
Received April 21, 2021, accepted May 8, 2021, date of publication May 13, 2021, date of current version May 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3080176

Rotary Inverted Pendulum Identification for
Control by Paraconsistent Neural Network
ARNALDO DE CARVALHO, JR. ,1,2, JOÃO FRANCISCO JUSTO 2,
BRUNO AUGUSTO ANGÉLICO 2, ALEXANDRE MANIÇOBA DE OLIVEIRA 1, (Member, IEEE),
AND JOÃO INÁCIO DA SILVA FILHO 3, (Member, IEEE)
1Federal Institute of Education Science and Technology of Sao Paulo (IFSP), Cubatão 11533-160, Brazil
2Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil
3Laboratory of Applied Paraconsistent Logic, Department of Electronic Engineering and Computation, Santa Cecília University (UNISANTA),
Santos 11045-907, Brazil

Corresponding author: Arnaldo de Carvalho, Jr. (adecarvalhojr@ifsp.edu.br)

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.

ABSTRACT Artificial neural networks (ANNs) have been used over the last few decades to perform
tasks by learning with comparisons. Fitting input-output models, system identification, control, and pattern
recognition are some fields for ANN applications. However, problems involving uncertain situations could
be challenging for them. The family of paraconsistent logics (PL) is a powerful tool that can deal with
uncertainty and contradictory information, so getting attention from researchers for its implications and
applications in artificial intelligence. This investigation describes a novel activation function reasoned on
the paraconsistent annotated logic by two-value annotations (PAL2v) rules, a variation of PL, allowing the
design of a new paraconsistent neural net (PNN), applied in model identification for control (I4C) of a
closed-loop rotary inverted pendulum (RIP) system.

INDEX TERMS Paraconsistent logic, neural net, model identification, pattern analysis, rotary inverted
pendulum.

I. INTRODUCTION
Artificial neural networks are mathematical algorithms that
can learn a specific function or pattern [1], [2], could be
applied in a wide range of applications [3]. Because of those
characteristics, the ANN is a powerful tool for identifica-
tion and system control [1], [2]. In recent years, the ANN
application for identification and control has been investi-
gated, for online and offline environments [4], [5]. The model
identification approach oriented to control a system, when
the model is valid only in the boundary conditions of this
purpose, is called identification for control (I4C) [6]–[8].

Noise, disturbances, and uncertainties are inherent aspects
of real-world problem description [9], not usually consid-
ered by the state estimation methods for nonlinear control
techniques [10]. The ANN attractiveness in identification and
control derives from its intrinsic ability to use experimental
data to model unknown systems, even with perturbations
or uncertainties, enabling a notable alternative in situations

The associate editor coordinating the review of this manuscript and
approving it for publication was Shen Yin.

where conventional methods could fail in determining the
appropriate control laws [11].

Uncertainty, inconsistency, and contradictory signals are
also aspects considered by the paraconsistent logic (PL),
which deals with them without resulting in triviality [12],
[13]. PL is a family of alternative logics that repeals the
principle of non-contradiction of classical logic. PL attracted
interest not only philosophical but by its implications and
applications in artificial intelligence too [14]. Through the use
of pieces of evidence, the PL can model human knowledge
and reasoning, allowing applications in specialist systems
that consider uncertain information in decision-making [13],
[15], [16].

The Paraconsistent Annotated Logic with 2-value annota-
tions (PAL2v), belonging to the PL family, uses two variables,
or evidence, which allows greater representation power in a
lattice of the Real plane, when expressing knowledge about
a proposition P [15], [17]. PAL2v allows an expert system
to deal with concepts like uncertain, inconsistent, and incom-
plete data, such as those obtained from sensors, without the
risk of trivialization [17], [18]. A hybrid proportional-integral
(PI) control approach, using PAL2v cells to handle the

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 74155

https://orcid.org/0000-0002-3417-0062
https://orcid.org/0000-0003-1948-7835
https://orcid.org/0000-0002-2748-5365
https://orcid.org/0000-0002-7493-7117
https://orcid.org/0000-0001-9715-8928

A. de Carvalho et al.: RIP Identification for Control by Paraconsistent Neural Network

controller inputs, has been implemented in process control
with excellent results [9].

Here, we propose a novel paraconsistent neural net (PNN),
built with activation functions reasoned on the PAL2v equa-
tions and rules. We describe the respective algorithm and its
application on the model identification of a rotary inverted
pendulum (RIP) system stabilized by closed-loop control.
Researchers consider the inverted pendulum in modeling
and control research due to its wide range of applications,
including aerospace and robotics [19]. Besides this introduc-
tion, we organized the text as follows: Section II presents
the related work and theoretical background for ANN and
PAL2v. In Section III, we describe the novel PAL2v neuron
and the mathematical relative to the proposed method. The
experimental results and comparison with other activation
functions. Here, we propose a novel paraconsistent neural net
(PNN), built with activation functions reasoned on the PAL2v
equations and rules. We describe the respective algorithm
and its application on the model identification of a rotary
inverted pendulum (RIP) system stabilized by closed-loop
control. Researchers consider the inverted pendulum in mod-
eling and control research due to its wide range of appli-
cations, including aerospace and robotics [19]. Besides this
introduction, we organized the text as follows: Section II
presents the related work and theoretical background for
ANN and PAL2v. In Section III, we describe the novel PAL2v
neuron and the mathematical relative to the proposed method.
The experimental results and comparison with other acti-
vation functions, including Leaky ReLU [20], are given in
Section IV. Section V concludes with considerations about
the paraconsistent neural network based on results presented
in Section IV., including Leaky ReLU [20], are given in
Section IV. Section V concludes with considerations about
the paraconsistent neural network based on results presented
in Section IV.

II. RELATED WORK
This section provides the theoretical background for the pro-
posed paraconsistent neural net algorithm, divided into two:
ANN architecture and paraconsistent logic.

A. ARTIFICIAL NEURAL NETWORK OVERVIEW
Artificial neurons have mathematical functions inspired by
biological neurons and form the basis of the ANNs. The
possibility of describing their building blocks by simple com-
putational devices and the network function determined by
connections between neurons are two similarities between the
artificial and biological neural networks [1]. Fig. 1 presents
the k-th artificial neuron of a neural network. The artificial
neuron can be described by Eq. (1)

a = f (n) = f (w>p+ b), (1)

where p =
[
p1 p2 . . . pR

]> is the input vector, a is the output,
w =

[
wk,1 wk,2 . . .wk,R

]> is the weighting vector and b is a
bias correction [1].

FIGURE 1. Multiple-Input Neuron.

The combination of weights, bias, and activation function
allows the neuron to seek for approximating a target func-
tion. The activation function must be derivable, allowing the
weight and bias calibration by regression algorithms, such as
the stochastic gradient descent applied in the feed-forward or
back-propagation learning algorithms [1].

The interconnection of several neurons in layers form arti-
ficial neural networks (ANN) [1], [2].

The literature presents different activation functions, such
as rigid, linear limit, log-sigmoid (sigmoid), tangent hyper-
bolic sigmoid (tanh), positive linear (poslin) [1], [21], also
called rectified linear unit (ReLU), Leaky-ReLU (LReLU),
among others [1], [3], [20]. The sigmoid is one of the most
used activation functions until recently [3]. The sigmoid (σ)
is given by (2) [21].

a = σ (n) =
1

1+ e−n
, (2)

and its derivative is

σ ′(n) = σ (n)(1− σ (n)). (3)

The output varies from 0 (deactivation) to 1 (activation).
Its derivative tends to 0 for input values above +5 and below
−5.

The tanh is another sigmoid-like function, varying from−1
to +1, whose expression and derivative are given by (4) and
(5), respectively.

a = tanh(n) =
en − e−n

en + e−n
, (4)

tanh′(n) = 1− tanh2(n). (5)

ReLU is very similar to the identity function, making the
neural net learning process, based on this activation function,
faster than sigmoid [20]. TheReLU function and its derivative
are expressed as:

a = ReLU(n) =

{
0 n ≤ 0
n n > 0,

(6)

ReLU′(n) =

{
0 n ≤ 0
1 n > 0.

(7)

A disadvantage of ReLU is that neurons tend to ‘‘die’’ dur-
ing training, causing the neuron output to start producing only

74156 VOLUME 9, 2021

A. de Carvalho et al.: RIP Identification for Control by Paraconsistent Neural Network

zeroes. A variation of ReLU, called Leaky-ReLU (LReLU),
avoid this [20], whose function and derivative are presented
in (8) and (9).

a = LReLU(n) =

{
αn n ≤ 0
n n > 0,

(8)

ReLU′(n) =

{
α n ≤ 0
1 n > 0,

(9)

where α is a parameter introduced in LReLU, with values
proposed between 0.01 and 0.2 [20]. LReLU allows the unit
to give a small gradient when the unit is no active (n < 0),
reducing the potential problem mentioned about ReLU [21].

A robustness analysis with neural networks in control sys-
tems using tanh and ReLU nonlinear functions can be seen
in [22].

In this study, a novel activation function reasoned on
PAL2v rules is presented, preserving some characteristics of
sigmoid and ReLU.

The following section presents the application of ANN in
system identification, a relevant step towards the develop-
ment of ANN-based controllers.

B. ANN IN IDENTIFICATION FOR CONTROL
In control system applications, the goal is generally to achieve
good performance in a closed-loop. If the system identifi-
cation is for control purposes, the goal is not to obtain the
best possible model that fits the data, as in the classic system
identification approach, but to get a model good enough
to design a controller that results in good closed-loop per-
formance instead. This approach is called identification for
control (I4C) [7].

Many research and methodologies for identifying systems
and develop control algorithms use inverted pendulum struc-
tures [23], [24]. Here, we considered a rotary inverted pendu-
lum (RIP), also called Furuta and Iwase [25], as a system to
be identified. The RIP consists of a driven arm that rotates
in the horizontal (H) plane. Attached to the arm is a free
pendulum to swing in the vertical (V) plane [26]. The reason
is that the RIP carries many interesting features, such as non-
linearity, fast dynamics, multiple variables, and multidimen-
sional spatial motion, allowing evaluation of several elements
of modern control theory [26]–[28].

There are several investigations in the literature with the
application of ANN tomodel a fast dynamic, unstable system,
such as the RIP [29], also in closed-loop [30].

By collecting the inputs and outputs of the system, we can
train the ANN, as represented in Fig. 2 [31].

Here, the system (RIP) is in closed-loop control, being
u the signal from the controller, and y the RIP output. So,
we can compare the system and ANN outputs. The estimated
model output by ANN is ŷ. The weights update (w) to correct
the ANN comes from the difference between y and ŷ. This
process is repeated until the error reaches a minimum value.
This procedure allows the ANN to generate nearly the closest
response as the system for the same dataset applied [1], [2].

FIGURE 2. System (RIP) model identification.

FIGURE 3. ANN learning the controller function (a). ANN taking control
after the learning process (b).

An ANN can also learn, in a supervised manner, to behave
as an existing control of the plant, as shown in Fig. 3a. The
error (e) signal, from the difference between the reference (r)
and y, is the input applied to the controller and ANN. In this
case, the weights update (w) to correct the ANN comes from
the difference between u and û.
When the ANN learning process is complete, we can

remove the original controller and the ANN can control the
plant with similar performance [32], as presented in Fig. 3b.

The advantage of replacing the static control with a
machine learning control, such as an ANN, is the possibility
of learning continuously, online, and adapting according to
uncertainties or system variations, allowing the design of
adaptive controllers [2], [30]. The direct and inverse system

VOLUME 9, 2021 74157

A. de Carvalho et al.: RIP Identification for Control by Paraconsistent Neural Network

identification, by ANN, allow control strategies based on
models, such as observed-based control, internal model con-
trol (IMC), model predictive control (MPC), model reference
control (MRC), among others [2], [11], [33], [34].

By operating with several layers of neurons in parallel,
an ANN could be used to model a dynamic multiple-input
multiple-output (MIMO) system [29].

The following section presents the theoretical background
behind the PAL2v to design the paraconsistent neural net
proposed here.

C. PAL2V PARACONSISTENT LOGIC
The classical logic takes on stringent and inflexible binary
laws that do not deal with redundancy, inconsistencies,
or incomplete data situations [12], [35].

PL is a family of non-classical logic that presents the revo-
cation of the non-contradiction principle as the pillar of its
theoretical foundation, allowing it to reason with inconsistent
information in a controlled and discriminating way [17].

We call paraconsistent annotated logic (PAL) whenwe rep-
resent the evidence of a proposition P by annotation through
a lattice of four vertices [16]. The four extreme logic states
indicated at the vertices of the PAL lattice are True (t), False
(F), Undetermined (⊥), and Inconsistent (>) [9].

One, two, or n values can form the annotation in the
PAL lattice. An ordered pair allows a better accuracy about
annotation than only a single value when expressing knowl-
edge about the proposition P [17]. In this case, PL is called
paraconsistent annotated logic with annotation of two values
(PAL2v), using two inputs (µ1, µ2) normalized in a range
from 0 to 1 [15], [17]. The first input, µ or µ1, represents the
degree of favorable evidence. The complement of the second
input (µ2) is called the degree of unfavorable evidence (λ),
calculated by (7).

Through transformations in a unitary quadrant of the
Cartesian plane (UQCP) and some algebraic interpretations,
as well explained in [15], the PAL2v can be developed by
equations (10) to (17). Fig. 4 shows the Lattice diagram for
PAL2v. Note that the inputs (µ, λ) are orthogonal to each
other. We define λ = 1 − µ2. From Fig. 4 it is possible to
observe the following relations

DC = µ− λ (10)

DCT = µ+ λ− 1 (11)

The horizontal axis of the Lattice represents the degree of
certainty (DC) defined in (10), within the interval [−1, 1].
The vertical axis of the Lattice represents the degree of con-
tradiction (DCT) as presented in (11), also within the interval
[−1, 1].

The resulting evidence degree (µE), calculated by (12),
corresponds to (DC) normalized in the range of 0 to 1,
the same way that the resulting contradiction degree (µECT)
is the DCT also normalized, as shown in (13).

µE =
DC + 1

2
=
µ− λ+ 1

2
(12)

FIGURE 4. Lattice diagram of the PAL2v.

µECT =
DCT + 1

2
=
µ+ λ− 1+ 1

2
=
µ+ λ

2
(13)

The certainty interval (ϕE), defined as the range of cer-
tainty values in which the DC can vary without being limited
by DCT , can be calculated by Eq. (14) [17].

ϕE = 1− |DCT | (14)

By projecting the line segment D (15) over the DC axis,
where d =

((
1 − |DC |

)2
+
(
DCT

)2)0.5, we can extract the
contradictory effects between both inputs, noting that D is
within [0, 1]. Hence, the real certainty degree (DCR) is found
as (16) [15], [17].

D =

{
1 d ≥ 1
d d < 1

(15)

DCR =


1− D DC > 0
D− 1 DC < 0
0.5 DC = 0

(16)

The resulting real evidence degree (µER), in (17), corre-
sponds to DC6R normalized between 0 and 1, i.e.,

µER =
DCR + 1

2
(17)

Note that µE in (12) is linear, since it is a function of DC .
On the other handµER in (17) is nonlinear, because it depends
on D.

The paraconsistent analysis node (PAN) [9], with its sym-
bol shown in Fig. 5, is the core code for several paraconsistent
cells presented in the literature [9], [17], [33].

III. METHODOLOGY
This session presents the proposed PAL2v neuron, the PNN
description, including the respective mathematics.

74158 VOLUME 9, 2021

A. de Carvalho et al.: RIP Identification for Control by Paraconsistent Neural Network

FIGURE 5. Symbol of PAN.

FIGURE 6. PAL2v neuron output µER for λ fixed and µ variable (a). Output
µER for µ fixed and λ variable (b). Comparison between activation
functions (c).

A. PARACONSISTENT NEURAL NETWORK
The novelty here is to use the PAL2v equations and rules
as activation functions for neural networks. Fig. 6 shows the
behavior of the µE and µER outputs.

FIGURE 7. PAN as Activation Function of the PAL2v Neuron.

As µE output is linear, we call it linearPAL2v activation
function. The output µER is nonlinear. When one of the
PAL2v neuron inputs is a constant equal to 0.5, µER has a
sigmoid shape. In this case, we can call the activation function
sigmoidPAL2v.
Fig. 6a shows the input µ varying from 0 to 1 and the input

λ working as a ‘‘bias’’ with three fixed values. In Fig. 6b,
the input µ is constant and λ varies within the range [0 1].
When one of the inputs (µ or λ) is at 0.5, the µER has a
sigmoid shape (blue line), with amplitude between 0.35 and
0.65. However, the green and red curves present a breaking
point at 0.5. The reason is the limitation of D in 1 at maxi-
mum. The projection of D over the DC axis cannot crossover
the limit of the DCT axis. When D = 1, DCR is equal to 0,
forcing µER to be 0.5. The PAL2v neuron output, compared
to other functions, is shown in Fig. 6c. The input n varies
within [−2 +2]. Following the PAL2v rules, n is normalized
between 0 and 1 and applied to the input µ, as in (18). Fig. 6c
shows PAL2v output when λ is fixed at 0.5 (blue line).

µ
(
x
)
=

x −min(x)
max(x)−min(x)

(18)

A single PAN can be understood as a neuron of 2 inputs,
called PAL2v neuron, as presented in Fig. 7, where µ =
sat
(
w1,1 p1

)
and λ = sat

(
w1,2 p2

)
, being sat the saturation

function limited to the interval between 0 to 1.
It is possible to see the similarity between the PAL2v

neuron and standard neuron presented previously in Fig. 1.
Multi-input PAL2v neurons are possible, as Fig. 8.
In Fig. 8a, three PANs, with the linear output (µE) each,

or ‘‘half’’ PAN, are connected to provide a pure 4-input
PAL2v neuron, called summationPAL2v. We added a ‘‘full’’
PAN to perform the neuron paraconsistent non-linear activa-
tion function (µER). The resulting equations are:

µE1 =
µ1 − λ1 + 1

2
;

µE2 =
µ2 − λ2 + 1

2
;

µE3 =
µE1 − µE2

2
= 0.25

(
µ1 − λ1 − µ2 + λ2

)
+ 0.5

(19)

The equivalent simplified design is shown in Fig. 8b.
In contrast to the neuron shown in Fig. 1, the bias of Fig. 8
now is part of the activation function inputs. If the bias is 0.5,
a sigmoid-like shape is guaranteed.

VOLUME 9, 2021 74159

A. de Carvalho et al.: RIP Identification for Control by Paraconsistent Neural Network

FIGURE 8. Pure 4-input PAL2v neuron (a), and the simplest multi-input
PAL2v neuron (b).

We show another configuration in Fig. 9. Here the bias is
part of the summation instead of the sigmoidPAL2v. In Fig. 9a,
PAN1 and PAN3 form a 3-input summationPAL2v applied to
µ5 of PAN5, which performs the paraconsistent non-linear
activation function of the neuron. PAN2 and PAN4 form
another 3-input summationPAL2v connected to λ5, such that:

µ5 = µE3 = 0.25
(
µ1 − λ1

)
− 0.5λ3 + 0.75;

λ5 = µE4 = 0.25
(
µ2 − λ2

)
− 0.5λ4 + 0.75 (20)

Now instead of being part of the PAL2v activation function,
one bias is applied to each summation. In this case, the acti-
vation function is non-linear, but not necessarily a sigmoid,
as presented in Fig. 6, since it depends of both, µ5 and λ5
values. Fig. 9b shows a simplified design.

By working with two orthogonal inputs, the PAL2v activa-
tion function offers more flexibility, as we can choose how to
apply the signals between µ and λ and how to combine the
PAN to configure the neurons.

Here, the common backpropagation and stochastic gradi-
ent descent are applied to calculate the level of adjusting
required for each weight and bias [1], [33].

The chain rule is applied in the corresponding path inside
the network. So we can calculate the impact of each weight
and bias on the cost function (error) between the desired
output and the PNN [1]. Therefore, the derivatives of each
PAN node, relative to that particular path inside the PNN, are
required. Following, we present the derivatives of the PAL2v
non-linear neuron (µER), relative to each input (µ, λ).

FIGURE 9. Alternative pure (a) and simplified (b) 4-input PAL2v neuron.

If µ is greater than λ, then DC is positive. The derivatives
are calculated as:

µER =
2−

(
2µ2
+ 2λ2 − 4µ+ 2

)0.5
2

;

∂µER

∂µ
=

1− µ(
2µ2 + 2λ2 − 4µ+ 2

)0.5 ;
∂µER

∂λ
=

−λ(
2µ2 + 2λ2 − 4µ+ 2

)0.5 (21)

On the other hand, if µ is less than λ, the resulting DC is
negative and, in this case, the derivatives are obtained as:

µER =

(
2µ2
+ 2λ2 − 4λ+ 2

)0.5
2

;

∂µER

∂µ
=

µ(
2µ2 + 2λ2 − 4λ+ 2

)0.5 ;
∂µER

∂λ
=

λ− 1(
2µ2 + 2λ2 − 4λ+ 2

)0.5 (22)

Whenµ is equal to λ,DC results in zero. In this case,D ≥ 1
and, as shown in Fig. 6, µER is 0.5 and it is non-differentiable
at this point. However, it is differentiable anywhere else and
the partial derivatives at this point can be approximated by
the mean of the derivatives from the right (DC > 0) and the
left (DC < 0), such that:

µER = 0.5;
∂µER

∂µ
=

1

2
(
2µ2 + 2λ2 − 4µ+ 2

)0.5 ;
74160 VOLUME 9, 2021

A. de Carvalho et al.: RIP Identification for Control by Paraconsistent Neural Network

FIGURE 10. Prototype of RIP used for system identification. Pendulum
(a), pendulum arm (b), pendulum angle encoder (c), counterweight (d),
engine reduction (e), and DC motor with encoder for arm angle (f).

∂µER

∂λ
=

1

2
(
2µ2 + 2λ2 − 4λ+ 2

)0.5 (23)

When the ‘‘half’’ PAN, or linear output, is used, the deriva-
tives are:

∂µER

∂µ
= 0.5;

∂µER

∂λ
= −0.5 (24)

For example, based on Fig. 8a, the chain rule applied to the
path from µER4 to µ1a is given by:

∂µER4

∂µ1a
=
∂µE1

∂µ1a

∂µE3

∂µ3

∂µER4

∂µ4
= 0.25

∂µER4

∂µ4
(25)

Multiple PAL2v neurons, as described here, could be con-
nected to build a PNN according to the need. For the sys-
tem (RIP) modeling, we designed one PNN with two PAL2v
neurons of 4 inputs in the hidden layer and one PAN with
linear µE in the output layer.

B. SYSTEM DESCRIPTION
We describe in this section the system to be identified by the
proposed paraconsistent neural network.

The prototype has a control input u applied to the DC
motor fixed to the arm. The encoders installed on the arm and
pendulum provide the outputs related to the horizontal angle
of the rotary arm (θ) and the vertical angle of the pendulum
(α). The system is powered by a Teensy 3.2 microcontroller
with a 32 bits Cortex-M4 processor, clocked at 72 MHz,
flash memory of 256 kBytes, and RAM with 64 kBytes.
Fig. 10 shows the RIP prototype used for this study, whose
parameters are presented in Table 1.

This work does not intend to perform the mathemati-
cal description of the RIP, as well as the design meth-
ods for controlling it, which is well described elsewhere
[26], [28], [36].

The prototype has only two measured outputs, which are
the angles α and θ . Their derivatives at the k-th sample are

TABLE 1. Parameters of the RIP used for system identification.

approximated considering the Euler backward differentiation,
such that,

θ̇[k] ≈
θ[k] − θ[k−1]

TS
;

α̇[k] ≈
α[k] − α[k−1]

TS
. (26)

Using the parameters of Table 1 and defining the state
vector as x =

[
θ α θ̇ α̇

]T , the resulting linear model is given
by

ẋ = Ax + Bu, (27)

with

A =


0 0 1 0
0 0 0 1
0 −9.1047 −0.6066 0.0132
0 86.2615 1.0110 −0.1249

 ,
and

B =


0
0

31.6490
−52.7483


A first-order low pass filter (LPF) is applied to all four

outputs of the RIP, as presented in (28) for the arm angle.
These filters reduce the noise of the RIP output signals. The
sampling time (TS) used is 0.01s, and we adopt the time
constant (τ) as 0.05s.

θ[k]filt =
(τ

τ + TS

)
θ[k−1]filt +

(TS
τ + TS

)
θ[k] (28)

After converting A and Bmatrices to discrete, we calculate
the controller gain K by the pole placement method, consid-
ering the poles ate [−2, −2.5, −11, −10], resulting in

K =
[
−0.2160 − 5.3459 − 0.2563 − 0.5934

]
.

The state feedback control law is given by u[k] =
−K[k]x[k]. The control signal (u) is the duty-cycle of the Pulse

VOLUME 9, 2021 74161

A. de Carvalho et al.: RIP Identification for Control by Paraconsistent Neural Network

FIGURE 11. 4-Input PNN with 2 neurons in the hidden layer.

Width Modulation (PWM) considering also the direction of
rotation, i.e., u ∈ [−1; 1].

Since the RIP is highly unstable, we performed the iden-
tification in closed-loop control. We used three PNNs with
four inputs and one output each, as presented in Fig. 11. Each
PNN consists of two PAL2v neurons (summationPAL2v) in the
hidden layer, as shown in Fig. 8.a, combined with a PAN for
the linearPAL2v at the output layer, providing one output.
We collected the input and outputs of the RIP to train the

PNN in offline mode. Note that weights were applied only for
the input layer of the PNN.Although this is not a requirement,
we did not apply weights between the hidden to output layers.

First, we calculate the PNN output in the forward direction,
taking the opportunity to calculate the neuron derivatives,
as presented in Eqs. (21)-(24). We find the error between
the target and PNN output. Next, we compute backward,
applying the error correction to the PNN weights by gradient
descent, using the chain rule example of Eq. (25).

The PAL2v is a comparison between two orthogonal
inputs. Since the RIP in the closed-loop should be at
equilibrium, the bias is fixed at 0.5, corresponding to
x =

[
0 0 0 0

]T .
IV. RESULTS
The following set of signals were used: control, pendulum
and arm angles, pendulum and arm speeds [u, θ, α, θ̇ , α̇].

Although we performed the learning process of the PNN
offline, Fig. 12 presents the concept.

For the target output, the remaining signals are applied
as inputs. Therefore, for the first paraconsistent neural net
(PNN1) to learn the angle of the arm (θ) of the RIP, the inputs
[u, α, θ̇ , α̇] are applied.

FIGURE 12. RIP and Controller identification with 3 PNNs. Arm angle
model (a), pendulum angle model (b) and controller model (c).

The signals [θ, u, θ̇ , α̇] are used by a second paracon-
sistent neural net (PNN2) to model the angle of the pendu-
lum (α).

Finally, the RIP outputs [θ, α, θ̇ , α̇] are applied to the
last paraconsistent neural net (PNN3) to model the control
signal (u). So, PNN1 and PNN2 are used to model the RIP,
also called ForwardModel, while PNN3 results in the Inverse
Model, or the controller model of the system, i.e, PNN3 is
learning the control law.

During the experiment, we did not apply any reference for
the arm to follow.

A. RIP AND WELL-TUNED CONTROL
We collected twenty thousand samples from the control sig-
nal (u) applied to RIP and its output [θ, α, θ̇ , α̇]. The
mini-batch learning process is applied, using 2000 random
values from the first 8000 samples to train the PNNs. We

74162 VOLUME 9, 2021

A. de Carvalho et al.: RIP Identification for Control by Paraconsistent Neural Network

FIGURE 13. MSE of PNN and ANNs with different activation functions for
the RIP arm angle modeling.

TABLE 2. MSE results for RIP ARM modelling.

TABLE 3. MSE results for PNN and standard ANN.

compared the PNN results with ANN in the same topology
and the following activation functions: tanh, sigmoid, and
LReLU. Fig. 13 presents themean square error (MSE) results,
based on themeasurements tomodel the pendulum arm, as for
PNN1.

A normalization step is required before we apply the sig-
nals to each ANN, and then we need to denormalize back at
the output. The input signals were normalizedwithin 0 to 1 for
the PNN and sigmoid ANN and within −1 to 1 for tanh and
LReLU, to compare the MSE.

We used the same input-output database, a learning factor
of 0.25, and the same random starting weights for all neural
nets. Fig. 13 suggests that the MSE results and the number
of epochs required by PNN are comparable to the LReLU,
followed by the tanh and sigmoid. Table 2 shows the MSE
obtained after 20 epochs by each neural net in Fig. 13.
Although a speed comparison for the ANN algorithms has

not been performed, sigmoid and tanh result in a simpler
code, since they do not require an if-then-else structure
in the routine, as required by LReLU and PNN.

In another comparison, three ANNs were created with the
‘‘neural net fitting’’ App (nftool) of Matlab, selecting 2 and
4 neurons in the hidden layer, and using the same database
used for the PNNs. Table 3 presents the results.

The nftool creates a neural net using the tanh function in
the hidden layer and linear activation function (purelin) in
the output layer. The Scaled Conjugate Gradient method was
selected for the learning process. Any other parameter was

let also as default. The reason is that it is a trustworthy tool,
with only a few parameters to be selected, such as the number
of neurons, learning algorithm and % of points for training
and validation. Besides both, ANN and PNN achieved good
MSE results, Table 3 indicates that the paraconsistent neural
net presented lower MSE results, requiring fewer epochs than
standard ANN, even comparing ANN with 4 neurons in the
hidden layer against PNN with only 2 neurons. The same
is true for all the models: arm angle, pendulum angle, and
controller output.

Fig. 14 presents the comparison between the RIP data and
the models learned by the PNNs, for samples from 13000 to
14000, used for the validation process. One can see that the
PNN could learn well the arm, pendulum, and controller
outputs in this condition.

Fig. 14a shows the arm and pendulum speed. We can
see the output of PNN1 compared to the arm of the RIP
in Fig. 14b. Although we did not apply any reference sig-
nal, the figure shows that the arm angle is not static in 0
but presents an oscillation instead, relative to the controller
design, as shown in Fig. 14b. This is mainly due to the
derivative approximation and model uncertainties, such as
actuator dead-zone, backlash, and Coulomb friction effects.

Fig. 14c presents the pendulum angle and the PNN2 output.
The controller keeps the pendulum of RIP up, as the tiny
variation of +0.05 to −0.075 rad.
Fig. 14d presents the output of the controller and the

inverse model learned by PNN3. The output signals from
the arm angle and the control have amplitudes of the same
order of magnitude. However, Fig. 14d shows that PNN3 fits
better the control signal, compared to Fig. 14b, for the arm
angle signal. We see this result in Table 3, where the MSE for
PNN1 andANNwith 2 and 4 neurons are in the order of 10−5,
while the control signal is in 10−6. The results suggest that to
model the arm angle, it is necessary to add more neurons.

B. LEARNED PNN AND DE-TUNED CONTROLLER
The PNN models, learned with a well-tuned controller, were
compared to the system with a worse controller, with K =[
−0.205 −4.50 −0.19 −0.50

]
.

Fig. 15 shows the results.We observe a performance degra-
dation in this figure, compared to Fig. 14, due to the detuned
controller.

Considering that the PNN1, PNN2, and PNN3 models
learned with a well-tuned controller, Fig. 15b shows that
PNN1 presents a behavior (blue) close to the pendulum arm
(red). We observe a difference in amplitude, mainly in the
negative half of the signal when the detuned controller is
considered.

Fig. 15c shows that the PNN2 output (blue) is very close to
the RIP pendulum angle output when we apply the detuned
controller. The same is valid for Fig. 15d, where the inverse
model output response (PNN3) (blue) follows the detuned
controller output (red) closely. In this situation, the MSE for
PNN1 is 0.0056, the MSE for PNN2 is 0.00006, and MSE
for PNN3 is 0.0012. Based on these results, we can conclude

VOLUME 9, 2021 74163

A. de Carvalho et al.: RIP Identification for Control by Paraconsistent Neural Network

FIGURE 14. RIP with well-tuned controller: (a) Arm and pendulum
calculated speed outputs, (b) Arm angle and PNN1 output, (c) Pendulum
angle and PNN2 output, and (d) Controller signal, u, and PNN3 output.

that the PNNs trained with a well-tuned controller could
represent the system with a detuned controller, highlighting
the generalization feature of the PNNs.

C. INVERSE MODEL CONTROL OF THE RIP BY PNN
Table 4 presents the weights learned by PNN1, PNN2, and
PNN3 with the well-tuned controller, where a represents the

FIGURE 15. RIP and Controller identification with 3 PNNs. RIP with
detuned controller: (a) Arm and pendulum speed outputs, (b) Arm angle
and PNN1 model, (c) Pendulum angle and PNN2 model, and
(d) Controller signal, u, and PNN3 model.

first PAL2v neuron and b the second PAL2v in the hidden
layer of each PNN, respectively.

We applied the input gain (GI) of 0.25 and added a 0.5 DC
level to all inputs to perform the normalization in the interval
from 0 to 1. The outputs were also de-normalized by remov-
ing the DC level and applying the output gain (GO) to all
PNNs outputs, as presented in (29), where N = 4 is the
number of Linear PAN used in the path of the PNN. In this

74164 VOLUME 9, 2021

A. de Carvalho et al.: RIP Identification for Control by Paraconsistent Neural Network

TABLE 4. Weights learned by PNN1, PNN2, and PNN3.

study, we used three PNNs to create the PAL2v neuron of 4
inputs plus 1 linear PAN in the output layer.

GO =
1
GI

2N . (29)

With the values of the weights learned by PNN3,
we replaced the Pole placement controller with a simple
PNN, which was embedded in the microcontroller of the RIP
system. The goal here is to validate the PNN algorithm in
replacing the existing controller, with the execution of the
calculations of the PAL2v activation function on neurons
at each sampling time. This is required due to the pendu-
lum dynamics and the if-then statement required by the
PAL2v neuron to calculate the µER output at each sampling
time, as presented in (15) to (17). Fig. 16 presents the results.
Fig. 16a shows that the PNN3 controller was able to control

the RIP and keep the angle of the pendulum in a tiny variation
(green line). The control applied by PNN3 to the RIP is
in Fig. 16b.

Note that the amplitude and shape of the control signal
(û) presented in Fig. 16b is very close to the one shown
in Fig. 16d using the well-tuned controller, indicating that the
PNN learned correctly.

The robustness of PNN3 in control the RIP is verified by
applying several disturbances in the pendulum, as seen at the
sample 1400 of Fig. 16c. In Fig. 16d, we can observe the con-
troller reaction and recovery of pendulum angle control. Note
that the amplitude of signal û is limited within [−1, +1].
Fig. 16e shows the power spectral density of the signals

u (from pole placement control) and û (from PNN3), by fast
Fourier transform (FFT) method, during 2000 samples.

The robustness of the PNN3 to control the RIP is a function
of two main points: the quality of the controller used for the
learning process and how low is the MSE obtained.

By increasing the number of neurons or the size of the
database can result in lower MSE, with the compromise of
increasing the time required by PNN for learning. On the
other hand, a higher number of neurons can offer redundancy
for the PNN.

The PNN3 controller (û) algorithm implemented is:
• Compute PAL2v Neuron a

µ4a = GI0.25(w1,1p1 − w2,1p2 − w3,1p3 + w4,1p4)+ 0.5

µ4a =


0 µ4a ≤ 0
1 µ4a ≥ 1
µ4a otherwise

λ4a = 0.5

d4a =
((
1− |µ4a − λ4a|

)2
+
(
µ4a + λ4a − 1

)2)0.5

FIGURE 16. RIP is controlled by PNN3. Arm and pendulum angles (a),
PNN3 controller output, û (b), pendulum under disturbance (c),
PNN3 controller reaction (d), the spectral power density of the control
effort (e).

D4a =

{
1 d4a ≥ 1
d4a otherwise

VOLUME 9, 2021 74165

A. de Carvalho et al.: RIP Identification for Control by Paraconsistent Neural Network

µER4a =


(2− D4a)/2 µ4a ≥ λ4a

D4a/2 µ4a ≤ λ4a

0.5 otherwise

• Compute PAL2v Neuron b

µ4b = GI0.25(w1,2p1 − w2,2p2 − w3,2p3 + w4,2p4)+ 0.5

µ4b =


0 µ4b ≤ 0
1 µ4b ≥ 1
µ4b otherwise

λ4b = 0.5

d4b =
((
1− |µ4b − λ4b|

)2
+
(
µ4b + λ4b − 1

)2)0.5
D4b =

{
1 d4b ≥ 1
d4b otherwise

µER4b =


(2− D4b)/2 µ4b ≥ λ4b

D4b/2 µ4b ≤ λ4b

0.5 otherwise

• Compute PNN3 output (û):

µER5 =
µER4a − µER4b + 1

2
PNN3 = GO

(
µER5 − 0.5

)
PNN3 = GO

(µER4a − µER4b
2

)
V. CONCLUSION
This investigation presents a methodology to build ANNs
using the equations and rules of PAL2v, called here as PNN.
The PAL2v activation function with two orthogonal inputs
allows more flexibility for the designer to distribute the
inputs. We trained the PNN by backpropagation with gra-
dient descent. Although we can investigate other learning
methods, this method proved to be good enough. The PNN
required fewer epochs and achieved low MSE, compared to
standard ANN using the hyperbolic tangent sigmoid function
or Leaky-ReLU, in similar conditions. Although we built
the neural networks with few neurons, based on the results,
the PAL2v equations and rules can be used as activation
functions, allowing the design of paraconsistent neural net-
works. The paraconsistent neuron algorithm requires some
decision questions to calculate the D and µER breaking point
as some other functions, such as the ReLU based neurons.
Although we did not perform a processing time assessment,
the microcontroller runs the PNN algorithm, even with all
if-then statements required by each PAL2v neuron, during a
short sampling time (0.01 seconds) without losing control of
the RIP. The results achieved here for the RIP suggest that
PNN is an alternative for applications in the identification
and adaptive control of nonlinear dynamic systems. With the
mathematical framework presented in this study, the design-
ers can propose more complex PNNs, either by increasing
the number of paraconsistent cells and layers, configuring a
recurrent paraconsistent neural network (RPNN), or building
hybrid PNN + ANN for deep learning networks, allowing

them to work in even more challenging engineering applica-
tions.

REFERENCES
[1] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesus,Neural Network

Design, 2nd ed., M. Hagan, Ed. NewYork, NY, USA:Martin Hagan, 2014,
p. 802.

[2] M. T. Hagan, H. B. Demuth, and O. D. Jesús, ‘‘An introduction to the use
of neural networks in control systems,’’ Int. J. Robust Nonlinear Control,
vol. 12, no. 11, pp. 959–985, Sep. 2002.

[3] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed,
and H. Arshad, ‘‘State-of-the-art in artificial neural network applications:
A survey,’’ Heliyon, vol. 4, no. 11, Nov. 2018, Art. no. e00938.

[4] Z. Fu, W. Xie, S. Rakheja, and J. Na, ‘‘Observer-based adaptive optimal
control for unknown singularly perturbed nonlinear systems with input
constraints,’’ IEEE/CAA J. Automatica Sinica, vol. 4, no. 1, pp. 48–57,
Jan. 2017.

[5] Y. Chen, J. Ren, and C. Yi, ‘‘Neural networks for the output tracking-
control problem of nonlinear strict-feedback system,’’ IEEE Access, vol. 5,
pp. 26257–26266, 2017.

[6] A. Ebadat, P. E. Valenzuela, C. R. Rojas, and B. Wahlberg, ‘‘Model
predictive control oriented experiment design for system identification:
A graph theoretical approach,’’ J. Process Control, vol. 52, pp. 75–84,
Apr. 2017.

[7] M. Gevers, ‘‘Identification for control: From the early achievements to
the revival of experiment design,’’ Eur. J. Control, vol. 11, nos. 4–5,
pp. 335–352, 2005.

[8] J. Schoukens and L. Ljung, ‘‘Nonlinear system identification: A user-
oriented road map,’’ IEEE Control Syst. Mag., vol. 39, no. 6, pp. 28–99,
Dec. 2019.

[9] M. S. Coelho, J. I. da Silva Filho, H.M. Côrtes, A. de Carvalho,M. F. Blos,
M. C. Mario, and A. Rocco, ‘‘Hybrid PI controller constructed with
paraconsistent annotated logic,’’Control Eng. Pract., vol. 84, pp. 112–124,
Mar. 2019.

[10] A. Y. Alanis, E. N. Sanchez, A. G. Loukianov, and M. A. Perez, ‘‘Real-
time recurrent neural state estimation,’’ IEEE Trans. Neural Netw., vol. 22,
no. 3, pp. 497–505, Mar. 2011.

[11] M. Stogiannos, A. Alexandridis, and H. Sarimveis, ‘‘Model predictive
control for systems with fast dynamics using inverse neural models,’’ ISA
Trans., vol. 72, pp. 161–177, Jan. 2018.

[12] N. da Costa and C. de Ronde, ‘‘The paraconsistent logic of quantum
superpositions,’’ Found. Phys., vol. 43, no. 7, pp. 845–858, Jul. 2013.

[13] G. W. Favieiro and A. Balbinot, ‘‘Paraconsistent random forest: An alter-
native approach for dealing with uncertain data,’’ IEEE Access, vol. 7,
pp. 147914–147927, 2019.

[14] G. Priest, K. Tanaka, and Z.Weber, ‘‘Paraconsistent logic,’’ in The Stanford
Encyclopedia of Philosophy, E. N. Zalta, Ed. Stanford, CA, USA: Stanford
University, Metaphysics Research Lab., 2018.

[15] J. I. D. S. Filho, ‘‘Treatment of uncertainties with algorithms of the
paraconsistent annotated logic,’’ J. Intell. Learn. Syst. Appl., vol. 4, no. 2,
pp. 144–153, 2012.

[16] J. M. Abe, K. Nakamatsu, and J. I. D. S. Filho, ‘‘Three decades of
paraconsistent annotated logics: A review paper on some applications,’’
Procedia Comput. Sci., vol. 159, pp. 1175–1181, Jan. 2019.

[17] J. I. Da Silva Filho, G. Lambert-Torres, and J. M. Abe, ‘‘Uncertainty
treatment using paraconsistent logic: Introducing paraconsistent artificial
neural networks,’’ in Frontiers in Artificial Intelligence and Applications.
Amsterdam, The Netherlands: IOS Press, 2010, p. 311.

[18] D. V. Garcia, J. I. da Silva Filho, L. Silveira, M. T. T. Pacheco, J. M. Abe,
A. Carvalho,M. F. Blos, C. A. G. Pasqualucci, andM. C.Mario, ‘‘Analysis
of Raman spectroscopy data with algorithms based on paraconsistent
logic for characterization of skin cancer lesions,’’ Vibrational Spectrosc.,
vol. 103, Jul. 2019, Art. no. 102929.

[19] Z. Ben Hazem, M. J. Fotuhi, and Z. Bingul, ‘‘A comparative study of
the joint neuro-fuzzy friction models for a triple link rotary inverted
pendulum,’’ IEEE Access, vol. 8, pp. 49066–49078, 2020.

[20] X.-Y. Liu, R.-S. Jia, Q.-M. Liu, C.-Y. Zhao, and H.-M. Sun, ‘‘Coast-
line extraction method based on convolutional neural networks—A case
study of Jiaozhou Bay in Qingdao, China,’’ IEEE Access, vol. 7,
pp. 180281–180291, 2019.

[21] A. Apicella, F. Donnarumma, F. Isgrò, and R. Prevete, ‘‘A survey on
modern trainable activation functions,’’ Neural Netw., vol. 138, pp. 14–32,
Jun. 2021.

74166 VOLUME 9, 2021

A. de Carvalho et al.: RIP Identification for Control by Paraconsistent Neural Network

[22] M. Everett, G. Habibi, and J. P. How, ‘‘Robustness analysis of neural
networks via efficient partitioning with applications in control systems,’’
IEEE Control Syst. Lett., vol. 5, no. 6, pp. 2114–2119, Dec. 2021.

[23] S. Kizir, Z. Bingul, and C. Oysu, ‘‘Fuzzy control of a real time inverted
pendulum system,’’ J. Intell. Fuzzy Syst., vol. 21, nos. 1–2, pp. 121–133,
2010.

[24] Z. B. Hazem, M. J. Fotuhi, and Z. Bingül, ‘‘Development of a fuzzy-
LQR and fuzzy-LQG stability control for a double link rotary inverted
pendulum,’’ J. Franklin Inst., vol. 357, no. 15, pp. 10529–10556, Oct. 2020.

[25] K. Furuta and M. Iwase, ‘‘Swing-up time analysis of pendulum,’’ Bull.
Polish Acad. Sci., Tech. Sci., vol. 52, no. 3, pp. 153–163, 2004.

[26] C. Aguilar-Avelar and J. Moreno-Valenzuela, ‘‘A composite controller for
trajectory tracking applied to the Furuta pendulum,’’ ISA Trans., vol. 57,
pp. 286–294, Jul. 2015.

[27] N. Singh and S. Yadav, ‘‘Comparison of LQR and PD controller for
stabilizing double inverted pendulum system,’’ Int. J. Eng., vol. 1, no. 12,
pp. 69–74, 2012.

[28] P. Seman, M. Juh, and M. Salaj, ‘‘Swinging up the furuta pendulum and its
stabilization via model predictive control,’’ J. Electr. Eng., vol. 64, no. 3,
pp. 152–158, May 2013.

[29] D. Chandran, B. Krishna, V. I. George, and I. Thirunavukkarasu, ‘‘Model
identification of rotary inverted pendulum using artificial neural net-
works,’’ in Proc. Int. Conf. Recent Develop. Control, Autom. Power Eng.
(RDCAPE), Mar. 2015, pp. 146–150.

[30] P. Gautam, ‘‘System identification of nonlinear inverted pendulum using
artificial neural network,’’ in Proc. Int. Conf. Recent Adv. Innov. Eng.
(ICRAIE), Dec. 2016, pp. 1–5.

[31] R. B. R. Genal, ‘‘Nonlinear system identification and control: Rop scheme
and neural networks,’’ in Proc. 2nd Int. Conf. Intell. Comput. Control Syst.
(ICICCS), Jun. 2018, pp. 1831–1836.

[32] K. G. Vamvoudakis, F. L. Lewis, and S. S. Ge, ‘‘Neural networks in
feedback control systems,’’ inMechanical Engineers’ Handbook, M. Kutz,
Ed. Hoboken, NJ, USA: Wiley, 2015.

[33] A. H. Jafari and M. T. Hagan, ‘‘Application of new training methods
for neural model reference control,’’ Eng. Appl. Artif. Intell., vol. 74,
pp. 312–321, Sep. 2018.

[34] A. Sharafian and R. Ghasemi, ‘‘Fractional neural observer design for
a class of nonlinear fractional chaotic systems,’’ Neural Comput. Appl.,
vol. 31, no. 4, pp. 1201–1213, Apr. 2019.

[35] J. M. Abe and K. Nakamatsu, ‘‘Paraconsistent annotated evidential logic
Eτ and applications in automation and robotics,’’ in The Handbook on
Reasoning-Based Intelligent Systems. Singapore: World Scientific, 2013,
pp. 331–352.

[36] N. J. Mathew, K. K. Rao, and N. Sivakumaran, ‘‘Swing up and stabilization
control of a rotary inverted pendulum,’’ IFAC Proc. Volumes, vol. 46,
no. 32, pp. 654–659, Dec. 2013.

ARNALDO DE CARVALHO, JR., is graduated
in electrical engineering from Santa Cecilia Uni-
versity (UNISANTA), in 1991. He received the
M.B.A. degree in business management from the
Fundação Getulio Vargas (FGV), with executive
management extension from the University of Cal-
ifornia at Irvine (UCI), Irvine, in 2001, and the
master’s degree in mechanical engineering from
Santa Cecilia University (UNISANTA), in 2017.
He is currently pursuing the Ph.D. degree in elec-

trical engineering with the Escola Politécnica of the Universidade de São
Paulo. He is also a Lecturer/a Researcher with the Federal Institute of
Education, Science and Technology of São Paulo (IFSP), Cubatão, Brazil.

JOÃO FRANCISCO JUSTO received the B.Sc.
and M.Sc. degrees in physics from the Univer-
sidade de São Paulo, in 1988 and 1991, respec-
tively, and the Ph.D. degree in nuclear engineering
from the Massachusetts Institute of Technology,
in 1997. From 1997 to 1998, he was a Postdoctoral
Fellow with the Massachusetts Institute of Tech-
nology and a Visiting Associate Professor with the
University of Minnesota, from 2007 to 2008. He is
currently a Full Professor of electrical engineering

with the Escola Politécnica of the Universidade de São Paulo, Brazil. He has
experience in materials science, focusing on computational modeling of
nanomaterials and electrical engineering, focusing on embedded electronics
and nanoelectronics. Hewas elected as a FullMember to the AlphaNu Sigma
Honor Society of the AmericanNuclear Society, in 1996, and the SigmaXi—
The Scientific Research Honor Society, in 1998.

BRUNO AUGUSTO ANGÉLICO received the
B.Sc. degree from the State University of Lon-
drina, in 2003, and the M.S. and Ph.D. degrees
from the Universidade de São Paulo, in 2005 and
2010, respectively, all in electrical engineering.
From 2009 to 2013, he was an Associate Profes-
sor with the Federal University of Technology of
Paraná (UTFPR), Cornélio Procópio. He is cur-
rently an Assistant Professor with the Department
of Telecommunications and Control Engineering,

Escola Politécnica—Universidade de São Paulo. He has experience in elec-
trical engineering, focusing on practical control applications and digital
control.

ALEXANDRE MANIÇOBA DE OLIVEIRA
(Member, IEEE) received the B.Sc. degree in elec-
trical computing engineering from the Catholic
University of Santos, in 2009, and the M.S. and
Ph.D. degrees in electrical engineering from the
Escola Politécnica of the Universidade de São
Paulo, in 2012 and 2015, respectively. He is cur-
rently a Professor with the Department of Control
and Automation Engineering, Federal Institute of
Education, Science and Technology of São Paulo

at Cubatão, where he is also the Coordinator of the James Clerk Maxwell of
Microwave and Applied Electromagnetism Laboratory. He has experience in
RFIC, microwave antennas, and scientific and technology education. He is a
Full Member of the Council of the Brazilian Microwave and Optoelectronics
Society (Management for the period 2019–2022).

JOÃO INÁCIO DA SILVA FILHO (Member,
IEEE) received the bachelor’s degree in elec-
trical engineering with emphasis on electron-
ics, the master’s degree in electrical engineering,
and the Ph.D. degree in electrical engineering
with research in digital systems from the Escola
Politécnica—Universidade de São Paulo, Brazil,
in 1986, 1996, and 1999, respectively. In 2009,
he did a postdoctorate research at the INESC
Porto—Institute for Systems and Computer Engi-

neering of Porto. He is currently a Professor with Santa Cecilia University,
Santos, Brazil, and the Coordinator of the Group of Paraconsistent Logic
Applied (GLPA).

VOLUME 9, 2021 74167

