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ABSTRACT In biological systems, Nitration is a crucial post-translational modification which occurs
on various amino acids. Nitration of Tyrosine is regarded as nitorsative stress biomarker resulting in the
formation of peroxynitrite and other reactive and harmful nitrogen species. NitroTyrosine is closely related
to Carcinogenesis, tumor growth progression and other major pathological conditions including systemic
autoimmune diseases, inflammation, neurodegeneration and cardiovascular disorders. Additionally, the alter-
ation in Nitrotyrosine profile occurs well before appearance of any symptoms of aforementioned diseases
making nitrotyrosine a biomarker and potential target for early prognosis of aforementioned diseases. The
wet lab identification of potential nitrotyrosine sites is laborious, time-taking and costly due to challenges of
in vitro, ex vivo and in vivo identification processes. To supplement wet lab identification of nitrotyrosine,
we proposed, implemented and evaluated a different approach to develop tyrosine nitration site predictors
using pseudo amino acid compositions (PseAAC) and deep neural networks (DNNs). Proposed approach
does not require any feature extraction and uses DNNs for learning a feature representation of peptide
sequences and classification thereof. Validation of proposed approach is done using well-known model
evaluation measures. Among different deep neural networks, convolutional neural network-based predictor
achieved best scores on independent dataset with accuracy of 87.2%, matthew’s correlation coefficient score
of 0.74 and AuC score of 0.91 which outperforms the previous reported scores of Nitrotyrosine predictors.

INDEX TERMS Carcinogenesis, convolutional neural network, deep features, nitration, PseAAC, PTM,
recurrent neural networks, tyrosine.

I. INTRODUCTION
Cells are constantly exposed to diverse stressors under phys-
iological conditions, which leads to dynamic changes in
cellular functions. Several mechanisms are used by cells to
respond to these dynamic changes including regulation of
energy producing pathways, alterations of epigenetic marks,
modulation of metabolic enzymes activities using metabo-
lites and protein post translational modifications (PTMs) [1].
One such PTM is 3-nitrotyrosine (NitroY) which is formed
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by the substitution of a hydrogen atom with nitro group
(-NO2) in any of the two carbon atoms of the phenolic
ring of the amino acid Tyrosine [2]. This process is also
called nitration of Tyrosine and several research publications
have extensively discussed biological importance of nitration
mechanisms under different conditions and pathophysiolog-
ical relevance thereof in pathological settings from acute to
chronic diseases [3]–[5]. NitroY is regarded as nitrosative
stress biomarker, a cell state caused by the over production of
nitric acid (-NO), resulting in the formation of peroxynitrite
and other reactive and harmful nitrogen species [6]. Increased
levels of NitroY have been reported in numerous pathological
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TABLE 1. NitroY as biomarker for various diseases.

conditions including systemic autoimmune diseases [7]–[10],
inflammation [11], neurodegeneration [12] and cardiovascu-
lar disorder [3], [13].

NitroY is shown to be positively related with carcino-
genesis and tumor growth progression [14]–[21] in various
studies as shown in Table 1. Korde Choudhary et al. illu-
minated the effects of nitric oxide and NitroY on various
human cancers [14]. Gochman et al. postulated iNOS expres-
sion and NitroY as an indicator of cancer development and
progression while studying colon cancer in humans [15].
Allameh et al. [16] demonstrated the predominant expres-
sion of NitroY in adenocarcinoma during measurement of
potential causative factors of esophagus cancer progression
in Iranian population. Samoszuk et al. [17] studied NitroY
levels in human breast cancer samples of varying pathological
types and concluded the association between inflammatory
cells and reactive nitrogen species in modulating microvas-
cular density at the edges of breast cancer. Kondo et al.
observed abundant levels of NitroY in hepatocytes adjacent to
human metastatic colorectal carcinoma in liver and suggested
positive contribution of NitroY in proliferation of cancer
cells resulting in tumor cell progression [18]. Jaiswal et al.
showed that the excess production of nitric oxide, marked by
NitroY, causes DNA damage andmay provide a link for prog-
nosis of cholangiocarcinoma, which is a highly malignant

and fatal adenocarcinoma starting from biliary epithelia [19].
Kato et al. researched NitroY expression in esophageal squa-
mous cell cancers and showed that the survival rate of patients
with NitroY-negative cancer was significantly higher than
that of patients with NitroY-positive cancer [20]. Goto et al.
suggested the positive contribution of NitroY in carcinogen-
esis of gastric cancer [21].

Considering the importance of NitroY for prognosis of
Carcinogenesis, a better understanding for the molecular
mechanisms of NitroY requires identification of NitroY
sites in peptide sequences. Although multiple large-scale
in-vivo, ex-vivo, and in-vitro methods such as immunohis-
tochemical analysis [16], chromatography [22] and mass
spectroscopy [23] have been applied to detect NitroY
sites, these experimental methods are time-consuming and
labor-intensive. Research community has applied compu-
tational methods to solve problems in proteomics and
genomics using various data science and machine learning
techniques [24]–[29]. Similarly, recent research contributions
have proposed use of different feature extraction techniques
to identify the potential NitroY sites [30]–[33] using various
machine learning algorithms. Although these contributions
show promising results but most of the techniques use
human-engineered features. According to Lecun et al. [34]
human features have certain limitations as they are
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laborious to learn because of absence of a feedback mech-
anism between learning subsystem and feature extraction
subsystem. This makes it impossible to ascertain the quality
of features, to develop an effective predictor, until such a
candidate model is developed and evaluated. Additionally,
generation of human-engineered features require domain
knowledge and human intervention which is sometimes hard
to come by [34]. For NitroY site identification, important
research gaps identified by Lecun et al. [34] still remained
open. These gaps include:

• Limited capability of conventional ML based predictors
to work with raw peptide sequences

• Laborious and costly feature extraction due to require-
ment of human intervention and domain expertise

• Dependence of conventional ML based predictors on
quality of features

• Mutual isolation of feature extraction system and classi-
fication system

Lecun et al. [34] proposed the use of deep neural networks,
to overcome aforementioned limitations, which are studied
under the discipline of deep learning.

Deep learning is the study of different deep neural net-
work architectures (DNNs) which have enabled many break-
throughs in different scientific disciplines including computer
vision [35], natural language processing [36] and information
security [37], [38] to mention a few. In essence, all DNNs
consist of multiple layers of basic mathematical functions,
dubbed as neurons, which transform the received inputs, layer
by layer, until the transformed input reaches to the output
layer of the neural network which uses this transformed input
to make the predictions. Each DNN layer receives input from
the upper layer and translates it into some representation
that subsequent layers use. Each such transformation can be
considered as a new and task specific representation of input
data. DNN layers transform their input non-linearly, pro-
ducing hierarchically abstract, task-specific representations
that are insensitive to unimportant variations, but sensitive to
significant features. With appropriate DNN training, the rep-
resentation generated by the last hidden layer, nearest to the
output layer of DNN, is so effective in recognizing hidden
patterns of input that it is used by the output layer to make
predictions. Hence the DNNs provide us a means to gener-
ate efficient, task specific and effective deep features which
does not require human intervention, domain knowledge and
laborious feature selection process. Application of DNNs for
proteomics is a fledgling area of research getting attention
from proteomics research community [24], [25], [39]–[41].

The main contribution of this study is to propose an
effective NitroY site predictor which is not plagued by the
aforementioned limitations identified by [34]. By combin-
ing the Pseudo Amino Acid Composition (PseAAC) [42]
with deep neural networks, we propose an improved predic-
tor for identifying NitroY sites in proteins, which does not
require feature extraction and hence removes the need for
human intervention and domain expertise. Due to inherent

structure of DNNs, both representation learning system and
NitroY site identification system work in unison for learn-
ing a feature representation of peptide sequences and per-
forming classifications. For this study, we used well-known
DNNs, including Standard neural network (FCN), three vari-
ants of recurrent neural networks (RNNs) and convolu-
tional neural network (CNN). We used the 5-step rule of
Chou [43] for this purpose opted widely in a variety of
publications [44]–[47] and shown in 1. Steps of Chou’s
methodology include (i) collection of benchmark dataset
(ii) preprocessing of raw PseAAC sequences to make them
amenable to machine learning algorithms and extraction of
features with some feature engineering technique (iii) Imple-
mentation and training of prediction model (iv) evaluation of
models based on results and (v) deployment of predictor using
webserver. Multiple candidate DNN-based prediction models
are trained, in this study, using aforementioned DNN algo-
rithms to obtain an optimal model for identification of NitroY
sites. Performance of developed models is evaluated among
themselves and with reported predictors in literature using
well-known parameters of model evaluation. This paper is
organized as follows. Section 2 illuminates the related works
and how the proposed approach in this study is different and
more advantageous. Section 3 describes the research method-
ology of the proposed study. Section 4 provides the results
and findings. Section 5 provided the discussion while the
conclusion and the future work are presented in last Section.

II. RELATED WORKS
Research community has applied computational methods to
solve problems in proteomics and genomics using various
data science and machine learning techniques [26]–[29].
Similarly, recent research contributions have proposed
use of different feature extraction techniques to iden-
tify the potential NitroY sites [30]–[33] using various
machine learning algorithms. Liu et al. [30] proposed
GPS-YNO2 with three stringencies including low, medium
and high. Xu et al. [31] developed iNitroTyr using
position-specific dipeptide propensity for PseAAC and con-
ventional ML algorithms and provided evaluation results
using well-knownmodel evaluation metrics. Hasan et al. [33]
devised NTyroSite using an evolutionary approach for devel-
oping sequence features and filtered top differential features
to reduce classification error. NTyrosite used random-forest
algorithm for classification and it was evaluated using RoC,
AuC, Accuracy and MCC. Xie et al. [48] proposed first deep
neural network based predictor DeepNitro but used only the
classification capability of DNNs. They used different fea-
tures extraction techniques including position specific scor-
ing matrix and k-space spectrum encodings to create feature
vectors which were then classified by DeepNitro system.
Our proposed approach differs from Deepnitro because we
used DNNs for both feature extraction from raw PseAAC
sequence and classification thereof, hence removing the need
to perform costly feature extraction process. Ghauri et al.
proposed pNitro-Tyr [32] based on features calculated using
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FIGURE 1. 5-step rule of Chou for NitroY site identification.

FIGURE 2. Adopted methodology for NitroY site identification.

statistical moments of PseAAC sequences. pNitro-Tyr used a
single layer shallow Neural network for classification. The
most recent contribution for NitroY site identification was
PredNTS [49], proposed by Nilamyani et al. PredNTS used
human-engineered features including, K-mer, composition of
k-spaced residues, AAindex and binary encoding schemes
while Random-Forest was used as classification algorithm.
A fundamental limitation of all aforementioned NitroY pre-
dictor development approaches is their reliance on the qual-
ity of human-engineered features for model training. Our
approach is different because we aim to develop a predictor
model which can automatically learn deep feature representa-
tions from raw PseAAC sequences without expert knowledge
and human intervention. We exploited the inherent capability
of DNNs to learn input representation by transforming it hier-
archically in response to loss score of estimated labels. Once
the DNNmodel is sufficiently trained, the intermediate layers
of DNN transform raw peptide sequences of PseAAC to
meaningful deep representations and an output layer of DNN
perform prediction using the deep representation learned by
earlier layers. Since both, the representation learning subsys-
tem and prediction subsystem work in unison, the optimizer
uses the loss score as the feedback signal to improve both the
subsystems of DNN.

III. MATERIALS AND METHODS
The approach adopted in this study is gleaned from the
Chou’s five-step rule. Instead of relying on human-engineered
features, our methodology, as shown in Figure 2, combines
the feature extraction and model training step using DNNs.
For this research, Several DNN-based models were trained
and evaluated using standard performance evaluators of pre-
diction models to obtain an optimal model for predicting
NitroY sites. The emphasis of this section is on the first

three steps of methodology shown in Figure 2, while the
last two steps of the suggested methodology are elaborated
in following sections.

A. COLLECTION OF BENCHMARK DATASET
We used the advanced search and annotation capabilities of
UniProt to create benchmark dataset for this analysis [50].
Quality of benchmark dataset was ensured by selecting
protein sequences where NitroY was detected and investi-
gated experimentally. Using Chou’sPseAAC [42], a peptide
sequence with a NitroY positive site can be shown as follows:

f (P) = P−rP−(r−1) . . .P−2P−1YP+1P+2 . . .P+(r−1)P+r

where Y reflects the positive NitroY amino acid ’Tyrosine’
and P’s represent the neighboring amino acid of positive site.
The symbol ’r’ is a sequence index, where negative indexes
are the left-hand side residues and positive indexes represent
the right-side neighboring residue around the NitorY site.
Wewere able to find 231 experimentally verified proteins and
extracted the positive and negative samples of length ρ from
aforesaid PseAAC sequences of proteins. Based on empirical
observations, the length ρ is fixed at 41 for both positive
and negative samples. Positive sequences were produced by
fixing the index of NitroY site at r = 21 and attaching
twenty leftside and twenty rightside neighbor residues of the
site to achieve the standard ρ length sequence. For positive
samples with ρ < 41, symbol X was used as a dummy amino
acid residue and attached on both sides of the sequence to
achieve standard length ρ. Same methodology was adopted
to extract negative samples from acquired protein PseAAC
sequences. The above procedure resulted in 327 positive and
3039 negative samples.
To remove homologous sequences, we applied USEARCH

algorithm proposed by Edgar [51] on both positive and
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FIGURE 3. Two sample logo of NitroY sites.

TABLE 2. Encoding of amino acid used in this study.

negative samples. Application of USEARCH for redundancy
removal on positive samples with similarity threshold of 70%
resulted in severely reduced dataset of 49 samples so we
chose not to remove homologous positive samples. Applica-
tion of the same on negative samples resulted in 507 samples.
The final benchmark dataset consisted of 327 postive sam-
ples and 507 negative samples resulting in total sample size
of 834 PseAAC peptide sequences which can be represented
as follows:

Y = Y+ ∪ Y−

where Y+ represents positive sample sequences and Y−

represents negative sample sequences. The class ratio
between positive and negative samples was found to
be 39% and 61% respectively. The dataset is avail-
able at https://mega.nz/folder/pxFhxaAJ#w8Elm5EJzPYHI
NEr_39aTQ. In order to help answering a question about
sequence biases around Nitrotyrosine sites, a two sample
logo, proposed by Vacic et al. [52], was generated to visualize
residues that are significantly enriched or depleted in the set
of NitroY fragments. The Two Sample Logo of benchmark
dataset, as shown in Figure 3, contains 41 residue frag-
ments, 20 upstream and 20 downstream, from all Tyrosines
found in experimentally verified nitrated proteins. The pos-
itive sample contains 327 fragments around experimentally
verified NitroY sites, while the negative sample contains all
remaining non-redundant Tyrosines from the same set of
proteins, 834 in total. Significant variances in the nearby
tyrosines were found between the nitrated and non-nitrated
sites. In the depleted position, residues Q, N, R and L were
more frequently observedwhile in enriched regionD, E andH
were observed frequently. Multiple amino acid residues were
found stacked at some over- or under-represented positions
of the surrounding sequences suggesting small information
between the positive and negative samples. The above results
indicate that more abstract and task specific features are
required to identify between the samples of two classes.

B. SAMPLE ENCODING
Almost all DNNs require data in the quantitative format
before the neuron layers inside DNN process it. We applied
a very basic quantitative encoding of PseAAC sequences,
shown in Table 2, where 1st row displays the IUPAC symbols
of amino acids, and corresponding entries in 2nd row show
the integer used to represent the amino acid in the encoded
sample. Since this encoding is the simplest possible amino
acid numerical representation, it has no significant effects on
the final results. The benchmark data set was split into a train-
ing set of 583 PseAAC sequences and a test set of 251 samples
with a 70/30 ratio in the train set and test set. That is, for
models training, 70% of the data was used, and the rest 30%
was used for independent model testing. In all training and
test sets, the initial 39/61 class ratio was preserved.

C. CANDIDATE DEEP MODEL TRAINING AND
OPTIMIZATION
This section explains training and optimizing of DNN
candidate models for predicting NitroY sites. The study
conducted experiments using well-known neural network
architectures such as Standard Neural Networks (FCNs),
Convolutional Neural Networks (CNNs), and Recurrent Neu-
ral Networks (RNNs) with simple RNN units, Gated Recur-
rent Units (GRU) and Long Short-Term Memory (LSTM)
units respectively. For optimization of DNN candidate mod-
els, we adopted the Randomized Hyperparameter search
methodology of Bergstra et al. [53]. Randomized Hyperpa-
rameter search offers better hyperparameters for DNNs with
the limited computational budget by performing a random
search over large hyperparameter space. This is achieved by
randomly sampling the hyperparameters from the space and
evaluating the performance of models created using these
parameters. For each DNN used to identify NitroY site,
the following subparagraphs provide a brief introduction and
architecture.
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TABLE 3. Standard neural net (FCN) architecture for NitroY identification.

FIGURE 4. Architecture of standard neural network for NitroY site
identification.

1) STANDARD NEURAL NETWORK
Standard neural networks or Fully connected neural
networks (FCNs) are classic architectures of deep neural
networks. FCN is said to be completely connected as each
neuron in preceding layer is connected to each neuron in
the next layer of neural network. The FCN is intended
to approximate the learning function f ∗. This function f ∗

can be a classifier defined by y = f ∗(α, x) and assigns
a class label y to input x. The function of the FCN is to
learn the best set of parameters α such that the mapping
y = f ∗(α, x) provides best possible approximation to f ∗ for
predicting class label y for each input x. The FCN used for the
Nitrotyrosine identification is shown in figure 4. It consists
of two Dense layers consisting of twelve and eight rectified
linear neurons (relu) respectively. The output layer is based
on a single Sigmoid neuron to perform binary classification.
The FCN architecture is illustrated in Table 3. To reduce
negative logarithmic loss between actual and predicted class
labels, this model was optimized using stochastic gradient
descent (SGD) with a learning rate of 0.05. For training
the FCN, only the training set was used, which was further
divided into trainset and validation set with 90/10 partition
ratio. FCN and other DNNs, used in this study, were never
allowed to see the test set to ascertain the generalization
capability of resulting NitroY identification models. Once
trained, the predictive model was independently tested on
the test set, and performance was evaluated using standard
performance evaluation metrics.

2) RECURRENT NEURAL NETWORKS
The inherent weakness in conventional DNNs is the lack of
sharing the weights learned by individual neurons, resulting
in failure to identify similar patterns occurring at different
positions of sequences [54]. RNN surmount this limitation
by using a looping mechanism with time steps [55]. RNNs
perform computations on a series of vectors x1, . . . , xn using

a recurrence of the from at = fα(φt−1, xt ) where f is an
activation function, φ is a collection of hyperparameters used
at each phase t and x_t is input at timestep t.

This research utilizes three different RNN unit types to
develop candidate models for NitroY site identification,
which include simple RNNunits, gated recurrent units (GRU)
and long-short term memory unit (LSTM). The architecture
shared by these three RNNs is shown in figure 5 where
the green circles show RNN units used in the network, and
the red squares show different timesteps of the sequence
being classified. Three different RNNs are used in this study
comprising of Simple units, GRU units and LSTM units
respectively. In a simple RNN neuron, the parameters con-
trolling the connections, from the input to the hidden layer,
the horizontal connection between the activations and hidden
layer to the output layer, are shared. Forward pass in a simple
RNN neuron can be formulated by following set of equations:

at = g(Wa[at−1,X t ]+ ba) (1)

yt = f (Wy ∗ at + by) (2)

where <t> denotes the current time step, g expresses an
activation function, X t represents input at timestep t, ba
describes the bias, at is activation output at timestep t andWa
denotes cumulative weights. This activation at can be used
to calculate the predictions yt at time t if desired. The archi-
tecture of the RNN model with Simple RNN cells is shown
in Table 4. This model makes use of an embedding layer to
project each amino acid scalar in a vector space R15 which
converts the semantic relationships of amino acids, prevalent
in sequences, to geometric relationships. These geometric
relationships of sequence vectors are interpreted by following
layers of DNN model to learn deep feature representations
which in turn are appraised by output layer, consisting of
a single sigmoid unit, to make predictions. In many appli-
cations, DNNs with simple RNN neurons show promising
results, but these neurons are prone to vanishing gradients
and show limited ability to learn long-term dependencies.
To rectify this limitation of simple RNN neurons, research
community has proffered many updated recurrent neuron
architectures, including GRU proposed by Cho et al. [56]
and the LSTM neurons by Hochreiter and Schmidhuber [57]
to counter the problem of vanishing gradients and enable
learning of long-term dependencies.

The GRU cells, proposed by Cho et al. [56], are superior
to the Simple RNN cell in reducing vanishing gradient prob-
lems. In each stage, the GRU cell uses the storage variable
C t
= at and contains summary of all the samples passed

through the cell. At each timestep t, the GRU unit considers
overwriting the contents of C t with a candidate value C̄t .
This C t content overwriting is controlled by update gate 0u,
which decides whether or not the contents will be overwritten.
Forward pass in GRU neuron can be described as follows:

C̄ t
= tanh(Wc[0r ∗ C t ,X t ]+ bc)

0r = σ (Wr [C t−1,X t ]+ br )
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FIGURE 5. Architecture of RNNs for NitroY site identification.

TABLE 4. Simple RNN based model architecture for NitroY site identification.

TABLE 5. GRU-RNN based model architecture for NitroY identification.

0u = σ (Wu[C t−1,X t ]+ bu)

C t
= 0u ∗ C̄ t

+ (1− 0u) ∗ C t−1

at = C t

In the above set of equations, Wr ,Wc and Wu denote respec-
tive weights, the corresponding bias terms are illustrated by
br , bc and bu, X t represents the input at timestep t, σ is the
logistic regression function and at represents activations at
time step t. For NitroY site identification, the RNN model
architecture built with GRU is the same as the model based on
SimpleRNN. Table 5 displays the architecture of GRU-based
RNN model.

Hochreiter and Schmidhuber [57], presented LSTM with
somemodifications in RNNunit architecture, which is amore
powerful generalization of GRU. Between GRU and LSTM
neurons, the notable architectural differences are as follows:

1) For C̄ t computation, generic LSTM units do not use
relevance gate 0r .

2) Instead of Update gate 0u, LSTM units use two dif-
ferent gates including Output gate 0o and Forget gate
0f . Output gate monitors the exposure of the memory
cell contentsC t to compute activation outputs of LSTM
unit for other hidden units in the network. Forget gate
manages the amount of overwrite on C t−1 to achieve

C t i.e. how much memory cell content needs to be
forgotten for memory cell.

3) In LSTM, the contents of the memory cell may not be
equal to the activation at which is contrary to GRU
architecture.

Except for LSTM units in recurrent layer, the RNN model
built with the LSTM neurons has the same architecture as
that of simple RNN and GRU models. The architecture of
the NitroY site identification model developed using LSTM
neurons based RNN is shown in Table 6.

3) CONVOLUTIONAL NEURAL NETWORK
CNN is a neural network structure primarily designed to
analyze data with complex spatial relationships like images or
videos. CNN tries to learn filters that can transform input data
into the right output prediction. In addition to its capacity for
handling large amounts of data, CNN can build local connec-
tions to learn feature maps, share training parameters among
connections and reduce dimensions using the sub-sampling
operations. These characteristics help CNN to understand the
spatial features of inputs despite their locality in the input
data, a property known as location invariance. The architec-
ture of the NitroY prediction model based on CNN is shown
in figure 6. The suggested CNN-based model was developed
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TABLE 6. LSTM-RNN based model architecture for NitroY identification.

TABLE 7. CNN based model architecture for NitroY site identification.

FIGURE 6. Architecture of CNN for NitroY site identification.

with an embedding layer, two convolution-maxpool blocks,
a global averaging layer and an output layer of sigmoid
neuron. Every sample of the peptide x with a length of ρ = 41
is encoded by the embedding layer in the form of tensor
X ∈ Rβ∗ρ where β ∈ R15 is the representation vector of
each amino acid residue in R15. One convolution layer and a
maxpool layer are combined to form each convolution block.
The convolution layer of both the blocks consisted of 10 and
16 1-D convolution units respectively. Every n-dimensional
output sample is flattened into a 1-D array of scalars using
GlobalAveragePooling operation which in turn is used by the
output layer to predict the labels. A single sigmoid unit that
performs binary classification is employed in the output layer
to make predictions.

D. PERFORMANCE EVALUATION METHODOLOGY
This section explains the model performance evaluation met-
rics used in this study. Notable evaluation metrics used in this
study include receiver operating characteristics curve (ROC)
curve, precision-recall curve and point metrics, including
mean average precision (mAP),Area under curve (AuC),
accuracy, F1 measurements, and matthew’s correlation

coefficient (MCC). All these metrics are derived from con-
fusion metrix which consist of four measures:
• TP True Positive: NitroY site predicted by model as
NitroY site

• FP False Positive: Non-NitroY site predicted by model
as NitroY site

• FN False negative: NitroY site predicted by model as
non-NitroY site

• TN True Negative: Non-NitroY site predicted by model
as non-NitroY site

A brief overview of these performance evaluation metrics is
given in subsections below.

1) PRECISION-RECALL CURVE AND mAP
For the evaluation of prediction models, precision and recall
are essential indicators. Precision measures the relevance
of the positive outcomes predicted by the model while
recall(sensitivity) measures the sensitivity of the model for
positive samples. A high precision and recall rating imply
that returned positive class predictions contain a high ratio
of true positives (high Precision) while predicting the major-
ity of positive class samples in the data set (High Recall).
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Precision-Recall curve is achieved by plotting both of these
metrics against each other and it evaluates the fraction of true
positives among positive predictions [58]. In precision-recall
space, the closer a score is to the perfect classification point
(1,1), the better the predictor is and contrariwise.

Mean average precision (mAP) provides a single-digit
summary of precision-recall curves, which is the area under
the precision-recall curve. The higher the value of the mAP,
the better the practical performance and vice versa.

2) ROC CURVE AND AUC
According to Lasko et al. [59], ROC is a popular measure
in Bioinformatics studies to evaluate predictor models. The
ROC Curve is a plot of False Positive Rate and True Pos-
itive Rate also known as recall. In a sense, the ROC curve
illuminates the cost benefit analysis of the classifier under
evaluation [60]. False Postive rate is defined as the ratio of
false positive (FP) to total negative samples and measures
the fraction of negative examples that are misclassified as
positive. This is considered as the cost because any further
action taken on FP result, considering it a positive prediction,
is wasted. True positive rate, which ismeasured as the fraction
of positive examples that are correctly predicted, can be con-
sidered as the benefit because the correct positive predictions,
done by classifier, help solve the problem being investigated.
Some important points in the ROC space are (0,0), (1,1) and
(0,1). The lowest point on the left (0,0) represents models
that do not predict positive samples. The contrasting strategy,
represented by a point (1,1), is to unconditionally classify
each positive sample. The point (0,1) expresses the perfect
classification with a false positive rate of 0 and a true positive
rate score of 1. For predictors, the closer the curve is to the
point (0,1) in ROC space, the better the performance of the
corresponding predictor and vice versa.

Sometimes it is desirable to summarize the ROC curve
insights of a model to a single scalar value that shows the
performance of the model. The area under an ROC curve,
called the AUC, is one of these popular methods. Not only
does AuC minimizes the ROC curve outcomes to a single
value, it also illuminates statistical insights of the model’s
performance. AUC is equivalent to the probability that the
classifier will rank a randomly chosen positive sample higher
than a randomly chosen negative instance. Additionally AuC
is also equivalent to the Wilcoxon test of ranks [60].

3) ACCURACY, F1 AND MCC SCORES
Accuracy, a popular classifier evaluation measure, highlights
the fraction of results correctly classified by the model being
evaluated. In situations, where an optimal combination of
precision and recall is required in the form of single scalar
value, F1-measure is also a popular alternative. Matthews
correlation coefficient, on the other hand, is considered an
effective solution overcoming the class imbalance issues
prevalent in accuracy and other binary classification model
evaluators. Originally developed by Matthews in 1975 for
comparison of chemical structures [61], MCC was brought

into limelight again by Baldi and colleagues [62] in 2000 as a
standard performance metric for binary classification models
with a natural extension to the multiclass case. The formulae
of important measures are shown below:

Accuracy=
TP+ TN

TP+ FP+ FN + TN

Recall(TPR)=
TP

TP+ FN
Precision(Prec)

=
TP

TP+ FP

F1− Score=
2 ∗ Prec ∗ Recall
Prec+ Recall

MCC =
TN ∗ TP−FN ∗ FP

√
(FP+TP)(FN+TP)(FP+TN )(FN+TN )

IV. RESULTS
This section explains the performance results of multiple
DNN based predictors developed in this research to predict
NitroY site location. All models were evaluated on test data
which was not used during the predictor training phase. This
was done to ensure the fairness of results and to evaluate
the generalization capability of predictors being evaluated.
An overview of the model evaluation parameters used in this
study is given in the following subsection, which illuminates
adequate discussion of the results of the evaluation. To ensure
fairness, all evaluation results come from independent test
samples that were not used in the training phase of DNN
based models.

A. PRECISION-RECALL CURVE AND MEAN AVERAGE
PRECISION
Figure 7 shows the precision-recall curve of the candidate
deep models for predicting the NitroY PTM sites. As shown
in Figure 7, CNN model’s curve is closest to the perfect pre-
diction point (1,1) in the precision-recall space as compared
to the scores of other predictors. Although the CNN curve
dips drastically at point (0.1, y) the overall performance of
the curve depicts better performance. The nearest contender
is FCNwhich lags behind the CNN from point (0.9, y) to (0.3,
y) in precision-recall space but surpasses the CNN model
from (0.3, y) to (0,y). All the other DNN based predictors
performed poorly as compared to CNN and FCN as depicted
by their respective curves in Figure 7.
The mean average precision values for all developed mod-

els are shown in the legend section of Figure 7. The CNN
based model showed best score of 0.89 followed closely by
the FCN with value of 0.87. We believe the reason for better
map score of CNN is due to its capability to identify the
sequence motifs in different positions of the feature maps
learnt by convolution neurons. CNN can discover localized
features which repeat themselves all over the input as their
weights are shared among all locations of the input, pre-
serving spatial locality. The latent representations learned by
CNN are more sensitive to transitive relationships of input
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FIGURE 7. DNN based NitroY prediction models’ precision-recall curves and mAP scores.

and help CNN to uncover high level relationships between
input features which would otherwise be ignored by other
classifiers [63]. FCN, on the other hand, does not possess
this capability due to inability to share training parame-
ters between its neurons. The least scores were shown by
GRU-based model which scored 0.76 for NitroY PTM site
predictions. All DNN based predictors achieved more than
75% scores.

B. RECEIVER OPERATING CHARACTERISTICS AND AREA
UNDER ROC
Figure 8 shows the ROC curve of theNitrotyrosine predictors.
The results of the ROC curve corroborate the assessments
demonstrated by precision-recall curve. Here too the CNN
model and FCN model performed neck to neck while other
models were overshadowed by the duo. Legend section of
Figure 8 shows the AuC values for the models developed
in this study. The CNN and FCN based prediction model
showed the highest AuC value of 0.91 and 0.90 respectively
while the model built with GRU obtained the least rating
of 0.79. The scores achieved by remaining three models
were distributed between these extreme values. The reader
can notice that all the results shown in Figure 8 are above
AuC score of 0.79. The comparison of the overall diagnostic
accuracy of two models is frequently addressed by compar-
ing the resulting paired AuCs using Delong’s method [64]

of non-parametric comparison of two or more RoC curves.
We used the fast implementation of Delong’s method by Sun
and Xu [65] to calculate the p-values by comparing each AuC
with our best performing CNN based model. Delong p-value
scores of CNN and FCN are 9.78e− 14 and 8.3e− 7 respec-
tively. We also constructed the 95% Confidence interval of
AuC for CNN and FCN based predictors developed in this
study. The 95% confidence Intervals for CNN and FCN are
[0.874 − 0.93] and [0.871 − 0.924] respectively for AuC
scores.

C. ACCURACY, F1-SCORE, AND MATTHEW’s
CORRELATION
For independent testing, Figure 9 shows the results of the
accuracy scores for the NitroY prediction models developed
in this study. As shown in Figure 9, the results are consistent
with previously discussed evaluation metrics and CNN and
FCN based deep models showed an accuracy value above
85 percent while least accuracy value of 73 percent is demon-
strated by GRU based RNN model.

In situations, where an optimal combination of precision
and recall is required in the form of single scalar value,
F1-measure is also a popular alternative. Figure 9 indicates
the predictive NitroTyrosine model’s F1 value which vali-
dates the earlier evaluation demonstrated by AuC and mAP
scores. The CNNmodel achieved optimal score of 85 percent
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FIGURE 8. DNN based NitroY prediction models’ ROC curves and AUC scores.

FIGURE 9. Accuracy, F1 and MCC scores of Deep NitroY site identification models.
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TABLE 8. Comparison of the proposed approach with related contributions on independent test set.

and the second position was attained by the FCN model with
F1 score of 84 percent. The model based on GRU based RNN
gave a weak rating of 63 percent.

Matthews correlation coefficient (MCC) is a more accurate
statistical metric that generates a high score only if good
results were obtained in the prediction in all four groups of
the confusion matrix [66]. MCC-scores of all DNN models
are shown in Figure 9. The reader can confirm that the CNN
based model showed best performance with an MCC value
of 0.74 and FCN is not far behind with an MCC value
of 0.71. As depicted by previous evaluation metrics, GRU
based predictor turned out to be the least suitable model
for NitroY prediction with MCC score of 0.44. These result
show that CNN-based predictor is the finest of all DNN
based models closely followed by FCN based predictor,
developed in this study for identification of NitroTyrosine
sites.

V. DISCUSSION
A. COMPARISON WITH LITERATURE
This section provides the comparison of proposed CNNbased
predictor on independent test set with notable contributions
from literature introduced in section II. The comparison
is made up of notable contribution for NitroY prediction
including DeepNitro [48], iNitroTyr [31], GPS-YNO2 [30],
NTyroSite [33], pNitro-Tyr-PseAAC [32] and PredNTS [49].
The comparison results are shown in Table 8. As can be
seen in Table 8, the evaluation scores of proposed CNN
model are shown in 1st row. The reported evaluation scores
of DeepNitro, iNitroTyr and GPS-YNO2 are shown at row
3,4 and 5 respectively. From all systemsmentioned in Table 8,
pNitro-Tyr-PseAAC system showed comparable results to
our proposed CNN predictor. Although the sensitivity and
accuracy scores of pNitro-Tyr are slightly higher then the
proposed CNN model, the MCC score, which is shown to be
a better performance evaluator of predictors in non-balanced
class problems [66], is far lower than the proposed CNN
model. The higher score of MCC for CNN model shows the
higher performance of proposed approach for NitroTyrosine
site identification. It is relevant to mention that all NitroY
predictors, shown in Table 8, rely on the quality of the features
extracted or selected by the feature extraction algorithms.
Models proposed in current study are different because they
accept raw PSeAAC sequences as input and do not rely on the
quality of features to perform better predictions. Additionally,
the results shown by our optimal model are comparable to the

pNitro-Tyr-PseAAC, which has shown the optimal scores as
compared to other conventional feature-based predictors.

B. DEEP FEATURE SPACE VISUALIZATIONS
To understand the deep feature representations, learned by
the non-linear transformation of iNitroY-Deep models, visu-
alization of feature space serves as an important tool. For
creating visualizations, we computed the output from penul-
timate layer of each trained model for test set sequences and
projected this output to 2-D space using T-SNE, proposed by
Maaten and Hinton [67]. T-SNE uses a non-linear statistical
approach to project data from higher dimensions to lower
dimensions. For t-SNE plot, perplexity is an important hyper-
parmeter which is related to the number of nearest neighbors
that are used in other manifold learning algorithms. Larger
datasets usually require a larger perplexity. Since our Dataset
contains 834 samples in total with maximum 41 dimensions
for raw sequences and 8 dimensions for deep representations,
the recommended perplexity range in scikit-learn is 0-50.
We used default perplexity value of ’30’, used PCA initial-
ization and n_iter =1000 for developing the plots.
This 2-D data was plotted based on class labels to under-

stand the distribution of sequences belonging to both classes.
For plotting the visualizations, we used matplotlib and
seaborn package of python. Figure 10 illustrates the feature
space visualizations of PseAAC sequences and three deep
feature representations. Feature space visualization for raw
PseAAC sequences is shown in figure 10a. As visible in
the figure, positive and negative sequences are jumbled up
and no clear separation is available which means any classi-
fier using this representation will have a hard time separat-
ing the sequences from both classes to perform predictions.
Figures 10b, 10c and 10d illustrates the effect of non-linear
transformations of three DNNs, used in this study, to separate
both classes in respective feature space for achieving better
predictions. The figures included in the manuscript belong to
one least performing model i.e. GRU-RNN and two optimal
models i.e. FCN and CNN models.

As illuminated in figure 10b, which shows the feature
representation learned by GRU-RNN model, the reader can
see that this model was not successful enough to separate
both classes in the learned representation before passing the
features to output layer and this resulted in relatively poor
evaluation scores of GRU-RNN based predictor. The most
successful feature representation is achieved by CNN based
model, as illustrated in figure 10d. The reader can verify

VOLUME 9, 2021 73635



S. Naseer et al.: iNitroY-Deep: Computational Identification of Nitrotyrosine Sites

FIGURE 10. Feature space visualizations of deep representations for positive and negative NitroY samples.

FIGURE 11. Violin plot showing the data distribution of deep features
learned by CNN model.

from the figure that this representation is most successful
in separating the samples belonging to different classes with
minimal overlap. This means any classifier consuming this

FIGURE 12. Swarm-plot showing the data distribution of positive and
negative samples in CNN deep representation.

representation will be able to segregate both classes with
less effort and achieve better predictions. The data distribu-
tion of positive and negative samples in CNN representation

73636 VOLUME 9, 2021



S. Naseer et al.: iNitroY-Deep: Computational Identification of Nitrotyrosine Sites

FIGURE 13. iNitroY-Deep Webserver functionalities for identification of
NitroY sites.

is shown as violin plot and swarm plot in Figure 11 and
Figure 12. As can be seen in aforementioned figures, the CNN
model was able to learn the representation in which the
positive and negative samples are sufficiently separated from
each other enabling better NitroY site identification by output
layer. The violin plot shown in Figure 11 further corroborates
this conclusion by showing minimal overlap between the
positive and negative samples in data distributions of different
deep features of best performing CNN based model. This
fact is also illuminated by the evaluation results discussed in
earlier sections.

An additional benefit of our approach is automatic learning
of feature representation using stochastic gradient descent.
This approach removes the need to use expensive feature
engineering process. In addition, the proposed DNN based
predictors developed in this contribution demonstrate only
the initial step towards employing deep learning for NitroTy-
rosine site identification and further study will draw on the
research described in this study to devise better DNN predic-
tors for the same.

C. MODEL DEPLOYMENT AS WEB SERVICE
The final phase for Chou’s 5-step rule is the deployment of
the predictor in the form of a web application for making it
available to the general research community. To achieve this
goal, a web application was developed in this study utilizing
the best performing CNN based iNitroY-Deep model. The
web application can accept a peptide sample in the form of
string and return the predicted Tyrosine sites which are highly
likely to be nitrated. Homepage of iNitroY-Deep webserver is
shown in figure 13a while figure 13b highlights the peptide
sequence submission process for computing NitroY sites.
Figure 12 calls attention to the result page showing the pre-
dicted tyrosine sites likely to be nitrated and the correspond-
ing ρ length sequence of residues. The model is temporarily
accessible at http://3.15.230.173/. We believe that out humble
effort to improve the predictability of Tyrosine nitration sites
will be of service to research community and help augment
carcinogenesis studies for its prognosis.

VI. CONCLUSION
In this study, we proposed an improved, effective, and less
cumbersome approach, based on deep neural networks, for
identification of NitroTyrosine sites in proteins. The proposed
approach makes use of Chou’s Pseudo Amino Acid Compo-
sition with deep neural networks to identify Tyrosine sites
susceptible to nitration. We employed well-known DNNs
including Standard neural network (FCN), three variants of
recurrent neural networks (RNNs) and convolutional neural
network (CNN) for both the tasks of learning a feature repre-
sentation of peptide sequences and performing the classifica-
tions. From all DNN based predictors in this study, the CNN
based predictor reached up to the highest performance scores
evaluated using well-known model evaluation metrics. The
model achieved 87.2% accuracy, 0.74 Matthew correlation
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coefficient (MCC) score, 0.91 AuC score and 0.90 specificity
score for independent test set. The comparisons of proposed
CNN based predictor with notable research contributions
were performed which shows the efficacy of proposed pre-
dictor. Based on aforementioned evaluation and comparison
results, it is concluded that the proposed predictor will help
the research community to efficiently and accurately iden-
tify NitroTyrosine sites and enable better understanding of
its role in pathological conditions including Carcinogenesis,
tumor growth progression, systemic autoimmune diseases,
neurodegeneration and cardiovascular disorders. The model
is accessible at http://3.15.230.173/

VII. LIMITATION AND FUTURE RESEARCH
Like every experimental research work, our study also suffers
from some limitations. Primary limitation of this study stems
from the fact that Deep neural networks mostly work like
a black box and little information is available regarding the
decision-making process of various neuronsworking together
to make predictions. Although research community is work-
ing on Explainable Artificial Intelligence (XAI) but most
research contributions in (XAI) including Grad-Cam and
Activation maps are targeted towards computer vision and
have very limited application on sequence based predictors.
Future research in this area could overcome XAI limitation
discussed above. In the future we seek to develop and incor-
porate XAI for sequence based protein predictors to enhance
their explainability.
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