DETECTION
The vector quantized variational autoencoder [29] is an
autoencoder that selects latent vectors from a codebook con-
sist of prototype vectors. The codebook is a latent embedding
space e ∈ RK×D where K is the number of the latent vector
and D is the dimensionality of each latent vector [29]. This
codebook is randomly initialized for first, and update by
loss function. The variational autoencoder assumes that the
latent vector follows a normal distribution and generates a
latent vector by resampling the encoder feature map into the
latent space. The encoder feature map is defined as a set
of feature vectors extracted from the encoder. The vector
quantized variational autoencoder selects the prototype vec-
tor that is the closest to the encoder feature vector of encoder
feature map as the latent vector. The latent vectors are a
compressed feature of the input image, and the diversity of
latent vector is limited in real-world data. Vector quantized
variational autoencoder design latent vectors using prototype
vectors instead of resampling method which generate a latent
vector using the mean and variance. Vector quantization is
a series of processes that replace each feature vector in the
encoder feature map with the prototype vector. Fig. 2 shows
the structure of vector quantized variational autoencoder.

The vector quantization module converts the feature vector
of the encoder feature map into a prototype vector. The vector
quantization module creates a quantized feature map from
the encoder feature map. Vector quantization module consists
of latent vector distance calculation, nearest prototype vector
extraction, and quantized feature map generation. In the stage
of calculating the latent vector distance, the distance between
each feature vector of the encoder feature map and the proto-
type vector of the codebook is calculated. Next, the prototype
vector that is the closest to the feature vector is selected as
the nearest prototype vector. Let the feature vector of the
encoder feature map be zE (x), and the prototype vector of
the codebook as ej(j = 1, 2, . . . ,N ). The nearest prototype
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FIGURE 2. Vector quantized variational autoencoder.

vector zq (x) of the vector quantized variational autoencoder
is defined as follows.

zq (x) = ek (4)

where,

k =
argmin

j
∥∥zE (x)− ej∥∥2 (5)

The nearest prototype vector zq (x) extracted from each
feature vector of the encoder feature map is combined into
one feature map corresponding to each original encoder fea-
ture map position. We define this feature map as a quantized
feature map. The quantized feature map is converted into an
output of the same size as the input image through a decoder.

To train the encoder, decoder, and vector quantizationmod-
ule simultaneously, we use a loss function that can consider
all three modules on reconstruction, codebook, and commit-
ment losses. Reconstruction loss is the difference between
the input image and the output image, and the codebook loss
represents the similarity between the prototype vector and the
feature vector of encoder feature map. The commitment loss
induces the feature vector of encoder feature map to be kept
close to the prototype vector to reduce the wrong mapping
of the same signal with another prototype vector during the
training process.

LVQ−VAE = ‖x − D (e)‖22 + ‖sg (E (x))− e‖
2
2

+β ‖sg (e)− E(x)‖22 (6)

sg(∗) means ‘stop gradient’ operator. The stop gradient
operator is defined as identity at forward stage and has zero
partial derivatives at backward stage. sg(∗) blocks inter-layer
interference factors in the calculation of the codebook loss
function and commitment loss function.

IV. VECTOR QUANTIZED VARIATIONAL AUTOENCODER
BASED ANOMALY DETECTION WITH FEATURE VECTOR
FREQUENCY MAP
This chapter describes an anomaly detection method using a
vector quantized variational autoencoder and a feature vector
frequency map. First, we define a prototype vector histogram
extracted from the vector quantizationmodule and explain the
extraction process. We define a feature vector frequency map
based on the prototype vector histogram. Finally, the method
of detecting abnormalities by the extracted feature vector
frequency map is described.

A. MOTIVATION
In the anomaly detection method based on reconstruction
loss, the autoencoder uses a data set containing only normal
samples as a training data set. It allows the autoencoder to
reconstruct a normal sample regardless of the input image.
However, since the reconstruction loss only considers the
difference between the input image and the output image,
modeling a normal sample is not appropriately performed.
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An abnormal sample is used as an input in the inspection
stage causes a problem: the input image and the output image
become the same. As a result, the anomaly detectionmethod’s
detection accuracy using reconstruction loss as an abnormal
score decreases. Especially, the detection accuracy decreases
in stain defects and scratch defects that are slightly different
from normal samples.

We focused on the prototype vector of codebook, the latent
vector of the vector quantized variational autoencoder,
to solve this problem. In the training stage, the vector quan-
tized variational autoencoder is trained using only normal
samples, and the prototype vector is updated according to the
loss function of equation (6). After the learning of the vector
quantized variational autoencoder is complete, the prototype
vector can be divided into two categories: the prototype vector
selected as the ‘‘frequently’’ nearest prototype vector in the
training stage and other prototype vectors. The prototype
vector selected as the nearest prototype vector with a high
frequency in the training stage means that it is a prototype
vector commonly extracted from the normal sample, which
means that the prototype vector is a major feature vector
of the normal sample. Therefore, the region in which the
corresponding prototype vector is selected as the nearest
prototype vector has a high probability of being a normal
region. In contrast, a prototype vector that is rarely selected
as the nearest prototype vector is likely to be an abnormal
region that is not found in the normal region. It means that
the prototype vector is a minor feature vector of the normal
sample.

Focusing on the above facts, we propose a prototype vec-
tor histogram extracted based on the number of times the
prototype vector is selected as the nearest prototype vector
and a feature vector frequency map extracted based on pro-
totype vector histogram. By replacing the nearest prototype
vector with the prototype vector histogram value, we created
a feature vector frequency map based on the extracted proto-
type vector histogram. Since the vector quantized variational
autoencoder’s latent vector is defined as a 3D feature map,
a 2D feature map can be obtained by replacing each nearest
prototype vector with their corresponding prototype vector
histogram value. This 2D feature map is a feature vector
frequency map. The anomaly score is calculated based on the
generated feature vector frequency map, and the abnormal
sample is detected by comparing it with the anomaly score
in the training stage.

Since the proposed method detects abnormal samples
using a feature vector frequency map, it improves the detec-
tion accuracy of defects with similar textures to normal, such
as stains and scratches, which were difficult to identify and
detect using previous methods. There is a slight difference
in brightness values for stain and scratch defects compared
to the normal sample. Therefore, it is difficult to detect stain
and scratch defects in a reconstruction loss-based anomaly
detection method that identify defects using differences in
brightness values. The prototype vector histogram records
whether prototype vector of codebook is frequently observed

during the training stage and determines abnormal samples
based on this histogram value.

B. SYSTEM STRUCTURE
The system structure of the proposed method is shown
in Fig. 3. The proposed method consists of an encoder,
a vector quantization module, and a decoder. The vector
quantization module consists of a codebook, a prototype
vector histogram, and a nearest prototype vector. The encoder
converts the input image into an encoder feature map con-
sisting of feature vectors, and it converted into a quantitated
feature map by the vector quantization module. The decoder
then generates an output image from the quantitated feature
map. The prototype vector histogram of the prototype vector
is extracted from the vector quantized variational autoencoder
using the training dataset. We calculate abnormal score from
this frequency map. In the inspection step, a feature vector
frequency map of the input image is generated using the
prototype vector histogram, and the abnormal score for the
input image is calculated based on this.

C. PROTOTYPE VECTOR HISTOGRAM
The prototype vector histogram records the number of times
the prototype vector was used as the nearest prototype vec-
tor at the training stage. The vector quantization module
selects the nearest prototype vector by calculating the dis-
tance between each feature vector of the encoder feature map
and the prototype vector. Let ze(r, c) is the feature vector of
the encoder feature map ze. The prototype vector histogram
H = {h1, h2, . . . , hN } is defined as follows:

k =
argmin

j
∥∥ze(r, c)− ej∥∥2 (7)

H (k)+ = γ (8)

D. FEATURE VECTOR FREQUENCY MAP
The feature vector frequency map is a feature map extracted
by prototype vector histogram and encoder feature map.
In the step selecting the nearest prototype vector, a one-
dimensional feature map is obtained by replacing the nearest
prototype vector with corresponding the prototype vector
histogram value of the nearest prototype vector. We define a
feature map consisting of prototype vector histogram values
corresponding to each prototype vector as a feature vector
frequency map for the input image. In this paper, we used
the reciprocal of the prototype vector histogram value for
feature vector frequency map to simplify the abnormal score
calculation.

Let the feature vector of encoder feature map in the input
image be zie(r, c). The feature vector frequency map F(r, c)
is defined as follows.

F (r, c) =
1

H (ki)
(9)

where

ki =
argmin

j

∥∥∥zie(r, c)− ej∥∥∥2 (10)

73812 VOLUME 9, 2021



Y.-G. Kim, T.-H. Park: Anomaly Detection Using Autoencoder

FIGURE 3. Structure of proposed method.

E. ANORMALY DETECTION WITH FEATURE VECTOR
FREQUENCY MAP
For anomaly detection, a feature vector frequency map for
a normal sample is required. Even in the normal sample,
there is an area with a high prototype vector histogram value.
The image edge region typically has a high prototype vector
histogram value. The convolution operation is specialized
in image texture analysis. Unlike the image texture region,
which has a low nearest prototype vector diversity, the image
edge region has a higher nearest prototype vector diversity
than the texture region. In the sentence above, diversitymeans
how many types of prototype vectors are selected as the
nearest prototype vector. We used the inverse of the reference
frequency map which is the mean of feature vector frequency
map of training data set to apply the diversity according to the
domain to the abnormal score. LetN is the number of training
data set, Fi(i = 1, 2, . . . ,N ) is the feature vector frequency
map of each samples in training data set, respectively. The
reference frequency map Fref is defined as follows.

Fref =

∑N
i=0 Fi
N

(11)

In the inspection step, the feature vector frequency map
is used to detect abnormal samples. For anomaly detection,

we defined the abnormal score function using the extracted
feature vector frequency map. Since the abnormal sample
include the prototype vector with a low frequency value,
the value of feature vector frequency map in the defect
region is higher than that of the normal sample. As a result,
the abnormal sample’s feature vector frequency map has a
higher value than that of the normal sample. We determine
whether the test image is abnormal or normal based on the
average of the abnormal score calculated from the training
sample. When the abnormal score of the test image exceeds
the threshold, we determine the test image as abnormal.

We defined the abnormal score as the sum of all pixel
values of the feature vector frequency map. Let Fi(r, c) is the
value of feature vector frequency map of the input image. The
abnormal score SAD is defined as follows.

SAD =
∑H

r=0

∑W

c=0

Fi(r, c)
Fref (r, c)

(12)

V. EXPERIMENTAL RESULT
A. EXPERIMENTAL SETUP
We used the defect image of a compact camera module to
evaluate the performance of the proposed method and previ-
ous method. The size of the input image is 256 × 256 with
a single channel image. We used 368 normal samples to
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FIGURE 4. Defect of compact camera module. (a) Normal sample (b) Coating defect (c) Scratch defect (d) Stain defect.

train vector quantized variational autoencoder, and 42 normal
samples, 26 coating defects, 68 scratch defects, and 82 stain
defects for inspection. Fig. 4 shows defect images of compact
camera module.

We used a PC with an Intel Core i7 processor and NVIDIA
GeForce RTX 2080 Ti graphics card.We used Pytorch library
for training and testing neural network. We used 0.001 as
the learning rate of the model, and the mini-batch size was
fixed to 16 for both the previous method and the proposed
method. We trained the proposed method and the previous
method until the neural network repeated 300 epochs of the
entire training dataset.

AUROC value was used as a performance measure for
anomaly detection. The AUROC value refers to the width of
the bottom of the Receiver Operating Characteristics (ROC)
curve. The ROC curve is a graph consisting of TPR (True
Positive Rate) on the y-axis and False Positive Rate (FPR)
on the x-axis. TPR is the ratio of predicting the actual normal
sample as normal, and FPR is the ratio of predicting the defect
sample as normal. TPR and FPR are defined as follows.

TPR =
TP

TP+ FN
(13)

FPR =
FP

TP+ FP
(14)

If the threshold value is set high to improve the classifi-
cation performance for normal samples, both TPR and FPR
rise. On the other hand, if the threshold is set low to improve
the classification performance for defective samples, the FPR
decreases, but the TPR decreases simultaneously. As such,
the ROC curve can evaluate the performance of the model
regardless of the threshold.

We compared the L2 autoencoder [18], SSIM autoen-
coder [18], variational autoencoder [16] and vector quantized
autoencoder [29] with the proposed method. L2 and SSIM
denote the reconstruction loss function of the autoencoder,
respectively. The L2 and SSIM autoencoders use L2 distance
and SSIM as the reconstruction loss functions, respectively.
The variational autoencoder generates a latent vector by
sampling with a normal distribution. The vector quantizaed
variational autoencoder was used to compare the difference
between the reconstrucion loss-based method and the feature
vector frequency map.

TABLE 1. Number of dataset.

FIGURE 5. ROC curve.

B. RESULT
Table 2 shows the defect detection results for the compact
camera module. Fig. 5 shows the AUROC of each method.
The AUROC of the proposed method shows the highest
performance at 78.5%. Since the L2 and SSIM autoencoders
differ only in the loss function within the same autoencoder
structure, they performed similarly. The variational autoen-
coder has better performance than the L2 and SSIM autoen-
coders but has a higher neural network weight than other
methods because the fully connected layer is used in the latent
vector extraction process. Among the comparison methods,
the proposed method has the highest AUROC performance.
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TABLE 2. Performance of defect detection methods.

TABLE 3. Performance of defect detection methods.

FIGURE 6. Coating defect result. (a) Input image (b) L2 autoencoder
(c) SSIM autoencoder (d) Variational autoencoder (e) Vector quantized
variational autoencoder (f) Proposed method.

The proposed method is about 20 ms or slower in terms of
inspection speed than the previous method because the vector
quantization takes about 20 ms for processing. It takes much
time to calculate the distance between the feature vector of
encoder feature map and the prototype vector. In addition,
the process of selecting the nearest prototype vector after
calculating the distance also takes several times.

Table 3 shows the defect detection performance for
each defect. Variational autoencoder showed the highest
AUROC value among autoencoder-based anomaly detection
methods except for the proposed method. The variational

FIGURE 7. Scratch defect result. (a) Input image (b) L2 autoencoder
(c) SSIM autoencoder (d) Variational autoencoder (e) Vector quantized
variational autoencoder (f) Proposed method.

autoencoder-based anomaly detection method uses a prob-
ability distribution to approximate a normal sample’s latent
vector, resulting in a more accurate output image. For this
reason, variational autoencoder shows higher performance
than other autoencoder-based anomaly detection methods.

Figs. 6–8 show the detection results of coating, scratch,
and stain defects, respectively. Each figure represents the
differences between input and output images as well as the
proposed method’s feature vector frequency map. The coat-
ing defect is different from the normal region, so it is easy to
distinguish it from the normal sample. However, some previ-
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FIGURE 8. Stain defect result. (a) Input image (b) L2 autoencoder (c) SSIM
autoencoder (d) Variational autoencoder (e) Vector quantized variational
autoencoder (f) Proposed method.

ous methods have poor performance for classifying coating
defects because the coating defect’s size makes it easily con-
fused with image noise. The proposed method showed high
defect detection performance for coating defects by detecting
defects with a feature vector frequency map. Figs. 7 and 8
show that scratch and stain defects are difficult to detect
as there is no distinct difference from the normal region.
It is difficult to detect defects because the previous method
restores scratch defects and stain defects with similar textures
to normal. The proposed method detects such defects by
comparing the feature vector frequency map extracted from
the prototype vector histogram.

VI. CONCLUSION
This paper proposed a defect detection method using the
prototype vector histogram and the feature vector frequency
map. The prototype vector histogram was extracted based on
the number of times selected as the nearest prototype vector
from the prototype vector of the vector quantization module.
The prototype vector histogram obtained a feature vector
frequency map from the input image. The abnormal score is
calculated from the feature vector frequency map of the input
image in the inspection stage to classify whether the input
image is a normal or abnormal sample. In the experimental
results, the proposed method showed higher AUROC val-
ues than other autoencoder-based defect detection methods.
The proposed method showed higher accuracy than previous
methods in defects with a similar texture to normal, such as
stain defects and scratch defects.

However, the proposed method has an AUROC of 78.5%,
which is a lower result than that because the actual inspection
process requires more than 95% of defect detection accuracy.
The proposed method uses a probabilistic model through
normal samples. As a result, defect detection accuracy is
reduced because it is difficult to extract an accurate model for
a normal sample. In addition, the proposed method to which
the vector quantization process is added takesmore than twice

as long as the previous autoencoder-based anomaly detection
method.

In future studies, we plan to apply additional modeling
techniques to improve the accuracy of defect detection. Even
in the normal sample, there is a prototype vector with a
low prototype vector histogram value. In particular, there are
many false detections at the boundary of the image. To com-
pensate for this, we plan to apply a Virtual Background
extractor (ViBe) method to compensate for false detection.
In terms of speed enhancement, prototype vector optimiza-
tion is required. Some prototype vectors have similar values,
and these prototype vectors cause redundant calculations of
unnecessary distances.
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