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ABSTRACT Device simulation has been explored and industrialized for over 40 years; however, it still
requires huge computational cost. Therefore, it can be further advanced using deep learning (DL) algorithms.
We for the first time report an efficient and accurate DL approach with device simulation for gate-all-around
silicon nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs) to predict electrical charac-
teristics of device induced by work function fluctuation. By using three different DLmodels: artificial neural
network (ANN), convolutional neural network (CNN), and long short term memory (LSTM), the variability
of threshold voltage, on-current and off-current is predicted with respect to different metal-grain number
and location of the low and high values of work function. The comparison is established among the ANN,
CNN and the LSTM models and results depict that the CNN model outperforms in terms of the root mean
squared error and the percentage error rate. The integration of device simulation with DLmodels exhibits the
characteristic estimation of the explored device efficiently; and, the accurate prediction from the DL models
can accelerate the process of device simulation. Notably, the DL approach is able to extract crucial electrical
characteristics of a complicated device accurately with 2% error in a cost-effective manner computationally.

INDEX TERMS Work function fluctuation, nanosized metal grain, gate-all-around, nanowire, MOSFET,
statistical device simulation, deep learning, convolutional neural network, artificial neural network, long
short term memory, root mean squared error.

I. INTRODUCTION
Owing to the low-power consumption and straightforward
fabrication procedure with high flexibility, silicon-based
transistors are acknowledging as the most favorable tech-
nology [1]–[4]. Silicon (Si) transistors offer distinguished
functionalities, such as high scalability, high integrity and
low-power consumption, etc. [5]. Besides these capabilities,
Si transistors have suffered due to various limitations serious
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issues, such as high leakage current, significant fluctuation of
threshold voltage and poor subthreshold slope (SS), etc. [2].
To keep up the continuous downscaling of Si transistors for
high-performance applications, gate-all-around (GAA)

Si nanowire (NW) metal-oxide-semiconductor field-effect
transistor (MOSFETs) are considered as an arising aspi-
rant among the nanodevices due to predominant electrical
characteristics [6]. The fluctuation of electrical characteris-
tic plays a significant role in the field of nanoelectronics.
There are various variability sources such as the random
dopant fluctuation (RDF), work function fluctuation (WKF),
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FIGURE 1. (a) An illustration of the nominal GAA Si NW MOSFET and
ID-VG curve which depicts the crucial parameters. (b) Various random
sources and fluctuated ID-VG curves. Device parameters can be extracted
from these curves. (c) A general DL model that takes device fluctuations
and electrical characteristics as input and target values, respectively.
It also demonstrates the possible application of concatenation of device
simulation technology with DL algorithms.

random interface trap (RIT) and the process variation effect
(PVE) [7]–[14]. Moreover, the variability source, the model
ambiguity, and the manufacturing tolerance are playing vital
roles in chip production and yield optimization [15]. From
the prior work [16], three-dimensional (3D) statistical device
simulation depicted that the RDF in GAA Si NWMOSFETs
greatly affects the device variability. In [17], characteristic
fluctuation induced by the WKF on GAA Si NW MOSFETs
was studied; and, the results have shown that the reduc-
tion of variation of the threshold voltage (VTH ) affects the
reduction of variation of the frequency. Similarly, in [18],
the timings and the power fluctuations were determined by
considering the various random discrete dopants (RDDs)
on GAA Si NW complementary metal-oxide-semiconductor
(CMOS); and, it concluded that the timing fluctuation and
the power consumption in CMOS are directly dependent on
the variation of the VTH . The variability of the VTH induced
by titanium nitride (TiN) metal-gate WKF on GAA Si NW
device was examined in [19]; and, comparison of the induced
VTH between WKF and RDF indicated that the variability
of VTH dominated by WKF has more impact than that of
RDF. According to these points of views, electrical charac-
teristics of GAA Si NW MOSFET induced by WKF can be
further investigated by using deep learning (DL) algorithms
integrated with device simulation.

Recently, machine learning (ML) has been growing promi-
nently in every field due to its scalability and wide range
of algorithms and applications [20]–[23]. ML/DL algorithms

are implementing to forecast the unknown future based on
known experimental data. For example, in [24], the effect
of climate change on urban buildings was studied with the
help of ML algorithms. Similarly, in [25], the integration
of ML with metabolic engineering was discussed. Likewise,
ML was utilized in [26] for the optimization of signal pro-
cessing algorithms. Moreover, semiconductor and integrated
circuit manufacturing industry is highly suitable to be inte-
grated with DL techniques because the semiconductor manu-
facturing process encounters a large number of parameters
and a various number of procedures that are inevitable to
be performed manually by engineers. There is some prior
research based on the integration of ML with semiconduc-
tor manufacturing [27]–[30]. In [31], a ML algorithm was
reported for defect detection. Similarly, a ML algorithm
was explored in [32] to yield improvement in semiconduc-
tor manufacturing. Nowadays, the integration of ML with
the study on GAA Si NW MOSFETs is considered to be
significantly feasible and broadly applicable [33]–[38]. The
purpose of applying ML is to predict the characteristics of
semiconductor devices. Due to rapid prediction, while main-
taining the performance accuracy, ML is being applied in
many research areas [21], [30], [39]–[46]. Moreover, in the
variability of the VTH of the GAA Si NWMOSFETs induced
by WKF, the random metal grain (MG) and the positional
sequence of MG are the complicated factors that motivate
the utilization of ML models in MOSFETs. Furthermore,
the estimation of the total number ofMG in aGAASiNW, the
estimation of an appropriate width of the MG, and the
adjustable position of the MG with respect to the different
value of WK are intricate processes and vary a lot in deter-
mining their parameters. There is some prior work related to
the PV integrated with ML. In [47], ML algorithm (artificial
neural network; ANN) was applied to predict the VTH of
Si junctionless NW transistor by feeding the neural-network
model with three input parameters including the off-current
(IOFF ), the on-current (ION ), and the subthreshold slope (SS).
Similarly, in [48], Ko et al. proposed ANN to predict the
characteristics of ultra-scaled GAA vertical FET device by
using PV. The model was trained by using five variables, four
obtained from the PV and one was from the dimension of
the device. Then, these input variables were coupled with the
target variable which represents the characteristics of VFET
device. In [49], Kyul et al. proposed the ANN ML algorithm
for 3D NAND flash memories. Due to a simple mathematical
model, neural-network was implemented in all these prior
work.

To examine the effect of the variability of the WKF
on emerging MOSFETs, the cuboid grain method and the
averaged WKF method, etc., [50] have been proposed and
proven remarkable. In [17], the cuboid grain method was
adopted to study the effect of the metal-grain number (MGN)
and metal-grain location (MGL) with the low and high
work functions on the variability of the VTH . However, with
the increase of MGN, the requirement for a large number
of samples of WK also increases. Therefore, the highly
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FIGURE 2. (a) A TEM of TiN which cannot be formulated ideally. Using the cuboid grain method, the 3D device simulation is performed. (b) The cuboid
grain method segregates 3 different grain sizes: MGN = 16, 80 and 320. Corresponding to the cases of MGN = 16, 80 and 320, more than 3000, 5000 and
10000 fluctuated devices are generated and simulated, respectively, and these simulated ID-VG curves are illustrated. (c) The extracted device parameters
(VTH , ION and IOF F) and WKF patterns, are feed into three different DL algorithms, i.e., ANN, CNN and LSTM.
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FIGURE 3. A comprehensive flow chart of the proposed methodology
including data generation, data labeling, noise reduction, splitting the
dataset into 90% training and 10% testing, data preprocessing and
training and testing the DL models on the basis of optimization algorithm
and loss function.

computational cost is obligatory for accurate prediction.
Each 3D device simulation with a given grain pattern takes
1-2 hours and more than 3,000 3D device simulations
should be conducted to explore the WKF-induced variability.
To overcome these computational resource intensive issues,
we advance our recent work on the studies of the WKF
by applying three different supervised ML models to study
characteristic fluctuation induced by the WKFs.

To understand the concatenation between two emerging
technologies, the overview of the integration of the 3D device
simulation with DL technology is shown in Fig. 1. Notably,
in Fig. 1(a), the nominal GAA Si NW MOSFET and its
electrical characteristics for the sub-5-nm technology node is
shown. Similarly, in Fig. 1(b), four major variability sources
are illustrated such as RDF, PVE, RITs and WKF. By using
any of these variability sources, many fluctuated devices
can be generated and crucial electrical characteristics can
be extracted from a bundle of ID-VG curves. Prominently,
the WKF is considered one of the most significant variability
sources in semiconductor devices. Besides, the variability
source and the extracted parameters are taken as input into
the DL algorithm, as shown in Fig. 1(c) and it also exhibits
the possible applications that arise due to the conjunction of
device simulation and DL technology.

In this work, three different DL algorithms includingANN,
convolutional neural network (CNN) and long short term
memory (LSTM) are proposed to predict characteristic fluc-
tuation of VTH , ION and IOFF affected by various MGNs,
i.e., MGN = 16, 80 and 320. They are induced by low
and high work functions and between the source (S) and
the drain (D) at different locations. The results of this work
conclude that the device simulation based DL algorithms can
largely accelerate the prediction process of device simulation
data by minimizing the computational cost and can easily
enhance the prediction accuracy.

FIGURE 4. An illustration of the basic architecture of ANN by considering
MGN = 16, 80 and 320. It consists of 4 layers including one input layer,
2 hidden layers and one output layer.

This paper is structured as follows. Section II presents
the statistical device simulation and deep learning method-
ology. Section III demonstrates the comparison of different
DL models. Section IV reports the different techniques to
evaluate the DL algorithms. Section V illustrates the results
and the detail discussion for different MGNs. Section VI
presents the emerging applications of DLwithWKF for GAA
Si NW MOSFET and finally in the section VII, the conclu-
sion is drawn and the direction for future research is given.
In Appendices, the mathematical formulations of the applied
DL models are mentioned.

II. STATISTICAL DEVICE SIMULATION AND DEEP
LEARNING METHODOLOGY
The WK fluctuated devices are simulated by 3D device
simulation. As shown in Fig. 2(a), a transmission electron
microscope (TEM) of TiN gate from a realistic fabrication
is irregular shape generally which is difficult to formulated
ideally in device simulation. Therefore, the cuboid grain
algorithm is implemented to position the MG with an acute
angle. Moreover, the simulated structure consists of a 10-nm
diameter (d) of horizontal cylindrical Si channel with a 10-nm
gate stack of HfO2 having a 0.6-nm effective oxide thickness
(EOT) with TiN gate having WK of 4.552 eV, as shown
in Fig. 2(a). Moreover, simulating through higher threshold
voltage for low-power devices, TiN gate yields 0.2 eV offset
between the low and high WKs. Therefore, low and high
WKs are defined as TiN<111> having 0.4 probability of
occurrence on MG with WK = 4.432 eV and TiN<200>
having 0.6 probability of occurrence on MG with WK =
4.632 eV, respectively. Fig. 2(b) illustrates that three different
sizes of MGs deposited on the TiN gate. The number of MGs
is proportional to the grain size. The number of MGs are
16, 80 and 320 for grain size = 5 nm x 4 nm, (2 nm)2 and
(1 nm)2, respectively. For eachMG, random patterns are gen-
erated by the Monte Carlo (MC) method and the simulated
ID -VG curves are obtained by using 3,000 to 10,000 fluctu-
ated devices. From these ID-VG curves, the device parameters
are extracted. These WK fluctuated patterns for different
MGNs with their corresponding extracted parameters are
preprocessed and fed into different DL algorithms, as shown
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TABLE 1. List of Device Simulation Parameters for GAA Si NW MOSFETs.

in Fig. 2(c). Three different DL algorithms: ANN, CNN and
LSTM, are implemented. The brief demonstration of simu-
lated device parameters is listed in Table 1. In this section,
we introduce the dataset and its preprocessing. The basic
knowledge of ANN, CNN and LSTM is stated to master the
relation between the sequence of high and low WKs and the
effect of the random WK on the magnitudes of variability of
the VTH , ION and IOFF .

A. DATASET AND PREPROCESSING
The dataset is consisting of random patterns of high and low
WKs that are being mapped into 0 and 1 values, respectively.
Consequently, the studied DL algorithms can be fed using
discrete input data, where any divergent value is eliminated;
and,VTH = 10V is set. The divergent data is insignificant and
is considered to be noise. Then, the normalization of all fea-
tures is performed to scale down the difference between the
minimum and the maximum values in the dataset. The most
common method to normalize the dataset is MinMaxScaler
from Scikit-Learn Python’s Library [51]. The final output
from all these preprocessing steps is taken as input to the DL
models. The flow chart of data collection, noise reduction,
data preprocessing, splitting the dataset into training and
testing set and feeding the DL model with input and target
dataset, all are illustrated in Fig. 3.

B. ARTIFICIAL NEURAL NETWORK
ANN is the most common and widely used algorithm in
science and engineering [52]–[56] which has been of great
interest due to the multilayered network having the capability
to extract features [57], [58]. The dataset enters through
the input layer, passes by the hidden layer for the extrac-
tion of the useful features. Then, the output from the pre-
vious hidden layer is considered as the input to the next
hidden layer (the mathematical insight of ANN is further
explained in Appendix) and afterward, the output is predicted
from the output layer. The activation function in the hidden
layer performs the non-linear complexity. Generally, there
are many different architectures as well as various optimiza-
tion algorithms of the ANN model; however, we merely

focus on one neural-network architecture, as shown in Fig. 4.
The implementation of the ANN model is consisting of four
layers: one input layer, two hidden layers, and one output
layer. The input layer consists a number of neurons equal
to the number of features utilize in one batch. Similarly, the
number of neurons in the hidden layers are adjustable in
the range of 32∼100, depending upon many factors such as
the length of the input sequence, the nature of the output
(digit or numerical value), etc. Here, the type of target data is
numeric continuous values. As shown in Fig. 4, consider the
regression ANN model for 16-dimensional input sequence,
i.e., {x1, x2, . . . , x16}, the weight corresponding to the first
layer, the second layer and the third layer is represented
as a matrix W16×100, W100×100 and W100×1, respectively.
Moreover, rectified linear unit (ReLU) activation function is
explored because it converges faster as compared to other
activation functions, such as sigmoid, leaky ReLU and hyper-
bolic tangent [51]. The mathematical notation of ReLU acti-
vation function is given as:

ReLU (x) = max(0, x) , (1)

where x is considered as the input to the neuron and ReLU is
the activation function depend on themaximumvalue of 0 and
x. In the feedforward direction, the output from any arbitrary
neuron Sr is given as:

Sr = ReLU (
∑

i=1
wixi + bi), (2)

where x, b and w represent the input, the corresponding
bias and the weight of a given neuron, respectively. Bias
and weight are considered as the hyperparameters which are
tunable variables and through backpropagation, these hyper-
parameters can be optimized. The output obtains from the last
layer is contaminated due to the randomness of weights and
biases in each layer. To minimize the error between the target
and the predicted values, the optimization function is utilized.
The following loss function is taken into account to calculate
the error between the predicted and the target values.

Loss function =
1
N

∑N

i=1
(ytarget − ypred )2, (3)

where ytarget and ypred represent the exact and the pre-
dicted values obtained from the trained ANN model; N
represents the total number of samples in the train dataset.
Notably, the ANN has some imperfections while dealing with
optimization algorithms. Because it takes a longer time to
converge and to find the global minima [58]. Moreover,
the number of features are 16, 80 and 320 which is infeasible
for ANN to deal with the longer input sequences efficiently
without facing the curse of dimensionality.

C. CONVOLUTIONAL NEURAL NETWORK
Primarily, the CNNmodel is considered a useful algorithm in
various applications such as object detection, computer vision
and pattern recognition due to its ability to extract features
from the input data very efficiently [59]–[62]. Fig. 5 shows
the basic architecture of CNN as a regression model and the
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FIGURE 6. An illustration of the internal structure of LSTM cell consisting of input gate, forget gate, cell state and output gate. Sigmoid
activation function is used in input, forget and output gate. In addition, tangent hyperbolic activation function is implemented in cell state.

FIGURE 5. An illustration of the basic architecture of CNN for MGN = 16,
80 and 320, consisting of input layer, one convolutional layer with ReLU
activation layer, one pooling layer, two fully connected layers and one
output layer.

mathematical perception is given in Appendix. Consider the
input for MGN = 16 such that {x1, x2, . . . , x16}, the input
feed into CNN model is converted into a 2D matrix so that
it can be manipulated by using a convolutional layer which
is based on the processing of 2D input matrix and kernel.
The kernel allows us to extract the useful information from
the input matrix; for example, some specific kernels can
extract the information around the boundary of the input
matrix [63]–[67]. Traditionally, the stack of convolutional
layers can be increased as many times as to extract a large
number of input features. The mathematical notation of 2D
convolution S(i, j) between the input matrix and kernel is
expressed as:

S (i, j) = (I × K ) (i, j)

=

∑
m

∑
n
I (m, n)K (i− m, j-n) , (4)

where K and I are the kernel and filter that represent the
square matrix of any size and the 2D input data consisting of a
matrix with m-by-n dimensions, respectively. Similarly, i and
j represent the number of rows and number of columns of the
kernel. Notably, the number of training samples propagates
into the DL model in one forward and backward pass is
known as batch size. The output of the convolutional layer
then undergoes through pooling layer to reduce the input
size, therefore, this layer can prevent the various DL dilem-
mas including (i) the curse of dimensionality, (ii) overfitting
during the DL model training and (iii) cost reduction com-
putationally. Lastly, a fully-connected layer is implemented

(also known as the Dense layer) that works similar to the
feedforward ANN (see Appendix). Besides, the number of
epochs handle the number of times the backpropagations
process is performed in DL model. In short, the CNN model
focuses on each small feature of the input data by sharing
parameters using the same kernel (may use different kernels
for same input data) and develop a systematic process to
predict the output by considering those explored features.
Similar to ANN, CNN model is applied to three continuous
numerical outputs, i.e., ION , IOFF and VTH .

D. LONG SHORT TERM MEMORY
It is known that LSTM is popular for forecasting data that
depends on the time intervals. Therefore, it is implemented
for predicting recurrent input. e.g., time-series data, natural
language processing and weather forecasting, etc. LSTM is a
special type of neural-network that gains attention due to the
memory blocks. These memory blocks have self-connection
which memorizes the flow of information [68]–[72]. Con-
sider LSTM as a regression model and the input given to a
LSTM cell is for MGN = 16, i.e., {x1, x2, . . . , x16}. Before
feeding into the LSTMmodel, the input array is reshaped into
batch size, the number of samples passes in one-time step and
the number of input features, e.g., (20, 1, 16). The number of
features varies with different MGNs. The LSTM cell contains
three gates: the input, forget, and output gates, respectively.
The architecture of the LSTM cell is shown in Fig. 6 and
its comprehensive pseudo-code is listed in Appendix. The
mathematical notation of forget gate f (t)i by considering the t
time step of the ith cell, is given as:

f ti = σ (b
f
i +

∑
j
U f
i,jx

(t)
j +

∑
j
W f
i,jh

(t−1)
j ), (5)

where x(t) is the input vector at time t and h(t) is the hidden
vector at time t. bf , U f , and W f are the bias, input weight
and the recurrent weight for the forget gate, respectively.
The LSTM cell internal state c is updated with the self-loop
weight and by considering hyperbolic tangent (tanh) as an
activation function, the mathematical expression of the cell

73472 VOLUME 9, 2021



C. Akbar et al.: DL Algorithms for Work Function Fluctuation of Random Nanosized Metal Grains

state is given by:

cti = f ti c
(t−1)
i tanh(bci+

∑
j
U c
i,jx

(t)
j +

∑
j
W c
i,jh

(t−1)
j ), (6)

where b, U and W , respectively, represent the bias, input
weight and the recurrent weight of the LSTM cell state. The
input gate unit g is computed similarly to the forget gate. The
mathematical notation of the input gate g is:

gti = σ (b
g
i +

∑
j
Ug
i,jx

(t)
j +

∑
j
W g
i,jh

(t−1)
j ), (7)

where b, U and W represent the bias, the input weight and
the recurrent weight of the input gate, respectively. Similarly,
x and h are the input matrix and the hidden unit, respectively.
The output h of the LSTM is obtained via the output gate q:

hti = tanh
(
cti
)
qti (8)

and

qti = σ (b
q
i +

∑
j
Uq
i,jx

(t)
j +

∑
j
W q
i,jh

(t−1)
j , (9)

where c and q represent the cell state and the output gate,
respectively. Similarly, b, U and W represent the bias, the
input weight and the recurrent weight of the output gate,
respectively. These weights and biases are considered as the
hyperparameters of the LSTMcell and these hyperparameters
can be updated by taking the gradient with respect to the
weights and the biases of the input gate, the output gate and
the forget gate. The main advantage of the LSTM model is
that it can regulate the gradient by overwhelming the most
common crisis of DL model, i.e., the vanishing gradient and
the exploding gradient. The output obtains from each LSTM
cell consists of two arrays, i.e., the cell state c and hidden layer
output h. It is not mandatory to forward both arrays into the
next LSTM cell. Notably, to limit the size of the output array
(three variables), only hidden layer output is considered as the
final output from each LSTM cell and cell state is omitted.

III. COMPARISON OF MODELS
Each algorithm has some limitations such as ANN requires a
huge amount of dataset as well as its ability to compute the
gradient is also computationally expensive. Typically, for the
ANN model, there is no criterion for the minimum number
of samples. However, the smaller number of training samples
as compared to the larger input features is not an adequate
approach. Moreover, the LSTM model is more suitable for
predicting the data having a larger input sequence and it has
effective regularization over the vanishing gradient and the
exploding gradient. Nonetheless, the LSTMmodel requires a
comparatively larger amount of training samples. The mathe-
matical notation for the minimum number of training samples
required for the LSTM model is given as:

4
(
n× m+ n2

)
, (10)

where n and m correspond to the size of the input fea-
tures and the output features, respectively. In the cases of
MGN = 16, 80 and 320, the minimum number of training

TABLE 2. List of the Hyperparameters Configuration for ANN, CNN and
LSTM Model Using MGN = 16, 80 and 320.

samples required for a well-trained LSTM model is 1,088,
25,920 and 410,880, respectively. Therefore, for MGN =
80 and 320 above-mentioned number of training samples are
implausible to achieve through device simulation of GAA Si
NWMOSFETs. As we know, the CNNmodel is prominently
used in the field of computer vision and object detection.
Besides, it has a powerful endowment to deal with more com-
plex problems. Due to this reason, the CNN model is more
suitable for dealing with a large number of input features.
Moreover, theminimumnumber of training samples is depen-
dent on the depth of the CNN model and its mathematical
formula is shown below.

(Nin + 1)× Nh + (Nh + 1)× Nout < Ns, (11)

where Nin, Nh and Nout are the number of input features,
number of hidden units and number of output features,
respectively. Ns represents the minimum number of training
samples. Therefore, by comparing the model architecture
among ANN, CNN and LSTM, the CNNmodel is considered
to be more efficient for the dataset obtain from the device
simulation of GAA Si NW MOSFETs.

Themain challenge in developing an optimal DL algorithm
is to set the hyperparameters of the model to minimize the
aforementioned loss function and acquire the convergence
rapidly. Majorly, three experiments, for MGN = 16, 80 and
320, are carried out for each DL model (ANN, CNN and
LSTM). In the conducted experiments, three datasets are
utilized to predict the three crucial electrical characteristics
(i.e., VTH , ION and IOFF ), the hyperparameter configurations
are illustrated in Table 2. It is proven that DL algorithms have
been performing well as compared to ML algorithms due to
the dense number of layers and their ability to deal with the
curse of dimensionality.

IV. EVALUATION OF DEEP LEARNING MODELS
While dealing with GAA Si NW MOSFETs, there are two
major challenges: (i) highly computational cost and (ii) pre-
cision of electrical characteristics. The DL models are eval-
uated by using the root mean squared error (RMSE) value
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as well as the error rate. Generally, the RMSE values are
calculated for the regression and the numerical problems. The
RMSE value is the difference between the true and predicted
values from the DLmodels. The mathematical expressions of
the RMSE values for the train and the test dataset are given
by the following two equations, respectively:

RMSE train =

√∑Ntrain
i=1 (ytrain − ytrain_pred )2

Ntrain
(12)

and

RMSE test =

√∑Ntest
i=1 (ytest − ytest_pred )2

Ntest
, (13)

where Ntrain and Ntest is the total number of the train and
the test data samples, respectively. Similarly, ytrain and ytest
represent the exact values from the train and the test data sam-
ples, respectively. Likewise, ytrain_pred and ytest_pred depict the
predicted values by using its corresponding train and the test
dataset, respectively.

Similarly, the performance of the explored DL models can
be determined by calculating the error rate in terms of the
variance of the actual dataset and the predicted output. The
mathematical formula of error rate is shown below:

Error Rate% =
σtest − σpred

σtest
× 100, (14)

where σtest and σpred represent the standard deviation of the
test dataset and the predicted values collected from the trained
DL model, respectively.

V. RESULTS AND DISCUSSION
In our prior work [17], it has been observed that the high-
κ/metal-gate (HKMG) technology with GAA Si NW MOS-
FETs is considered to be a more effective technology and
the magnitude of electrical characteristics induced by the
WKF depend on two factors: the random number of MGs
and the random position of MGs. The most crucial electrical
characteristics induced by low and highWKs is the variability
of the threshold voltage (σVTH ) defined by:

σVTH =

√∑n
i=1 SDM i

n− 1
(15)

and

SDM i = (VTHi − VTH_mean)2, (16)

where i and n are the index number of the fluctuated devices
and the total number of the fluctuated device, respectively;
SDM is the square of deviation from the mean value and
VTH_mean is the mean of VTH . From (15), it is clarified
that σVTH is directly proportional to the sum of SDM and
inversely proportional to the total number of fluctuation
devices.

The integration of HKMG technology with the emerging
DL methodology demonstrates the accurate prediction of
electrical characteristics of GAA Si NW MOSFETs and to

determine the relationship of induced electrical characteris-
tics with the randomly generated fluctuated devices. The pre-
diction of continuous numeric values, i.e.,VTH , ION and IOFF ,
appears in the domain of regression problems. The output
from the explored DL models is considered as the predicted
value estimated through the target values obtain from HKMG
WK’s effective electrical characteristics including VTH , ION
and IOFF . While developing the DL models, the various
fluctuated devices are considered as the number of input data.
For example, for MGN = 16, 80 and 320, the total num-
ber of fluctuated devices is 3000, 5000 and 10000, respec-
tively, which is equivalent to the total number of samples for
MGN = 16, 80 and 320.
The term ‘train’ in the DL model is referred to as feeding

the model to estimate its hidden hyperparameters and opti-
mize them using various algorithms, such as the stochastic
gradient descent and the adaptive moment estimation, etc.
Whereas, the term ‘test’ refers to predicting the trained DL
model with the new dataset. Usually, in the DL algorithms,
the split between train and test datasets is 90% and 10%,
respectively. Initially, the DL models are trained after ran-
domly shuffling the dataset, so that, in each epoch, every data
point enlightens the trainable parameters of the adapted DL
model; otherwise the RMSE valuewill be too high.Moreover,
it can be observed in Table 3 that the RMSE values obtain
through all explored DL models (ANN, CNN and LSTM)
during training and testing. It is observed that the RMSEvalue
during the training of all DLmodels is outperformed, whereas
the reduction of RMSE value for testing dataset obtained
through CNN among all the DL models is persistent. More-
over, due to sizeable variation in IOFF dataset, the RMSE
value for both train and test datasets is comparatively higher
than VTH and ION . Likewise, from Tables 4 and 5, it can
be seen that for MGN = 80 and 320, the RMSE values for
the test dataset are decreased by the CNN model. The reason
behind the reduction of RMSE value via the CNN model is
that it can handle properly a large number of input features,
i.e., 80 and 320. The DL model having a large number of
input features demand two major properties: (i) the number
of training data points should be at least four times larger
than the number of input features and (ii) the optimized
deepmodel architecture having a large number of parameters.
In the case of LSTMandANN, it is architecturally impossible
to fulfill the above two criteria for such long input sequences,
i.e., 80 and 320. Nonetheless, in GAA Si NW MOSFETs
with HKMG technology, it takes highly computational cost
to collect a large number of simulated samples, which is a
critical issue in the field of GAA Si devices.

In the DL algorithms, it is a commonly practice to eval-
uate the regression model using the RMSE value. Even the
smallest difference between the attained RMSE values are
considered to be significantly important. While pondering
towards the RMSE values for train data, all the DL models
outperform. The prevailing goal is to accomplish a nominal
RMSE value for the test dataset. In Tables 3, 4 and 5, themini-
mumRMSE value, for both train and test datasets, is obtained
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FIGURE 7. Comparison among the ANN, CNN and LSTM models by predicting electrical characteristics induced by WKF using MGN = 16 having
grain size = 5 nm x 4 nm on GAA Si NW MOSFETs. (a) and (b) illustrate the train and test of the explored DL models, respectively. All these adapted
DL algorithms predict the VTH induced by WKF. (c) and (d) depict the train and test procedure of the DL models, respectively. These adapted DL
algorithms predict the ION induced by WKF. (e) and (f) represent the train and test of all the DL models, respectively. These adapted DL algorithms
predict the IOF F induced by WKF.

FIGURE 8. Comparison among the ANN, CNN and LSTM models by predicting electrical characteristics induced by WKF using MGN = 80 having grain
size = (2 nm)2 on GAA Si NW MOSFETs. (a) and (b) illustrate the train and test of the explored DL models, respectively. These adapted DL algorithms
predict the VTH induced by WKF. (c) and (d) depict the train and test procedure of the DL models, respectively. These adapted DL algorithms predict
the ION induced by WKF. (e) and (f) represent the train and test of the DL models, respectively. These adapted DL algorithms predict the IOFF induced
by WKF.

TABLE 3. The Calculated RMSE Values for Train and Test of the ANN, CNN
and LSTM Models Using MGN = 16.

by the CNN model due to its capacity to deal with higher
dimensional data. Specifically, by comparing Table 5 with
Tables 3 and 4, the increment of the RMSE value for the test

TABLE 4. The Calculated RMSE Values for Train and Test of the ANN, CNN
and LSTM Models using MGN = 80.

dataset obtained through the ANN, CNN and LSTM models
using the MGN = 320 are due to various reasons such as
(i) the larger input length, i.e., 320, (ii) the curse of dimen-
sionality encountered by the DL models, (iii) the exploding
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TABLE 5. List of Computed RMSE Values for Train and Test of the ANN,
CNN and LSTM Models Using MGN = 320.

TABLE 6. List of Calculated Error Rate for Test Dataset of the ANN, CNN
and LSTM Models using MGN 16, 80 and 320.

and the vanishing gradient during the backpropagation of
the explored DL models. From our earlier work [13], it is
clear that electrical characteristics are induced by the WKF,
which majorly depends on the random position of the MG.
By conquering the issue of the random position, the CNN
model performs better as compared to the ANN and the
LSTM model. The comparison among three DL models in
terms of the RMSE values depicts that for the MGN =16,
all the DL models outperform. However, the CNN model
surmounts the result due to its sparse property. The training
and the testing of the ANN, the CNN and the LSTM model
through the electrical characteristics, i.e.,VTH , induced by the
WK having the MGN= 16 is illustrated in Figs. 7(a) and (b),
respectively; whereas, for theMGN= 16, the training and the
testing of all DL models using ION is illustrated in Figs. 7(c)
and (d), respectively and in Figs. 7(e) and (f), the training
and testing of all DL models using IOFF is shown, respec-
tively. From these given plots, it is difficult to distinguish the
most significant DL model performance. So, the error rate is
calculated. As listed in Table 6, for the MGN = 16, the test
error rate for the ANN, the CNN and the LSTM models,
by considering VTH is 0.9%, 0.5% and 0.8%, respectively.
Similarly, the error rate for the ANN, the CNN and the LSTM
model by using ION is 1.9%, ANN, the CNN and the LSTM
models using the explored electrical characteristics, i.e., VTH ,
ION and IOFF . Likewise, Figs. 9(a)-(f) illustrate the training

and the testing for MGN = 320 by implementing the all
explored DL models using VTH , ION and IOFF . Apart from
the MGN = 16 and 80, the MGN = 320 is considered as
a different case due to its excessive feature size, i.e., 320.
As it has been already discussed, the larger input length may
affect the training and testing of the DL models because (i) it
may produce the curse of dimensionality, (ii) it requires more
training dataset which is an inevitable problem in the field
of device manufacturing and the simulation, and (iii) it can
explode or vanish the gradient of the DL models during their
backpropagation. Along with these issues, our explored DL
models predict better than the anticipation.

In the DL algorithms, the curse of dimensionality can
be overcome by implementing the different strategies for
feature extraction and feature selection. However, each input
feature holds equal significance as other features. Thus, it is
worthless to use different algorithms to reduce the size of
input features for the explored DL models. It is important
for us to discuss more about the effectiveness of the explored
DL models for predicting the VTH , ION and IOFF . By ana-
lyzing the effect of different MGNs (i.e., 16, 80 and 320),
it is demonstrated that by increasing MGN, the RMSE value
increases which depicts that it greatly affects the DL model
performance. For the MGN = 16 and 80, all explored DL
models such as ANN, CNN and LSTM, outperform but in
the case of MGN = 320, even its noticeable concern with a
long sequence of patterns, the performance of all explored DL
models is acceptable.

In short, the well-trained DL models are generic, i.e.,
a single model architecture can be applied to different MGNs,
if the dataset for any value of MGN is exhibiting similar
variability characteristics (for example, the ratio of ION /IOFF
and the VTH lie in the range of MGN with which DL model
has been already trained), then the same trained DL model
is enough for any MGN value. Otherwise, to obtain the con-
verged and optimized DLmodel for prediction, it is necessary
to repeat the training process every time with datasets having
different MGNs.

VI. POTENTIAL APPLICATIONS OF DEEP LEARNING
MODELS WITH WKF FOR GAA Si NW MOSFET
Nowadays, in the semiconductor industry, due to the excellent
electrical characteristics of GAA Si NW MOSFETs with
HKMG technology, various innovations have been launch-
ing simultaneously. In these innovations, various factors are
affecting nodes below 10 nm. However, both MGL and
MGN are the two most important factors that are influ-
enced by WKF. Moreover, due to the laborious process of
generating different grain sizes having different MGN and
MGL, device simulation is considered the most powerful
tool in semiconductor manufacturing industries. For 40 years,
researchers have been investing efforts to accomplish a sim-
ple and accessible method for model designing. Technology
computer-aided design (TCAD) is an authorized computer
simulation tool for semiconductor manufacturing technolo-
gies and devices. Despite TCAD simulation tool success,
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FIGURE 9. Comparison among the ANN, CNN and LSTM models by predicting electrical characteristics induced by WKF using MGN = 320 having
grain size = (1 nm)2 on GAA Si NW MOSFET. (a) and (b) illustrate the train and test of the explored DL models, respectively. These adapted DL
algorithms predict the VTH induced by WKF. (c) and (d) depict the train and test procedure of the DL models, respectively. These adapted DL
algorithms predict the ION induced by WKF. (e) and (f) represent the train and test of the DL models, respectively. These adapted DL algorithms
predict the IOFF induced by WKF.

FIGURE 10. An illustration of the pseudo-code of ANN focuses more on
training procedure because the testing procedure is straightforward.

FIGURE 11. An illustration of the convolutional layer by multiplying the
input matrix with appropriate kernel and the feature map that represents
the output of the convolutional layer.

device simulation has some limitations while dealing with
WKF for GAA Si NW MOSFETs, i.e., high computational
cost and the optimized solution, etc.

There are various methodologies to examine the effect
of different MGNs and MGLs on the variability of GAA
Si NW MOSFET. Analytical model, averaged WKF, cuboid

FIGURE 12. An illustration of the max-pooling layer by padding the
convolutional layer’s output with zeros. Padding can be utilized at any
layer to get the desired output dimensions. Stride represents the step size
which moves the filter at a time.

grain method and Voronoi method [73], all are popular
technologies. Therefore, it is necessary to explore the most
optimized and converge methodology for MG to study the
effect of the WKF. Furthermore, studying the relationship
between various sizes of MG and electrical characteristics
induced by WKF has significant importance in nano-device
technology.

To study the challenges that appear in WKF for GAA
Si NW MOSFETs, different DL algorithms conquer all the
limitations. Moreover, the integration of DL with WKF for
GAA Si NW MOSFETs imply various advantages, such
as (1) DL can estimate the model specification induced by
WKF for GAA Si NW MOSFETs very accurately which
can accelerate the device simulation with less computational
cost; (2) DL can extract crucial electrical characteristics
induced by WKF for GAA Si NW MOSFETs that can be
extended to model the complicated device; and (3) by study-
ing the effect of different MGNs and MGLs on the variabil-
ity of GAA Si NW MOSFETs through the DL algorithm,
the device simulation can be conducted easily. Based on these
points of view, the integration of DL with physically-sound
device simulation can be considered an auxiliary technique
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FIGURE 13. An illustration of the pseudo-code of CNN including three
main layers, i.e., the convolutional layer, the pooling layer and the
fully-connected layer.

in design, simulation and optimization of emerging device
technologies.

VII. CONCLUSION
In this paper, for the first time, three DL algorithms have been
implemented, i.e., ANN, CNN and LSTM, which have shown
sufficiently efficient and accurate performance. For the effect
of MGN = 16, all the explored DL models outperform due
to an optimal number of features. However, for the cases of
MGN = 80 and 320, the CNN performs better than ANN
and LSTM in terms of testing error rate and the RMSE
value. The improvement in the predicted values using the
CNN model attribute to the fact that the CNN model has the
property of sparse interactionwhich can extract features using
the minimum number of parameters. In the evidence of the
testing error rate as summarized in Table 5, it is concluded
that the CNNmodel is a more optimal approach to estimating
the electrical characteristics of GAA Si NW MOSFETs.

Furthermore, it is accomplished that by the integration
of the DL algorithms with 3D device simulation, various
achievements have been observed. such as the more compli-
cated device simulation can be modeled and the device sim-
ulation process can be accelerated. Therefore, more complex
data structures obtain through the device simulations, e.g., for
MGN = 480, the electrical characteristics can be accurately
predicted by using the well-trained DL models.

TABLE 7. The Difference Between Various Activation Functions in Terms
of their Input and output Range and Domain.

FIGURE 14. An illustration of the pseudo-code of LSTM having input gate,
output gate and forget gate. (For (5)-(9), see the section II statistical
device simulation and deep learning methodology).

APPENDIX
ARTIFICIAL NEURAL NETWORK
Traditionally, a single artificial neuron having an input
layer, activation function and output layer is known as the
perceptron. A stack of these neurons having multiple layers
is known as a multi-layer perceptron (MLP). Furthermore,
the activation function is utilized to introduce non-linearity
in the model. There are various types of activation functions,
the difference between them is depicted in Table 7. However,
there is one constraint regarding the selection of appropriate
activation function, i.e., it should be differentiable so that
while estimating the loss function it does not get vanished
during the backpropagation. Conventionally,MLP/ANN con-
sists of two main working strategies, i.e., (i) the forward
propagation and (ii) the backward propagation. In the forward
propagation, all the features are multiplied with their corre-
sponding weights and biases and pass through the activation
function after the summation of weight and bias, which is
expressed as:

y = σ (w× x + b) , (17)

where x and y represent the input and the output of single per-
ceptron, respectively; σ represents the appropriate activation
function and w and b depict the hyperparameters, i.e., weight
and bias, respectively.

Moreover, in the backward propagation, the error is mini-
mized andweights are updated by using the chain rulemethod
as given below:

dE
dw
=
dE
dA
×
dA
dy
×

dy
dw
, (18)
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where dE/dw represents the derivative of the error function
with respect to the weight. Similarly, dE/dA, dA/dy and dy/dw
represent the derivation of the error function with respect to
the activation function, the derivative of the activation func-
tion with respect to the forward propagation, and the deriva-
tive of the forward propagation function with respect to the
weight, respectively. Once all derivatives are calculated, then
the weights are updated with respect to the corresponding to
these derivatives and the small factor known as a learning rate
is given by:

wnew = wold − η
dE
dw
, (19)

where wnew and wold are the updated and the previous
weights, respectively. η is the learning rate that corresponds
to the step size for each iteration towards the minimization
of the loss function. Also, the comparatively smaller learning
rate corresponds to the slow convergence with the optimal
solution and vice versa. An estimated value of the optimum
learning rate in a neural-network is 0.001. A list of the
pseudo-code of ANN is illustrated in Fig. 10.

CONVOLUTIONAL NEURAL NETWORK
Conventionally, CNN consists of a stack of three basic lay-
ers, i.e., the convolutional layer, the pooling layer, and the
fully-connected layer. CNN also works similar to ANN in
terms of the forward and backward propagation strategies.
Here, CNN is explained in terms of mathematical equations
and also depicted in Fig. 11. The convolutional layer corre-
sponding to the convolution between filter/kernel and input
matrix/image is given by:

S (i, j) = (I × K ) (i, j)

=

∑
m

∑
n
I (m, n)K (i− m, j-n) , (20)

where K is the kernel/filter and I is the 2D input data con-
sisting of a matrix with i-by-j dimensions. The second step in
CNN is the pooling layer which extracts the important fea-
tures or eliminates the noise from the input matrix, as shown
in Fig. 12. After the pooling layer, the fully-connected layer
is implemented which is nothing but the traditional neural
network. In the backward propagation, the same process is
established such that the model’s parameters are updated by
minimizing the loss function. The pseudo-code of CNN is
illustrated in Fig. 13.

LONG SHORT TERM MEMORY
LSTM is a DL model and it is an extended version of the
recurrent neural network (RNN). RNN is a special type of
neural network that can deal with datasets having the char-
acteristics of time dependency, periodicity and sequence, etc.
However, there are some limitations of RNN including (i) it
cannot deal with long term dependencies means that it is
not able to memorize and make a correlation between long
sequence of data and (ii) due to the absence of long term
dependencies, during the backpropagation, mostly it faces
the problem of vanishing gradient and sometimes exploding

gradient. Therefore, LSTM is established to overcome these
problems by introducing the concept of forget gate and cell
state. The pseudo-code of LSTM is illustrated in Fig. 14.
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