
Received April 15, 2021, accepted May 4, 2021, date of publication May 14, 2021, date of current version May 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3080275

Sim2RealQA: Using Life Simulation to Solve
Question Answering Real-World Events
TAIKI MIYANISHI 1,2, TAKUYA MAEKAWA3, AND MOTOAKI KAWANABE1,2
1Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0288, Japan
2RIKEN Center for Advanced Intelligence Project (RIKEN AIP), Kyoto 619-0288, Japan
3Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan

Corresponding author: Taiki Miyanishi (miyanishi@atr.jp)

This work was supported in part by the JST ACT-I under Grant JPMJPR18UT, in part by the JST CREST under Grant JPMJCR15E2, and
in part by the JSPS KAKENHI under Grant JP18KK0284.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Ethical Committee of the Advanced Telecommunications Research Institute International (ATR), and performed in line with
the Declaration of Helsinki.

ABSTRACT As smart speakers continue to proliferate, question answering (QA) by smart devices is being
woven into our daily lives. This study assumes question answering related to daily life events detected by
context recognition systems, such as activity recognition and indoor positioning systems, e.g., answering
questions like ‘‘Did my grandma eat dinner?’’ and ‘‘How many times did my grandpa go to the toilet?’’
These questions can effectively support humanmemory-aids, locate lost items, andmonitor human activities.
However, training a question-answeringmodel requires large amounts of labeled training data (i.e., questions,
answers, and the time-series of real-world event triplets) collected in a target environment. In this paper,
we propose a novel simulation to real QA (Sim2RealQA) framework that completely trains a QAmodel with
QA datasets produced in a life simulator and use it for solving real-word QA problems without answer labels.
Our proposed QA model can learn a general reasoning process for QA that is independent of environments
and deal with diverse types of questions specific to question answering in real-world environments, e.g.,
counting the number of occurrences of a real-world event and enumerating the names of those who are
performing an activity together. Experiments show that using life simulations is a promising approach for
solving real-world QA problems when no real-world answer labels are available.

INDEX TERMS Lifelog, ubiquitous computing, daily-living activities, real-world question answering.

I. INTRODUCTION
A. BACKGROUND
Based on the recent advances in sensing methods, such
context recognition technologies as activity recognition and
indoor positioning have been scrutinized in the IoT commu-
nity. Many activity recognition studies employ body-worn
sensors, including acceleration sensors, gyroscopes, cam-
eras, and microphones to recognize such daily activities as
walking, running, and house cleaning [1]–[5]. Indoor posi-
tioning studies rely on signaling technologies, for example,
infrared [6], ultrasound [7], active sound probing [8], [9],
Bluetooth [10], and Wi-Fi [11], [12]. The recognized con-

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Zakarya .

text information can be used in real-world services, e.g.,
context-aware systems, lifelogging, and the surveillance of
the elderly [13]–[17].

Due to the recent proliferation of such smart speakers as
Amazon Echo and Google Home, question answering (QA)
by these smart devices is being woven into our daily lives. As
mentioned above, our daily lives are being monitored by such
context recognition techniques as activity recognition and
indoor positioning. Based on the recognized and stored daily
activity data, real-world question answering (real-world QA)
has been investigated [18]. Real-world QA, which provides
more fine-grained understanding of our daily living than just
retrieving past events, offers many useful real-world applica-
tions for improving quality of life. For instance, answering
such questions as ‘‘What did I eat last night?,’’ ‘‘Where is

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 75003

https://orcid.org/0000-0001-9105-1601
https://orcid.org/0000-0001-7070-6699

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

FIGURE 1. Sim2RealQA example: We train models with a virtual-world QA dataset produced in a life
simulator (left) to solve real-world QA problems (right).

my smartphone?,’’ and ‘‘Did Mary take her medicine after
eating?’’ supports human memory-aids, locates lost items,
and monitors human activities.

Because a real-world QA is assumed to output a linguistic
description as an answer, which is read out by a smart speaker,
recognized daily life events are stored as linguistic descrip-
tions (a series of sentences related to real-world events) that
facilitate answer generation from the stored sentences related
to daily life based on the state-of-the-art QA methods. For
example, when an indoor positioning system detects that
Mary’s current indoor coordinates have changed from the
living room to the kitchen, this event is converted to the
following sentence: ‘‘Mary has moved from the living room
to the kitchen.’’ Since real-world QA requires complex rea-
soning and the generation of diverse answers (e.g., numbers,
‘‘yes/no,’’ and a sequence of words) in response to various
information needs in the real-world, the current real-world
QA approaches mainly use neural network-based QAmodels
that demonstrate high performance over many story-based
QA tasks [19]–[21]. However, neural network-based
model performance relies heavily on large training
datasets [22], [23].

In real-world QA, question and answer pairs as well as
sentences about daily stories collected in a target environ-
ment are required as a training dataset. 5,000 QA pairs
and 1,500 sentences are required for each environment [18].

However, preparing a sufficient amount of real-world QA
dataset is costly and impractical. Preparing QA pairs is espe-
cially difficult because daily life events must be observed by
someone to answer real-world questions, which also raises
severe privacy concerns.

B. APPROACH
To address these problems, we propose to use a life simulator
to produce sufficient amounts of QA datasets for training
neural QA models. With a life simulator, we can easily create
realistic daily living environments rather than building actual
houses and obtain diverse realistic daily life stories. With
virtual daily life stories, a large amount of virtual-world
QA datasets can be efficiently compiled without breaching
privacy concerns. Due to such advantages, we trained a neural
QA model with this virtual-world QA dataset and solved
real-world QA problems without real-world labeled data. We
designated this proposed framework as a simulation to a
real QA (Sim2RealQA). Fig. 1 presents an example of our
proposed framework. In this study, we use a life-simulator
game1 (e.g., The Sims), which replicates a person’s life in a
virtual world. Because a person performs a variety of activ-
ities while interacting with common objects and others to
replicate real-world daily life activities, we can generate a

1In some of the figures of this paper, we cite screenshots of gameplay.

75004 VOLUME 9, 2021

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

sufficient amount of information about daily events to acquire
reasoning rules of QA in normal daily lives regardless of
privacy issues.

We assume the existing activity recognition and indoor
positioningmethods studied in the IoT community and gener-
ate a sequence of sentences about daily stories in a real-world
environment based on the expected outputs of these meth-
ods. We generate sentences by embedding the information
acquired by the activity recognition and indoor positioning
methods into a template, such as ‘‘Subject + Predicate +
Object + Location.’’ Assume that the activity recognition
system detects that David has started a ‘‘sleeping’’ activity.
In addition, an indoor positioning system has tracked his
position, and his location is estimated to be a bedroom.
By referring to the predictions, ‘‘David slept in the bed-
room’’ is generated for that event. In this study, we prepared
templates that can decode the results of various types of
activity recognition and indoor positioning methods. Based
on these templates, we generated a sequence of sentences
about daily stories in real/virtual environments. We believe
that generating sentences about daily life stories from sen-
sor data has the following benefits. (i) We can design our
real-world QA model based on state-of-the-art QA tech-
niques in NLP studies, which assume linguistic descriptions
as input. (ii) Because a question (and an answer read out
by a smart speaker) is done by natural language, QA targets
(i.e., events) that have the same modality as the question
are easy to find. (iii) Since various activity recognition and
indoor positioning systems are available, the output formats
of such systems also vary. When outputs are stored in a rela-
tional database, for example, the columns of tables depend
on activity recognition/indoor positioning systems. There-
fore, a process that handles information from the systems
greatly depends on the output formats (e.g., table struc-
tures) and must be handcrafted for each system, compli-
cating the implementation of these processes in a neural
network model. In contrast, our approach can deal with the
outputs of any type of system once templates are prepared for
each one.

In addition to sentences about real-world stories, we gen-
erate typical real-world questions based on the entities
(e.g., object, place, and person) in a real/virtual environment,
which are used to train/evaluate a QA model. We made
various types of questions that can be used in real-world
situations, including ‘‘Where is Sally?’’, ‘‘What did Ann
do before going to bed?’’, ‘‘Who opened the refrigerator?’’,
and ‘‘How many times did Tom drink coffee?’’ The answers
require different forms: ‘‘bathroom,’’ ‘‘used her smartphone,’’
‘‘Ann, Sally, and Tom,’’ and ‘‘5’’.

To train a QA model that is applicable for such real-world
QA problems using a virtual-world QA dataset, we designed
a QA model so that it learns a general reasoning process that
can be used in any environment. Assume that the following
time-series of sentences about daily stories (story events)
are generated by activity recognition and indoor positioning
systems:

1) Mary moved to the washroom from the entrance.
2) Tom drank coffee in the living room.
3) Mary washed her hands in the washroom.
4) Mary brushed her teeth in the washroom.
5) Tom moved to the kitchen from the living room.
6) Tom opened the fridge in the kitchen.

In addition, a question is asked: ‘‘Where isMary?’’ To answer
it, a naive QAmodel may calculate the output probabilities of
each word in vocabulary. In this case, the probability related
to ‘‘washroom’’ is expected to be high. However, the naive
model cannot output answer words that are not included in
the training data (i.e., the virtual-world data) because the
naive model learns to maximize the output probability of
words in the vocabulary of the training dataset. Therefore,
it cannot deal with answers that contain an entity (e.g., object,
place, and person) not included in the virtual world. For
example, if ‘‘washroom’’ does not appear in the virtual-world
data, the naive model cannot output it as an answer even if
‘‘washroom’’ appears in the real-world events.

In contrast, our QA model learns a general reasoning
process for real-world events independent of environments.
When sentences about daily stories and a question are given,
our model first focuses on sentences that relate to the ques-
tion. Our model then focuses on the words in the found
sentences that might relate to the question, which are used
to generate an answer. In the above example, our model first
focuses on sentences, including the word ‘‘Mary.’’ Because
‘‘Where is’’ in the question specifies the latest location of
‘‘Mary,’’ our model focuses on the last sentence and the
words in it related to the question. Since ‘‘Where’’ in the
question specifies a place, our model focuses on the target
word ‘‘washroom,’’ which is located after ‘‘in.’’ Moreover,
our model can output the target word ‘‘washroom’’ even if it
did not appear in the training data by coping it from sentences
about real-world stories to the answer. This reasoning process
can be learned in any environment when sufficient training
data are given, and the process can be applied to any real
target real environment.

Note that, unlike standard question answering studied in
the NLP community, which mainly focused on choosing an
answer from multiple choices or selecting an answer range
in documents, real-world QA must generate diverse types of
answers (e.g., numbers and a sequence of names of entities)
by processing a sequence of real-world events. Therefore,
our method is designed to be equipped with a module that
is responsible for answer generation that efficiently gener-
ates an answer by synthesizing information about multiple
important events (sentences that require high attention) to
facilitate counting the number of occurrences of an event and
enumerating the names of the entities related to the question.

As described above, our method focuses on critical sen-
tences and words in given stories. We implement this idea
by employing an attention mechanism that extracts impor-
tant information in neural network inputs. We incorporate
event-level attention that computes the weight (importance)
of each event (sentence) into our QA model as well as the

VOLUME 9, 2021 75005

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

word-level attention that computes each word’s weight. We
then generate or copy an answer by employing words with
high weights that appeared in the events (sentences) with high
weights. By using the word attention distribution of input
sequence, this approach output answers that are related to an
entity even when it is not found in a virtual-world QA dataset.

C. CONTRIBUTIONS
The following are the contributions of this study:

• We introduced a novel Sim2RealQA framework that
uses a QA model that is entirely trained with
a virtual-world dataset for solving real-world QA
problems.

• To accelerate real-world QA study in the IoT com-
munity, we developed real-world and virtual-world
QA datasets comprised of daily life stories collected
from an actual house and simulated household environ-
ments. The dataset is available: https://miyatai.org/data/
Sim2RealQA.zip.

• We proposed a new real-world QA model tailored to
Sim2RealQA. The proposed model can learn a gen-
eral reasoning process of real-world QA independent
of environments by leveraging an attention mechanism.
In addition, the model is designed for real-world QA
so that it can generate diverse types of answers about
real-world events by synthesizing information about
important events detected by the attention mechanism.

• We evaluated our model using the real-world and
virtual-world QA datasets. Our experimental results
demonstrate that the Sim2RealQA framework with our
model accurately solved real-world QA problems with-
out real-world answer labels for training.

In the rest of this paper, we first review studies on
sensor-based context recognition methods and question
answering and present our method for dataset construction
and our real-world QA model tailored to Sim2RealQA.
We evaluate it using data collected in real-world and
virtual-world environments.

II. RELATED WORK
We solved real-world QA problems with a QA model trained
with virtual-world data. To tackle this cross-domain QA,
we used a life simulator that generated virtual-world sto-
ries for making virtual-world QA datasets. In this section,
we introduce sensor-based context recognition, the existing
language tasks in a simulated world, simulations to real
approaches, and cross-domain QA methods that describe dif-
ferent aspects from ours.

A. SENSOR-BASED CONTEXT RECOGNITION
In the IoT community, sensor-based context recognition
methods have been studied, especially context related to
human daily activities and indoor positions. Context recog-
nition methods can be roughly grouped into wearable sens-
ing and environment augmentation. The former approach

employs such body-worn sensors as accelerometers, micro-
phones, cameras, and Wi-Fi receivers. The latter approach
employs sensors embedded in an environment, e.g., cameras,
microphones, switch sensors, RFID tags, and Wi-Fi trans-
mitters/receivers. e Activity recognition based on body-worn
accelerometers recognizes simple activities such as walk-
ing, eating, drinking, and brushing teeth [3], [4], [24]–[26].
Activity recognition based on body-worn cameras recog-
nizes complex activities that involve interactions with objects
or other persons, such as eating, talking with someone,
and reading [5], [27], [28]. Activity recognition based on
object-attached sensors such as switch sensors and RFID tags
also categorizes complex activities by sensing interactions
with objects [29]–[32]. Several methods also detect a person’s
activities as well as the objects or those who are interacting
with the person of interest.

Indoor positioning methods estimate the indoor coordi-
nates of a signal receiver or a place class, e.g., toilet or
kitchen, using wearable sensors [8], [33], [34]. Cameras
installed in an environment can also be used for indoor posi-
tioning with a person identification technique [35]. Estimated
indoor coordinates are usually converted to the name of a
room when this information is provided to a user. We assume
the above activity recognition and indoor positioning tech-
niques for generating sentences about daily life stories.

B. LANGUAGE TASKS IN A SIMULATED WORLD
For developing intelligent systems that perform language
tasks in realistic environments, many studies have used sim-
ulators to train models that perform such language tasks
as executing navigation instructions with natural language
[36]–[39], answering questions about virtual-world situa-
tions with embodied agents in a simulated house [40]–[42],
and generating the daily household activities of human-like
agents [43], [44]. These methods presented in earlier works
admirably performed the given tasks because the simulations
provide a sufficient amount of labeled data or rewards for
training. However, they only solve the language tasks with a
simulator. On the other hand, although our framework also
uses simulations, its main purpose is to solve real-world
language tasks with virtual-world datasets that are comprised
of simulation data.

C. SIMULATION TO REAL
Modern machine-learning systems that use deep neural net-
works require many labeled training datasets to achieve supe-
rior performance. To execute a real-world task that often
lacks labeled data, transferring machine-learning systems
from simulations to the real world has been widely used, such
as navigating a robot to find a target object indoors [45],
grasping various objects with robotic arms [46], learning
to drive from a simulation [47], collision avoidance for
drones [48], in-hand manipulation [49], agile locomotion
for quadruped robots [50], and the semantic segmentation
of actual driving video using a popular video game [51].
The results of these works indicate that simulation plays

75006 VOLUME 9, 2021

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

an important role in training machine-learning systems and
increases the real-world task performance. The method pro-
posed and examined in this study also uses the notion of
simulations to real data. Unlike earlier works, we specifically
leverage simulators to address real-world QA problems.

D. NATURAL ANSWER GENERATION
Question answering aims to automatically answer questions
about a given context (e.g., documents, knowledge base,
and multimedia data.) There are several ways of answering
questions: selecting the span corresponding to the answer
from the document [52], [53], choosing one from multiple
answer options [19], [54], or generating an answer [20]. For
responding to various real-world information needs, the real-
world QA task [18] takes the form of generating answers.
As with the real-world QA, most existing works use the
encoder-decoder framework that takes as input a question
and a sequence of words in a given context and then gen-
erates answer words [55]–[57]. For augmenting the question
and answer pairs to improve QA performance, the methods
of generating questions as well as answers have also been
proposed [58], [59]. However, these works mainly focus on
a single domain for answer generation. In contrast to them,
we take a cross-domain QA framework that trains the QA
model with source domain data (virtual-world data) and gen-
erates answers with target domain data (real-world data.)
Another setting of natural answer generation is the setting
of multi-turn QA (i.e., dialogue) [60], [61], which generates
answer responses based on a given context and a history,
including past questions and answers. Our story-based QA
can be viewed as a special case of single-turn dialogue, which
does not use any past questions and answers. Even though
this study’s main topic is to generalize the single-turn QA
model trained with the virtual-world data to the real-world
data, we can naturally extend our story-based QA method to
the multi-turn QA method by using the QA history as input.

E. CROSS-DOMAIN QUESTION ANSWERING
For real-world QA tasks, making QA datasets by collect-
ing real-world stories is costly and complicated by privacy
issues. We address this difficulty using a cross-domain QA
method that uses QA models learned from a source QA
dataset to solve target QA problems. Existing cross-domain
QA methods are used under supervised, semi-supervised,
and unsupervised conditions. Supervised methods use both
labeled source and target datasets. They pre-train a QAmodel
using the source dataset and fine-tune it with the target
domain [62], [63]. A semi-supervised method uses unla-
beled source and labeled target datasets and the unlabeled
source dataset to boost the performance of the QA models
by adapting a model to the target domain [64], [65]. In
contrast to the supervised and semi-supervised QA methods,
we use an unsupervised approach based on the difficulty of
obtaining real-world, labeled data in the target domain. Under
the unsupervised QA scenario, we can use a source domain
(virtual-world) dataset for training the models, but target

domain (real-world) labels are unavailable. Earlier studies
investigated cross-domain QA under unsupervised conditions
and demonstrated their usefulness [66]–[69]. However, these
works used standard reading-comprehension or QA datasets
comprised of Wikipedia entries, web snippets, and newspa-
per articles. These documents are completely different from
the daily living stories used for real-world QA. Moreover,
these studies focused on choosing an answer from mul-
tiple choices or selecting an answer range in documents.
In contrast, real-world QA tasks must generate numbers,
‘‘yes/no’’ answers, and a sequence of words as answers based
on the content of a given question for addressing various
information needs in real-world situations. For these reasons,
we created daily life stories with a life simulator and made
a virtual-world QA dataset that resembles a target real-world
QA dataset.

III. GENERATING DAILY LIFE STORIES AND
CONSTRUCTING DATASET
In this section, we introduce how to create sentences about
daily stories from the outputs of activity recognition and
indoor positioning systems. After that, we describe the
real-world and virtual-world QA datasets constructed in this
study.

A. GENERATING STORIES
In this study, we generate sentences related to (i) locomotion
and (ii) activity. When an indoor positioning system detects
that a person has moved to a room, we generate a sentence of
the event based on the following template:

Here, [person] is replaced by the name of the individual
being tracked. [place.current] is replaced by the name of the
current room, and [place.previous] is replaced by a name of
the room from which the individual moved. The following is
an example sentence generated from this template: ‘‘David
moved to the toilet from the living room.’’

As for daily activities, we assume activities that can be
performed both by a single person and by multiple persons.
When a single-person activity is detected by an activity recog-
nition system, we generate a sentence of the event based on
the following template:

Here, [person] is replaced by the name of the individual
being monitored, and [activity] is replaced by the name of the
detected activity. Because [[activity.object]] shows an option,
it is replaced by an object’s name if the system can detect
the object that was used in the activity (e.g., using RFIDs
or body-worn cameras). A preposition is inserted before
the object name, if necessary (e.g., ‘‘with’’). Note that in

VOLUME 9, 2021 75007

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

some activities, the object being used can be automatically
determined. For example, when toothbrushing is detected,
an object must undoubtedly be a toothbrush. [place.current]
is replaced by the user’s current place detected by the indoor
positioning system. The following is an example sentence
generated from this template: ‘‘Sheldon read a book in the
living room.’’

When a multi-person activity is detected by the activity
recognition system, we generate a sentence of the event based
on the following template:

Here, [activity.person] is replaced by the name(s) of a
person detected as a member of the activity (e.g., using
body-worn cameras or proximity sensors). The following is
an example sentence generated from this template: ‘‘Sheldon
talked with David in the living room.’’ We assume that the
activity recognition and indoor positioning systems generate
sentences based on the above templates.

B. DATASET CONSTRUCTION
We assume the above context recognition systems and intro-
duce the construction of real-world and virtual-world QA
datasets.

1) STORY COLLECTION METHOD
We generated story events for our datasets by observing
real/virtual environments depicted in Figs. 2 and 3.

FIGURE 2. Actual house environment for collecting real-world stories,
where a person performs a variety of daily life activities at each location.

a: REAL-WORLD STORIES
We attached a wearable camera to each subject to obtain
stories in the real house environment depicted in Fig. 2.
Annotators watches the captured videos andmanually created
sentences based on templates described in Section III-A. We
manually generated story sentences because this study’s pur-
pose is to construct precise QA datasets that are independent
of sensor systems as well as to validate the effectiveness of
our proposed Sim2RealQA framework.

In the experiment, we generally followed an earlier study
of real-world QA tasks [18]. Real-world stories consist of
sentences that describe various daily living activities in resi-
dential settings. To collect more diverse daily activities than
in a laboratory setting, we used a semi-naturalistic collection
protocol [1]. We attached a Tobii Pro wearable eye tracker to
five subjects who repeatedly performed 20 daily activities ten
times in six different places: bathroom, bedroom, entrance,
kitchen, living room, andwashroom. For example, the subject
makes coffee in the kitchen, takes it to the living room,
and drinks it while watching TV. During the data collection,
we captured first-person videos of their daily activities and
obtained ten real-world stories per person: 50 stories. Two
annotators labeled these first-person videos using a sequence
of sentences that described what they are doing, when, and
where inside a house. Fig. 4 (top) shows examples of the
annotated real-world stories. We obtained 7,369 story events
(697 unique) about their daily activities. Each story has
147 ± 8 sentences and 1,338 ± 76 words on average.

b: VIRTUAL-WORLD STORIES
For collecting virtual-world stories, we used a life-simulation
game called The Sims,2 which replicates the life of an
individual person in a virtual world. In contrast to recent
simulators that imitate household environments [70]–[73],
The Sims simulator easily and automatically generates many
human-life stories about virtual-world residents called Sims.
In their respective environments, they make their own life
choices based on the available electrical appliances and fur-
niture in their house and to match their physical and mental
needs (e.g., hunger, companionship, hygiene, entertainment,
health, and bodily functions), which are represented by
their interior parameters. For example, when a Sim’s hunger
parameter decreases, she removes food from her refrigerator,
moves to the dining room table, and starts eating. We can
easily customize the room layout and include such furni-
ture and appliances as beds, sofas, coffee-makers, and PCs
in the house environment where the Sims live. With these
advantages of a life simulator, we obtain more realistic and
diverse daily living stories than fictional stories [21], [54],
[74], books [19], [20], and movie scripts [75] where detailed
human activity logs are not recorded. Note that this work
used The Sims due to its simplicity, but other life simulators
(e.g., VirtualHome [43]) can also be used.

We simulated daily activities by preparing three shared
housing environments with typical households using The
Sims because the real target environments and residents are
actually unknown. Each environment has a kitchen as well as
a dining room, a living room, a bathroom, and bedrooms with
appropriate objects for daily life. Fig. 3 depicts three environ-
ments used for the data collection. Using these house settings,
we simulated the daily lives of ten family units comprised
of 16 adults. With the life-simulation game, we collected
30 days of daily activities per family unit (i.e., 300 stories).

2https://www.ea.com/games/the-sims

75008 VOLUME 9, 2021

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

FIGURE 3. House environments in The Sims 4 for simulating daily life: Environment 1 (left) simulates a single-person household. Environment 2 (center)
simulates a shared house. Environment 3 (right) simulates a nuclear family. We use artificial personages as described above for each environment to
obtain daily life stories.

TABLE 1. List of names of entities used for generating daily life stories.

Two annotators manually created story events by watching
the recorded game-play videos. We obtained 54,770 story
events (7,218 unique) about the daily activity events. Each
story has 183 ± 58 sentences and 1,568 ± 523 words on
average. Fig. 4 (bottom) shows examples of the annotated
virtual-world stories. Table 1 show a list of names of entities
used for creating sentences about daily life stories in the real
and virtual worlds.

2) QA CREATION METHOD
For each story, we made question and answer pairs to con-
struct QA datasets, i.e., question, answer, and story triplets.
Wemade a template of 22QA tasks related to world situations

following previous real-world QA work [18]. Table 2 shows
the QA template with which we generated questions about
each task. First, we randomly select the positions where
questions are inserted in each story for each person in both
worlds and then generate a question using a question tem-
plate and events before the question’s position. We repeat
this process until generating 20 questions per task. Then,
we generate answers to a given story by an oracle QA
which can accurately answer all the questions about both
real-world and virtual-world QAs using the syntax structure
of the questions and stories. For example, given a story
‘‘Tom washed the plate in the kitchen. Tom moved to the
living room from the kitchen.’’, we insert a question template

VOLUME 9, 2021 75009

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

FIGURE 4. Examples of real-world and virtual-world QA datasets using daily life stories collected in an actual house and a life simulator. Our QA datasets
ask questions about daily life stories in both worlds.

TABLE 2. Question and answer template on each QA task, where words
[person], [activity], [object], and [place] are randomly extracted from
given stories of QA datasets. ‘+’ indicates multiple entities.

‘‘Where is [person]?’’ after the first event. Then, we auto-
matically fill in the question template according to the first
event’s content and generate a question, ‘‘Where is Tom?’’.

Finally, we create an answer ‘‘kitchen’’ by the oracle QA.
Also, when a second question is inserted after the second
event, the same question ‘‘Where is Tom?’’ and a differ-
ent answer ‘‘living room’’ will be generated. An oracle for
generating answers was also used in an earlier study [18],
[21], [76], [77]. Note that we only use the oracle QA to
validate the concept of Sim2RealQA, which is not available
in the actual case. Due to the diversity of natural language
questions, the oracle QA is not practical in real-world situa-
tions compared to learning-based approaches which can learn
such diversity from data. ‘‘No answer’’ tokens are used if a
question has no answer. We used the same data format for all
the tasks as the bAbI dataset [21]. We also show examples of
real-world and virtual-world QAs in Fig. 4. Their activities
are identical in many cases, but the persons, objects, places,
and daily life patterns in both worlds are sometimes different.
In particular, QAmodels must output answers to the unknown
entities that appear in the real world, but not in the virtual
world (e.g., ‘‘Lisa’’ and ‘‘washroom,’’ in Fig. 4) and gener-
ate such answers as numbers, ‘‘yes/no,’’ and several entities
(e.g., ‘‘entrance, kitchen, living room,’’ in Fig. 4) in response
to various information needs in the real world. In fact, 28%
of the answer words in the target domain (real world) do
not appear in the source domain (virtual world). To exploit

75010 VOLUME 9, 2021

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

FIGURE 5. Overall model architecture for solving real-world QA problems with Sim2RealQA framework. Given sentences of a daily life story and a
question, the QA model outputs a corresponding answer sentence through inference by five layers.

the simulation data and further improve the real-world QA
performance, we need to address these differences between
the real and virtual worlds.

IV. REAL-WORLD QA MODEL FOR Sim2RealQA
A. OVERVIEW
We introduce our real-world QA model for the Sim2RealQA
framework trained on the source QA examples (i.e., question,
answer, and story triplets) of the virtual world, which can
output correct answer when the target story and question sets
of the real world are given. To achieve this generalization of
real-world QA problems, we addressed the unknown entities
that do not appear in the source QA examples, but which do
appear in the target QA examples that simultaneously capture
the relations over multiple events related to a given question.

The overall architecture of our QA model is shown
in Fig. 5. The model mainly consists of five layers: (i) embed-
ding, (ii) context, (iii) attention, (iv)matching, and (v) answer.
The layers (i-iv) are parts of a dynamic memory module
inspired by a dynamic memory network [78], [79]. Layer
(v) is part of the pointer generator module inspired by pointer
generator networks [80]. For a brief explanation, we consider
a sentence in a story an event and a sequence of sentences
about a daily story story events. In our model, the input
consists of events (a daily-life story) and a question. First,
the embedding layer extracts their word feature vectors (i.e.,
word embeddings). Second, the context layer takes the word
embeddings as input, computes the sequential dependencies
of the words in the question and each event, and outputs
a question embedding and event embeddings. In addition,
this layer takes event embeddings as input and calculates the
story embeddings that capture the context of story events. The
attention layer takes the question and story embeddings as
input and computes the event-level attention that represents

an event’s importance for a given question. The matching
layer aggregates the events weighted with event-level atten-
tions and outputs the matching embedding. Because the
matching embedding is a vector that represents the associ-
ation between a question and its relevant events, it is used
for decoding answers. Finally, the answer layer outputs an
answer sentence based on the two types of word weights
from the vocabulary and word attention distributions. The
vocabulary distribution, which is a probability distribution
over all the words in the vocabulary of the training dataset,
is calculated based on the hidden state of an RNN language
model trained for predicting the answer words. By using
this distribution, the model can generate answer words from
the fixed vocabulary used in training. The word attention
distribution, which is a probability distribution over the words
in the input sequence, is calculated based on the cumulative
attentions of the input words for generating the answer words.
By sampling words from this distribution, the model can
output unseen entities as an answer when such entities are
included in the input story. We extended this word attention
distribution with event-level attention that represents the rele-
vance between a question and events because relevant events
to a question are likely to contain words suitable for the
answer. Finally, the answer decoder in the layer recurrently
generates a sequence of answer words by integrating the
vocabulary and the extended word attention distribution. We
explain each component of our model in detail.

B. EMBEDDING LAYER
The model’s input is the question and story events.
First, we convert each word in the question and story
events into vectors that represent the semantics of words.
For the vector representation of the word in the events
and the question, we use the Glove model trained with

VOLUME 9, 2021 75011

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

Gigaword5 +Wikipedia2014 corpus [81]. This layer’s out-
puts are question word embeddings Qw ∈ Rn×dw and event
word embeddings Ew ∈ Rm×dw , where n is the length of a
question (i.e., the number of words in it), m is the length of
an event (i.e., the number of words in it), and dw is the size of
the word embedding. The event word embedding is created
by each event in a story.

C. CONTEXT LAYER
This layer models a sequence of words (i.e., question and
event) and a sequence of events (i.e., story) using the question,
event, and story encoders. To model the long-term depen-
dencies in the input sequence, we encode the sequences of
the words and events using a bidirectional-GRU (Bi-GRU)
[82], [83], which is a special kind of recurrent neural network.
The question encoder outputs the GRU’s hidden state after
reading question word embeddings Qw as question embed-
ding q ∈ Rdh , where dh is the size of the hidden state of
Bi-GRU. The question embedding corresponds to modeling
a sequence of words in the question. The event encoder reads
event word embeddings Ew and outputs GRU’s hidden state
as the event embedding. This resembles the modeling of a
sequence of words in the event. The event embeddings of all
events are denoted as E ∈ Rl×dh , where l is the length of
the story (i.e., the number of events in it). In addition, we use
the GRU outputs as the contextual event word embeddings
Ec ∈ Rm×dh when reading the event word embeddings.
The contextual event word embeddings model the sequential
word representations in each event to compute the word-level
attention distribution for answer decoding. We also use the
GRU outputs (i.e., the hidden states of the story encoder)
when reading the event embeddings as story embeddings. The
story embeddings of all the events are denoted as S ∈ Rl×dh ,
which resembles modeling of the context of events in a story.

D. ATTENTION LAYER
This layer computes how essential an event is to a given ques-
tion using event-level attention. It is a useful clue to find the
relevant events to a user’s question in a long story. In addition,
this information helps enumerating name of entities a particu-
lar event related to a question. Using story embeddings S and
question embedding q, the event-level attention computes the
weight of each event. For example, this attention increases
the weight of events (e.g.,‘‘Tom washed his hands in the
bathroom,’’ ‘‘Tom moved to the kitchen from the bathroom,’’
and ‘‘Tom opened the cupboard in the kitchen’’ in Fig. 5),
including thewords in a question (e.g., ‘‘Tom’’). The attention
value of k th event is given by

βk = softmax(Wβ tanh(Wzzk + bz)+ bβ), (1)

where Wβ , Wz, bβ , and bz are the learnable parameters, zk =
[sk ◦ q; |sk − q|], and sk ∈ S is the story embedding of the
k th event. Here ; denotes horizontal vector concatenation, ◦
is an adamal product, and | · | is the absolute value for each
element. Because sk ◦q represents the similarity between two
vectors and |sk−q| represents their distance, zk represents the

relationship between the story event and a question. We use
this event-level attention distribution β for weighting story
events by their importance to a question in the next matching
layer.

E. MATCHING LAYER
This layer encodes the story and question embedding as a
question-story matching embedding (matching embedding
for short) with an attention-based encoder. First, the attention-
based encoder sequentially weights k th story embedding sk ∈
S with corresponding event-level attention value βk and
aggregates them by

ck = (1− βk) ◦ ck−1 + βk ◦ sk . (2)

The output of encoder c after reading all story embeddings
S is the weighted sum of the story embeddings by relevance
to the questions, which emphasize recent events. To predict a
question’s answer based on question embedding q and final
weighted story embedding c, this layer computes matching
embedding m:

m = ReLU(Wm[c; q]+ bm), (3)

where Wm and bm are the learnable parameters. Here ReLU
is a Rectified Linear Unit [84]. The matching embedding
holds the relevance information between a given question
and story events computed by the event-level attention which
gives a large weight to events related to the question. There-
fore, it contains important clues to answer the question. Then,
we use matching embedding m as the initial hidden state of
RNN-based decoder h0 in the answer layer for bringing the
matching results between a question and a story to answer
decoding.

F. ANSWER LAYER
This layer in the pointer-generator module generates
a sequence of answer words based on the matching
results between the question and the story using the
pointer-generator decoder. Fig. 6 shows its overview. First,
the RNN-based decoder with a hidden layer initialized by
matching embedding reads a 〈START 〉 token that indicates
the beginning of the answer sentence and updates the internal
state. Based on this updated hidden state, the decoder then
generates the next word based on the (i) vocabulary distribu-
tion and (ii) the word attention distribution. The decoder com-
putes the vocabulary distribution to predict the next answer
word in the vocabulary used in training. It also computes the
word attention distribution to address the unknown entities
that do not appear in the training dataset. The decoder uses the
word attention distribution to copy words from the input story
events with a pointing mechanism [80], [85]–[87]. Second,
this layer updates this word attention distribution using the
event attention distribution from the encoder and computes
the extended word attention distribution to actively reflect
a question’s intention about an answer. Finally, the decoder
samples the word with the highest probability based on the

75012 VOLUME 9, 2021

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

FIGURE 6. Overview of answer layer: Point-generator decoder sequentially generate answer words or copy them from the input in
autoregressive manner by integrating vocabulary and extended word attention distribution. The extended word attention
distribution holds information about question’s intention by updating the original word attention distribution with the event
attention distribution.

final distribution that combines the extended word attention
distribution and the vocabulary distribution and uses it for
the next decoder input. By repeating this process, the answer
layer can output multiple types of answer sentences, e.g.,
word sequences, word sets, as well as a single word. In this
section, we first introduce the conventional pointer-generator
decoder used as a part of the answer layer and explain its
extension that addresses unknown entities by considering the
question’s intention.

1) POINTER-GENERATOR DECODER
To predict a sequence of answer words, the pointer-generator
decoder sequentially generates words by using previously
generated words as additional input at each decoding step. At
each decoding step, the decoder outputs answer word a with
word-level attention that tells the decoder which words in the
story are useful for predicting the next word. The word-level
attention distribution αt at each decoding step t is defined:

otj = vT tanh(Weej +Whht + be) (4)

αt = softmax(ot), (5)

where ej denotes the jth contextual event word embedding
from the context layer, ht denotes a t th decoder hidden state,
and v, We, Wh, and be are learnable parameters. Therefore,
the word-level attention is computed based on the word-level
encoder’s hidden state (i.e., contextual event word embed-
ding) and the decoder’s hidden state. By using this word-level
attention, the decoder produces answer words based on the
vocabulary distribution:

Pvocab = softmax(W1(W2[ht ; ut]+ b2)+ b1), (6)

where W1, W2, b1, and b2 are learnable parameters. Here
ut =

∑
j α

t
j ej is called a context vector that represents a

sequence of words relevant to the current decoding step.
Therefore, the vocabulary distribution is computed based
on the decoder’s hidden state and the word-level encoder’s
hidden states weighted by word-level attention that indicates
which input words are important for the current decoding
step. By using this distribution, the decoder can create any
words from a fixed vocabulary. However, the word proba-
bility from Pvocab with regard to unknown entities almost
becomes zero because they did not appear during the training
phase.

To address this problem, the pointer-generator decoder
uses words in the story as outputs by using the following
cumulative word attention distribution:

Pcopy =
∑
j:wj=w

αtj , (7)

where wj is the jth word in the input story. Copy distribution
Pcopy assigns probability to the words of the unknown entity
using the attention values of the input words. For exam-
ple, the cumulative attention value of ‘‘cupboard’’ becomes
0.2 when it appears in the input story and its word-level
attention value is 0.2. Due to this trick, the decoder can
output ‘‘cupboard’’ as the answer, even if ‘‘cupboard’’ does
not appear in the training dataset, i.e., the virtual world.

Finally, the decoder outputs next answer word a based on
the final distribution:

Pfinal(a) = gPvocab(a)+ (1− g)Pcopy(a), (8)

where g is a generation probability g ∈ [0, 1] that decides
whether the decoder generates a word from the vocabulary
from Pvocab or uses a word from word attention distribution
Pcopy. Generation probability g is given by

g = σ (wTh ht + w
T
u ut + w

T
a at + bg), (9)

VOLUME 9, 2021 75013

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

where vectors wu, ws, wa, and bg are learnable parameters,
at ∈ Rdw is a word embedding of a generated answer word
at the previous step t − 1, and σ is the sigmoid function.
Therefore, g is computed based on the input context, the cur-
rent decoding state, and the decoder input. Distribution Pfinal
produces unknown entities based on the word attention distri-
bution of source Pcopy. We assume that this pointer-generator
mechanism is helpful for producing answers, including the
unknown entities caused by the differences between the real
and virtual worlds.

Unfortunately, this pointer-generator mechanism only uses
word-level attention for copying words; it ignores the rela-
tions between story events and a question, i.e., event-level
attention. We assume the encoder’s event-level attention indi-
cates the important events in which users are interested. Since
the words in these events are worth copying, we integrate the
word-level and event-level attentions for decoding.

2) CROSS ATTENTION
To identify suitable words for copying, we extend word-level
attention α for using input words in the events (Eq. 7) using
event-level attention β (Eq. 1). Extended word-level attention
α′j of the j

th word in the input text is defined:

α′j =
αj × β[j]∑
i αi × β[i]

, (10)

where [j] is the index of the story event that contains
the jth word. The definition holds. When both word-level
attention αj and event-level attention β[j] are high, new α′j
becomes high. Thereby, we can incorporate the user intention
described by a question sentence in the pointer-generator
decoder. We use this extended word-level attention distribu-
tion α′ for Pcopy instead of the original one, α, in Eq. 7.

V. EXPERIMENTS
We evaluated our Sim2RealQA framework using real-
and virtual-world QA datasets. First, we investigated how
well our model performed in a Sim2RealQA setting and
ascertained what components of QA models contribute
to Sim2RealQA. Then we investigated the capability of
Sim2RealQA with our model and baselines.

A. EXPERIMENTAL SETUP
1) METHODS
We conducted our empirical investigation using the following
models, each of which has different modules. By comparing
them, we can ascertain what components determine the gen-
eralizations when using Sim2RealQA:
• RNN is a standard neural QAmodel based on sequence-
to-sequence (Seq2Seq) [88] that encodes the story and a
question and then decodes answer words.

• RNN-AT is the Seq2Seq-based QAmodel, which uses a
word-level attention mechanism [89], [90]. This mecha-
nism considers the input context for predicting answer
words at each decoding step in addition to the above
RNN method.

• RNN-PG uses the pointer-generator decoder [80] for
predicting answers in addition to RNN-AT. The method
can use input word distribution using word-level atten-
tion to generate or copy words from inputs in the decod-
ing phase.

• DMN uses the dynamic memory module for encoding a
story and a question relation with their mutual relevance
using event-level attentions, which is a special case of
the dynamicmemory network [78], [79]. Themodel uses
the same decoder as RNN.

• DMN-PG uses the pointer-generator decoder in addition
to the above DMN. Moreover, this method uses the
relevance between story events and a question with the
event-level attention distribution to find useful words for
copying in the important event for a question.

DMN-PG is our proposed model. We assumed that the
pointer-generator decoder and the relevance information
between story events and questions further improves the
Sim2RealQA performance by addressing the gap between the
virtual and real worlds.

In addition to these baselines, we prepared a frequent
answer baseline and question-only baselines to check the
biases of the real-world and virtual-world QA datasets
because question-only methods are competitive in some QA
tasks [91], [92]. We prepared the following baselines:

• Q-Prior uses themost popular answer per task described
in Table 2. We used the frequent answers in the source
domain (virtual-world) for predicting answers in the test
phase.

• RNN (Q), RNN-AT (Q), and RNN-PG (Q) are almost
identical to the RNN, RNN-AT, and RNN-PG methods,
but they use questions only for decoding answer words.

2) PARAMETER SETTINGS
We trained all the methods with Adam [93] using a learn-
ing rate of 0.0001 and a batch size of 20 until 32 epochs
were reached. We used early stopping if the accuracy of the
validation split in the source domain did not increase for
10 epochs. A null symbol was used to pad them all to a fixed
size. We did not update the word vectors during training. The
embedding of the null symbol was constrained to zero. For
all the RNN encoders and decoders, we used a GRU [82]
with a single hidden layer. For the RNN encoders, we used
a bidirectional GRU. For all the methods, we selected the
following dimensions: 128 word embeddings and 256 hidden
states. We set a dropout [94] value of 0.5.

3) EVALUATION SETTINGS
To assess our proposed framework, we compared the pre-
pared methods with two real-world and virtual-world QA
datasets. For training, we divided the virtual-world QA
dataset into 169K, 21.1K, and 21.1K examples for the train-
ing/valid/test data. For evaluation, we divided the real-world
QA dataset into 17.6K, 2.2K, and 2.2K examples for the
training/valid/test data. For Sim2RealQA, we trained all the

75014 VOLUME 9, 2021

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

TABLE 3. Accuracies of methods over 22 QA tasks. The best result per row is marked in bold typeface.

models using the virtual-world training data and evaluated
them with the test data from the real world. In this case,
the labels in the target domain (real-world) were withheld.We
evaluated all the methods under the ParlAI framework [95]
with an accuracy measure as an evaluation metrics that com-
puted the exact matches between the predicted answer words
and the ground truth. This report describes the QA perfor-
mances by averaging the results of five training runs based
on different initialization values.

B. RESULTS AND ANALYSIS
In this section, we evaluated the performance of the prepared
methods over two worlds and explored the generalization
of the models trained on a virtual-world dataset to a target
real-world dataset. Models learned with virtual-world data,
which hold high generalization ability, need to show high
performance even when being tested with real-world data.

1) WHAT FACTORS FUEL GENERALIZATION
IN THE REAL WORLD?
First, we investigated how well our model performed in
a Sim2RealQA setting and ascertained what components
improved Sim2RealQA’s performance. In Table 3 (bottom),
we show the Sim2RealQA performance of the preparedmeth-
ods over all the QA tasks on average. The learning-based
approaches (RNN, RNN-AT, RNN-PG, DMN, and DMN-
PG) significantly outperformed a simple frequency-based
approach, Q-Prior, which uses the most popular answers
in the source domain for each task. Moreover, these meth-
ods using both stories and questions for QA significantly
outperformed RNN (Q), RNN-AT (Q), and RNN-PG (Q),

all of which only use questions. These results indicate
that training on a virtual-world QA dataset for reason-
ing over story events in response to a question effectively
and accurately solves real-world QA problems. In addition,
RNN-PG and DMN-PG significantly outperformed RNN,
RNN-AT, and DMN, which do not use the pointer-generator
decoder, suggesting that the pointer-generator mechanism
further improves the Sim2RealQA performance. Note that
our DMN-PG outperformed the other methods, indicating the
benefit of integrating the word- and event-level attentions for
the pointer-generator mechanism.

We also compared our model’s QA performance for each
task to the others in Table 3. Across most tasks, RNN-PG
and DMN-PG significantly outperformed the others. In par-
ticular, RNN-PG and DMN-PG achieved success in tasks
11, 12, and 13, which require answering questions about
the names of people; Q-Prior, RNN (Q), RNN-AT (Q), and
RNN-PG (Q), RNN, RNN-AT, and DMN failed because no
real-world people appeared in the virtual world (i.e., train-
ing dataset). The models with the pointer-generator decoder
extracted such unknown persons from the given real-world
story events and produced them as answers, but the others
could not. For example, task 11’s results in Fig. 7 (center
left) show that DMN-PG and RNN-PG predicted the correct
answer ‘‘David’’ who only appears in the real world, but
RNN could not. For task 13 in Fig. 7 (center right), RNN
also predicted incorrect answer ‘‘Howard’’ who only appears
in the virtual world. In addition, the models without the
pointer-generator decoder failed to predict unknown places
that do not appear in the virtual world. Both RNN-PG and
DMN-PG output them as an answer. For example, task 5’s

VOLUME 9, 2021 75015

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

FIGURE 7. Comparison of Sim2RealQA results of RNN, RNN-PG, and DMN-PG.

results in Fig. 7 (top left) show that DMN-PG and RNN-PG
predicted the correct answer ‘‘washroom’’, which only exists
in the real world; RNN incorrectly output ‘‘bathroom’’.
Both RNN-PG and DMN-PG significantly outperformed
Q-Prior, RNN (Q), RNN-AT (Q), RNN-PG (Q), RNN, RNN-
AT, and DMN in task 17, which requires answers about
activities because they are often different between worlds.
The models without the pointer-generator decoder failed to
provide answers. For example, task 17’s results in Fig. 7

(bottom right) show that DMN-PG and RNN-PG predicted
the correct answer, ‘‘poured hot water into the cup’’, which
only took place in the real world, and RNN incorrectly output
‘‘close to the ice cream maker’’ that took place only in the
virtual world. These results posit compelling evidence that
the pointer-generator mechanism is necessary for handling
unknown entities caused by the gap that separates the virtual
and real worlds. Moreover, the proposed DMN-PG outper-
formed RNN-PG in difficult tasks 7, 8, 16, 18, and 19, where

75016 VOLUME 9, 2021

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

FIGURE 8. Sim2RealQA performance of baselines and proposed model: Sim2RealQA performance and oracle supervised QA performance over a number
of examples in real-world dataset used for training (left); Sim2RealQA performance over number of examples in virtual-world dataset used for training
(center); learning curves and accuracies (right).

the models have to answer by referring to multiple events in a
long story. DMN-PG has the ability to find multiple relevant
events to a question for predicting answers in contrast to
RNN-PG. For example, task 8’s results in Fig. 7 (top right),
which require understanding the context of the place, show
that DMN-PG predicted the correct answer, but not RNN-
PG. That is because it does not have an event-level attention
mechanism that helps it find important clues about the correct
answer in a long story. For task 16, which requires multiple
events to answer questions, DMN-PG predicted the correct
answer, ‘‘bedroom, entrance, kitchen, living room’’, while
RNN-PG predicted an incorrect answer: ‘‘bedroom, kitchen,
living room’’. This is because the word-level attention in the
RNN-PG is difficult to find and memorize answer words,
compared to the event-level attention in DMN-PG. These
findings suggest that the integration of the pointer-generator
decoder and event-level attention is effective for further
improving our Sim2RealQA framework.

2) HOW WELL CAN MODELS TRAINED WITH THE
VIRTUAL-WORLD DATA BE GENERALIZED TO THE
REAL-WORLD DATA?
To assess the generalization of our proposed Sim2RealQA
framework, we compared the methods, which used only a
virtual-world dataset for training, to the methods trained on
the target, which used a real-world dataset. Those trained on
the target results revealed ideal performance, but the target
real-world answer labels are actually unavailable. By compar-
ing the Sim2RealQA and ideal Train on target performances,
we can quantitatively investigate how well models trained
with the virtual-world data generalize to the real-world data.
The results are presented in Fig. 8 (left). Horizontal lines
show the Sim2RealQA performance because it did not use
any target examples for training. As we anticipated, the per-
formance of the methods trained on the target improved
with an increase in the proportion of real-world examples.
Compared to the oracle methods that were trained with all
the target examples, the methods using Sim2RealQA still
have room for improvement. However, these oracle methods
achieved lower accuracy in cases that involved an inadequate

amount of training data because the performance of the
neural QA models relies heavily on many labeled training
datasets. Note that all the RNN, RNN-AT, RNN-PG, DMN,
and DMN-PG methods on the Sim2RealQA framework out-
performed the oraclemethodswith a small real-world training
dataset. The DMN-PG of Sim2RealQA significantly outper-
formed all the methods trained with a target of 1,000 exam-
ples, a number that we cannot realistically collect. The result
indicates the effectiveness of the proposed Sim2RealQA
framework in the absence of real-world answers. This finding
is useful because making real-world QA datasets is extremely
difficult and laborious due to privacy reasons.

3) DOES GENERALIZATION TO REAL-WORLD DATA
IMPROVE WITH MORE VIRTUAL-WORLD DATA?
To validate the generalization ability of the proposed meth-
ods when the training set size increases, we explored the
models’ performances with the virtual-world QA datasets of
several training data sizes. In Fig. 8 (center), the RNN, RNN-
AT, RNN-PG, DMN, and DMN-PG performances steadily
improved as the virtual-world training data size increased.
DMN-PG outperformed the other methods when using a large
amount of examples for training. The results suggest that
using a large amount of virtual-world QA datasets is effec-
tive for more accurately solving real-world QA problems.
This finding is fruitful because we can obtain diverse daily
life stories from simulators and compile a large amount of
virtual-world QA datasets without breaching privacy.

4) DO THE POINTER-GENERATOR MECHANISM AND
EVENT-LEVEL ATTENTION QUICKLY IMPROVE THE
Sim2RealQA PERFORMANCE?
Next we studied how the number of training epochs affected
the Sim2RealQA performance. Fig. 8 (right) shows the accu-
racy of RNN, RNN-AT, RNN-PG, DMN, and DMN-PG
over the {1, 2, 4, 8, 16, 32} epochs with the Sim2RealQA
framework. With an increase of the training epochs, the per-
formance of all the QA methods also improved. In addi-
tion, the models with a pointer-generator decoder (DMN-PG
and RNN-PG) dramatically outperformed those without it

VOLUME 9, 2021 75017

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

(RNN, RNN-AT, and DMN), despite many fewer training
epochs. DMN-PG outperformed the other methods over all
the training epochs, indicating the pointer-generator mech-
anism’s effectiveness for quick learning. A combination of
pointer-generator decoder and relevance matching between
question and story events (i.e., event level attention) more
quickly improved the generalization to the real-world data.

VI. CONCLUSION
We proposed a novel simulation to a real QA (Sim2RealQA)
framework that trains a neural QA model with many QA
datasets produced in a life simulator and used it for solv-
ing real-word QA problems. To evaluate our framework,
we developed real-world and virtual-world QA datasets using
an actual house and a pre-made life simulator. We validated
our proposed approach with a neural QA model that can
address different entities between both worlds by combin-
ing the pointer-generator decoder with relevance matching
between question and story events. From the experiments,
we found that our method accurately solved real-world QA
problems with the aid of virtual-world QA datasets. More-
over, our model, which was completely trained with the
virtual-world QA dataset, significantly outperformed models
trained with 1,000 examples in a target domain. In addition,
the Sim2RealQA performance improved with an increas-
ing number of examples from virtual-world QA datasets
that can be created while protecting privacy. Furthermore,
Sim2RealQA’s quick learning was achieved by the integra-
tion of a pointer-generator mechanism and relevance match-
ing (i.e., event-level attention). These findings support that
using life simulations is a promising approach for solving
real-world QA problems when no real-world answers are
available.

In future work, we will refine our model to detect the
temporal intention of the user’s question and answer ques-
tions about events that occurred at specific dates and times
in a long daily life. In this study, we created textual ques-
tions with the template-based approach to purely investigate
the models trained with virtual-world data and generalize
to real-world data with fewer noise settings. In more real-
istic situations, natural language questions are composed
by a person seeking complicated real-world information,
which offer multiple ways to say the same things. Another
aspect of our future work will create datasets that include
more natural and complex questions. Such diverse ques-
tions will be beneficial for robust and accurate real-world
QA answering.

REFERENCES
[1] L. Bao and S. S. Intille, ‘‘Activity recognition from user-annotated accel-

eration data,’’ in Pervasive Computing. Berlin, Germany: Springer, 2004,
pp. 1–17.

[2] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell, ‘‘Sound-
Sense: Scalable sound sensing for people-centric applications on mobile
phones,’’ in Proc. 7th Int. Conf. Mobile Syst., Appl., Services (Mobisys),
2009, pp. 165–178.

[3] P. Lukowicz, J. A. Ward, H. Junker, M. Stäger, G. Tröster, A. Atrash, and
T. Starner, ‘‘Recognizing workshop activity using body worn microphones
and accelerometers,’’ in Pervasive Computing. Berlin, Germany: Springer,
2004, pp. 18–32.

[4] T. Maekawa and S. Watanabe, ‘‘Unsupervised activity recognition with
user’s physical characteristics data,’’ in Proc. 15th Annu. Int. Symp. Wear-
able Comput., Jun. 2011, pp. 89–96.

[5] T.Maekawa, Y.Yanagisawa, Y. Kishino, K. Ishiguro, K. Kamei, Y. Sakurai,
and T. Okadome, ‘‘Object-based activity recognition with heterogeneous
sensors on wrist,’’ in Pervasive Computing. Berlin, Germany: Springer,
2010, pp. 246–264.

[6] R. Want, A. Hopper, V. Falcão, and J. Gibbons, ‘‘The active badge location
system,’’ ACM Trans. Inf. Syst., vol. 10, no. 1, pp. 91–102, Jan. 1992.

[7] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, ‘‘The cricket
location-support system,’’ in Proc. 6th Annu. Int. Conf. Mobile Comput.
Netw. (MobiCom), 2000, pp. 32–43.

[8] M. Fan, A. T. Adams, and K. N. Truong, ‘‘Public restroom detection on
mobile phone via active probing,’’ in Proc. ACM Int. Symp. Wearable
Comput., Sep. 2014, pp. 27–34.

[9] Y.-C. Tung and K. G. Shin, ‘‘EchoTag: Accurate infrastructure-free indoor
location tagging with smartphones,’’ in Proc. 21st Annu. Int. Conf. Mobile
Comput. Netw., Sep. 2015, pp. 525–536.

[10] Y.Wang, X. Yang, Y. Zhao, Y. Liu, and L. Cuthbert, ‘‘Bluetooth positioning
using RSSI and triangulation methods,’’ in Proc. IEEE 10th Consum.
Commun. Netw. Conf. (CCNC), Jan. 2013, pp. 837–842.

[11] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott,
T. Sohn, J. Howard, J. Hughes, F. Potter, J. Tabert, P. Powledge,
G. Borriello, and B. Schilit, ‘‘Place lab: Device positioning using radio
beacons in the wild,’’ in Pervasive, 2005, pp. 116–133.

[12] D. Taniuchi and T. Maekawa, ‘‘Robust Wi-Fi based indoor positioning
with ensemble learning,’’ in Proc. IEEE 10th Int. Conf. Wireless Mobile
Comput., Netw. Commun. (WiMob), Oct. 2014, pp. 592–597.

[13] C. Gurrin, H. Joho, F. Hopfgartner, L. Zhou, V.-T. Ninh, T.-K. Le,
R. Albatal, D.-T. Dang-Nguyen, and G. Healy, ‘‘Overview of the NTCIR-
14 lifelog-3 task,’’ in Proc. NTCIR, 2019, pp. 14–26.

[14] C. Gurrin, A. F. Smeaton, and A. R. Doherty, ‘‘LifeLogging: Personal big
data,’’ Found. Trends Inf. Retr., vol. 8, no. 1, pp. 1–125, 2014.

[15] S. Hodges, L. Williams, E. Berry, S. Izadi, J. Srinivasan, A. Butler,
G. Smyth, N. Kapur, and K. Wood, ‘‘SenseCam: A retrospective memory
aid,’’ in Proc. Ubicomp, 2006, pp. 177–193.

[16] F. Hopfgartner, C. Gurrin, and H. Joho, ‘‘Rethinking the test collection
methodology for personal self-tracking data,’’ in Proc. MMM. Cham,
Switzerland: Springer, 2020, pp. 463–474.

[17] T. Maekawa, Y. Yanagisawa, Y. Kishino, K. Kamei, Y. Sakurai, and
T. Okadome, ‘‘Object-blog system for environment-generated content,’’
IEEE Pervas. Comput., vol. 7, no. 4, pp. 20–27, Oct. 2008.

[18] T. Miyanishi, J. Hirayama, A. Kanemura, and M. Kawanabe, ‘‘Answering
mixed type questions about daily living episodes,’’ in Proc. IJCAI, 2018,
pp. 4265–4271.

[19] F. Hill, A. Bordes, S. Chopra, and J. Weston, ‘‘The goldilocks principle:
Reading children’s books with explicit memory representations,’’ in Proc.
ICLR, 2016.

[20] T. Kočiský, J. Schwarz, P. Blunsom, C. Dyer, K.M.Hermann, G.Melis, and
E. Grefenstette, ‘‘The NarrativeQA reading comprehension challenge,’’
Trans. Assoc. Comput. Linguistics, vol. 6, pp. 317–328, Dec. 2018.

[21] J. Weston, A. Bordes, S. Chopra, and T. Mikolov, ‘‘Towards AI-complete
question answering: A set of prerequisite toy tasks,’’ in Proc. ICLR, 2016.

[22] T. Linjordet and K. Balog, ‘‘Impact of training dataset size on neural
answer selection models,’’ in Proc. ECIR, 2019, pp. 828–835.

[23] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, ‘‘Revisiting unreasonable
effectiveness of data in deep learning era,’’ in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 843–852.

[24] M. Blum, A. Pentland, and G. Troster, ‘‘InSense: Interest-based life log-
ging,’’ IEEE MultimediaMag., vol. 13, no. 4, pp. 40–48, Oct. 2006.

[25] J. Lester, T. Choudhury, and G. Borriello, ‘‘A practical approach to rec-
ognizing physical activities,’’ in Pervasive Computing. Berlin, Germany:
Springer, 2006, pp. 1–16.

[26] P. Lukowicz, H. Junker, M. Stager, T. V. Buren, and G. Tröster, ‘‘WearNet:
A distributed multi-sensor system for context aware wearables,’’ in Proc.
Ubicomp, 2002, pp. 361–370.

[27] D. Castro, S. Hickson, V. Bettadapura, E. Thomaz, G. Abowd,
H. Christensen, and I. Essa, ‘‘Predicting daily activities from egocentric
images using deep learning,’’ in Proc. ACM Int. Symp. Wearable Comput.
(ISWC), 2015, pp. 75–82.

75018 VOLUME 9, 2021

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

[28] M. Ma, H. Fan, and K. M. Kitani, ‘‘Going deeper into first-person activity
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 1894–1903.

[29] M. Perkowitz, M. Philipose, K. Fishkin, and D. J. Patterson, ‘‘Mining mod-
els of human activities from the web,’’ in Proc. WWW, 2004, pp. 573–582.

[30] M. Philipose, K. P. Fishkin, M. Perkowitz, D. J. Patterson, D. Fox,
H. Kautz, and D. Hahnel, ‘‘Inferring activities from interactions with
objects,’’ IEEE Pervas. Comput., vol. 3, no. 4, pp. 50–57, Oct. 2004.

[31] E. M. Tapia, S. S. Intille, and K. Larson, ‘‘Activity recognition in the home
using simple and ubiquitous sensors,’’ in Pervasive Computing. Berlin,
Germany: Springer, 2004, pp. 158–175.

[32] T. van Kasteren, A. Noulas, G. Englebienne, and B. Kröse, ‘‘Accurate
activity recognition in a home setting,’’ in Proc. 10th Int. Conf. Ubiquitous
Comput. (UbiComp), 2008, pp. 1–9.

[33] H. Liu, H. Darabi, P. Banerjee, and J. Liu, ‘‘Survey of wireless indoor
positioning techniques and systems,’’ IEEE Trans. Syst., Man, Cybern., C,
Appl. Rev., 37, no. 6, pp. 1067–1080, Nov. 2007.

[34] M. Tachikawa, T. Maekawa, and Y. Matsushita, ‘‘Predicting location
semantics combining active and passive sensing with environment-
independent classifier,’’ in Proc. ACM Int. Joint Conf. Pervas. Ubiquitous
Comput., Sep. 2016, pp. 220–231.

[35] M. Li, X. Zhu, and S. Gong, ‘‘Unsupervised tracklet person re-
identification,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 7,
pp. 1770–1782, Jul. 2020.

[36] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf,
I. Reid, S. Gould, and A. van den Hengel, ‘‘Vision-and-language naviga-
tion: Interpreting visually-grounded navigation instructions in real envi-
ronments,’’ in Proc. CVPR, 2018, pp. 3674–3683.

[37] W. Hao, C. Li, X. Li, L. Carin, and J. Gao, ‘‘Towards learning a generic
agent for vision-and-language navigation via pre-training,’’ inProc. CVPR,
2020, pp. 13137–13146.

[38] S. Kurita and K. Cho, ‘‘Generative language-grounded policy in vision-
and-language navigation with bayes’ rule,’’ in Proc. ICLR, 2021.

[39] D. Misra, A. Bennett, V. Blukis, E. Niklasson, M. Shatkhin, and Y. Artzi,
‘‘Mapping instructions to actions in 3D environments with visual goal
prediction,’’ in Proc. Conf. Empirical Methods Natural Lang. Process.,
2018, pp. 2667–2678.

[40] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra, ‘‘Embod-
ied question answering,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 1–10.

[41] D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon, D. Fox, and
A. Farhadi, ‘‘IQA: Visual question answering in interactive environ-
ments,’’ in Proc. CVPR, 2018, pp. 4089–4098.

[42] E. Wijmans, S. Datta, O. Maksymets, A. Das, G. Gkioxari, S. Lee, I. Essa,
D. Parikh, and D. Batra, ‘‘Embodied question answering in photorealistic
environments with point cloud perception,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 6659–6668.

[43] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba,
‘‘VirtualHome: Simulating household activities via programs,’’ in Proc.
CVPR, 2018, pp. 8494–8502.

[44] X. Puig, T. Shu, S. Li, Z. Wang, Y.-H. Liao, J. B. Tenenbaum, S. Fidler,
and A. Torralba, ‘‘Watch-and-help: A challenge for social perception and
human-AI collaboration,’’ in Proc. ICLR, 2021.

[45] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, ‘‘Target-driven visual navigation in indoor scenes using deep
reinforcement learning,’’ in Proc. ICRA, 2017, pp. 3357–3364.

[46] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari, ‘‘RL-
CycleGAN: Reinforcement learning aware simulation-to-real,’’ in Proc.
CVPR, 2020, pp. 11157–11166.

[47] A. Bewley, J. Rigley, Y. Liu, J. Hawke, R. Shen, V.-D. Lam, andA. Kendall,
‘‘Learning to drive from simulation without real world labels,’’ in Proc.
ICRA, 2019, pp. 4818–4824.

[48] F. Sadeghi and S. Levine, ‘‘CAD2RL: Real single-image flight without a
single real image,’’ in Proc. RSS, Jul. 2017.

[49] O. M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider,
S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba, ‘‘Learning dex-
terous in-hand manipulation,’’ Int. J. Robot. Res., vol. 39, no. 1, pp. 3–20,
Jan. 2020.

[50] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez,
and V. Vanhoucke, ‘‘Sim-to-real: Learning agile locomotion for quadruped
robots,’’ in Proc. Robot., Sci. Syst. (RSS), 2018.

[51] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, ‘‘Playing for data: Ground
truth from computer games,’’ in Proc. ECCV, 2016, pp. 102–118.

[52] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, ‘‘Squad: 100,000+
questions for machine comprehension of text,’’ in Proc. EMNLP, 2016,
pp. 2383–2392.

[53] P. Rajpurkar, R. Jia, and P. Liang, ‘‘Know what you don’t know: Unan-
swerable questions for SQuAD,’’ in Proc. ACL, 2018, pp. 784–789.

[54] M. Richardson, C. J. Burges, and E. Renshaw, ‘‘MCTest: A challenge
dataset for the open-domain machine comprehension of text,’’ in Proc.
EMNLP, 2013, pp. 193–203.

[55] J. Yin, X. Jiang, Z. Lu, L. Shang, H. Li, and X. Li, ‘‘Neural generative ques-
tion answering,’’ in Proc. Workshop Hum.-Comput. Question Answering,
2016, pp. 2972–2978.

[56] Y. Fu and Y. Feng, ‘‘Natural answer generation with heterogeneous mem-
ory,’’ in Proc. NAACL-HLT, 2018, pp. 185–195.

[57] S. He, C. Liu, K. Liu, and J. Zhao, ‘‘Generating natural answers by
incorporating copying and retrievingmechanisms in sequence-to-sequence
learning,’’ in Proc. ACL, 2017, pp. 199–208.

[58] S. Reddy, D. Raghu, M. M. Khapra, and S. Joshi, ‘‘Generating nat-
ural language question-answer pairs from a knowledge graph using
a RNN based question generation model,’’ in Proc. EACL, 2017,
pp. 376–385.

[59] B. Liu, H. Wei, D. Niu, H. Chen, and Y. He, ‘‘Asking questions the human
way: Scalable question-answer generation from text corpus,’’ in Proc. Web
Conf., Apr. 2020, pp. 2032–2043.

[60] J. Weston, ‘‘Dialog-based language learning,’’ in Proc. NeurIPS, 2016,
pp. 829–837.

[61] J. Wu, X. Wang, and W. Y. Wang, ‘‘Self-supervised dialogue learning,’’ in
Proc. ACL, 2019, pp. 3857–3867.

[62] Y. Deng, Y. Shen, M. Yang, Y. Li, N. Du, W. Fan, and K. Lei, ‘‘Knowl-
edge as a bridge: Improving cross-domain answer selection with external
knowledge,’’ in Proc. COLING, 2018, pp. 3295–3305.

[63] S. Min, M. Seo, and H. Hajishirzi, ‘‘Question answering through transfer
learning from large fine-grained supervision data,’’ in Proc. ACL, 2017,
pp. 510–517.

[64] B. Dhingra, D. Danish, and D. Rajagopal, ‘‘Simple and effective
semi-supervised question answering,’’ in Proc. NAACL-HLT, 2018,
pp. 582–587.

[65] Z. Yang, J. Hu, R. Salakhutdinov, and W. Cohen, ‘‘Semi-supervised
QA with generative domain-adaptive nets,’’ in Proc. ACL, 2017,
pp. 1040–1050.

[66] Y.-A. Chung, H.-Y. Lee, and J. Glass, ‘‘Supervised and unsupervised
transfer learning for question answering,’’ in Proc. NAACL-HLT, 2018,
pp. 1585–1594.

[67] D. Golub, P.-S. Huang, X. He, and L. Deng, ‘‘Two-stage synthesis networks
for transfer learning in machine comprehension,’’ in Proc. EMNLP, 2017,
pp. 835–844.

[68] K. Sun, D. Yu, D. Yu, and C. Cardie, ‘‘Improving machine reading com-
prehension with general reading strategies,’’ in Proc. Conf. North, 2019,
pp. 2633–2643.

[69] A. Talmor and J. Berant, ‘‘MultiQA: An empirical investigation of gen-
eralization and transfer in reading comprehension,’’ in Proc. ACL, 2019,
pp. 4911–4921.

[70] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niebner, M. Savva,
S. Song, A. Zeng, and Y. Zhang, ‘‘Matterport3D: Learning from RGB-D
data in indoor environments,’’ in Proc. Int. Conf. 3D Vis. (3DV),
Oct. 2017, pp. 667–676.

[71] F. Xia, A. R. Zamir, Z.-Y. He, A. Sax, J. Malik, and S. Savarese, ‘‘Gibson
ENV: Real-world perception for embodied agents,’’ in Proc. CVPR, 2018,
pp. 9068–9079.

[72] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi,
L. Zettlemoyer, and D. Fox, ‘‘ALFRED: A benchmark for interpret-
ing grounded instructions for everyday tasks,’’ in Proc. CVPR, 2020,
pp. 10740–10749.

[73] M. Shridhar, X. Yuan, M.-A. Cote, Y. Bisk, A. Trischler, and
M. Hausknecht, ‘‘ALFWorld: Aligning text and embodied environments
for interactive learning,’’ in Proc. ICLR, 2021.

[74] N. Mostafazadeh, N. Chambers, X. He, D. Parikh, D. Batra,
L. Vanderwende, P. Kohli, and J. Allen, ‘‘A corpus and cloze evaluation
for deeper understanding of commonsense stories,’’ in Proc. NAACL-HLT,
2016, pp. 839–849.

[75] M. Tapaswi, Y. Zhu, R. Stiefelhagen, A. Torralba, R. Urtasun, and
S. Fidler, ‘‘MovieQA: Understanding stories in movies through question-
answering,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 4631–4640.

VOLUME 9, 2021 75019

T. Miyanishi et al.: Sim2RealQA: Using Life Simulation to Solve QA Real-World Events

[76] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick,
and R. Girshick, ‘‘CLEVR: A diagnostic dataset for compositional
language and elementary visual reasoning,’’ in Proc. CVPR, 2017,
pp. 2902–2910.

[77] D. A. Hudson and C. D. Manning, ‘‘GQA: A new dataset for real-
world visual reasoning and compositional question answering,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 6700–6709.

[78] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,
V. Zhong, R. Paulus, and R. Socher, ‘‘Ask me anything: Dynamic mem-
ory networks for natural language processing,’’ in Proc. ICML, 2016,
pp. 1378–1387.

[79] C. Xiong, S.Merity, and R. Socher, ‘‘Dynamicmemory networks for visual
and textual question answering,’’ in Proc. ICML, 2016, pp. 2397–2406.

[80] A. See, P. J. Liu, and C. D. Manning, ‘‘Get to the point: Sum-
marization with pointer-generator networks,’’ in Proc. ACL, 2017,
pp. 1073–1083.

[81] J. Pennington, R. Socher, and C. D. Manning, ‘‘Glove: Global vectors for
word representation,’’ in Proc. EMNLP, 2014, pp. 1532–1543.

[82] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, ‘‘Empirical evaluation of
gated recurrent neural networks on sequence modeling,’’ in Proc. NeurIPS
Workshop, 2014.

[83] M. Schuster and K. K. Paliwal, ‘‘Bidirectional recurrent neural networks,’’
IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, Nov. 1997.

[84] V. Nair and G. Hinton, ‘‘Rectified linear units improve restricted
Boltzmann machines,’’ in Proc. 27th Int. Conf. Mach. Learn. (ICML),
2010, pp. 807–814.

[85] O. Vinyals, M. Fortunato, and N. Jaitly, ‘‘Pointer networks,’’ in Proc.
NeurIPS, 2015, pp. 2692–2700.

[86] S. Merity, C. Xiong, J. Bradbury, and R. Socher, ‘‘Pointer sentinel mixture
models,’’ in Proc. ICLR, 2016.

[87] C. Gulcehre, S. Ahn, R. Nallapati, B. Zhou, and Y. Bengio, ‘‘Pointing the
unknown words,’’ in Proc. ACL, Aug. 2016, pp. 140–149.

[88] I. Sutskever, O. Vinyals, and Q. V. Le, ‘‘Sequence to sequence learning
with neural networks,’’ in Proc. NeurIPS, 2014, pp. 3104–3112.

[89] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ in Proc. ICLR, 2015.

[90] T. Luong, H. Pham, andC.D.Manning, ‘‘Effective approaches to attention-
based neural machine translation,’’ inProc. EMNLP, 2015, pp. 1412–1421.

[91] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and
D. Parikh, ‘‘VQA: Visual question answering,’’ in Proc. ICCV, 2015,
pp. 2425–2433.

[92] A. Anand, E. Belilovsky, K. Kastner, H. Larochelle, and A. Courville,
‘‘Blindfold baselines for embodied QA,’’ in Proc. NeurIPS Workshop,
2018.

[93] D. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ in
Proc. ICLR, 2015.

[94] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[95] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston,
‘‘Key-value memory networks for directly reading documents,’’ in Proc.
EMNLP, 2016, pp. 1400–1409.

TAIKI MIYANISHI received the B.S. degree from
the Department of Computer Science and Sys-
tems Engineering, Kobe University, Hyogo Japan,
in 2009, theM.S. degree from the Graduate School
of Engineering, Kobe University, in 2011, and the
Ph.D. degree from the Graduate School of System
Informatics, Kobe University, in 2014.

Since 2014, he has been a Researcher with the
Department of Dynamic Brain Imaging, Advanced
Telecommunications and Research Institute Inter-

national, Kyoto, Japan. His research interests include ubiquitous computing,
natural language processing, and computer vision.

TAKUYA MAEKAWA received the bachelor’s
degree from the School of Engineering, Osaka
University, in 2003, the master’s degree from the
Graduate School of Information Science and Tech-
nology, Osaka University, in 2004, and the Doctor
degree in information science and technology from
the Graduate School of Information Science and
Technology, Osaka University, in 2006. After that
he worked for NTT Communication Science Lab-
oratory for six years. He is currently an Associate

Professor with the Graduate School of Information Science and Technology,
Osaka University. His research interest includes sensor-based context recog-
nition techniques for pervasive/ubiquitous computing, and animal behavior
understanding. He was awarded the IPSJ/IEEE Computer Society Young
Computer Researcher Award on the topic of zero-shot and few-shot unob-
trusive context recognition for pervasive computing, in 2019.

MOTOAKI KAWANABE received the master’s
degree and the Ph.D. degree in mathematical
statistics from the Department of Mathematical
Engineering, University of Tokyo, Tokyo, Japan,
in 1992 and 1995, respectively. After receiving the
Ph.D. degree, he became an Assistant Professor
with the University of Tokyo. In 2000, he joined
the Fraunhofer Institute FIRST, Berlin, Germany,
as a Senior Researcher. Until Fall 2011, he led
the group for the THESEUS Project on image

annotation and retrieval there. He is currently the Department Head of the
Advanced Telecommunications Research Institute International (ATR) and
the Team Leader of the RIKEN Center for Advanced Intelligence Project
(AIP), Kyoto, Japan. His research interests include computer vision, biomed-
ical data analysis, statistical signal processing, and machine learning.

75020 VOLUME 9, 2021

