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ABSTRACT Tone-mapping operator (TMO) is intended to convert high dynamic range (HDR) content
into a lower dynamic range so that it can be displayed on a standard dynamic range (SDR) device. The
tone-mapped result of HDR content is usually stored as SDR image. For different HDR scenes, traditional
TMOs are able to obtain a satisfying SDR image only under manually fine-tuned parameters. In this paper,
we address this problem by proposing a learning-based TMO using deep convolutional neural network
(CNN). We explore different CNN structure and adopt multi-scale and multi-branch fully convolutional
design. When training deep CNN, we introduce image quality assessments (IQA), specifically, tone-mapped
image quality assessment, and implement it as semi-supervised loss terms. We discuss and prove the
effectiveness of semi-supervised loss terms, CNN structure, data pre-processing, etc. by several experiments.
Finally, we demonstrate that our approach can produce appealing results under diversified HDR scenes.

INDEX TERMS High dynamic range, tone-mapping, convolutional neural network, semi-supervised
learning, image quality assessment.

I. INTRODUCTION
Dynamic range of scene is defined as the ratio of maximum
luminance to the minimum. Real scenes have a wide range
of luminance ranging from 10−4 to 105 cd/m2, thus the
dynamic range of specific scene can be up to 109, which
is far beyond the capture and display capability of standard
dynamic range (SDR) devices. High dynamic range (HDR)
image can record real-world luminance in a photometrically
linear [1] and scene-referred manner, and store it in 32-bit
float-point data encapsulated in .hdr or .exr format, in most
cases. However, display devices capable of rendering HDR
image are still costly. Thus, tone mapping operator (TMO)
capable of approximate the appearance of HDR content in
traditional SDR displays has become the prerequisite under
most circumstances.

The aim of TMO is reproducing a perception that matches
real-world scene as possible [1], in other words, selectively
maintaining some features from the original HDR scene and
producing a reduced-information version [3] of it. But most
traditional TMOs are parametric dependent to yield a visually
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plausible results due to the diversity of HDR scenes. Artifacts
like over-enhancement, over-stylization, halo effect and blur-
ring are common in tone-mapped SDR images produced by
traditional TMO with improper parameters.

This naturally raises the idea of scene-adaptive TMO
which can generate high quality tone-mapped images under
diversified HDR scenes.With the emergence of deep learning
and its success on image transformation tasks, we are able
to learn a deep convolutional neural network (CNN) based
scene-adaptive TMO using easily available HDR data.

Unlike other tasks such as classification, object detection
and style transfer etc., high-level semantic features undergo
nearly no change during tone-mapping. Hence, for tone
mapping, fully convolutional layers (where tensor’s height
and width undergo no change) is enough, and U-net [4]
(encoder-decoder) architecture becomes improper especially
when dealing high-resolution images [5]. Although fully con-
volutional architecture has an exclusive advantage in arbi-
trary input size, it does suffer from the shortcoming of
insufficient global comprehension brought by limited recep-
tive field. To overcome this, different approaches have been
proposed by several related works. Based on insight and
experiments, our fully convolutional network decomposes
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input into 2 components with different scales, and send them
into separate task-specific CNN branches and assign another
CNN to polish the merged output.

Training, i.e., optimizing CNN’s parameters, is another
predominant aspect in deep learning. Accustomed to the
routine of previous works on image transformation, almost
every related work uses supervised training, i.e., calculating
loss function between output and label images (both in SDR,
in the case of tone-mapping). When it comes to image quality
assessment (IQA), specifically, tone-mapped image quality
assessment where objective score is calculated between out-
put and input images (SDR vs. HDR), there comes a natural
idea whether we can directly optimize the quality score.
Inspired by this, 2 terms in our loss function are calculated in a
IQA way, i.e., output vs. input (without label, unsupervised).
Our training can be broadly termed semi-supervised because
both supervised and unsupervised loss terms are involved.
Since supervised losses require paired label images, we col-
lect a training set containing high quality label SDR images
in a unique and elaborate way.

We systematically study the CNN structure, training
method, etc. of all HDR related deep CNNs before designing
our method. Based on this, several other improvements such
as multi-pass [8] or multi-group [9] convolution and instance
normalization [10] were also applied.

In a nutshell, our works are:

1) Proposing a learning-based TMO using CNN.
2) To the best of our knowledge, we first introduce IQA

inspired semi-supervised training in HDR related deep
CNN. We made a small step bridging the gap between
perceptual quality and HDR related CNN.

3) In semantic-free task, we explore a distinctive low-cost
and flexible way to strengthen the global compre-
hension of CNN, i.e., multi-scale decomposing and
multi-group convolution on fully convolutional layers.

The rest of this paper is organized as follows. Section II
reviews related works. Section III details the network struc-
ture and training of proposed method. Ablation studies on
semi-supervised loss terms etc., extra experiments, and com-
parison with other methods are presented in Section IV.
Finally, Section V remarks the present and future work.

II. RELATED WORK
A. TRADITIONAL TONE-MAPPING OPETATOR
A considerable amount of traditional TMOs have been
proposed in last 2 decades. They can be mathemat-
ically explicitly defined, and can be classified into
4 categories namely global, local, frequency/gradient and
segmentation [2]. Global approach such as Ward94 [11], Lar-
son97 [12], Pattanaik00. [13], Drago03 [14], Mantiuk06 [15]
and iCAM06 [16] apply same operation to all pixels in
HDR image. Local approach like Reinhard02 [17] process
pixel value based on its neighbors. Frequency approach
Durand02 [18] use bilateral filter to decompose input image
into base and detail frequency components, and process them

separately. Gradient approach Fattal02 [19] process pixels
in gradient domain. Segmentation method Krawczyk05 [20]
apply different operations on segmented image regions.

More diversified TMOs have sprung up in last decade.
Li et al. [21] combine tone-mapping with visual saliency.
Some TMOs are designed for application scenarios other than
human perception. Yang et al. [22] is for object detection, and
Rana et al. [23] is for image matching. Despite artifacts like
over-enhancement, over-stylization, halo effect and blurring
etc. brought by traditional TMOs, some of their ideas such
as decomposing in [18] are still affecting deep CNN based
TMOs.

B. DEEP CNN BASED TONE-MAPPING OPETATOR
So far, there are 5 deep CNN based TMOs. Patel et al. [24]
proposed a generative adversarial network [28] (GAN) based
TMOwhose generator is a 14-layers encoder-decoder similar
to U-net [4]. They trained their network with 957 HDR-SDR
(label) image pairs. These labels were generated by the tra-
ditional TMO who gives the best TMQI [6] over others
(TMQI is an objective tone-mapped images quality assess-
ment method, see §II.D for details). This label generation is
referred to as ‘‘best TMQI’’ in Table 1.

CNN in Yang et al. [25]’s method only contains fully
convolutional layers: 2 same 5-layers branches to process
different component and a 10-layers CNN to polish the
merged output. Single-channel luminance of HDR image was
transferred into logarithm domain and then decomposed into
base/detail component in different scales by Laplacian pyra-
mid. Their training set was fine-tuned, evaluated and selected
by photographers and volunteers (denoted as ‘‘manually fine-
tuned’’ in Table 1).

Zhang et al. [26] appliedmulti-scale 2-branch CNN similar
to [25]. Their 9-layer large-scale branch with dilated con-
volution [55] is responsible for processing details, 5-layer
small-scale encoder branch is for global information, and
2-layer ‘‘tail’’ is for merging the output of 2 branches. Their
loss function contains variants of l1 norm (on gradient mag-
nitude map/Gaussian filtered image, measuring local/global
detail) and other customized terms for their binocular vision
task i.e., producing 2 tone-mapped images with their own
emphasis.

Rana et al. [27] proposed a method named DeepTMO,
based on conditional generative adversarial network [29]
(cGAN). They tried 4 combinations of generator and discrim-
inator, and applied the best generator containing a small-scale
branch with 15-layer U-net and a large-scale branch with
7 fully convolutional layer. Besides cGAN term, their loss
function also contains l1 norm and perceptual loss extracted
form Siamese pre-trained 19-layer VGG-Net [30] (denoted
‘‘VGG’’ in Table 1).

Zhang et al. [34]’s method converts HDR image into HSV
color space. S and V channels are processed by CNN while
H is preserved to avoid hue shift during tone-mapping. Their
training was supervised by loss terms including SSIM [35],
using photographer-fine-tuned label images.
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TABLE 1. Comparison of HDR Related Deep CNNs. Here, B and C Represent the Number of Branches and Channels, Respectively.

There are 3 works where tone-mapping was implemented
in part of their CNN. Sheth et al. [31] processed HDR images
by a simple 4-layer convolution separately on 4 channels in
Lab color space. Hou et al. [3] processed luminance channel
of HDR image using 4-layer convolution, note that this was
the only HDR related CNN involving unsupervised train-
ing. Yang et al. [33] used a 12-layer U-net to transfer their
intermediate-stage HDR image into enhanced tone-mapped
image.

Comparison of deep CNNbased TMOs (‘‘deep TMOs’’ for
short) is listed in Table 1. Here, ‘‘conv5’’ represents 5 fully
convolutional layers, and ‘‘Unet14’’ means encoder-decoder
structure of totally 14 convolutional layers, etc. In 6th col-
umn, ‘‘reg’’ means regularization term to prevent over-fitting,
‘‘GAN’’ is the loss terms of specific GAN.

From the 3rd column we know that some deep TMOs
([25]–[27]) were influenced by traditional Durand02
TMO [18] in that they assigned separate CNN branches to
handle different frequency components. Specifically, they
use CNN with large receptive filed to handle global/low-
frequency component, and CNN with small receptive filed
to deal with local/high-frequency component. C=1 in 5th

column mean that only luminance channel is processed by
CNN (except [31]), and the color of output was reconstructed
form the ratio of original HDR image using one of the
methods in [32], which is a common practice in traditional
TMOs.

C. OTHER HDR RELATED DEEP CNN
Other HDR related deep CNNs including reverse tone
mapping operator (rTMO, single SDR to HDR) are listed
in Table 1 as well, since there are innovations worth
learning. Here, ‘‘simulated exposure’’ means shooting
linear-light HDR image with simulated camera response
functions (CRFs) to get non-linear SDR image, ‘‘EV0 inMEF
stack’’ will be detailed in §III.B.2.

In HDR related CNN, decomposing was first applied by
Eilertsen et al. [36]. However, their illuminance/reflectance
(I/R) [37] decomposing was implemented in loss function
(different weight for I/R component, same as [46]) rather
than network structure. Later work Marnerides et al [39] first
applied multi-branch structure by assigning different kernel
size in each branch to focus on global/local features. Later,
decomposing and multi-branch had become more popular,
as they were used by [5], [25]–[27], [31], [34], [40]–[42], [45]
and [47]. Moreover, Wang et al. [42] first tackled denoising,
while Xu et al. [46] first introduced 3D convolution consid-
ering temporal information of HDR videos.

Latest works [5], [47] and [56] combined HDR (rTMO)
with super resolution (SR). It was in multi-task explo-
ration (rTMO + SR) that they found U-net structure no
longer proper, the conclusion which is stated in §I. Sev-
eral other mechanisms which are frequently used in other
computer vision (CV) tasks were introduced to HDR related
CNN (MEF) too. Yan et al. first introduced spatial attention
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(mask) in [50], and multi-pass convolution in [8], to gain a
better comprehension of global information for CNN in both
works.

There were also several training innovations. Marnerides
et al [39] first considered color information in training by
introducing cosine-similarity loss term along different RGB
channels. Jang et al. [40] introduced 1E76 color difference
formula in their loss function, which was the first human
perception related loss term in HDR related CNN. San-
tos et al. [43] first introduced gram matrix [44] to measure
style loss, and feature masking to emphasize global differ-
ence.

Currently, the only simultaneously-shot HDR-SDR pair
was proposed by Zhang et al [38]. However, its low-resolution
(64∗128) has limited their application in future works
because only global feature is contained. Note that, dif-
ferent from linear HDR usually applied in photography,
image-based rendering and medicine, HDR images/videos
in [5], [40], [45]–[47] and [56] were non-linear transformed
by PQ [48] / HLG [49] optic-electronic transfer function
(OETF) which is used in consumer grade HDR television and
HDR films. Kim et al. found that traditional TMOs designed
for linear-light HDR images perform poorly on OETF trans-
ferred non-linear HDR content, thus they decided to collect
SDR counterpart using YouTube default method ([5], [45]
and [47]).

D. TONE-MAPPED IMAGE QUALITY ASSESSMENT
As a branch of IQA, tone-mapped image quality assess-
ment treats HDR as original image while SDR as distorted
one. The quality of tone-mapped image can be measured in
a full-reference (FR) way i.e., comparing HDR with SDR
images, or in a non-reference (NR) way i.e., only assessing
tone-mapped SDR image [51].

To be implemented in deep learning as loss function, IQA
method need to be mathematically explicit and differentiable
to suit the chain derivation rule in backpropagation. TMQI [6]
(tone-mapped image quality index) assesses the quality of
tone-mapped images from 2 aspects: FR structure fidelity
between HDR and SDR image, and NR statistical naturalness
of tone-mapped SDR image. The latter is non-differentiable,
thus excluded from ourwork.While the former local structure
fidelity term of the former is improved from SSIM [35]:

SF local (x, y) =
2σ ′xσ

′
y + C1

σ
′2
x + σ

′2
y + C1

·
σxy + C2

σxσy + C2
(1)

where σx , σy and σxy are the local standard deviations and
cross correlation between corresponding patches in HDR and
SDR images, respectively. Here, stabilizing constants are set
to default C1 = 0.01 and C2 = 10. Superscript of σ ′x ,
σ ′y represent a non-linear normalization using a cumulative
distribution function (CDF) of normal distribution, σ ′x and
σ ′y are to replace the original luminance term using mean
value µ which will definitely change dramatically in tone-
mapping. Structure fidelity SF(X ,Y ) between 2 images is
derived from averaging the SF local(x, y) of all 11∗11 sliding

patch. Finally, SF(X ,Y ) of all different scales are calculated
into structure fidelity part of TMQI using same coefficients
as MS-SSIM [52].

Nafchi et al. proposed a FR method FSITM [7] (fea-
ture similarity index for tone-mapped images) measuring
the phase congruency between HDR and SDR images via
locally-weighted mean phase angle. Apart from above, lat-
est NR methods like BTMQI [73] and BLIQUE-TMI [70]
involving more comprehensive feature extraction and regres-
sion reached better performance (higher correlation with sub-
jective score), but they’re either non-differentiable or too
complex to be implemented as loss function in CNN. More
about tone-mapped image quality assessment can be found in
survey [53].

III. PROPOSED METHOD
A. NETWORK STRUCTURE
As is illustrated in Fig. 1, CNN in our method consists
of 3 sub-networks namely Full-scale Local Branch (NL),
Small-scale Global Branch (NG) and Polishing Network
(NP). Input HDR image (H) in 3 RGB channels is first
decomposed into full-scale detail component (HD) and
small-scale base component (HB), and sent to NL and NG
respectively to yield intermediate SD and SB. Then, SD and
up-scaled SB (SB_F) are pixel-wise added, thus recomposed
as the input of NP . Finally, output tone-mapped SDR image
(S) is given by NP .

The Full-scale Local Branch (NL) consists of 5 fully
convolutional layers (blue box in Fig. 1), it is responsible
for processing detail information thus not responsible for
handling global information. Under this guideline, we add
2 skip-connections in order to maintain image’s structure, and
apply only 3 × 3 convolutional kernels of relatively small
receptive filed to focus on detail information.

The Small-scale Global Branch (NG) contains a
Multi-Group Residual Block (MGRB, orange box in Fig. 1)
and 4 convolutional layers before and after. The MGRB aims
for enhancing global comprehension by enlarging receptive
filed, it will be detailed in §III.A.2.

The Polishing Network (NP) consists of 2 MGRBs and
4 convolutional layers (totally 8-layers). Among related
works where filter decomposing and branch network struc-
ture were adopted ([5], [25], [31], [42], [45] and [47]),
polishing network is used by 4 of them ([5], [25], [45]
and [47]). We took the same design, and an experiment was
later conducted to prove its necessity.

In Fig. 2, the number below blue box (e.g., 24-3) represents
‘‘number of input-output channel’’ of current layer, a single
number for short if the above two are same.While the number
of channels changes, tensor/image’s size keep unchanged
because our CNN involves no encoder-decoder structure (no
deconvolution layer), and strides for all fully convolutional
layers are set to 1 (with symmetric padding).

All neurons excluding those in the last layers of NL, NG
and NP are activated by leaky rectified linear unit (lReLU)
with a slope of 0.2 to accelerate computing and avoid
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FIGURE 1. Overview of our multi-scale and multi-branch CNN structure. Here, HDR image (H) is linear mapped for display.

vanishing gradient. Sigmoid activations are applied after
3 last layers to increase network’s non-linearity. Front layers
are followed by normalization, we applied batch normaliza-
tion [58] (BN, green box in Fig. 1) for NG where image size
is small thus large batch-size can be applied when training.
Since instance normalization [10] was proven helpful for
small batch-size by [27], we used it (IN, gray box) for NL
and NP where batch-size is limited by images size.

1) DECOMPOSING STRATEGY
Our decomposing strategy is designed based on the fol-
lowing considerations. As can be concluded from related
works, there are 3 types of multi-branch strategies.
First, resizing i.e., processing full-size input image with
local/detail/large-scale branch while sending down-sampled
image into global/small-scale branch ([26], [27], [39]
and [41]). Second, filtering i.e., decomposing image into base
and detail components using filter (usually edge-preserving
filter like bilateral filter) and respectively sending them
into global and local/detail branches ([5], [31], [42], [45]
and [47]). Third, ‘‘decomposing’’ by color channel ([31], [34]
and [40]). We considered the 2nd idea feasible because
task-specific branches can focus on different image compo-
nents using customized structure.

Distinctively, Yang et al. [25] combined resizing and fil-
tering using Laplacian pyramid. Here, specific level is the
residual between corresponding level in Gaussian pyramid
and its up-sampled blurred next level. The lowest level of a
4-level Laplacian pyramid is chosen as the input of global
branch, while rest levels are reformulated as the input of
local/detail branch [54]. In this case, their global branch
receives a 1/16 down-scaled condensed image, thus the com-
putational cost is significantly reduced.

Hence, we decided to combine image pyramid with our
idea of decomposing. First, we found that the 1/16 scale
of the lowest level of 4-level pyramid in [25] is too small
and thus too blurry when recomposing, therefore we use a
3-level pyramid {l0, l1, l2, l3} thus the base component
(HB) is of 1/8 scale. Second, we replace the Gaussian fil-
ter on the first level of ‘‘Gaussian’’ pyramid {g0} with an

FIGURE 2. Our decomposing and recomposing method using a modified
pyramid. li/gi represent the i th level of ‘‘Gaussian’’/‘‘Laplacian’’ pyramid,
dashed lines represent parts which are unused.

edge-preserving bilateral filter, and directly subtract levels
in ‘‘Gaussian’’ pyramid {g0, g1, g2} with its filtered image
so that the highest level in our ‘‘Laplacian’’ pyramid {l0} is
exactly the same as the detail component of bilateral filter
decomposition (same as [31]). Our decomposing is illustrated
in right(red) part in Fig. 2.

The prototype of our up-scale and recomposing method
is also image pyramid, but the difference is that only the
highest and lowest level {l0, l3} (detail and base component)
are processed by CNN and utilized in pyramid reconstruc-
tion. We bypass those rest middle layers {l1, l2} since [54]
found that the performance degradation caused by their miss-
ing is negligible compared with the reduction of network
complexity.

2) MULTI-GROUP RESIDUAL BLOCK
As is illustrated with red box in Fig. 1, our Multi-Group
Residual Block (MGRB) first split input image/tensor into
3 groups with same channel number (24 to 3∗8), and

VOLUME 9, 2021 73877



C. Guo, X. Jiang: Deep TMO Using IQA Inspired Semi-Supervised Learning

separately convolve then with 1× 1, 3× 3 and 5× 5 kernel.
Channel number of each group stay unchanged during convo-
lution, so that they can be subsequently concatenated in the
original order. Then, concatenated image/tensor is followed
by a 3×3 convolution same as those outside MGRB. Finally,
output is pixel-wise added with input residual.

OurMGRB is designed based on following considerations.
Similar to other methods, global branch in our multi-branch
structure is responsible for understanding global luminance
distribution, thus is supposed to have a global comprehension.
Global or small-scale branch of [26], [39], [41] and [42]
contain encoder structures to extract global features. Dilated
convolution [55] was further used in [26] and [39] to enlarge
their receptive field, thus strengthen the global comprehen-
sion of branches other than global branch. While encoder
structure was regarded by above methods as capable of
capturing global features, it has several intrinsic shortcom-
ings. First, encoder-decoder (U-net) structure relies badly on
skip-connections to keep structural consistency and avoid
checkerboard artifacts. Second, encoder-decoder structure
requires a fixed size input which is usually obtained by extra
resize operation.

To overcome the second shortcoming, our whole network
including MGRB only contains fully convolutional layers
which have no limit on input size. To overcome the first
shortcoming, we decided to deprecate U-net structure. Hence,
an extra task of strengthening the global comprehension of
Full-scale Local Branch NL was posed. Other methods tack-
led this by introducing multi-group (in [56]) or multi-pass
(in [8]) convolution where different kernel-size are assigned
to each pass, using spatial attention mechanism (in [43], [50]
and [5]), using 1-D and 2-D dynamic convolution (in [47]),
and improving encoder-decoder structure (U-net) [57].

Different frommethods above, we decided to strike a trade-
off between performance and complexity. Multi-group conv.
[9] split tensor along channel dimension and send them into
separate groups, while multi-pass conv. [8] just copy tensor
into different passes. To reduce memory cost and the number
of parameters, we took multi-group convolution as prototype
of MGRB. Also, to enlarge the receptive field, we transplant
the characteristic of different kernel-size of multi-pass con-
volution onto MGRB.

Fig. 3 reveals the immediate effect of MGRB, i.e.,
the effective removal of ripple/halo artifacts at edges which
are brought by limited receptive filed. Impact of MGRB will
be further quantitatively evaluated in §IV.B.2.

B. TRAINING
Our CNN can be formulated as:

S = N (H, θL , θG, θP) (2)

where N is whole network, θL , θG and θP represent model
parameters in NL, NG and NP , respectively. Then, train-
ing is to find the θL , θG and θP which minimize the loss
function.

FIGURE 3. The effect of multi-group residual block (MGRB). As seen in
(b), MGRB can remove halo artifacts around edges.

FIGURE 4. Semi-supervised two-step training. Yellow line and box denote
the calculation of supervised loss terms, while green box and line denote
unsupervised ones.

We adopted 2-step training strategy. Step 1 is the
pre-training ofNL andNG, i.e., θL and θG were first optimized
and θP were frozen. As shown in Fig. 4, in Step 1, label
SDR image (SL) were decomposed into detail component
(SLD) and base component (SLB) using the same method
applied to input HDR image. Then, supervised loss terms
were separately calculated on label vs. output i.e., SLB vs.
SB, and SLD vs. SD. Meanwhile, unsupervised loss terms
were separately calculated on inputs vs. outputs i.e., HB vs.
SB, and HD vs. SD. Step 2 is the end-to-end synchronous
training of whole network, i.e., both θL , θG and θP were
optimized. Here, supervised loss terms were calculated on
SL vs. S, while unsupervised loss terms were calculated on
H vs. S.

Similar to [5], [25], [42], [45] and [47] where decompos-
ing, multi-branch and multi-step training were also applied,
our 2-step training share the same intention of simplifying
training and making network more interpretable. The moti-
vation and implementation details of supervised and unsuper-
vised loss terms are introduced below.
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1) SEMI-SUPERVISED LOSS FUNCTION
Rather than using both labeled and unlabeled data,
semi-supervised training here means simultaneously apply-
ing both supervised and unsupervised loss term on labeled
data. There are 2 IQA inspired unsupervised terms (lTMQI
and lH ), 2 IQA inspired supervised terms (lC and lSSIM ), and
2 conventional losses (lP and lMAE):

TMQI loss (unsupervised). The TMQI (upper bound by
1) of output tone-mapped SDR image was optimized (maxi-
mized) by minimizing TMQI loss (lTMQI ) which consists of
the differentiable structural fidelity part of TMQI [6]. Take
Step 2 for example:

lTMQI = 1−
∏5

l=1
SF (S,H)βl (3)

where βl = {0.0448, 0.2856, 0.3001, 0.2363, 0.1333} are
weights of different scales, same as MS-SSIM [52]. Other
implementation details have been introduced in eqn. (1)
and §II.D Note that, it’s inappropriate to apply multi-
scale-implemented lTMQI in small-scale global branchNG (of
32 × 32 training patch), thus lTMQI here was calculated in
single-scale fashion (denoted lTMQI−S):

lTMQI−S = 1− SF (SB,HB) (4)

Hue shift loss (unsupervised). For most TMOs where
color gamut mapping is not involved, color appearance man-
agement has long been an unsolved issue. Mantiuk et al [32]
explored several color correction methods for tone-mapping
and found that chroma change is more acceptable com-
pared with hue shift. We didn’t adopt their method because
it’s designed for TMO processing single luminance channel
while our method directly handles 3 channel RGB image. But
inspired by their finding, we started to limit the hue shift by
minimizing hue shift loss (lH ).
Since CIE 1976 L∗a∗b∗ color space and its derivative

L∗C∗h∗ have cross-contamination around blue color [62],
i.e., chroma (C∗) around blue will change even if the hue (h∗)
is restricted during tone-mapping (L∗ decreasing), we turn
to defined lH in IPT color space. To be converted into IPT
color space, pixels in RGB value need to be converted to XYZ
tristimulus value based on the chromaticity coordinates of its
color gamut. We assume that the destination color gamut of
all output SDR images is sRGB, meanwhile, the source color
gamut of input HDR images in training set [59] and [60]
(see §III.B.2) is also sRGB. For single pixel p in sRGB color
gamut:XY

Z

 =
 0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

×
 R
G
B

 (5)

for Fairchild [1] HDR dataset where the color gamut of source
HDR capturing devise was measured:XY

Z

 =
 0.4024 0.4610 0.0871

0.1904 0.7646 0.0450
−0.0249 0.1264 0.9873

×
 R
G
B

 (6)

Then, XYZ tristimulus were converted into intermediate
LMS color space: L

M
S

 =
 0.4002 0.7076 −0.0808
−0.2263 1.1653 0.0457

0 0 0.9182

×
 R
G
B

 (7)

The IPT was derived from non-linear L’M’S’ value: I
P
T

 =
 0.4 0.4 0.2
4.4550 −4.8510 0.3960
0.8056 0.3572 −1.1628

×
 L0.43

M0.43

S0.43

 (8)

Finally, the hue of specific pixel p was defined as:

hue (p) = tan−1 (P/T ) (9)

Let s(i) denote a pixel in S, SD or SB, h(i) is a pixel in H,
HD orHB, and hw is the total pixel number of an image. Hue
shift loss lH is defined as the average of hue difference of all
pixels

lH =
1
hw

∑hw

i=1
|hue [s (i)]− hue [h (i)]| (10)

Color difference loss (supervised). According to Human
Visual System (HVS) theory, human color perception
changes accordingly with luminance, which means there will
definitely be certain amount of color difference between cor-
responding HDR and tone-mapped SDR image. Therefore,
unsupervised minimize of color difference between HDR
and SDR images is meaningless and impossible. Hence,
we turned to minimize the color difference loss (lC ) between
output and label SDR images in a supervised way.

Traditional color difference formulas defined in CIE
1976 L∗a∗b∗ color space such as 1E2000 or 1E76 are
designed for SDR scenario where luminance is under 100nit
[48]. Hence, we defined color difference loss (lC ) in ICtCp
color space which is suitable for HDR luminance up to
1000nit. RGB values of output and label SDR images were
first converted to XYZ tristimulus using eqn. (5) and (6), then
converted to LMS color space using a cross-talked matrix
different to eqn. (7): L

M
S

 =
 0.3592 0.6976 −0.0358
−0.1922 1.1004 0.0755
0.0070 0.0749 0.8434

×
 R
G
B

 (11)

Then, ICtCp was derived from non-linear L’M’S’ value: I
Ct
Cp

=
 0.5 0.5 0
1.6137 −3.3234 1.7097
4.3780 −4.2455 −0.1325

×
 L0.43

M0.43

S0.43

 (12)

Suppose sl(i) is a specific pixel in SL, SLD or SLB,
the color difference loss was defined as the average of1EIPT
[63] color difference value of all pixels:

lC =
1
hw

∑hw

i=1

√
1I (i)2+[0.51Ct (i)]2+1Cp (i)2 (13)

where the color difference 1 is calculated between s(i) and
sl(i).
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SSIM loss (supervised). While unsupervised lTMQI
ensures that tone-mapped SDR image will maintain abundant
details and structure from original HDR image, it’s also worth
paying attention to the structure consistency between output
and label SDR images. Therefore, we decided to use loss
terms SSIM [35] which had been proven (by [64]) effective
in ‘‘perceptual-motivated’’ (see §V for its definition) CNN.
SSIM loss (lSSIM ) was calculated in single-scale fashion same
as eqn. (4), but its local structure fidelity is different from
eqn. (1):

SF local (x, y) =
2µxµy + C1

µ2
x + µ

2
y + C1

·
2σ xy + C2

σxσy + C2
(14)

where µx , σx and σxy are mean, standard deviation and cross
correlation of 2 patches. Here, C1 = 0.0001, C2 = 0.0009.
Note that, both lSSIM and lTMQI were calculated on luminance
channel Y (row 2 of eqn. (5) or (6), depending on color
gamut).

Perceptual loss (supervised). Loss from another
pre-trained network was referred to as ‘‘perceptual’’ loss in 6
of 20 related works ([3], [25], [27], [42], [43] and [46]),
we decided to follow the same practice.

By separately feeding S, SD or SB and SL, SLD or SLB into
pre-trained 19-layer VGG-Net [30], perceptual loss (lP) was
calculated using the mean absolute error between same VGG
layers with different inputs. Take step 2 for example:

lS =
∑5

n=1

1
hnwncn

‖∅n (S)− ∅n (SL)‖
1

(15)

where ∅n (x) represent specific layer in pre-trained VGG-Net
receiving x as input, ‖·‖1 is l1 norm, hnwncn denote the
size of current layer, n from 1 to 5 means that we totally
utilized 5 layers i.e., conv1_1, conv2_1, conv3_1, conv4_1
and conv5_1.
MAE loss (supervised). Mean absolute error (MAE) loss

is one of themost widely-used pixel-wise loss terms in images
transformation tasks:

lMAE =
1
hwc

∑hwc

i=1
|sl (i)− s(i)| (16)

where hwc represent the total element number of tensors.
We chose MAE (l1 norm) rather than MSE (squared l2 norm)
loss because [38] found that l2 loss will overestimate over-
exposed areas of HDR image even it has been converted into
non-linear domain.

Totally 6 loss terms were calculated, 4 of them were
inspired IQA (lTMQI , lH , lC , and lSSIM ) and 3 of them were
first introduced in HDR related CNN (lTMQI , lH and lC ).
Finally, all loss terms were linearly added as total loss, their
coefficients were empirically set as in Table 2.

2) TRAINING SET
A training set containing HDR-SDR (input-label) pairs is
still indispensable for supervised loss terms. Our training
set was obtained from Fairchild [1], Funt et al [59] and
Waterloo IVC MEFI [60] datasets which totally contain 234
high-resolution diversified real-world HDR scenes, along

TABLE 2. Linear Coefficients of All Loss Terms.

FIGURE 5. An example of simultaneously-shot target SDR obtained from
different ways. Fine-tuned one (b) is obviously more vivid in dark (green
box) and bright areas (red box).

with their source bracketing exposure SDR sequence. 200 of
them were selected as training set while the rest 34 were used
as part of our test set. For each HDR-SDR pair, 16 patches
with 512 × 512 size were obtained: 15 were from random
cropping while the last one was from resizing. Finally, we got
3200 pairs of patches. It is worth noting that target (label)
SDR images in our training set were obtained in a distinctive
way based on the following insights.

The common practice to obtain training pairs is to generate
target SDR image from its HDR counterpart using traditional
TMOs. This was adopted by almost all deep TMOs due to the
wide accessibility of HDR content. However, we found that
even when target SDR images are from parameter-fine-tuned
TMO (in [25] and [34]) or selected according to best objective
score (in [31], [24], [26] and [27]), they still contains artifacts
brought by traditional TMOs e.g., over-enhancement or over-
stylization. Therefore, to avoid those artifacts, we first turned
to use simultaneously-shot real HDR-SDR pairs.

Since the only public-available real HDR-SDR pairs [38]
was excluded due to the reason mentioned in §II.C, we turned
to obtain simultaneously-shot SDR counterpart from bracket-
ing exposure SDR sequence (available in [1], [59] and [60]).
We started with treating exposure-value-0 (EV0) image as the
SDR counterpart, but we found it ending up with unsatisfac-
tory results, specifically, lack of details in both bright and dark
areas. This was caused by target SDR images themselves:
EV0 SDR images ((a) in Fig. 5) containing deficient details in
bright and dark areas showed good result for rTMO because
they taught CNN to recover lost details, however, they taught
CNN to vanish those details when it comes to TMO.

Therefore, we turned to generate better target SDR images
by utilizing all raw information in bracketing exposure
sequence. Some were accomplished by professional pho-
tographers’ fine-tuning using Adobe Photoshop on a cali-
brated sRGB color gamut monitor, the rest were by tuning a
pre-trained multi-exposure image enhancer SICE [61]. As is

73880 VOLUME 9, 2021



C. Guo, X. Jiang: Deep TMO Using IQA Inspired Semi-Supervised Learning

illustrated in (b) in Fig. 5, target SDR images acquired in this
way have more details in bright and dark areas.

3) DATA PRE-PROCESSING
Since there is a huge difference between pixel value
distribution of linear HDR and non-linear SDR images,
majority of related works followed the common practice
of converting HDR images into logarithm (log) domain
([3], [25], [26], [33], [34], [36], [42], [43] and [46]) or
other non-linear domain ([38]), which made pixel value more
evenly-distributed and easier for CNN to process. While the
rest of methods ([5], [24], [27], [31], [39], [40], [41], [45],
[47] and [56]) just normalized HDR images without domain
transfer.

Inspired by TV production process, we proposed a domain
consistent strategy where HDR input and SDR output of
our CNN are in same non-linear (gamma/display) domain.
Recall that pixel value in HDR image is photometrically
linear, thus HDR images were converted to non-linear after
normalization. Let ho (i) and so (i) denote original pixel value
of HDR and SDR images, respectively. HDR pixel value was
converted as:

h (i)=
[

ho (i)−min {h (k)}
max {h (k)}−min {h (k)}

]0.4545
, k ∈ {1, . . . , hwc}

(17)

where power 0.4545 was derived from approximate
sRGB [65] non-linear (gamma2.2) curve. Meanwhile,
non-linear SDR images were normalized without curve
conversion:

s (i) = so(i)/255 (18)

We deprecated logarithm domain because it has no physical
meaning, while non-linear/linear is display/scene-referred.
We also deprecated unified linear domain (in this case,
power 0.4545 in eqn. (17) was removed, and power 2.2 was
added to eqn. (18)) because we found it producing unnatural
color in dark areas of output SDR images. Experiment on
data pre-processing was later conducted and demonstrated in
§IV.C.2.

4) INPLEMENTATION DETAILS
Parameters in our CNN were initialized by truncated normal
distribution, and optimized using adaptive moment estima-
tion (ADAM) [66] optimizer in 0.0005 learning rate for both
steps. Batch-size for step 1 and step 2 was set to 8(NL),
32(NG) and 4, respectively. TensorFlow implementation of
our method is available at github.com/AndreGuo/IQATM/.

IV. EXPERIMENTS
Different from other tasks, tone-mapping is an information-
reducing process, which means original HDR image is more
informative even than elaborate label SDR image. Therefore,
objective scores are calculated between output SDR and orig-
inal HDR, rather than between output SDR and label SDR.

TABLE 3. Objective Scores of Different Combinations of Innovations.

We selected TMQI [6] and FSITM [7] detailed in §II.D as
the objective quality score. In experiments below, TMQI will
be split into 2 parts namely FR structure fidelity (denoted as
TMQI_S) and NR naturalness (denoted as TMQI_N). Since
both TMQI and FSITM works in luminance channel Y (row
2 of eqn. (5) or (6), depends on color gamut), color informa-
tion is ignored. Hence, we appended another FR tone-mapped
image quality assessment method [67] previously proposed
by our quality assessment laboratory, to measure the color
preservation from HDR to SDR images. Its objective score
‘‘color difference matrix index’’ (CDMI) is given by calculat-
ing a modified color difference formula between each pixel in
HDR and SDR images. All objective scores are upper-bound
by 1 where higher means better.

A. TEST SET
Totally 87 HDR scenes were included in our test set: 34 from
the rest part of training set ([1], [59] and [60], mentioned
in §III.B.2), 15 from [6], and 38 from Laval Indoor HDR
dataset [68]. Indoor HDR scenes from [68] were added to
diversify our test set, thus to prove the scene-adaptability of
our method. Since our training set is mainly composed of
outdoor scenes, indoor scenes from [68] will also help us to
further reveal the generalization of our trained model.

When testing, all input HDR images H followed the same
pre-processing as training (eqn. (17)), no post-processing was
applied since our CNN works in unified non-linear domain.

B. ABLATION STUDIES
Our ablation studies were done on 2 aspects namely MGRB
and IQA inspired semi-supervised loss terms. As shown
in Table 3, 6 combinations of innovations (¬-±) were tested
using 5 abovementioned objective scores. Best performances
on each score are highlighted in bold.

1) ON IQA INSPIRED SEMI-SUPERVISED LOSS TERMS
When studying the effect of IQA inspired semi-supervised
loss terms, lMAE and lS were chosen as the baseline
(column ®). Note that 4 novel loss terms (lTMQI , lH , lC , and
lSSIM ) were divided into 2 groups based on their functionality
(on structure or color) rather than mechanism (supervised or
unsupervised). During ablation study, all loss terms shared
same coefficients as Table 2.

By comparing column ¯ with ®, we can find that the
introduction of lH and lC had improved the performance of
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FIGURE 6. The effect of color-related semi-supervised loss terms. Ground truth label image along with 4 output images with/without color related loss
are illustrated. Corresponding chromaticity diagrams are listed to visualized their color difference. As seen, the introduction of color-related losses had
made the output’s color appearance and pixel color distribution the closest to label.

color-related objective score CDMI. Form column ® and
° we know that the introduction of lTMQI and lSSIM had
boosted structure-related score TMQI_S and FSITM. Mean-
while, some scores of final model ± were sightly inferior to
those where ‘‘expertise’’ loss terms were added along (¯ and
°), but final model ± reached a more balanced score.

The effect of color-related lH and lC is visualized in Fig. 6.
Different from deep CNN based TMOs [25] and [27] han-
dling only luminance channel, and [34] where only 2 of
3 channel are processed, our CNN directly handle 3 channels
of RGB image. Hence, severe color aberration may occur
when only basic loss terms are used (case 2 and 3 in Fig. 6).
This is caused by the intrinsic shortcoming of l1 (MAE) loss
that 2 output RGB values representing different colors may
share the same MAE value with specific label RGB value.

We addressed this by restricting pixel color using lH and
lC . As seen in those CIE 1931 Yxy chromaticity diagrams
in Fig. 6, the introduction of supervised loss lC made the pixel
color distribution of ¯ the closest one to our elaborate label.
Note that, there still exist several color differences between
them, this is because unsupervised loss lH will make output
SDR image inheriting color distribution (especially hue) form
input HDR rather than only from label SDR.

By avoiding up-sample, the deprecation of U-net’s decon-
volution layers had prevented our method from struc-
ture distortion like checkerboard artifact [71]. However,
poorly-trained fully convolution layers may still vanish detail
(high-frequency texture).

The effect of the introduction of structure-related lTMQI
and lSSIM is illustrated in Fig. 7. As seen, there are more
details in the output of ° compared with ®. Edges around
bright area (lamp in (a) and light spot in (b)) are clearer, and
high-frequency details (hair in (d) and text in (c)) become
more obvious.

2) ON MULTI-GROUP RESIDUAL BLOCK
The immediate removal of ripple/halo artifacts brought by
MGRB has been demonstrated in Fig. 3. The impact of
MGRB can be quantified by comparing column ¬ vs. ®,

FIGURE 7. The effect of structure-related semi-supervised loss terms.
As seen, the introduction of structure-related losses can make edges
more obvious.

FIGURE 8. 3 different simplified networks. Red and purple circle
represent same decomposing and up-scale in Fig. 1/2, respectively.

and  vs. ± in Table 3. As seen, MGRB’s improvement
on objective scores mainly lies on structure fidelity related
TMQI_S and FSITM. We attribute this to the enlarged recep-
tive field brought by MGRB, since it can eliminate structure
discontinuity at the edge of ripple/halo.

C. OTHER EXPERIMRNTS
1) ON NETWORK STRCTURE
We designed 3 separate simplified networks to explore the
effectiveness of decomposing and multi-branch strategy, and
to prove the necessity of Polishing Network NP . As is illus-
trated in Fig. 8, simplified networks are full network without
NL, without NP , or without both of them, separately. Note
that, parameters of all simplified networks were individually
trained to their best effort, rather than borrowed from the
trained whole network.
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TABLE 4. Objective Scores of Other Experiments.

FIGURE 9. Result comparison of different simplified networks.

Performances of different simplified networks are list
in the left side of Table 4. As seen, simplified network
(I) reached the closest performance to whole network.
Also, (II) decreased significantly on structure related score
TMQI_S and FSITM, while decreased slightly on other
scores. Last, (III) got poor result on all scores. Hence, it’s
acceptable to discard NL to further reduce network com-
plexity at the cost of slight performance degradation. Also,
by comparing (I) with (III) we know that NP is most indis-
pensable among all sub-networks.

Fig. 9 can better support above conclusion. As seen, there
is only slight difference between (b) and (a). While the (c) is
overall dim, and has light-spot-artifact brought by limited
network depth thus small receptive filed. At last, (d) is unac-
ceptable since blur and halo artifact occur in whole image.

2) ON DATA PRE-PROCESSING
Besides network structure, we also explored the effect of data
pre-processing. Here, we compared the result of non-linear
domain (detailed in §III.B.3) against linear domain. Their
quantitative comparison is listed in last 2 columns of Table 4.
As seen, non-linear model outperformed linear model in all
objective scores except FSITM.

The effect of data pre-processing is illustrated in Fig. 10.
As seen, output SDR image from linear domain model (a)
tends to be undersaturated, especially in dark areas. This is
mainly due to the pixel value distribution of linear light HDR
images. Take Fig. 10 for example, in HDR image, luminance
of the outdoor aera is very low compared with building in
high luminance, thus their pixel value become extremely low

FIGURE 10. The effect of domain transfer in data-preprocessing. As seen,
(a) is under-saturated, and its pixel color distribution is limited.

after normalization. In this case, it’s hard for CNN to recover
color information form tiny RGB ratio, as seen in the limited
pixel color distribution in (a). However, when it is non-linear
transferred, pixel values of dark areas become more notable,
thus easier for CNN to recover color information.

D. COMPARISONS WITH OTHER METHODS
We compared our method with 8 TMOs including 5 tra-
ditional ones and 3 deep TMOs. Traditional TMOs
namely Drago03 [14], Mantiuk06 [15], iCAM06 [16]
and Reinhard02 [17] were implemented using official
code/software with default parameters. In addition, we added
a parameter-free traditional TMO Mai11 [72] which opti-
mizes the global mapping-curve.

We reproduced deep-CNN-based Yang et al. [25]’ method
following the same data pre-processing with official model
parameters (checkpoint). For deep TMOs Rana et al. [27]
and Zhang et al. [34] where official checkpoint was not
provided, we obtained their test set and corresponding offi-
cial tone-mapped SDR images form authors. Hence, data
in Table 5 was calculated on the test set intersection between
ours and theirs. (In §IV.A, images in test set were selected in
a way which will maximize this intersection.)

1) QUANTITATIVE EVALUATION
Mean value and standard deviation of 6 objective scores are
listed in Table 5. Higher mean value indicates better overall
performance (except BTMQI where lower is better), while
smaller standard deviation means better stability and scene-
adaptability. Among deep TMOs, our method had got 8×1st,
3× 2ed, 1× 3rd and no worst over all scores.
Comparing with all TMOs, ours reached the best TMQI

and TMQI_N in both mean value and standard devia-
tion, which means it’s the most likely one to produce
nature-looking results under various HDR scenes. Also,
we got the best CDMI standard deviation and a CDMI mean
value very close to the best one. This indicates that our
method is able to scene-adaptively generate results with good
color reproduction.

However, when it comes to TMQI_S and FSITM (both
on structure), most deep TMOs including ours were not top-
ranked, and didn’t outperform all traditional ones. This is
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TABLE 5. Performance comparison of All TMOs. The Best among All/Deep TMOs Are Highlighted with Bold/Underscore, Respectively.

FIGURE 11. Result comparison on outdoor scene. Corresponding pixel color distribution is shown in the chromaticity diagram below the image. As seen,
the proposed method can simultaneously reveal local details in both dark and bright areas. Note that, ‘‘(j) Non-linear normalized HDR’’ is visualized
using Eqn. (17). In other words, it’s the exact input of our CNN (H).

because while the output pixel value of global traditional
TMOs (all except [17]) is not affected by its neighbors, that
of deep TMOs may be undeservedly disturbed by its long-
distance pixel dependency established by receptive filed.

In this section, we added an NR quality score BTMQI [73]
assessing only tone-mapped SDR images, from its infor-
mation, naturalness and structure. Our method got the best
and second best BTMQI among deep and all TMOs, respec-
tively. Since our results are best in naturalness and average
in structure, a small BTMQI indicate that our results are
informative.

2) VISUAL COMPARISON
Overall Performance.As seen in Fig. 11, [14], [17] and [72]
got fair result, but they lack the ability to reveal details in
dark areas (red arrow). [15] and [16] emphasized details, but

their results appeared over-stylized and overall-dim. As for
deep TMOs, results of [25], [27] and [34] got strange satura-
tion and are thus less nature-looking. Besides, result of [27]
didn’t recover information in dark region (red box), while
their bright area (green box) still tends to be over-exposed.
In summary, our method can produce nature-looking result
while maintaining information in both dark and bright
areas.

Due to the extra resize operation (enlarging to the same size
as others for display) applied to the results of deep TMOs [27]
and [34], their details appear blurry, as seen in red and green
box of (g) and (h). Due to their fixed-size U-net CNN struc-
ture, original output size of [27] is 2048 × 1024, while that
of [34] is limited within 512 × 512. Hence, our method has
a practical advantage of arbitrary input size, thanks to the
design of fully convolutional layer.
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FIGURE 12. Visual comparison on indoor-outdoor scene. The proposed method is able to preserve information in both bright reflectance (red box) and
dim areas (green box) while maintaining good color appearance and satisfying overall-brightness.

FIGURE 13. Visualizing results on indoor scene. Our result got highest TMQI and CMDI, i.e., the best naturalness and the most accurate color
reconstruction form HDR image. Meanwhile, compared with others, details on the doom (green arrow) were better preserved by our method.

In Fig. 12, we selected a hard-to-tackle indoor-
outdoor-alternating HDR scene. As seen, our method did
the best simultaneously revealing details in both bright
reflectance (red arrow) and dim ceiling (green arrow), mean-
while, having a good overall-brightness. Besides, our method
got the best TMQI (mainly from TMQI_N) and CDMI in Fig,
12 and Fig. 13, indicating that our method reached the best
naturalness, and the most accurate color reproduction from
HDR image. Similar conclusions are draw on the title of
Fig. 13 and Fig. 14.

Color appearance and reproduction. In Fig. 11, 12,
13 and 14, pixel color distribution of different results is
plotted within the assumed sRGB gamut boundary on CIE
1931 Yxy chromaticity diagrams. Here, color difference can
be judged by distance (though it’s not perceptually uniform),
while hue is reflected in the angle from white point.

By comparing the chromaticity diagrams of others with
(j), especially in Fig. 12, we know that our result most accu-
rately reproduced the color appearance (especially hue) from
HDR (j). We contribute this to our unsupervised hue loss lH .
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FIGURE 14. Demonstrating results on outdoor scene. Our method didn’t do the best preserving information in most-bright area (red arrow), but
performed well revealing details in bright-dark-alternating area (green arrow), meanwhile, having good overall color appearance.

FIGURE 15. Detailed comparison on structural preservation. As seen in (1), high-frequency details in bright region (red box) were well presented in
both (b) and (i), while details in dark area (green box) were simultaneously preserved only by our method (i). As for scene (2), structure in bright area
(green box) was better preserved in (b) and (i). Meanwhile, salt-and-pepper noise (red box) was amplified into a strange pattern by other deep TMOs in
(f) and (g), while kept in (b) and (e), and suppressed by our method (i).

FIGURE 16. Focusing on detail reconstruction around illuminant. All methods except (b) perform similarly on scene (1). As for scene (2), (g) got extra
pattern around lamp (green box), and ‘‘dyeing’’ color on neon light (yellow box). Our method performs well revealing details in (1), but has halo artifact
in some cases (red box in (2)).

The effect of supervised color difference loss lC (color
consistency from label) cannot be assessed here since there’s
no label for some image in test set. But from another angle,
as seen in most cases except Fig. 14, other deep TMOs [25]
(f), [27] (g) and [34] (h) tend to undeservedly extend color
distribution, and distort the hue of their outputs. While the
proposed method has learned a natural and traditional-TMO-
like ‘‘conservative’’ color appearance.

Details and structure. More scenes (Fig. 15 and Fig. 16)
were added to compare the structure preservation and
detail revealing ability of different methods. Results of 5
methods are compared in each figure, including traditional
Mantiuk06 [15] TMO with the most emphasis on struc-
ture, another traditional TMO, and 3 deep TMOs ([34]
are excluded due to its 512 × 512 low-resolution
output).
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FIGURE 17. More HDR scenes are compared to show the scene-adaptability of our method. Among all scenes (1) high-contrast portrait, (2) outdoor,
(3) high-contrast indoor and (4) high-contrast outdoor, our results (i) are obviously more colorful and vivid, and have sufficient details in both bright
and dark region.

Description has been written on the title of each figure.
In summary, in Fig. 15, our method did the best suppress-
ing salt-and-pepper noise while avoiding structure distor-
tion. Our result maintained as much structure information as
structure-specialized Mantiuk06 [15] TMO (red box (1) and
green box (2)), and overperformed others in simultaneously
keeping structure in both dark (green box (1)) and bright
region.

In Fig. 16, when preserving structure and detail around
illuminants, our result (i) surpasses other deep TMOs (f) and
(g). However, it has halo artifact which is unseen on the
output of traditional TMOs (b) and (c). To this end, we must
admit one of our limitations, that while most halo artifact was
eliminated by the introduction of MGRB, it may occur in
some extreme cases where the luminance around neighboring
pixels varies dramatically.

Scene-adaptability. In §IV.D.1, the scene-adaptability of
our method is reflected in the lower standard derivation on
highly-diversified test set. Here, more HDR scenes are com-
pared in Fig. 17 to prove this adaptability. As seen, our result
is more vivid and detailed among all scenes.

V. CONCLUSION AND FUTURE WORK
In this paper, we proposed a learning-based, scene-adaptive
and size-adaptive TMO using deep CNN. During its design,
we explored the effect of network structure, training, and
data pre-processing. Most importantly, we introduced IQA to
‘‘perceptual-motivated’’ deep CNN (i.e., CNN whose output
is to be evaluated by human perception). Due to the mecha-
nism of IQA, specifically, tone-mapped image quality assess-
ment, it’s implemented by semi-supervised loss function.

Our work is just a small step bridging the gap between
modern perceptual quality models and perceptual-motivated

CNN. While our IQA losses were mathematically defined,
there has been several recent ‘‘perceptual-motivated’’ deep
CNN whose IQA scores were from a customized loss net-
work. These loss networks were trained to mimic various
quality scores to be used in loss function. For example,
Chen et al. [69] trained their loss network to output objec-
tive VAMF between label and output, Talebi et al. [74] and
Yang et al. [75] applied NIMA [76] as their loss network
to get aesthetic subjective score on output image. Their loss
networks shared the same motivation of mimicking a quality
score which is unable to be directly implemented as loss func-
tion due to its complexity or non-differentiability (objective
scores), and unquantifiability (subjective scores).

Recall that some objective scores (e.g., TMQI’s natu-
ralness term, BTMQI [73] and BLIQUE-TMI [70]) were
excluded from our loss function due abovementioned reason.
Hence, in further work, we are looking forward to use a
loss network to learn those scores and act as loss function.
We believe that compared with VGG-net-based loss network
used in 6 of 20 HDR related CNN, a loss network with inter-
pretable output can better represent the terminology ‘‘percep-
tual loss’’.
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