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ABSTRACT The microwave power transfer (MPT) system requires a massive Tx array for building a focused
radio wave to efficiently transfer power to the Rx. Beamforming IC is one of the core elements for the
massive Tx array. This paper presents a 5.8 GHz 4-channel beamforming Tx IC based on a CMOS process.
The beamforming Tx IC includes a resistive 4-way power splitter, 5-bit differential phase shifters, drive
amplifiers, and power amplifiers. Each channel is designed to transmit a power of no less than 100 mW.
To verify the Tx IC, a 16-channel beamforming Tx module based on 16 patch antennas and four 4-channel
Tx ICs was designed. The module also includes a PLL, a frequency doubler, and a 4-way Wilkinson power
divider. MPT experiments to verify the beamforming IC and module were carried out using the implemented
16-channel Tx module at 5.8 GHz. Received power levels of 13 dBm and 2.1 dBm were achieved at distances
of 0.4 and 1.4 m, respectively. The results are almost similar to the values acquired from the calculation using
the Friis equation.

INDEX TERMS Microwave power transfer, massive Tx array, beamforming, complementary metal-oxide-

semiconductor (CMOS), Tx IC.

I. INTRODUCTION

Various devices for mobile, wearable, or wireless sen-
sors of Internet of Things (IoT) have been developed and
used in various ways for our life. Since one of the most
important features of these devices is mobility, charging
the battery of the device is very important issue for the
convenience of the users. To improve the convenience of
charging, wireless charging methods have been studied in
a few ways [1]-[4]. Wireless charging methods based on
magnetic induction or electro-magnetic (EM) resonance have
been widely adopted for mobile or wearable devices due to
capability of high power transfer and high power transfer
efficiency [5]-[8]. However, the methods based on magnetic
induction or EM resonance require very tight alignment in
a very short distance between the Tx and the Rx. Within
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a few meters for the charging distance, MPT technology
based on EM-wave radiation as an alternative method has
been emerging to charge relatively low power-consuming
devices [9]-[16].

MPT systems are generally designed to operate in the
Industry-Science-Medical (ISM) bands. However, the path
loss for the transmission distance becomes inherently large
in such a high frequency band [17]. The path loss can be
reduced by using a high-gain Tx and Rx antennas which
can be achieved using a massive antenna array. Using the
massive Tx antenna array, the beam can be formed and
dynamically steered to more efficiently transmit power to an
arbitrary position of the Rx, or to the Rx with mobility in the
range [18]-[20].

To form and steer the radiated beam from the Tx antenna
array, the phase of the radiated signal from each Tx element
should be adjusted for optimum power transfer. Hence, each
Tx element should include a phase shifter, a power amplifier,
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and an antenna. The overall Tx array consists of a number
of Tx elements and some extra components, such as a sig-
nal generator, multi-way power dividers, drive amplifiers,
dc power management circuits, digital control circuits, and
SO on.

Several beamforming methods for far-field and/or
near-field MPT applications have been reported [21]-[32].
For far-field applications, the retrodirective method has been
popularly used by utilizing a pilot signal that is transmitted
from the Rx, to estimate the channel condition between the
Tx and Rx for beamforming [21]-[28]. In particular for
near-field applications, the retroreflective method has also
been adopted by utilizing a pilot signal transmitted from
the Rx to directly acquire the optimum phase of the signal
for each Tx element [29]-[32]. Since both retrodirective
and retroreflective methods require a pilot Tx in the Rx
and a pilot Rx in the Tx element, the systems utilizing
these methods can be complex, and the Rx has additional
power consumption arising from the pilot generation and
transmitting circuits. To reduce the system complexity of
the retrodirective or retroreflective methods, methods using
a look-up table (LUT) were proposed [33], [34]. The phase
sets for various Rx locations were predetermined, and stored
in the LUT. The Tx should find the best phase set for the
Tx array using a backscatter communication with the Rx
[33], or an out-band communication using a Bluetooth Low
Energy (BLE) between the Tx and Rx [34]. In [35], a beam-
forming Tx based on an orthogonal or pseudo-orthogonal
masks was proposed for near-field MPT. It is also able to
have a simple structure, due to having no pilot Tx and Rx.

So far, many beamforming Tx modules for MPT appli-
cations have been reported [29]-[33]. A 4-channel retrore-
flective beamforming Tx for 2.08 GHz was reported in [29].
Each channel has an output power of 0.25 W. Using an
Rx at a distance of 0.5 m, a received power of 14 mW
was obtained. A 8-channel retroreflective Tx module for
2.125 GHz was reported in [30]. Each channel has an output
power of 0.175 W. Using an Rx at a distance of 0.5 m,
a received power of 7 mW was obtained. A 16-channel
retroreflective beamforming Tx for 2.45 GHz was reported
in [31]. Each channel has an output power of 0.016 W. Using
an Rx at a distance of 1 m, a received power of 11 mW was
obtained. A 64-channel retroreflective beamforming Tx mod-
ule for 5.2 GHz with a size of as large as 27.2 x 27.2x28 cm’
was reported in [32]. Each channel has an output power
of 0.5 W. Using an Rx at a distance of 1 m, a received
power of 446 mW was obtained. A 16-channel LUT-based
beamforming Tx for 5.8 GHz far-field MPT was reported
in [33]. The output power for a channel is about 0.079 W.
Using an Rx at a distance of 0.5 m, a received power of 7 mW
was obtained. Since the most previous Tx modules were
based on commercial off-the-shelf (COTS) components, they
could be complex and bulky.

To make the massive Tx array less complex, less expensive,
and smaller, multi-channel Tx IC is essential. The Tx IC
should include a power splitter, integrated phase shifters,
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drive amplifiers, power amplifiers, and digital control cir-
cuits. Then, the module can be designed using multiple
number of these Tx ICs in cheaper and more compact way.
There have been no many previous works about the Tx IC
specialized for MPT applications. A beamforming Tx IC that
works at 8.5-10 GHz was reported [36]. However, it only
has a single Tx channel and an output power of merely
14 mW. A 4-channel Tx IC was reported for the 7.9-9.6 GHz
band [37]. It also has a low output power of 13 mW per
channel. It could be still difficult to use these ICs because
additional power amplifier is required to obtain sufficient
output power for MPT applications. A 16-channel Tx IC for
MPT at the 10 GHz band was reported [35]. It includes a
frequency synthesizer, a clock multiplying unit based on a
phase-locked loop (PLL) for phase shifting of the signal, and
stacked power amplifiers. Each channel has an output power
of 50 mW. Using a Tx array with 16 x 25 channels using 25 Tx
ICs and an Rx with 64 antennas, a received power of 0.2 W
(dc) was reported at a distance of 1 m.

In this paper, a simple 4-channel beamforming Tx IC using
a 130 nm bulk CMOS process is proposed for the 5.8 GHz
MPT application. The beamforming Tx IC includes a resis-
tive 4-way power splitter, 5-bit differential phase shifters,
drive amplifiers, power amplifiers, and digital control circuits
based on a serial peripheral interface (SPI). Each channel
is designed to transmit a power of no less than 100 mW
which is much higher than those reported by the previous
works [35]-[37]. A very compact 16-channel beamform-
ing Tx module using four 4-channel Tx ICs and 16 patch
antennas were designed and implemented. Experiments for
MPT were carried out using an adaptive sequential searching
algorithm [38]. The results are summarized, and compared to
the previous works.
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RFout O—] 1 ] O RFou
oAl
RFin, ] Bias
RF;,:?.:& Splitter SPl Circuits
CH; CH.
PA DAs PS DA; DA PS DA; PA
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FIGURE 1. Block diagram of the 4-channel beamforming Tx IC.

Il. 4-CHANNEL TX IC

A. DESIGN

Structure and design of the 4-channel Tx IC is presented in
this section. Fig. 1 shows a block diagram of the 4-channel
beamforming Tx IC. The Tx IC includes a resistive 4-way
power splitter, an SPI for digital control, bias circuits, 5-bit
differential phase shifters, drive amplifiers, and power ampli-
fiers. The signal input to the Tx IC is amplified by DA
(the first drive amplifier), and is split into each Tx channel
by the resistive 4-way power splitter. To compensate for the
losses of the resistive 4-way power splitter and a phase shifter
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of each channel, two DAs (DA, and DA3) are deployed in
each channel before and after the phase shifter. After DAz,
a power amplifier (PA) comes as the final stage of each Tx.
Using the digital control circuit based on SPI, phases of the
phase shifters and bias conditions of the amplifiers can be
controlled.

RFoutt,p

——W—0  RFug
N N——w—o0
\ RFoutsp

\—%—O RFoutap

FIGURE 2. Schematic of the resistive 4-way power splitter.

RFinp

Fig. 2 shows a schematic of the resistive 4-way power
splitter. The resistive 4-way power splitter has a differential
structure to split the input signal, and supply it to each Tx
channel. Though it could have larger loss due to the resistors,
it has significantly smaller size compared to the conventional
Wilkinson power divider based on quarter-wave transmis-
sion lines. All the resistors used in the power splitter are
30 Q. The resistive power splitter has a size of as small as
160 x 180 ,umz, and showed a simulated insertion loss of no
larger than 12.1 dB, and a simulated return loss of no less than
50 dB. Isolation characteristics between any two of the output
ports were designed to be no less than 11.5 dB.
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FIGURE 3. Schematic of the 5-bit differential phase shifter.

Fig. 3 shows a schematic of the 5-bit differential phase
shifter. Each phase shifting block was designed with a
switched filter structure except the 180° block. Since there is
only one series switch in the signal path of each block, it can
have low insertion loss. Except for the 180° block, which
is simply based on cross switching for the 4+ and — paths,
all other blocks, such as 11.25°, 22.5°, 45°, and 90° blocks,
consist of 3 switches. For the reference state, all 3 switches
should be turned on, so that the parallel resonance circuit at
the center provides very high impedance. Then, the signal can
pass through the switches on the + and — signal paths with no
phase shift. For the phase shifting state, all 3 switches should
be turned off. Due to the virtual ground at the midpoint of the
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FIGURE 4. Schematic of the DA; and PA as a two-stage amplifier.

inductor, a high-pass C-L-C network can be formed to shift
the phase from the reference phase. The values of the C-L-C
network should be optimized to have the given phase shift
value for each block. For the simulated results, both S;; and
S>> were obtained as no larger than -8 dB, S>; was obtained
as about —10 dB, and the rms phase error was just 1.2°.

Fig. 4 shows a schematic of DA3 and PA as a differential
two-stage amplifier. The gate widths of DA1, -, and -3 are
the same as 360 pm, while PA has a twice larger gate width
of 720 pum. All amplifiers have a gate length of 0.35 um
for a Vpp of 3.3 V using a 130 nm bulk CMOS process.
To improve the stability and power gain, neutralization of
the feedback capacitor was conducted using cross-coupled
capacitors (CCCs) for both DA and PA. At the output of the
PA, an on-chip transformer as a balun is deployed to convert
the differential signal to a single-ended for interconnection
with an antenna. The output transformer has a loss of 1.5 dB.
For the simulation results of this two-stage amplifier, Sj; of
no larger than —30 dB, S of about 27 dB, and PAE of 27%
at 20.7 dBm of the output power were achieved.

B. IMPLEMENTATION AND MEASUREMENT RESULTS

The 4-channel beamforming Tx IC described in the previ-
ous sub-section was implemented using TSMC’s 130 nm
bulk CMOS process. Fig. 5 shows the photographs of the
implemented 4-channel beamforming Tx IC in (a) and the
evaluation board for the Tx IC in (b). The Tx IC has a size of
5 x 4 mm?, and is packaged using an 8 x 8 mm? QFN.

Fig. 6 shows the measured performances of each channel
for the Tx IC according to the phase control at 5.8 GHz:
(a) small-signal gain and (b) phase shift. The measured small-
signal gain is in the range of from 22 to 26 dB, while
the measured phase shift spreads evenly from 0° to 360°
using 5 control bits. Fig. 7 shows the measured performances
of the channel #1 in the Tx IC for the frequency range
of 5.5-5.9 GHz. Fig. 7(a) shows the peak output power which
is distributed in the range of 16-20 dBm and the power
consumption of about 33 dBm. The peak output power at the
5.8 GHz reaches to about 20 dBm as shown. Fig. 7(b) shows
the measured small-signal gain of the channel #1 according to
the phase control for each frequency point. For the frequency
of 5.5-5.9 GHz, the small-signal gain spreads from 17 to
26 dB for the overall phase control angles. Fig. 7(c) shows the
phase shift characteristics of the channel #1 according to the
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TABLE 1. Performance comparison of the proposed 4-channel beamforming Tx IC to the previous works.

Ref Process Freq. Signal Tx channel | Phase step Pour Ppc Phase PA Size
’ technology | (GHz) | generation | per chip ©) (mW/channel) (mW) control structure (mm?2)
65 -chi LO 4-stacked,
35] i o | Onehip 16 11.25 50 - stacke ;
CMOS PLL phase shifting differential
0.18 Off-chi RF 2-stacked,
(36] KT8 5410 P 1 5.625 14 640 slacke 44x29
CMOS PLL phase shifting single-ended
0.13 Off-chi RF 2-stacked,
(37] K1 7996 P 4 25 13 870 stacke 2.9%3.0
CMOS PLL phase shifting differential
Thi 0.13 Off-chi 2000 RF C - X
' KMl s 658 P 4 11.25 100 OMIMON-SOUIEE: | 5 6% 4.0
work CMOS PLL (500/channel) | phase shifting differential
8 mm 35
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FIGURE 5. Photographs of the implemented 4-channel beamforming Tx IC
(a), its evaluation board (b).

phase control. The measured performances of the proposed
4-channel beamforming Tx IC are summarized and compared
to the previous works in Table 1. The Tx IC in this work
exhibited the highest output power of about 100 mW per
channel. It also has relatively small chip size in spite of having
relatively low operation frequency of 5.8 GHz and having
4 channels per chip.
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FIGURE 6. Measured and simulated performances of each channel for
the Tx IC at 5.8 GHz according to the phase control: (a) small signal gain
(521): (b) phase shift.

Ill. 16-CHANNEL TX MODULE AND BEAMFORMING
EXPERIMENTS

Using four 4-channel Tx ICs, a Tx module that has 16 chan-
nels was implemented, and was evaluated for the MPT perfor-
mances. Its structure is shown in Fig. 8. It has four 4-channel
Tx ICs, 16 patch antennas, a 4-way Wilkinson power divider,
a PLL to synthesize the 2.9 GHz signal, and a frequency
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FIGURE 7. Measured and simulated performances of a channel in the Tx
IC for the frequency range of 5.5-5.9 GHz: (a) peak output power and
power consumption, (b) small signal gain (S,;), (c) phase shift.

doubler to make the 5.8 GHz input signal. The Tx module
is controlled by Labview in a PC which runs the beamform-
ing algorithm. MPT experiments were carried out with an
Rx with one patch antenna and a 2-D sequential searching
algorithm [38].

Fig. 9 shows the geometry of the antenna element for
the Tx array and the Rx. A grooved rectangular patch is

72320
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FIGURE 9. Antenna element for the Tx and Rx.

implemented on an RO4350B substrate with a thickness
of 1.52 mm, a dielectric constant of 3.5, and a loss tangent
of 0.0037. Using truncated patterns for its four sides and
the feed point location (xy = —3 mm, yy = —1 mm),
the right-handed circular polarization (RHCP) is obtained.
The dimensions of this patch element were optimized with
wp of 13 mm, wy of 4.2 mm, w; of 4 mm, #; of 1 mm, £,
of 1.3 mm, and a of 2.1 mm. The simulated bandwidth to
have a reflection coefficient of no larger than -10 dB for the
patch antenna was from 5.55 to 5.88 GHz. Fig. 10 shows the
simulated radiation patterns for xz-plane in (a) and yz-plane
in (a) at a frequency of 5.8 GHz. In the broadside direction,
the RHCP gain is as high as about 6.11 dBic, while the LHCP
gain is very low. The patches for the overall 16 Tx channels
were implemented on a board and has a spacing of 26 mm
(0.5 Ap) between the adjacent patches. Then, the overall gain
of the 4 x 4 antenna array can be expected to be about
16.56 dBic.

Fig. 11 shows the photographs of the implemented
16-channel beamforming Tx module for its front side view
in (a) and for its rear side view in (b). The size of the
module is 140 x 120 mm? due to using a 4-layer RO4350B
(e = 3.5) PCB whose height is as thin as 2.1 mm. Antenna
was implemented on the front side of the module, while all
other circuits, such as a PLL, a frequency doubler, 2-way
Wilkinson dividers for 4-way power splitting, and four Tx
ICs, are deployed on the rear side of the module.
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TABLE 2. Performance comparison to the previous works.

Ref Beamforming Freq. Tx # of Tx Pour Poyr | #of Rx Pr Distance Size
ef.
method (GHz) | configuration | elements | (W/element) (W) antennas (mW) (m) (mm?)
[29] Retroreflective 2.08 COTS 4 0.25 1 1 14 (RF) 0.5 -
[30] Retroreflective 2.125 COTS 8 0.175 1.4 1 7 (RF) 0.5 -
[31] Retroreflective 2.45 COTS 16 0.016 0.25 3 11 (RF) 1 -
[32] Retroreflective 5.2 COTS 64 0.5 32 1 8-446 (RF) 1-4 272x272 %280
[33] LUT 5.8 COTS 16 0.079 1.3 16 7 (RF) 0.5 -
Twenty fi
Orthogonal wenty five
[35] 10 16-channel 400 20 64 20-2000 (dc) 1-3 -
mask

Tx ICs

This 2D Four
. ) 5.8 4-channel 16 1.6 1 1.6-20 (RF) | 0.4-1.4 | 140x120x2.1

work | sequential searching

Tx ICs

140 mm
= RHCP
— —LHCP n—
Antenna array 4

60°

(®)

FIGURE 10. Simulated radiation patterns of the antenna element at
5.8 GHz: (a) xz-plane, (b) yz-plane.

Fig. 12 shows the output performances of the implemented
16-channel beamforming module according to the phase con-
trol at 5.8 GHz: output power in (a) and phase shift in (b). For
all the 16 channels, output power levels of about 20 dBm were
obtained for the entire phase control angles. Fig. 13 shows
an experimental setup for MPT. The Rx has the same patch

VOLUME 9, 2021
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FIGURE 11. Photographs of the implemented 16-channel beamforming Tx
module: (a) front view, (b) rear view.

antenna that was designed for the Tx element. The received
power is measured, and is used to find the optimum phase set
for the Tx elements using the sequential searching algorithm
which was realized using Labview in the PC.
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FIGURE 12. Output performances according to the phase control of the
16-channel beamforming Tx module at 5.8 GHz: (a) output power,
(b) phase shift.

Since each channel transmits about 0.1 W, the over-
all 16 channel can transmit total power of about 1.6 W.
Fig. 14 represents the measured and calculated received RF
power levels at the Rx. As shown, the measured and calcu-
lated power levels match very well. Received RF power levels
are in the range of 13-2.1 dBm at the distance of 0.4-1.4 m.

In Table 2, the performances of this work are summarized
and compared to the previous works for short- and mid-
range MPT. The Tx modules presented in [29]-[33] are based
on COTS components, whereas the Tx module proposed
in this work has a simple structure with the 4-channel Tx
ICs and just a few additional COTS components, such as a
PLL and a frequency doubler. For [35], the Tx module has
overall 400 Tx channels, and transmits a power of 0.05 W per
channel. It also has an Rx that has 64 antennas. Since, the Tx
module in this work has 16 Tx channels and the Rx has only
one antenna, the received power is relatively low compared to
that of [35]. However, since the Tx IC in this work transmits
a high out power of 0.1 W per channel, received power can
be easily increased by increasing the number of Tx channels
using more Tx ICs.
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FIGURE 14. Measured and calculated received RF power levels at the Rx.

IV. CONCLUSION

In this paper, a 4-channel beamforming Tx IC is proposed
for the Tx module of the 5.8 GHz MPT system for charging
mobile/wearable devices or various wireless sensors. The
proposed beamforming Tx IC is composed of a 4-way resis-
tive power splitter, 5-bit digital controlled phase shifters,
drive amplifiers, and power amplifiers. It has 4 transmitting
channels, and each channel can transmit a signal that has
an output power of no less than 100 mW. The Tx IC was
designed and fabricated using TSMC’s 130 nm bulk CMOS
process.

In order to verify the performances of the beamforming
Tx IC, a 16-channel beamforming Tx module for MPT was
designed using 16 patch antennas on the front side of the
module, a PLL to generate a 2.9 GHz signal, a frequency
doubler to make a 5.8 GHz signal, a 4-way Wilkinson divider,
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and four beamforming Tx ICs. The Tx module was imple-
mented using a 4-layer RO4350B PCB. Experiments were
carried out using the implemented 16-channel Tx module and
an Rx having the same patch antenna that is used for the Tx
element. By adjusting the phases of the Tx elements using
the 2-D sequential searching algorithm for the beamforming,
received RF power levels of 13 and 2.1 dBm were obtained
at the distances of 0.4 and 1.4 m, respectively. The results
are almost similar to the values acquired from the calculation
using the Friis equation.

If the number of channels were increased with more Tx ICs
and antennas, greater distance or higher received power could
be achieved using a still compact and planar Tx module. The
proposed 4-channel Tx IC was proved for its performances to
be applied for the massive Tx array for MPT. It could make
the MPT systems more compact and cheaper compared to the
systems based on the COTS components.
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