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ABSTRACT Learning from Demonstration (LfD) constitutes one of the most robust methodologies for
constructing efficient cognitive robotic systems. Despite the large body of research works already reported,
current key technological challenges include those of multi-agent learning and long-term autonomy. Towards
this direction, a novel cognitive architecture for multi-agent LfD robotic learning is introduced in this
paper, targeting to enable the reliable deployment of open, scalable and expandable robotic systems in
large-scale and complex environments. In particular, the designed architecture capitalizes on the recent
advances in the Artificial Intelligence (AI) (and especially the Deep Learning (DL)) field, by establishing a
Federated Learning (FL)-based framework for incarnating a multi-human multi-robot collaborative learning
environment. The fundamental conceptualization relies on employing multiple AI-empowered cognitive
processes (implementing various robotic tasks) that operate at the edge nodes of a network of robotic
platforms, while global AI models (underpinning the aforementioned robotic tasks) are collectively created
and shared among the network, by elegantly combining information from a large number of human-robot
interaction instances. Regarding pivotal novelties, the designed cognitive architecture a) introduces a new
FL-based formalism that extends the conventional LfD learning paradigm to support large-scale multi-agent
operational settings, b) elaborates previous FL-based self-learning robotic schemes so as to incorporate the
human in the learning loop and c) consolidates the fundamental principles of FLwith additional sophisticated
AI-enabled learning methodologies for modelling the multi-level inter-dependencies among the robotic
tasks. The applicability of the proposed framework is explained using an example of a real-world industrial
case study (subject to ongoing research activities) for agile production-based Critical RawMaterials (CRM)
recovery.

INDEX TERMS Learning from demonstration, human-robot interaction, artificial intelligence, federated
learning.

I. INTRODUCTION
Robotic learning through direct interaction with humans
constitutes a well-established and highly active research
field over the past few decades. In particular, the most
dominant learning paradigm in this area, the so-called Learn-
ing from Demonstration (LfD), relies on the fundamen-
tal principle of robots acquiring new skills by learning to
imitate a (human) teacher [1], [2]. LfD (equally termed
programming by demonstration, imitation learning, behav-
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ioral cloning or apprenticeship learning) concerns multiple
aspects of robotics technology, including human-robot inter-
action, machine learning, machine vision and motor con-
trol [3], [4]. Key advantageous characteristics of LfD that
have contributed to its widespread adoption and successful
application to diverse domains include [5]:
• It enables robot programming by non-expert users;
• It allows time-efficient learning, where task require-
ments are implicitly learned through demonstrations
(and not by explicitly specifying all sequences of robotic
actions);

• It enables adaptive robotic behaviors;
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• It renders feasible for the robots to operate in complex,
unstructured and time-varying environments.

So far, multiple and fundamentally different methods have
been investigated and materialized in robotic platforms for
capturing, modelling and learning from human feedback in
numerous robotic manipulation tasks of varying complex-
ity [6]. Depending on the employed human demonstration
means, LfD approaches generally fall into three main cate-
gories [1]:
• Kinesthetic teaching, which enables the human user to
demonstrate by physically moving the robot through the
desired motions [7], [8];

• Teleoperation, which requires an external input to guide
the robot through a joystick, graphical user interface or
other means [9], [10];

• Passive observation, where the robot learns from pas-
sively observing the user behavior [11], [12].

A critical aspect in the design and deployment of any
LfD scheme concerns the adopted methodology for refining
the robot learned policies. In particular, different types of
approaches have been introduced [13]:
• Reinforcement learning, where a policy to solve a prob-
lem is learned via trial and error [14], [15];

• Optimization, which targets to find an optimal solution
based on given criteria [16], [17];

• Transfer learning, where knowledge of a task or a
domain is used to enhance the learning procedure for
another task [18];

• Apprenticeship learning, where demonstrated samples
are used as a template for the desired performance [19];

• Active learning, where the robotic agent is able to
query an expert for the optimal response to a given
state and to use these active samples to improve its
policy [20];

• Structured predictions, which is based on the fundamen-
tal consideration that an action is regarded as a sequence
of dependent predictions [21].

Regarding implementation and deployment aspects of
the designed LfD mechanisms, these have been dom-
inated by the adoption of Machine Learning (ML)
techniques, whose continuously increasing modelling and
representation learning capabilities have correspondingly
led to more robust and fine-grained LfD learning poten-
tials. In particular, multiple and diverse ML approaches
have been employed, ranging from Gaussian Mixture Mod-
els (GMMs) [22], Hidden Markov Models (HMMs) [23]
and Dynamic Movement Primitives (DMPs) [24] to, more
recently introduced, Recurrent Neural Networks (RNNs) [25]
and Convolutional Neural Networks (CNNs) [26], to name a
few.

Despite the plethora of works in the LfD field, criti-
cal research challenges of paramount importance, namely
multi-agent learning [13] and long-term autonomy [27],
need to be reliably addressed, in order to promote the
wide-spread use of robots in open and complex environments.

Regarding the former, robust solutions to multi-agent learn-
ing would enable, among others: a) sharing and aggregation
of diverse knowledge/experiences among a large number
of agents (especially in a multi-robot multi-human setting),
b) creation of large volumes of heterogeneous and diver-
sified datasets for training purposes, c) convergence to the
development of more reliable and generalizable modules
for robotic task execution and d) more efficient handling
of complex tasks. On the other hand, enhancing long-term
autonomy (i.e. enabling the robot to remain operational for
as long as possible) would allow, among others: a) handling
(short-, medium- or long-term) changes in the operational
environment, b) managing parts of the environment that may
not be fully known before system deployment or when new
elements appear, c) addressing changes in user requirements
(e.g. alternation of targeted tasks or how the robot should
accomplish them) and d) adaptation to new knowledge (e.g.
about the environment, provided by the human user, etc.) as
it becomes available. The above need to be also investigated
in conjunction with typical challenges in Human–Robot
Interaction (HRI) schemes, like developing appropriate user
interfaces, variance in human performance, variability
in knowledge across human subjects, learning from
noisy/imprecise human input, learning from very large or
very sparse datasets, incremental learning, etc.

In this paper, a novel cognitive architecture for large-scale
LfD robotic learning is introduced, targeting to reliably
address the currently most critical challenges (and of out-
standing importance) in the field, namely those ofmulti-agent
learning, long-term autonomy and deployment of open,
scalable and expandable robotic systems. The designed archi-
tecture takes advantage of the recent advances in the Arti-
ficial Intelligence (AI) (and especially the Deep Learning
(DL)) field, by establishing a Federated Learning (FL)-
based framework for incarnating a multi-human multi-robot
collaborative learning environment. The fundamental con-
ceptualization relies on employing multiple AI-empowered
cognitive processes [28]–[31] (implementing various robotic
tasks, like sensing, navigation, manipulation, control,
human-robot interaction, etc.) that operate at the edge nodes
of a network of robotic platforms (i.e. adopting a decen-
tralized edge computing setting), while global AI models
(underpinning the aforementioned robotic tasks) are collec-
tively created and shared among the network, by elegantly
combining information from a large number of human-robot
interaction instances. The designed cognitive AI architecture
exhibits the following main novel advantageous characteris-
tics, which significantly broaden the current capabilities of
LfD learning schemes:
• It extends the current conventional LfD robotic learning
paradigm to support large-scale multi-agent operational
settings, by introducing a new FL-based formalism,
which appropriately amplifies the algorithmic aspects of
the conventional FL mechanism;

• It elaborates previous FL-based self-learning robotic
schemes, by incorporating the human in the learning
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loop (using intuitive and informative HRI mechanisms),
while including diverse strategies for fine-grained adap-
tive analysis and integration of multi-human feedback
in the Neural Network (NN) parameter update process,
namely user weighting, parameter weighting and user
clustering;

• It consolidates the fundamental principles of FL with
additional sophisticated AI-enabled learning method-
ologies for modelling the inter-dependencies among
the robotic tasks and, hence, further reinforcing the
robot knowledge/skill acquisition capabilities, namely
transfer-, multitask- and meta-learning techniques.

Overall, the designed cognitive AI architecture essentially
introduces a large-scale comprehensive human-robot collec-
tive intelligence scheme. An example of a real-world indus-
trial case study (subject to ongoing research activities) for
agile production-based Critical RawMaterials (CRM) recov-
ery is investigated for explaining the applicability of the
proposed framework.

The remainder of the paper is organized as follows:
Section II details challenges and open issues currently present
in the LfD learning field. Section III briefly outlines the
fundamental principles of the federated learning paradigm,
while Section IV discusses prior FL-based works in robotics.
Additionally, Section V details the introduced AI-empowered
multi-agent LfD cognitive architecture, whose applicability
is demonstrated using a real-world industrial CRM recovery
case study in Section VI. Finally, conclusions and proposed
future research directions, according to the designed cogni-
tive architecture, are discussed in Section VII.

II. CHALLENGES IN LfD LEARNING
As outlined in Section I, LfD constitutes a dominant method-
ology for robotic learning, due to the multiple advantageous
characteristics that it exhibits [2], such as that it allows
non-expert robot programming, it typically requires a rela-
tively small number of expert demonstrations, it allows con-
trolled and safe learning circumstances for humans, it pro-
vides strong convergence guarantees, it is robotic platform
independent, etc. Regarding the operational scenarios where
LfD has so far shown significant advances, these involve
the use of both manipulator (e.g. manufacturing [32], assis-
tive [33], healthcare [22], social [34], etc.) and mobile (e.g.
ground [35], aerial [36], Bi/Quadru-pedal [37], underwa-
ter [38], etc.) robots. With respect to the overall LfD process
outcome, this can be categorized to different levels of abstrac-
tion [1], including the learning of:

• Policies, i.e. the estimation of a function that generates
the desired behavior [39];

• Cost and reward functions, where it is assumed that the
ideal behavior results from the optimization of a hidden
function [40];

• Plans, i.e. high level structured schemes, composed of
several sub-tasks or primitive actions [41];

• Multiple outcomes simultaneously, by jointly modeling
complex behaviors at multiple levels of abstraction [42].

Despite the extensive research efforts devoted and the large
body of corresponding outcomes produced, key technolog-
ical challenges and open issues still remain to be robustly
addressed, including, among others, the following ones [1],
[5], [6], [13]:

• To involve in a more robust way a broad number
of teachers with different styles of and possibly con-
flicting demonstrations, including the case of teachers
with diverse idiosyncrasies and varying levels of exper-
tise/experience;

• To transfer skills across multiple agents, including mul-
tiple and diverse types of robots, since so far research has
been reduced to transfer of navigation or communication
skills across swarms of relatively simple mobile robots;

• To simultaneously learn multiple complex tasks, while
storing and reusing prior knowledge at large scale, i.e.
moving away from the typical scenario of focusing on a
single task (or a set of closely related tasks) and a tabula
rasa setting;

• To robustly implement incremental learning schemes,
i.e. to enable the robot to select information, to reduce
redundant data, to select features/representations and to
store new data efficiently;

• To reinforce the generalization ability, i.e. to enable the
robots to learn from and to respond to stimuli unseen,
yet similar, during training;

• Tomodel compound tasks, i.e. to jointly learn high-level
task plans and low-level primitives, while also making
use of multi-modal demonstrations;

• To implement multi-agent imitation learning schemes,
i.e. enabling each robotic agent to acquire knowledge
and skills from a number of human teachers or other
agents in a shared environment;

• To operate in realistic, dynamic, time-varying and com-
plex environments, aiming to enhance the long-term
autonomous functioning of robots.

The recent outstanding advances in the AI field, especially
concerning the collaborative FL paradigm and associated
AI-empowered advanced learning methodologies, can pro-
vide fertile ground and highly promising research directions
towards serving as enablers for providing robust solutions
to the above-mentioned LfD robotic learning challenges.
Especially with respect to the continuously growing need
for deploying robotic solutions in large-scale, dynamic and
complex environments, the demonstrated increased AI capa-
bilities can provide reliable means for encountering the par-
ticularly crucial aspects of multi-agent learning [13] (i.e.
enabling robotic agents to acquire skills from their interaction
with multiple human demonstrators as well as to exchange
knowledge with other robots in a shared environment) and
long-term autonomy [27] (i.e. enabling robotic systems to
perform autonomously in real-world scenarios over extended
time periods).
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FIGURE 1. Fundamental mechanism of the federated learning paradigm.

III. FEDERATED LEARNING PARADIGM
Federated learning (or collaborative learning) is a ML
paradigm where multiple computational nodes (e.g. com-
puter clusters, PCs, mobile devices, etc.) collaboratively train
a global (AI) model under the supervision of and orches-
tration by a central process (e.g. server, service provider,
High-Performance Computing (HPC) infrastructure, etc.),
without exchanging data among the nodes of the network
(i.e. maintaining the training data of each node locally, in a
decentralized way) [43]–[45]. Especially the latter character-
istic renders FL a by-definition privacy-aware method, which
can reliably mitigate many of the systemic privacy risks and
costs resulting from traditional centralized ML [46]–[48].

The fundamental mechanism of the FL paradigm is illus-
trated in Fig. 1. In particular, a global AI model, which is
aimed to be collaboratively trained and shared among the
network, is initially constructed using proxy data (either
offline or at the central node). Then, the model is made
available to the network and downloaded by each node.
Every node encapsulates a local database that is used to
estimate improved updates of the global model parameters
(e.g. using conventional Stochastic Gradient Descent (SGD)
for the case of NN-based AI modules), without making the
local (federated) data available to the network. The com-
puted local parameter updates (denoted 1Wl in Fig. 1) are
asynchronously transmitted back to the central node (using
encrypted communication), where an aggregation mecha-
nism is responsible for combining them (often adopting a
simple averaging operator) and periodically producing a new
version of the global model. The overall process is iterative
(i.e. continuously estimating improved versions of the global
model) and can involve a very large number of heterogeneous
computational nodes [49]. It needs to be highlighted that each
local computational node can maintain a customized version
of the global model, while using the locally stored data for
fine-tuning purposes.

FL-based training in highly heterogeneous and massive
networks results into new technological challenges, related

to the fields of large-scale ML, distributed optimization and
privacy-preserving data analysis, which are summarized as
follows [50]:
• Communication efficiency, where FL-based systems
need to reliably address the potentially massive number
of available nodes and the corresponding slow network
communication (by many orders of magnitude) com-
pared to local computational speed;

• Systems heterogeneity, where particular attention needs
to be given towards balancing the varying storage, com-
putational and communication capabilities of each node,
due to the corresponding variability in hardware, net-
work connectivity and power resources;

• Statistical heterogeneity, which refers to the adopted
data-generation paradigm in FL systems that typically
violates frequently used independent and identically dis-
tributed (i.i.d.) assumptions in distributed optimization,
which adds to the system design problem complexity;

• Privacy, where an optimal trade-off needs to be made
between FL-system efficiency and protecting sensitive
information (throughout the training process) that can
be revealed to a third-party or the central node.

IV. FEDERATED LEARNING IN ROBOTICS
The staggering technological capabilities and tremendous
innovation potentials that have recently been introduced by
FL techniques in multiple AI and data science application
fields inevitably leads to transformative developments in the
robotics area as well. Indeed, very lately an initial body of
works investigating relatively straight-forward implementa-
tions of FL schemes in specific robotic tasks has been pre-
sented and focuses on the following main aspects:
• Autonomous navigation: Liu et al. [51] introduce a
reinforcement learning approach, coupled with suit-
able knowledge fusion and transfer learning algorithms,
for autonomous navigation of mobile robots using
a cloud environment. Additionally, a reinforcement
learning-based real-life collision avoidance system for
indoor settings with obstacle objects is presented in [52].
Majcherczyk et al. [59] investigate a multi-agent trajec-
tory forecasting problem, following both a conventional
and a serverless FL aggregation mechanism. Moreover,
an imitation learning framework is proposed for gener-
ating guidance models for robots in a self-driving task
application in [53]. Furthermore, different approaches
have also been investigated for the case of Unmanned
Aerial Vehicles (UAVs) path planning [54], [55].

• Simultaneous Localization And Mapping (SLAM):
Li et al. [56] present a visual-lidar SLAM approach,
which supports feature extraction and dynamic vocabu-
lary designation in real-time, while operating on a cloud
workstation.

• Motion planning: Bretan et al. [57] incorporate princi-
ples of ensemble and reinforcement learning, as well
as gradient free optimization, for various robotic tasks,
including inverse kinematics, controls and planning.
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• Visual perception: Zhou et al. [58] examine a differential
privacy protection approach to multiple robotic recogni-
tion tasks, while balancing the trade-off between per-
formance and privacy. Additionally, a resource-aware
learning approach for distributed mobile robots,
taking into account limitations either in memory,
bandwidth, processor or battery life, is presented
in [60].

• Vehicle management: Ng et al. [61] propose the use of
UAVs as wireless relays to facilitate the communication
between Internet of Vehicles (IoV) components and the
FL server, targeting to improve the accuracy of the FL
framework. Additionally, a variant of the previous work
focuses on the deployment of a privacy-preserving fed-
eration of Drones-as-a-Service (DaaS) providers for the
development of IoV applications, e.g. traffic prediction
and car park occupancy management [63].

• Human-robot interaction: Ferrer et al. [62] introduce a
multi-robot framework in the domain of mobile health,
targeting to facilitate clinical interventions by improving
the robots’ interaction capabilities.

Taking into account the above analysis, it can be seen that
the relevant robotics literature has so far focused on rela-
tively straight-forward implementations of the FL paradigm.
In particular, Table 1 illustrates the main architectural char-
acteristics of current multi-agent FL-based robotic systems,
emphasizing on the following crucial aspects: a) the types
of robots involved, b) the types of sensors used, c) the
types of tasks modeled, d) the actual learning methodology
implemented (under the decentralized FL setting), e) if the
human factor is integrated in the learning loop, f) whether any
additional advanced learning methodologies are incorporated
and g) if the cognitive architecture has been implemented.
The proposed multi-agent LfD cognitive AI architecture (to
be detailed in Section V) is also included in Table 1, where
it can be seen that it achieves to introduce the theoretical
foundations along with specific implementation/algorithmic
guidelines for widening the capabilities of current systems in
all examined aspects. More specifically, the introduced cog-
nitive AI architecture is particularly beneficial for address-
ing the following key limitations in the literature of critical
importance:

• The available methods examine only individual robotic
tasks in an isolated way, while in typical real-world
applications multiple tasks, as well as their cross-
correlations, should be simultaneously examined; on
the contrary, the proposed architecture aims at jointly
learning multiple and significantly diverse robotic tasks
(e.g. sensing, navigation, manipulation, control, HRI,
etc.).

• Current approaches are only constrained in self-learning
scenarios; however, the introduced architecture inves-
tigates sophisticated AI-empowered HRI schemes and,
hence, involves the human in the learning loop
for exhibiting numerous advantageous characteristics,

especially for demanding and fine-grained robotic
tasks (e.g. more precise guidance, more time effi-
cient learning, inspection of learning procedure, etc.).
Towards this direction, different techniques for incor-
porating multi-user feedback information are provided
(namely user weighting, parameter weighting and user
clustering).

• Literature works usually do not take advantage
of advanced AI-enabled learning methodologies for
strengthening their learning capabilities; on the other
hand, the proposed architecture incorporates differ-
ent such methodologies (namely transfer, multi-task
and meta learning), particularly focusing on exploiting
cross-task correlation information.

In order to provide insights also with respect to per-
formance aspects of current multi-agent FL-based robotic
systems, Table 2 outlines evaluation-related details of the
architectures described in Table 1 that have been imple-
mented. In particular, the key points of the evaluation frame-
work developed in each study are provided, focusing on
presenting: a) the robotic tasks to be reinforced using the
FL paradigm, b) the experimental setting used during the
evaluation process and c) the reported performance mea-
surements (in simulation and/or real-world environments).
From the provided results, it can be observed that FL tech-
nologies lead to promising outcomes and significant poten-
tials in various application cases. However, more compre-
hensive, detailed and thorough evaluation (also in additional
robotic tasks and well-defined challenging open benchmarks)
is required in order to demonstrate in a robust way the
benefits of (multiple and diverse aspects of) FL in practical
applications.

V. MULTI-AGENT LfD COGNITIVE AI ARCHITECTURE
In this section, a novel open expandable cognitive
AI-empowered architecture for multi-agent human-robot col-
laborative learning is introduced. The ultimate goal is to
provide reliable solutions to current critical challenges faced
by robotic systems (and especially within the particular
LfD field), namely those of multi-agent learning [13] and
long-term autonomy [27]; achieving the latter will in turn
facilitate the deployment and wide-spread use of robots in
open and complex environments. The fundamental concep-
tualization behind the designed architecture is to leverage
the recent technological advancements in the field of AI
(focusing mainly on the use of the FL paradigm and closely
related technologies) and to transfer them to the robotics
application area for extending the capabilities of the current
techniques. The designed cognitive AI architecture, whose
high-level representation is illustrated in Fig. 2, incarnates a
multi-human multi-robot collaborative learning environment
that is composed of the following main reference entities:
a) the robotic platform, b) the human, and c) the collec-
tive (FL) cognitive AI layer. Detailed analysis of the for-
malisms and roles of the aforementioned entities are provided
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TABLE 1. Comparison of architectural characteristics of multi-agent FL-based robotic systems of the literature.

in the remaining of the section, while a summary of the main
mathematical symbols used is given in Table 3.

A. ROBOTIC PLATFORM
Under the proposed conceptualization, each robotic platform
consists of the following main layers: a) the sensor, b) the
robot, and c) the task one. In particular, the sensor layer
includes the set of sensing devices that allow the robotic
platform to perceive and to collect critical information about
the surrounding environment. The set of potentially supported

types of sensors, which can be significantly broad and also
depends on the particular application case, is defined as
follows:

S = {si|i ∈ [1, I ], i ∈ N, I ∈ N}
= {Vision, Light,Temperature,Chemical,Force,

Acoustic,Gas,Motion,Magnetic,Pressure,

Position, . . .} (1)

Regarding the robot layer, this refers to the actual mecha-
tronic equipment to be deployed. Depending on the specific
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TABLE 2. Reported performance of multi-agent FL-based robotic systems of the literature.

operational scenario, multiple types of robots can be used,
supporting different requirements for mobility, positioning,
manipulation, communication, size, payload, etc. The set of
available types of robots is denoted:

R = {rj|j ∈ [1, J ], j ∈ N, J ∈ N}
= {Arm,AGV ,Humanoid,UAV ,

Vehicle, Industrial, . . .} (2)

With respect to the task layer, this concerns the types of poli-
cies and activities that the robotic platform will be required to
implement. These may cover a large set of possible percep-
tion, cognition, motor and interaction functionalities, which
will inevitably need to be appropriately adapted, apart from
the specific application requirements at hand, also to the par-
ticularities of the employed robot type rj. The set of potential

types of robotic tasks is defined as follows:

T = {tk |k ∈ [1,K ], k ∈ N,K ∈ N}
= {Sensing,Navigation,Manipulation,

Control,Human− robot interaction, . . .} (3)

Taking into account the above-mentioned formalisms,
a robotic platform Pl can be fully specified as follows:

Pl = {Sl,Rl,Tl |Sl ⊆ S,Rl ⊆ R,Tl ⊆ T }, l ∈ [1,L], (4)

where L denotes the total number of robotic platforms present
in the examined cognitive environment.

B. HUMAN
Within the designed multi-agent collaborative learning envi-
ronment, the human factor constitutes a fundamental build-
ing block for simultaneously a) transferring fine-grained and

73896 VOLUME 9, 2021



G. T. Papadopoulos et al.: Towards Open and Expandable Cognitive AI Architectures

FIGURE 2. High-level representation of the introduced multi-agent cognitive AI collaborative learning architecture.

TABLE 3. List of main mathematical symbols.

sophisticated skills to the robot and b) supervising/inspecting
the learned robot behaviors (i.e. in principle guiding the

overall robotic learning process). Although all types of LfD
methodologies (namely kinesthetic teaching, teleoperation
and passive observation, as detailed in Section I) are sup-
ported by the introduced cognitive AI architecture, the adop-
tion of a teleoperation-based approach is considered to
exhibit significant advantageous characteristics. In particular,
an intuitive and sophisticated teleoperation scheme is fore-
seen that is based on the combined used of Augmented Real-
ity (AR) visualizationmechanisms and eXplainable AI (XAI)
technologies.

Regarding AR techniques, they have so far been shown to
be beneficial for enabling the human operators to be simul-
taneously aware of the actual processes that take place in the
physical environment (e.g. a factory) and to be continuously
updated with valuable information related to the underlying
automatic control procedures. In the current cognitive archi-
tecture, AR tools are employed in order to allow the human
user to perform a physical inspection of the robot exhibited
behaviors (and hence to identify malfunctions, hazardous
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situations, deviations from desired policies, etc.), while at
the same time being constantly provided with key detailed
insights about the AI processes being applied (e.g. the AI
modules being used, their estimated outputs, how specific
decisions are reached, etc.). To this end, this AR-grounded
setting constitutes an efficient and user-friendly way to exam-
ine the convergence of the physical (robot) and AI (soft-
ware) worlds at the same time. Additionally, while also of
paramount importance, the designed AR setting makes two
key functionalities available to the human user: a) to provide
feedback regarding the possible corrections in the exhibited
robot behaviors (when a deviation from the desired targets is
observed) and b) to receive full control of the robot performed
actions, through a teleoperation-based robot policy definition
scheme. Under certain circumstances (e.g. involvement of
very large-scale application settings, like industrial operat-
ing plants), Virtual Reality (VR) technologies can also be
used in conjunction (e.g. virtual factory) for overall process
monitoring. It needs to be mentioned that the set of human
operators involved in the designed cognitive architecture is
denoted H = {hm|m ∈ [1,M ],m ∈ N,M ∈ N}.
Concerning XAI methods, their fundamental aim is

to improve trust and transparency of AI-based systems,
by attempting to provide valuable insights or to directly
explain the decision making process of AI procedures [64].
Under the current conceptualization, XAI techniques are
adopted in order to provide precise explanations/insights to
the human operator regarding the deviation of the robot
behavior from the desired one, i.e. enabling an in depth
inspection of the robot behavior. The XAI-based gener-
ated explanations are provided to the human user through
the aforementioned AR/VR visualization interfaces. Conse-
quently, the human user is capable of providing more accu-
rate guidance to the robot (through means of provision of
feedback or teleoperation, as discussed above) and, hence,
to supervise the overall robotic learning process more closely.
Depending on the particular type of sensor si and task tk ,
different model-specific or model-agnostic XAI methods can
be employed [65].

C. COLLECTIVE (FL) COGNITIVE AI LAYER
The introduced collective (FL) cognitive AI layer consti-
tutes the core entity in the designed architecture that is
responsible for creating, updating and distributing multiple
AI modules, which underpin the various robotic processes
implemented in the examined application setting. These AI
modules are collectively created and maintained by simulta-
neously aggregating knowledge/feedback from a large-scale
human-robot interaction set (adopting the fundamental mech-
anisms of the LfD methodology), while aiming to address
the current challenges of multi-agent learning and long-term
autonomy. For achieving the latter goals, the designed open
and expandable cognitive AI architecture is grounded on
principles of the FL approach, whose fundamental mecha-
nism is explained in Section III. The main building blocks
of the introduced cognitive AI layer, their formalism and

detailed explanation of their functionalities, is provided in the
followings:
Network Nodes: Every robotic platform Pl corresponds to

a network node of the defined architecture, in accordance to
the fundamental FL mechanism illustrated in Fig. 1. Each Pl
stores locally the generated data, which in principle contain
information collected from the set of sensors Sl incorporated
by Pl . It needs to be highlighted that feedback information
can be obtained by any Pl from the interaction with any
human subject hm present in the application environment, i.e.
it is considered that any teacher hm can inspect and provide
guidance to any performing robotic platform Pl .
AI Models: The designed cognitive architecture aims to

address the needs related to the deployment of large-scale
AI-driven human-robot environments, simultaneously sup-
portingmultiple combinations of sensor si, robot rj and task tk
types. For achieving that, a broad set of individual AI models
denoted Wβ ← f1(Sβ ,Rβ ,Tβ ), underpinning the various
implemented cognitive processes present in the examined
environment, is considered, where Sβ ⊆ S, Rβ ⊆ R, Tβ ⊆ T ,
β ∈ [1,B], β ∈ N, B ∈ N and f1(.) implies a generalized
function or process that defines the exact NN-based material-
ization ofmodelWβ while considering Sβ ,Rβ and Tβ as input
parameters. The overall goal of the introduced FL-grounded
environment is to construct global Wβ models (Section III),
by exploiting data from a large-scale human-robot interaction
set of distributed sources, while each network node can main-
tain a local/customized version ofWβ .
Learning Methodology: Regarding the specific methodol-

ogy to be followed for refining the robot learned policies (i.e.
for updating the AI models Wβ ), different options can be
investigated (e.g. reinforcement learning, transfer learning,
active learning, etc.), as discussed in Section I. The most suit-
able selection depends on the particularities of the application
domain and each individually examinedWβ .
Local Parameter Updates: Regardless of the particular

learning methodology selected, each robotic platform Pl can
estimate updates for any AImodelWβ that is associated with,
using its locally stored data. More specifically, the following
local parameter update mechanism is applied:

Wl,m
β ←Wl,m

β − lr
l
· ∇Lβ (Wl,m

β , δl), (5)

where Wl,m
β is the local/customized version of the global

model Wβ with respect to human teacher hm, lr l is the
local learning rate, ∇ denotes the gradient of a function,
Lβ (.) represents the loss function defined for Wβ and δl is
the locally stored dataset. Consequently, the local parameter
updates, which are iteratively estimated, to be sent to the
central node (aggregator) are computed as follows:

1Wl,m
β =Wl,m

β −Wβ

From the above formalization, it can be seen that the designed
architecture allows local parameter updates to be estimated
separately for each human teacher hm, i.e. also leading to
‘personalized’ versions of each modelWβ .
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User Profiling: Incorporating human feedback constitutes
a fundamental part of the LfD approach and, consequently,
of the current cognitive architecture. However, the latter
poses additional challenges to the problem formulation that
need to be efficiently addressed (e.g. variance in human per-
formance, variability in knowledge across human subjects,
learning from noisy/imprecise human input, learning from
very large or very sparse datasets, incremental learning, etc.).
Towards this direction and in parallel with the Wl,m

β estima-
tion process, an individual user profile Ql,m

← f2(δl, Sm)
is constructed for every human subject hm at every node
Pl , given the appropriate sensorial data Sm to model the
observed human behavior and a generalized function f2(.)
that defines the exact (NN-based) implementation of the user
profile while considering Sm as input parameters. The aim
of Ql,m is to cover physical (e.g. human actions, physical
capabilities, etc.), cognitive (e.g. intention, personality, etc.)
and social (e.g. non-verbal cues, emotions, etc.) aspects,
in order to model and efficiently interpret the exhibited
human activity [66]. Under the current conceptualization,
DL-based approaches are considered for generating Ql,m,
as in [67] and [68], aiming at combining increased modelling
capabilities and easier integration to the designed FL-based
framework.
Global Model Update: Having computed the local param-

eter updates1Wl,m
β and the corresponding user profilesQl,m

(using locally generated and processed data δl), these are sent
to the central node (aggregator) so as to periodically produce
updated versions of the global Wβ models. According to the
conventional FL mechanism, an updated versionW′β of each
individual Wβ is generated on a regular basis, by applying a
simple average operator, as follows:

W′β = Wβ + lrg · 0β (6)

0β =
1
3β

∑
(l,m)

1Wl,m
β , (7)

where lrg denotes the global learning rate and 3β the
total number of received 1Wl,m

β updates. The strength of
the above-mentioned mechanism lies on incorporating a
very large number 3β of samples and multiple iterative
updates of W′β that will likely lead to the convergence to
well-performing and robust Wβ models, while the network
nodes Pl contributing in (7) may be sampled out of the avail-
able ones (usually in a random way). However, combining
information (1Wl,m

β ) related to different human subjects hm
(that presumably exhibit highly diverse and varying behavior)
is in turn very likely to lead the FL process to be confined
to a local maximum or even to a non-convergence of the FL
procedure; hence, jeopardising the overall learning process.

1) INCORPORATION OF MULTI-USER FEEDBACK
INFORMATION
For robustly confronting the observed variance in the behav-
ior of the large number of involved human teachers hm,

the designed cognitive architecture (apart from possible sen-
sorial data si pre-processing for invariance incorporation)
encompasses the estimated user profiles Ql,m in the global
model update process, modifying (7) to the following general
formalism:

0β = 8({Ql,m
}, {1Wl,m

β }), (8)

where 8(.) denotes a generalized function that combines the
available Ql,m and 1Wl,m

β , estimated at every network node
Pl . Depending on the particularities of the selected applica-
tion domain (e.g. supportedWβ , S, R, T , etc.), the following
main materializations of8(.), while also being possible to be
combined, are considered:

• User Weighting: Under this conceptualization, the con-
tribution of each human teacher hm is modulated by a
different weight factor based on his/her exhibited behav-
ior, as follows:

0β =
1
Eβ

∑
(l,m)

ε(Ql,m) ·1Wl,m
β

ε(Ql,m) = 1/‖Qg
−Ql,m

‖

Eβ =
∑
(l,m)

ε(Ql,m), (9)

where ε(Ql,m) denotes the weight factor for each hm at
every Pl , Qg the corresponding global user model (e.g.
estimated through the same FL-based mechanism used
for constructing Wβ ) and ‖.‖ a similarity score metric
(e.g. Euclidean distance between the parameters of the
involved user models).

• Parameter Weighting: The fundamental consideration
lies on performing sensitivity analysis [69], [70] for
estimating the degree of correlation among the param-
eters of Wl,m

β and Ql,m, i.e. emphasizing on how the
exhibited behavior of each user hm affects individual
aspects/parameters of Wl,m

β , according to the following
formalism:

0β =
1
Rβ

∑
(l,m)

rl,mβ ·1Wl,m
β

rl,mβ = U (Ql,m,Wl,m
β )

Rβ =
∑
(l,m)

rl,mβ , (10)

where functionU (.) realizes sensitivity analysis for esti-
mating the impact of parameters Ql,m on the respective
ones of Wl,m

β , while matrix rl,mβ summarizes the esti-
mated correlations.

• User Clustering: The main principle behind this
approach, the so called ‘Multi-Center Federated Learn-
ing’ [71], considers the generation of multiple instances
Wβ,η of each global modelWβ , in order to better capture
the heterogeneity of data distributions across different
users. In particular, each human teacher hm at each local
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network nodePl is associatedwith a singleWβ,η; the lat-
ter is iteratively updated, by elaborating (8), as follows:

0β =

∑
(l,m) θ

l,m
β,η1Wl,m

β∑
(l,m) θ

l,m
β,η

, (11)

where θ l,mβ,η = 1, if teacher hm at node Pl is associated

withWβ,η, and θ
l,m
β,η = 0, otherwise.

It needs to be highlighted that all above-mentioned variants of
function8(.) in (9)-(11) are considered to be implemented in
a neural-network form; hence, rendering the overall approach
end-to-end learnable within the same integrated FL scheme.

2) INCORPORATION OF CROSS-TASK CORRELATION
INFORMATION
Complementary to the integration of information from mul-
tiple human teachers hm (as detailed in Section V-C1),
the designed cognitive layer puts also particular emphasis on
analysing, modelling and exploiting the correlations among
the multiple (and often co-occurring) robotic tasks, which
are controlled by the AI models Wβ . Towards this direction,
the aforementioned FL-based mechanisms for incorporat-
ing multi-human feedback information is further elaborated
and enhanced, by integrating the following sophisticated
AI-empowered learning capabilities:
• Transfer Learning: Federated transfer learning consti-
tutes a suitable methodology for addressing cases where
different AI-driven processes share an overlap in the
respective feature space, aiming at exploiting the under-
lying data correlations and building models collabo-
ratively [72], [73]. In particular, the conventional FL
mechanism (described in Section V-C1) considers the
separate construction of each global Wβ model, using
the locally generated data δl , by adopting the following
general type of loss function during the training step:

Lg =
∑
β,(l,m)

Lβ (Ŷ (Wβ ),Y (Wβ )) (12)

whereLg denotes the employed global loss function,Lβ
corresponds to the loss termwith respect to each individ-
ualWβ and Ŷ (.), Y (.) is the estimated, targeted (ground
truth) output of Wβ , respectively. In order to achieve
feature transfer learning, the following alignment loss
factor is added to Lg in (12):

L2 =
∑

(β1,β2),(l,m)

V (Wβ1,Wβ2) (13)

where V (.) denotes an alignment/similarity measure
between Wβ1 and Wβ2 (e.g. Euclidean distance ‖.‖
between the model parameters, as in (9)). It needs to
be highlighted that the above mentioned transfer learn-
ing mechanism is applicable for AI models that exhibit
similar patterns and correlations in the underlying data
space, which inevitably implies overlaps and similari-
ties between the respective Sβ1 and Sβ2 sets. Moreover,

the principal goal of this scheme lies on transferring
knowledge gained during the training process of model
Wβ1 (where sufficiently large training datasets are avail-
able) to facilitate the creation of a functionally simi-
lar/related model Wβ2 (where availability of adequate
amounts of training data is not present).

• Multi-Task Learning: According to the formalisms pro-
posed in the literature so far for federated Multi-Task
Learning (MTL), the fundamental aim is posed as simul-
taneously constructing separate, but related, AI models
at each network node [74], [75]. The latter requires,
among others, the formulation of a so called precision
matrix that encodes the inter-relations among the mod-
els, which can be either explicitly defined a priori or
learned directly from the data. Under the current concep-
tualization, the problem of federated multi-task learning
is re-formulated so as to allow the simultaneous learning
of multiple global modelsWβ that correspond to related
(and often co-occurring) robotic tasks. The respective
loss function to be used during training has the following
general form:

Lg =
∑
β,(l,m)

Lβ (Ŷ (Wβ ),Y (Wβ ))+ X (A,�)

A = [W1 W2 . . . WB], (14)

where A is a weight matrix produced by the concatena-
tion of the individual Wβ model parameters and � ∈

RB×B is the so called precision matrix. Function X (.)
summarizes the defined assumptions of the federated
multi-task learning problem, where a bi-convex formu-
lation is often selected [76], as follows:

X (A,�) =
λ

2
tr(A�AT )

�−1 ≥ 0, tr(�−1) = 1, (15)

where λ is a constant and tr(.) denotes the trace of a
matrix. The ultimate goal of MTL is to jointly con-
struct multiple robust Wβ models (by taking advantage
of the cross-correlations among the respective robotic
tasks), rather than only transplanting collected knowl-
edge between different models (as the transfer learn-
ing scheme in principle does). Moreover, the multi-task
learning formalism outlined in (14) and (15) corresponds
to the most commonly met type of MTL, which often
assumes that the involved Wβ models operate on the
same (or very similar) feature space; this MTL type
is termed ‘homogeneous-feature MTL’. However, more
elaborate schemes are also available for implementing
the ‘heterogeneous-featureMTL’ scenario [77], [78], i.e.
when the feature spaces (employed sets of sensors Sβ )
of the considered models are different and diverse in
nature. The latter constitutes also a critical difference
between theMTL and the transfer learning mechanisms.

• Meta Learning: The principal goal of the FLmechanism,
as detailed in the beginning of Section V-C, is to collec-
tively create robust and powerful global AI models Wβ
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((6)), by concatenating model updates1Wl,m
β ((7)) from

multiple human teachers hm associated with the various
network nodes Pl . However, there are application cases
where the fundamental aim is not (only) to optimize
the performance of the global models Wβ , but rather
to maximize the efficiency of the local ones Wl,m

β ((5)),
e.g. when a new human teacher hm is introduced to the
cognitive environment (and an accurate initialization of
the respective Wl,m

β models is required) or when the
personalization ability of the overall system is critical
(for example when developing customized human-robot
interaction schemes). For addressing the latter require-
ments, the designed cognitive architecture incorporates
means of so called meta learning techniques. Towards
this direction, different meta learning methodologies
have been proposed in the literature with Model Agnos-
tic Meta Learning (MAML) receiving particular atten-
tion and demonstrating promising results in the deploy-
ment of FL-based systems [79], [80]. According to the
latter mechanism [81], AI model parameter updates are
estimated at two levels: a) inner update, where a set of
human teachers hm (support set) are selected for com-
puting a tentative updated version of Wβ and b) outer
update, where the aforementioned tentative updated ver-
sion of Wβ is evaluated over a separate set of human
teachers hm (query set) for validating its efficiency and
subsequently estimating an updated version W′β of the
global models. In other words, the iteratively updated
global models Wβ serve as an initialization step for
constructing the local/personalized versions of Wl,m

β ,
which are computed using only the locally generated
datasets δl .

D. MULTI-AGENT HUMAN-ROBOT COLLABORATIVE
LEARNING
Having introduced the constituent entities of the proposed
cognitive AI architecture (namely the robotic platform,
the human and the collective (FL) cognitive AI layer), their
role and the corresponding formalisms, this sub-section sum-
marizes how the ultimate goal of collaborative learning in
a multi-agent human-robot environment is accomplished.
In particular, knowledge/skill transfer (from the human side
towards the robot one) is realized through the following two
pathways:

• Direct Human-Robot Learning: Any human teacher hm
can provide feedback to any employed robotic platform
Pl with respect to the functioning of AI model Wβ ,
resulting into the creation of the local/customized model
Wl,m
β , according to (5); the estimated Wl,m

β can also be
maintained and used as a ‘personalized’ version of the
global modelWβ .

• Direct Robot-Robot Learning (or Indirect Propagation
of Collected Feedback From All Human Teachers to
All Robotic Platforms): Through the fundamental col-
lective learning mechanism of FL (as explained in (6)

and (7)), knowledge (1Wl,m
β ) from all robotic plat-

forms Pl is combined (to produce an updated version
W′β of each individual Wβ ); the latter is subsequently
shared/distributed back to all Pl in the network.

Iterative execution of the above mechanism leads to the incar-
nation of a collaborative human-robot LfD learning environ-
ment/scheme.

Critical to the success of the overall LfD framework is
the adoption of a teleoperation-based approach for collecting
human feedback, making use of AR/VR visualization tech-
nologies (as detailed in Section V-B). Innovative aspect of
the visualization interfaces in the proposed cognitive archi-
tecture, which differentiates them from similar ones of the
literature, is that they are combined with XAI methods for
explaining the decision-making process of AI models Wβ .
Specifically, the use of XAI techniques provides the privilege
to the human teacher hm to be fully aware and in details of
the exact factors that have led to a robotic malfunction (e.g.
knowledge of the exact incorrectly classified pixels in a visual
perception task). The latter inevitably enables the human
teacher to provide more accurate and targeted guidance to the
robot; hence, further boosting the capability of transferring
fine-grained and sophisticated skills.

The learning capabilities of the proposed cognitive AI
architecture are further reinforced by incorporating: a) means
for modeling, interpreting and combining multi-user feed-
back information, namely user weighting, parameter weight-
ing and user clustering (as described in Section V-C1 and
specified in (8)-(11)) and b) advanced AI learning techniques
for estimating, modeling and exploiting cross-task correlation
information, namely transfer, multi-task and meta learning
(as detailed in Section V-C2 and explained in (12)-(15)).
It needs to be highlighted that the aforementioned approaches
for integrating multi-user- and cross-task-related information
can be flawlessly combined, leading to even more complex
and sophisticated learning environments.

VI. CRM RECOVERY CASE STUDY
In this section, the usefulness and benefits gained from
the application of the designed cognitive AI architecture
are demonstrated, by analysing an example of a real-world
large-scale industrial manufacturing case study (subject to
ongoing research activities) in the domain of Critical Raw
Materials (CRM) recovery. Robotic platforms constitute a
particularly suitable solution for the selected field, since
they can undertake and automate numerous laborious, repeti-
tive, tedious, stressful, harmful and hazardous human worker
tasks, especially in the early stages of the recycling process
(e.g. object dismantling, housing removal, component extrac-
tion, etc.). Overall, the CRM recovery pipeline inevitably
needs to undergo an agile production operational methodol-
ogy, since a) every recycling plant typically supports multiple
waste streams of different type and nature, where the input
materials arrive in an unsettled way and of significantly vary-
ing quantity, quality and composition, and b) the demands
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FIGURE 3. Functional diagram of the designed cognitive AI architecture under an agile production CRM recovery case study.

for the output recycled materials (posed by secondary market
stakeholders, further recycling operators, etc.) also change
(often rapidly) over time. The latter essentially poses the
critical requirement for a high degree of adaptability to the
involved robotic platforms, accompanied by the increased
need for reinforced long-term autonomy (since new types
of CRM materials and needed manipulations/operations are
constantly encountered). To this end, the introduced cogni-
tive AI architecture for multi-agent LfD learning, operating
complementarily to a centralized factory-level orchestration
methodology for agile production, constitutes an elegant
choice for enabling the robotic platforms to continuously
acquire new skills (from human demonstration). A high-level
functional diagram of the envisaged agile production CRM
recovery plant is illustrated in Fig. 3.

A. ROBOTIZED PROCESSING STEPS
Throughout the overall recycling plant operational pipeline,
the input waste materials (e.g. laptops, personal comput-
ers, smartphones, tablets, TVs, batteries, etc.) undergo sub-
sequent processing and manipulation steps, targeting to
extract and group individual constituent device components
(e.g. casings, plastics, capacitors, coolers, Printed Circuit
Boards (PCBs), etc.) with homogeneous composition in
terms of integrant critical raw materials (e.g. cobalt, lithium,

phosphorus, magnesium, bauxite, etc.). For realizing the lat-
ter, different categories of robotic platforms with varying
types of assigned tasks need to be deployed in each of
the recycling plant’s main processing steps (namely mate-
rial routing, device dismantling and component sorting),
as detailed in the followings.

1) MATERIAL ROUTING
The first step in the envisaged recycling plant work-cycle
concerns how the different types of waste materials are
being introduced to the processing pipeline. Under the cur-
rent conceptualization, different means of plant input are
foreseen (e.g. aggregated piles, received packages, delivered
containers, etc.). The critical characteristic is that the input
materials arrive in an unsettled way and in significantly
varying pace, quantity, quality and composition. The latter
inevitably poses significant challenges towards their efficient
management, which in turn requires an overall continuous
adjustment of the recycling plant work-plan and internal
functionality. It needs to be highlighted that multiple types of
waste streams (that contain valuable CRMs) are considered
and processed in parallel, as mentioned in the beginning of
Section VI-A. Upon their receipt (and after unpack-
ing, if needed), the different waste materials are identi-
fied/classified and assigned/introduced to a waste stream
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processing line. This step involves the transfer of the input
waste materials to a dynamically assigned processing line of
the factory. This dynamic ‘material routing’ process involves
the use of Automatic Guided Vehicles (AGVs), each mounted
with a robotic arm (to implement the necessary pick and
place actions) and a conveyor belt mechanism (for further
facilitating the loading/unloading process). It needs to be
highlighted that a varying number of processing lines for
each individual waste stream type are also adaptively defined,
according to the incoming waste status as well as the targeted
overall plant output at each time instant.

2) DEVICE DISMANTLING
Having performed the initial waste stream classification and
its assignment to a processing line, the core building block
of the overall solution is applied for realizing the ‘device
disassembly/dismantling’ step. In particular, each processing
line comprises a conveyor belt, where the pace and speed
of operation are dynamically controlled, taking into account
the materials present or being processed. Along both sides
of each conveyor belt, multiple workspaces are installed. The
latter constitute the physical locations where the fine-grained
manipulation of the input devices/materials (e.g. dismantling
task) occurs. At each workspace, a multi-robot cell (con-
sisting of multiple identical robotic arms) is dynamically
assigned, based on run-time material recovery needs. The
total number of multi-robot cells operating in each line is
also adaptively and centrally defined, based on overall fac-
tory input/output targets and operational status. Each of the
involved robot cells is equipped with a suitable tool changer,
so as to support the use of multiple end-effectors and, hence,
to enable different and diverse fine-grained manipulation
tasks (e.g. cutting, unscrewing, drilling, breaking, etc.). The
output of this step is a set of extracted and sorted constituent
components of interest for every manipulated device, placed
in appropriate collection baskets.

3) COMPONENT SORTING
After the input waste materials are processed and the com-
ponents of interest are extracted, the so called ‘component
sorting’ step is implemented, where AGVs are responsible
for transferring the components from the disassembly line
to the deposit location of the plant (e.g. packaging stations,
material separation machines, etc.). The AGVs are equipped
with effective basket mounting/unmounting and advanced
SLAM navigation capabilities, in order to smoothly and
safely operate in complex, time-varying environments and in
the presence of humans.

B. INTEGRATION OF THE COGNITIVE AI ARCHITECTURE
In order to realize the above mentioned complex waste
management activities in an autonomous, productive, effi-
cient and safe way, each employed robotic platform Pl is
equipped with sophisticated edge computing AI-empowered
cognitive technologies that reinforce its operational capabili-
ties (e.g. working environment registration, human behavior

analysis, waste manipulation, motion planning, navigation,
human-robot interaction, safety control, etc.); the latter are
implemented in the form of respective sophisticated AI mod-
elsWβ .

Following the formalization of the robotic platformPl ((4))
in the introduced cognitive AI architecture (SectionV-A), sets
S, R and T are defined as follows to address the needs of the
selected application case (resulting in a total of 3 different
types of platforms, i.e. an individual one for each robotized
processing step):

• S = {Force, Lidar, Depth, Vision, Pressure, Speed,
Acoustic, Thermal, Position}

• R = {Material routing AGV, Multi-robot cell, Compo-
nent sorting AGV}

• T = {Device dismantling, Component sorting, Material
routing, Visual perception, Human behavior analysis,
Human feedback capturing, Situation awareness, Safety
control, Navigation, XAI}

The aforementioned elements, as well as their inter-
connections towards forming the different types of robotic
platforms Pl , are illustrated in the operational diagram
in Fig. 4. It needs to be highlighted that sets S,R and T defined
above include only a non-exhaustive collection of necessary
elements for enabling the materialization of the envisaged
recycling plant (i.e. additional types of sensors, robots and
tasks can be incorporated for further improving and extend-
ing the targeted operational cycle), while multiple elements
(e.g. motion planning ones, namely ‘Device dismantling’,
‘Component sorting’ and ‘Material routing’) can be split into
a series of more simple and specific ones (e.g. grasping,
unscrewing, cutting, mounting, etc.). Moreover, it can be
observed that the employed sensor, robot and task types are
tightly interconnected, fact that motivates the extensive re-use
of knowledge and where AI technologies (and in particular
FL techniques) are especially suitable.

The most critical part for ensuring the long-term autonomy
of the introduced system concerns the point where the robotic
platforms Pl and the human operators hm interact on the
factory floor, targeting in principle the bootstrapping of the
robotic activities as well as the acquisition of new skills
from the side of the robotic agents. In particular, the human
workers operate in a supervisory and proactive way, while
they are equipped with AR technologies in order to receive
real-time and accurate insights on the processes performed
at the factory- and each individual workspace-level. The
latter insights include detailed information on the status of
the specific tasks performed by the robotic platforms (i.e.
which steps have been implemented and which are planned to
be performed) and regarding the robotic cognitive/inference
operations (e.g. which objects have been recognized by the
robot, how a given decision has been reached, what type of
motion planning policies have been estimated, etc.). Espe-
cially for the latter case, the use of XAI tools enables the
interpretation of the exhibited robot behavior, i.e. the identi-
fication of the root causes/procedures that led an AI-driven

VOLUME 9, 2021 73903



G. T. Papadopoulos et al.: Towards Open and Expandable Cognitive AI Architectures

FIGURE 4. Operational diagram of robotic platform types deployed under a CRM recovery case study.

robotic platform to take specific decisions/actions. In this
context, whenever a robot fails to complete a task, there is
a high degree of uncertainty or the human worker identi-
fies a deviation and decides to intervene, the robot pauses
its operations and waits for human feedback. Subsequently,
through the use of user-friendly and efficient AR technolo-
gies, the human worker is initially informed of the robot
operational status (as described above), identifies the root
cause of the possible malfunction and through the appropriate
AR-based interaction/communication means guides the robot
on how to successfully elaborate the task at hand.

Apart from the in situ tuning phase, the principal goal of the
overall system is for the robotic platforms to adaptively learn
and in the long-term adapt their AI cognitive models Wβ ,
based on the feedback received by the human workers (and
modulated by the estimated user profiles Ql,m). For incar-
nating this multi-human multi-robot collective intelligence
vision, the introduced FL-based multi-agent LfD cognitive
AI architecture (as detailed in Section V) is applied. In par-
ticular, the proposed formalization will facilitate towards:
a) incorporating multi-user feedback information for con-
tinuously updating the capabilities of the AI models Wβ

(supporting user weighting, parameter weighting and user
clustering techniques), as defined in (8)-(11) and detailed in
Section V-C1 and b) integrating cross-task correlation

information for further reinforcing the robustness of Wβ

(relying on transfer, multi-task and meta learning method-
ologies), as formalized in (12)-(15) and explained in
Section V-C2. Moreover, it needs to be reminded that the
designed FL-based scheme is by definition privacy-aware,
since no data, apart from NN parameter updates, captured at
each robot/node location Pl are sent to the network.

C. INSIGHTS AND PHYSICAL EXPLANATION OF THE
INTRODUCED COGNITIVE AI FUNCTIONS
In this section, detailed insights, physical interpretations and
exemplary explanations (in the selected application domain)
are provided, regarding the introduced AI-enabled cognitive
functions. In particular, the proposed FL-based scheme for
large-scale multi-agent human-robot collaborative learning
(Section V), which supports both direct human-robot and
robot-robot knowledge transfer (Section V-D), emphasizes
on providing sophisticated mechanisms for incorporating
a) multi-user feedback (Section V-C1) and b) cross-task cor-
relation (Section V-C2) information.

Regarding the combination of demonstration information
from multiple users, the inherent (and often high) variance
in the exhibited human behaviour (even for the same task)
constitutes a critical challenge that is very likely to jeopar-
dize the learning process of large-scale LfD systems. This
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difference in the observed human performance can be due
to a number of factors, such as the variability in knowledge,
idiosyncrasy, education, working experience, mental state,
etc. across subjects. For efficiently overcoming the afore-
mentioned obstacles, the introduced cognitive architecture
comprises the following processes (that rely on the use of the
Ql,m user profiles that model and interpret the behavior of
each human teacher hm):

• User Weighting: According to (9), the weight factor
ε(Ql,m) of each human teacher hm (at each robotic node
Pl) is considered to be inversely proportional to the
degree of dissimilarity ofQl,m with the respective global
user model Qg. The motivation behind the latter choice
lies on the fundamental conceptualization that user pro-
files that deviate significantly from the global norm (i.e.
being outliers) should receive decreased importance, for
example, when specific user characteristics (e.g. work-
ing experience, educational background, etc.) need to
receive particular significance/gradation, when signifi-
cant inconsistencies are observed in the provided feed-
back instances (during the generation ofWl,m

β ) of a given
user (optionally also in relation to the remaining human
teachers) or when the observed activity of an individual
is frequently detected to be related with undesirable user
states (e.g. when in extreme situations of fatigue, stress,
decreased attention, etc.).

• Parameter Weighting: The formalism in (10) modulates
the knowledge aggregation step, taking into account
the cross-correlations among the parameters of the user
profileQl,m and the AIWl,m

β models. Specifically, when

such strong correlations are identified (i.e. increased rl,mβ
values), these are emphasized when creating the updated
version of the global AI modelW′β . The physical expla-
nation of the latter implies that when aspects of the
exhibited behavior of a given teacher hm are detected
to be consistently related with parts of a certain AI
model Wβ (e.g. when a specific individual is identified
to provide credible feedback for the detection of (parts
of) specific object classes in a visual perception task
or the execution of (parts of) particular policies in a
motion planning scenario), this should be considered
as reliable/critical information that must subsequently
be appropriately amplified during the knowledge
aggregation step. Such a mechanism is particularly
beneficial for prioritizing the collected feedback
information at a finer level of detail and addressing
misalignments/inconsistencies/conflicts among differ-
ent users.

• User Clustering: The mechanism defined in (11) aims
at tackling the case of high heterogeneity in the pro-
vided feedback information, i.e. when the conventional
(in FL-based systems) Independent and Identically Dis-
tributed (IID) data assumption is considered very likely
to be violated. In particular, the fundamental considera-
tion of this mechanism states that there does not exist a

single global modelWβ for a given robotic task that can
adequately capture the shared knowledge of all human
teachers hm. The latter is particularly applicable for tasks
where essentially significantly diverse user behaviors
can be observed (e.g. when specifying the movement
trajectory of a mobile robot on the factory floor, defining
the robot safety control policy that also reckons (future)
human intentions, etc.). For accounting for these aspects,
multiple instances Wβ,η of each global model Wβ are
created and, apart from modelling robust Wβ,η models,
an optimal matching among human teachers hm (at each
local network node Pl) and specific Wβ,η instances is
simultaneously learned (indicated by factors θ l,mβ,η ∈
{0, 1}). Eventually, feedback information provided by
human teacher hm is used to only update the associated
Wβ,η instance.

It needs to be reminded that the above multi-user feedback
fusion schemes can also be flawlessly combined in a single
FL-based LfD system.

With respect to the modelling and exploitation of
cross-correlations among different robotic tasks, this has
to be inevitably addressed in real-world application sce-
narios (where multiple tasks are typically co-occurring),
while even relatively small improvement in performance
(of each individual task) can have a potentially large oper-
ational/economic impact, especially in large-scale indus-
trial applications. For addressing the latter, the developed
cognitive architecture incorporates the following advanced
AI-empowered learning methods:

• Transfer Learning: The formalism defined in (12)
and (13) aims at estimating the inter-dependencies and
the joint modelling of pairs of robotic tasks that share
similarities in the underlying feature space (i.e. oper-
ate using the same or similar types of sensorial data).
In particular, the overall goal is to realize knowledge
re-use during the learning process, i.e. to transfer, com-
bine and integrate learned knowledge structures that
have been formulated for model Wβ1 to improve the
performance of an operationally similar model Wβ2
(and vice versa). The latter characteristic is particu-
larly useful when sufficiently large training datasets are
available for model Wβ1 (and the respective learning
process can be completed successfully), but not for
the functionally similar model Wβ2 (whose training
procedure can be reinforced by transferring knowledge
gained when constructing Wβ1). For example, in the
selected application domain, the goals of the visual per-
ception models associated with the ‘Material routing
AGV’ and the ‘Multi-robot cell’ (Fig. 4) robotic plat-
forms present significant similarities; the former targets
to detect whole device types in the early stages of the
‘Material routing’ process, while the latter has as a
principal goal to identify the individual constituent com-
ponents of each such device during the ‘Device disman-
tling’ procedure. Another similar example concerns the
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‘Device dismantling’ and ‘Component sorting’ robotic
tasks (Fig. 4), where, despite the different end goals
and particularities of each process, the underlying robot
motion planning policies inevitably share similar pat-
terns and primitive actions that the joint learning of the
respective AI models would be beneficial.

• Multi-Task Learning: The mechanism detailed in (14)
and (15) shares similarities with the ‘transfer learn-
ing’ one described above, but exhibits the following
key differences: a) It aims to simultaneously construct
multiple reliable Wβ models (by exploiting their cross-
correlations), rather than only transferring knowledge
cues between different models, b) It can involve Wβ

models that operate on the same (or very similar) fea-
ture space (‘homogeneous-feature MTL’), but also on
different/diverse ones (‘heterogeneous-feature MTL’),
c) It allows, apart from the explicit a priori definition
of the AI model pairs with similar operations, also the
automatic learning of the task correlation weights (i.e.
precision matrix �) directly from the data, while it has
been experimentally shown to perform well also when
considering uncorrelated tasks. Within the context of
CRM recovery, for example, the ‘homogeneous-feature
MTL’ mechanism can be adopted to jointly construct
the visual perception (or the navigation) Wβ models of
the ‘Material routing AGV’ and the ‘Component sort-
ing AGV’ (Fig. 4), which operate at the beginning and
the end of the overall factory process pipeline, respec-
tively; however, presenting similar operational charac-
teristics. On the other hand, the ‘heterogeneous-feature
MTL’ scheme can simultaneously build the visual per-
ception and the device dismantling Wβ models of the
‘Multi-robot cell’ (or the visual perception and the mate-
rial routing ones of the ‘Material routing AGV’); the
latter correspond to co-occuring robotic tasks (using
diverse types of sensorial data), yet exhibiting signifi-
cant inter-dependencies/relations during their execution.

• Meta Learning: The fundamental conceptualization of
this scheme is to optimize the performance of the local
AI models Wl,m

β , rather than (only) to maximize the
efficiency of the global Wβ . Such a routine is benefi-
cial, for example, when a new human worker hm enters
the factory floor in the selected application case (and
the corresponding Wl,m

β models need to be accurately
initialized) or when the performance of the personalized
Wl,m
β models is of paramount importance (e.g. realizing

personalized safety control at all stages of the overall
CRM recovery process).

VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
In this paper, the problem of robotic Learning from Demon-
stration (LfD) was thoroughly investigated and a novel
cognitive architecture for large-scale robotic learning was
introduced for enabling the robust deployment of open,
scalable and expandable robotic systems in large-scale and
complex environments. The fundamental consideration of

the designed architecture is grounded on the establish-
ment of a Federated Learning (FL)-based framework for
implementing a multi-human multi-robot collaborative learn-
ing environment. Regarding pivotal novelties, the designed
cognitive architecture (that significantly broadens the capa-
bilities of current LfD robotic learning schemes) a) introduces
a new FL-based formalism that extends the conventional LfD
learning paradigm to support large-scale multi-agent opera-
tional settings, b) elaborates previous FL-based self-learning
robotic schemes so as to incorporate the human in the learning
loop, and c) consolidates the fundamental principles of FL
with additional sophisticated AI-enabled learning method-
ologies for modelling the multi-level inter-dependencies
among the robotic tasks. The applicability of the designed
framework was explained through an example of a real-world
industrial case study for agile production-based Critical Raw
Materials (CRM) recovery.

In the followings, the key elements of the designed envi-
ronment that are crucial to its success, which at the same time
constitute both critical technological challenges and promis-
ing future research directions in the fields of LfD, AI and
HRI, are briefly summarized:
• Incorporation of Multi-User Feedback Information:
Although numerous LfD approaches have been intro-
duced in the past, multi-agent learning remains one of
the most challenging open issues in the field [13]. The
latter comprises the central goal of the introduced cog-
nitive AI architecture, which relies on the incorporation
of FL-based technologies reinforced with a generalized
function8(.) (defined in (8)) for specifying how to com-
bine information (i.e. model updates1Wl,m

β ) from mul-
tiple human subjects hm (making use of the respective
estimated profilesQl,m). Three variants of function8(.)
are introduced (Section V-C1), namely user weighting,
parameter weighting and user clustering. The specific
choice to be made depends on the particularities of the
selected application domain (e.g. the number of involved
human workers, the number and types of supported AI
models, the type and number of employed sensors, etc.).

• Incorporation of Cross-Task Correlation Information:
LfD methods have so far focused in principle on intro-
ducing invariance to the observed human behavior
for a given task. However, the designed architecture
puts emphasis on exploiting the correlations among
different tasks (i.e. among the various Wβ or Wl,m

β

models); hence, significantly elaborating current LfD
principles. Three individual methodologies are proposed
towards this direction (Section V-C2), namely transfer,
multi-task and meta learning. The selection of the spe-
cific approach to be used (or a combination of them),
depends again on the individual characteristics and goals
of the targeted application (e.g. number and type ofWβ

models involved, if new human users are expected to be
involved and how often, etc.).

• DL-Empowered User Profiling: There has been an
extensive body of research activity for creating robust
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user profiles, using various ML techniques, over the
recent years. However, further focusing on imple-
menting such models following the DL paradigm
would likely lead to significant performance gains and
increased robustness, while, importantly, the use of
NNs [67], [68] for building Ql,m models ((8)) would
enable the incarnation of fully end-to-end trainable sys-
tems and Ql,m to be constructed through the designed
FL-based cognitive environment. Further challenges
comprise the use of multi-modal information from mul-
tiple non-invasive sensorial devices, while simultane-
ously modelling the variance in the exhibited human
behavior (among the same or different individuals).

• Deployment of FL Technologies in Robotic Systems: FL
itself often poses significant deployment challenges of
various types (e.g. low connectivity, increased number
of network nodes, latency in communication, etc.) [49],
[82], [83]. In the context of a large-scale industrial
robotic setting, such challenges will have an increased
importance, while the expected levels of system robust-
ness and interoperability will inevitably need to meet
high industrial standards as well. To this end, reliable
FL-based solutions would likely need to capitalize on,
apart from algorithmic optimizations of the FL mecha-
nism, the capabilities provided by additional emerging
technologies (e.g. 5G/6G network connectivity, quan-
tum computing, hardware AI implementations, etc.).

• Human-Centred Explainable AI: Over the recent years,
an extensive body of research has been devoted on inves-
tigating various XAI methodologies, resulting in numer-
ous diverse approaches and promising results [65]. How-
ever, the focus has so far been placed on addressing the
‘explainability’ aspect (i.e. to identify the underlying
reasons for the exhibited behavior of the AI models),
leaving the ‘interpretability’ perspective (i.e. the human
users actually understanding the observed AI behavior)
largely under-explored [64]. The latter becomes even
more demanding for cases of non-IT human experts
being involved. A promising direction would naturally
require the incorporation of Human-Computer Interac-
tion (HCI) and human sciences principles, e.g. through
the use of dynamic visualizations, question-answering
schemes, interactive mechanisms, etc.

• Addressing of (Cyber-)Security, personal data and
privacy/ethics issues: Despite the fact that FL
is a by-definition privacy aware approach that
requires no exchange of actual data (only AI model
parameter updates are transmitted) among the net-
work nodes, significant research efforts have been
devoted recently towards addressing possible security
and privacy preserving gaps (e.g. differential [46],
model-poisoning [84], white-box inference [85] attacks,
etc.). The latter are often combined with innovative
techniques or emerging technologies, such as differ-
ential privacy [86], homomorphic encryption [87],
blockchain [88], etc. However, explicitly modeling and

integrating human user feedback information, through
the creation of user profilesQl,m and their incorporation
in the FL mechanism (Section V-C), inevitably requires
the elaboration and extension of the aforementioned
methodologies.
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