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ABSTRACT Increasing the utilization rate of wind energy is of great significance to the improvement
of energy structure, which is inseparable from the support of wind power forecasting (WPF) technology.
However, it is well known that there is no certain WPF model suitable for all conditions, such as different
regions or seasons. Therefore, instead of focusing on the combination of machine learning models in a
specific scenario, this article proposes a two-stage modeling strategy of ‘‘first classify and separately model,
then perform pattern recognition’’ from the perspective of sample similarity analysis. That is, in offline
mode, the historical database is divided into multiple categories with different characteristics, and prediction
models are established for each category respectively; in onlinemode, pattern recognition is carried out on the
prediction sample to select the corresponding predictionmodel. In this way, theWPF problem is decomposed
into two strongly related tasks: wind power mode classification and wind power numerical prediction.
Furthermore, the coupling and connection between mode classification task and numerical prediction task
are strengthened through the transfer learning of sample features. Around the above ideas, specific methods
of how to classify, identify, and predict are proposed, which are two-level clustering, Convolutional Neural
Network (CNN) classification model and Long Short-term Memory (LSTM) prediction models. Simulation
results based on real-world datasets prove the effectiveness and superiority of the proposed hybrid model.

INDEX TERMS Wind power forecasting, similarity analysis, pattern recognition, mode classification,
numerical prediction, CNN, LSTM.

I. INTRODUCTION
With the increasing scale of wind power integration, the
randomness, volatility and intermittence of wind power have
brought great challenges to the security, stability and econ-
omy of power system [1], [2]. Accurate wind power forecast-
ing (WPF) is one of the crucial technologies to deal with this
problem [3], [4].

The research of WPF is mainly divided into mechanism
forecasting and data-driven forecasting, and there are essen-
tial differences between the two [5], [6]. Mechanism fore-
casting is based on the depiction of atmospheric motion [7].
According to the information of topography, geomorphology
and meteorological environment, the model is established by
using physical laws such as hydrodynamics and thermody-
namics, focusing on the optimization of boundary conditions
and physical solution rules. It has the characteristics of dif-
ficult modeling and large calculation load, so it has poor
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timeliness and is generally suitable formedium and long-term
forecast [8], [9]. Data-driven WPF emphasizes finding inher-
ent laws in historical data, using data mining methods and
artificial intelligence algorithms to establish the mapping
relationship between inputs and targets [10], which is gen-
erally applicable to ultra-short-term and short-term fore-
casting [11], [12]. The development process of data-driven
WPF includes several major stages: statistical methods,
traditional machine learning, and deep learning. Statisti-
cal methods represented by time series method, persistence
model (PM) and Kalman filter [13], and early artificial intel-
ligence algorithms represented by artificial neural network
(ANN) [14], [15], random forest (RF) [16], and support
vector machine (SVM) [17], [18], have their own application
scenarios and limitations, but the common point is that most
of them are shallow structures with insufficient generalization
capabilities, which makes it difficult to describe complex
nonlinear relationships. In recent years, deep learning has
developed rapidly [19], [20], especially convolutional neural
network (CNN) and recurrent neural network (RNN), which
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have very eye-catching performance in various fields [21].
CNN has achieved great success in the field of computer
vision [22], [23], and RNN has been widely used in the
fields of voice recognition and power prediction due to the
consideration of the sequence of time series [24], [25].

At present, the research of WPF mainly focuses on the
combination of multiple forecasting models, a typical exam-
ple is the combination of different neural networks, or the
combination of signal decomposition technology and neural
networks [26], [27]. However, in practice, it has been found
that no simulation method can provide the best results for
all conditions [28], [29]. Specifically, wind power in differ-
ent regions, seasons, and weather conditions have different
characteristics, and no certain model can achieve the best
performance under all conditions. The essential reason for
this problem is that the characteristics of the training set
determine the training and selection of neural network param-
eters: when the samples of the training set have completely
different andmessy characteristics, it is difficult for the neural
network to summarize general and adaptive law [30], [31].
Therefore, it is very necessary to analyze the similarity of
samples: cluster the samples with similar characteristics into
one category, and separate the samples with different charac-
teristics [32], [33]. This is also one of the main tasks of this
paper.

For WPF, the similarity of samples is reflected in the
similarity of wind power characteristics or weather condi-
tions [34], [35]. Initially, in [36], Liu et al. proposed to
search the historical database for training samples with simi-
lar features to the prediction sample every time the prediction
task was performed. However, every forecasting operation
must search the entire database, which not only consumes
computing resources, but also is not conducive to the time-
liness of ultra-short-term prediction. The two-stage modeling
method of ‘‘first classify and separately model, then perform
pattern recognition’’ is a more efficient modeling strategy,
that is, the historical database is first divided into multi-
ple categories with different characteristics, and prediction
models are established for each category respectively; then
pattern recognition is carried out on the prediction sample
to select the corresponding prediction model. This method
can avoid repeated searches on the database and greatly
improve the response speed of the model. In [37]–[39], based
on weather information, historical dataset was allocated to
several clusters, and then prediction models were established
for different weather scenarios. Finally, the weather of the
prediction sample was compared with each scenario, and
the corresponding prediction model was selected. In [36],
the trend of wind power was expressed as a tuple vector by
piecewise linearization, and then classification and recogni-
tion were performed based on the tuple vector. In [40], [41],
the historical database was divided into multiple subsets with
different mathematical morphologies through data mining
and K-means cluster analysis, and corresponding prediction
models were established for each subset, highlighting the
importance of selecting similar samples [42], [43]. Although

the above studies have different standards for sample simi-
larity, their central idea is the same, that is, to group samples
with similar characteristics into one category, and then model
each category separately.

Sample similarity analysis is an effective method to
improve the accuracy of WPF models, but there are still gaps
and deficiencies in current research:

1) Wind power mode classification is different from target
recognition in the field of computer vision, such as the clas-
sification and recognition of traffic lights, the classification
and recognition of cats and dogs. Green lights and red lights,
cats and dogs, have clear definitions and can be accurately
labeled through manually labeling samples, and then used to
train the classificationmodel. But how tomeaningfully define
the categories of wind power and get a sufficient number of
labeled samples?

2) Not only the definition of wind power categories, but
also the identification method of prediction samples is very
important. The mainstream method to identify the sample
category is to compare the distance or similarity between the
sample and the centroid of each category, but obviously this
type of method does not pay enough attention to the feature
mining of wind power data.

3) Based on the sample similarity analysis, the WPF prob-
lem is decomposed into two highly related tasks: wind power
mode classification and wind power numerical prediction.
The current research does not pay attention to the strong
correlation between the two. It is worth exploring whether
mode classification task can provide valuable knowledge for
numerical prediction task.

In view of the above problems, the main work of this article
can be summarized as follows:

1) A two-level clustering method is proposed to divide
the wind power dataset into multiple categories with dif-
ferent characteristics, and provide labeled samples for the
training of classification model. The two-level clustering
firstly divides the dataset into low-power, medium-power and
high-power categories according to average power value, and
then further subdivides each power level according to trend
similarity.

2) In offline mode, a CNN classification model is trained
with the labeled samples generated by the two-level cluster-
ing. In online mode, the CNN classification model is applied
on the test set for wind power mode recognition. Compared
with the shallow method of calculating the distance between
the sample and the centroid of each category, CNN can per-
form in-depth feature analysis on the samples.

3) There is a strong coupling and correlation between the
wind power mode classification and wind power numerical
prediction. Based on the idea of transfer learning, the mode
classification model is regarded as a pre-training model for
numerical prediction model. Specifically, the sample clas-
sification features mined by the CNN are submitted to the
numerical prediction task as supplementary knowledge to
help the training of the long short-term memory (LSTM)
prediction models. Moreover, the method of how to use CNN
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features to expand the input vector information of LSTM
is also discussed, including dimension direction and time
direction.

4) The simulation experiment is carried out based on the
real-world wind power datasets, and the results show that the
method based on sample similarity analysis proposed in this
paper can effectively improve the accuracy of WPF.

The paper is organized as follows. Section 2 presents
the methods and related theories proposed in this article.
Section 3 introduces the experimental settings and provides
experimental results with detailed analysis. The conclusion is
drawn in section 4.

II. METHODOLOGY
The algorithm flow of the WPF model proposed is shown
in Fig.1, which includes several main steps: generating sam-
ple sets, manually labeling samples, establishing CNN clas-
sification model and LSTM prediction models, as shown
in Fig.2.

A. GENERATING SAMPLE SETS
In this paper, the resolution of wind power data is set to
15min, that is, there are 4 data points per hour and 96 data
points per day. The power is expressed by the standard unit
value, and the normalization method is as below.

x ′ =
x − xmin

xmax − xmin
(1)

As shown in Fig.2 Step1, a power sequence with L1 width
is defined as feature window, and L2 is defined as a sliding
stride to slide the historical power into segments to form
sample sets. It should be noted that the width L1 of the fea-
ture window is fixed during sliding. Specifically, the feature
window of the first sample selects the [1, 2, . . . ,L1] data
of historical data, the feature window of the second sample
selects the [(1+L2), (2+L2), . . . , (L1+L2)] data of historical
data, and so on. When L2 < L1, there are overlapping data
between samples, and the smaller L2, the more overlapping
data. When L2 = L1, there is no overlap between samples.
When L2 > L1, there is no overlap between samples, and
some data are discarded.

A common practice is to take every day as a sample,
corresponding to L1= 96 and L2= 96. But the disadvantages
of this approach are: 1) Wind power does not have obvious
daily cycle characteristics; 2) The feature window of the
samples is too wide and the data do not overlap, resulting in
too few samples generated (365 samples per year), which is
not conducive to the training of the prediction model, and is
not applicable to new wind farms that lack historical data.
Therefore, for short-term prediction, we set L1 = 32 and
L2 = 8, that is, the feature window is set to 8 hours before
the prediction period, and the sliding stride is set to 2 hours.

B. MANUALLY LABELING SAMPLES
1) TWO-LEVEL CLUSTERING
In order to classify samples accurately and efficiently,
as shown in Fig.2 Step2, a two-level clustering method is

proposed in this paper. Firstly, according to the average power
in feature window of each sample, the samples are divided
into three categories: low-power, medium-power and high-
power. Then, each power level is finely classified according to
the sample similarity. Two-level clustering follows two basic
principles: (m is the number of categories)

1) m cannot be too large, otherwise it will lead to
over-subdivision and too few samples in each category, mak-
ing the prediction models unable to be trained effectively.

2) m cannot be too small, otherwise samples in the same
category will still have large feature differences, resulting in
poor classification performance.

Based on the above two principles, the selection of m is
determined according to the scale of the database and the
characteristics of the wind power data.

2) EVALUATION INDEX OF CLUSTERING
A distance function is defined to measure the sample
similarity:

Lp(x, y) = ‖x − y‖p = (
∑
i

|xi − yi|p)1/p (2)

When p = 1, p = 2, p = ∞, it denotes Manhattan
distance, Euclidean distance and maximum distance, respec-
tively. In this paper, Euclidean distance is defined as the
classification index:

L(x, y) =
√∑

i

(xi − yi)2 (3)

Save and Smin respectively refer to the average number of
samples contained in each category, and the smallest number
of samples in all categories. They reflect whether each cate-
gory contains a sufficient number of samples.

Save = average{S1, S2, . . . , Sm} (4)

Smin = min{S1, S2, . . . , Sm} (5)

where m is the number of categories, and Si represents the
number of samples in category i.
Lmax represents the maximum distance between samples

belonging to the same category, used to evaluate the similarity
of samples.

Lmax = max{L1,L2, . . . ,Lm} (6)

where Li represents the maximum distance between samples
of category i.

3) K-MEANS ALGORITHM
As a data mining method, k-means clustering algorithm can
effectively identify sequences with similar features, and is
widely used in WPF [44]. The main steps of the algorithm
are shown in Algorithm 1.

C. CNN CLASSIFICATION MODEL
As a kind of deep networks, CNN has been successfully
applied in the field of computer vision [45]. In this article,
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FIGURE 1. Flow diagram of the model.

Algorithm 1 k-means algorithm:
Input: Sample set S = {x1, x2, . . . , xn}
Randomly select k samples as initial centroid vector C =
{c1, c2, . . . , ck};
for every sample xi

calculate the distance between xi and cj;
find the nearest centroid cj and let ui = j where ui
represent the corresponding cluster of xi;

end for
U = {u1, u2, . . . , uk};
for every cluster:

calculate the centroid of every cluster vi;
end
V = {v1, v2, . . . , vk},U = {u1, u2, . . . , un};
if V = C :

return U;
else:

C = V and go to step 2;
end if
Output: vector U which shows the cluster label of every
sample.

CNN is designed to perform pattern recognition and feature
mining on wind power signals. Different from other time
series classification methods that require artificially designed
features, CNN can automatically mine and extract the inter-
nal structure of input data and generate underlying features
aiming at the target. Moreover, CNN has strong robustness
to translation, scaling, and rotation, because it has three
important ideas different from traditional feedforward neural
networks: local receptive fields, weight sharing, and pooling
operations.

As shown in Fig.2 Step3, a CNN that performs time series
classification tasks usually consists of two parts: in Part 1,
multiple convolutional layers and pooling layers are stacked
to generate underlying features of the samples; in Part 2, these
features are connected to the fully connected (FC) layer to
perform classification.

D. LSTM PREDICTION MODEL
As shown in Fig.2 Step 4, LSTM consists of an internal mem-
ory cell and three multiplicative gates, including the forget
gate, input gate, and output gate. Each time, after receiving
the input xt , LSTM updates its internal state ct by using
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FIGURE 2. Main steps of the model.
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FIGURE 3. Ways to expand the input vector information of LSTM.

the current input xt and previous internal state ct−1, namely,
ct = g(xt , ct−1). The final state ht will be determined by ct
and ot . Controlled by the input and output gates, the memory
cell is able to store the previous information for a long period
of time. Meanwhile, the states stored in the memory cell can
be cleared by the forget gate.

it = σ (Wixxt +Wihht−1 +Wicct−1 + bi) (7)

ft = σ (Wfxxt +Wfhht−1 +Wfcct−1 + bf ) (8)

ot = σ (Woxxt +Wohht−1 +Wocct−1 + bo) (9)

ct = ft ⊗ ct−1 + it ⊗ (Wcxxt +Wchht−1 + bc) (10)

ht = ot ⊗ tanh(ct ) (11)

whereWix ,Wih,Wic,Wfx ,Wfh,Wfc,Wox ,Woh,Woc,Wcx ,Wch
are weight matrices for the corresponding inputs, bi, bf , bo,
bc are the bias vectors,⊗ denotes the Hadamard product, and
σ represents the activation function.
It is worth noting that the size of LSTM input vector is

(B, T, D).Where B refers to the training batch size, T refers to
the time steps, and D refers to the data dimension. Therefore,
there are two ways to expand LSTM input vector information
using CNN classification features: time direction and dimen-
sion direction, as shown in Fig.3.

III. CASE STUDY
A. DATASET AND EVALUATION INDICATOR
In order to verify the effectiveness of the proposed method,
experiments are conducted on two datasets from different
regions.

The dataset-1 is opensource data provided by Elia. The data
collection location is Belgium; the collection time is from
January 1, 2018 to December 31, 2018; the installed wind
power capacity is 806.71MW; and the data resolution is set
to 15min.

The dataset-2 is opensource data provided by National
Renewable Energy Laboratory (NREL). The data collection
location is 78.5945◦ ∼79.8666◦W, 39.0369◦ ∼40.3445◦N;
the collection time is from January 1, 2012 to December 31,

TABLE 1. Model description.

2012; the installed wind power capacity is 80MW; and the
data resolution is set to 15min.

Detailed process analysis is carried out based on dataset-1.
According to the rules for generating sample sets described
above, a total of 4350 samples are generated for the
entire year: the training set contains 3,500 samples for
offline training; the test set contains 850 samples for online
testing.

Mean absolute error (MAE) and root mean square
error (RMSE) are the most common evaluation indicators for
WPF, which can be illustrated by

εMAE =
1
n

n∑
i=1

|PPi − PMi| (12)

εRMSE =

√√√√1
n

n∑
i=1

(PPi − PMi)2 (13)

where n is the number of samples, PPi is forecasting value,
PMi is measured value. The power values in this article refer
to the normalized values.

B. MODEL DESCRIPTION
Comparative experiments are designed to verify the method
proposed. The description of the baseline models is shown
in Table 1.
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FIGURE 4. Power curves and centroid curves of each category.

C. CLASSIFICATION AND RECOGNITION RESULTS
Table 2 shows the different classification schemes of two-
level clustering on the training set.

When the samples are divided into 6 categories, Lmax is
too large, which means that the distance between the samples
of the same category is too large, and the sample similarity
is poor. When the samples are divided into 12 categories,

Smin is 84, which means that the category with the fewest
samples contains only 84 samples, making it difficult to train
the prediction model. Furthermore, the Lmax of 9-categories
and 12-categories are both 1.837, which shows that excessive
subdivisions are meaningless. Therefore, 9-categories is the
best scheme: the samples are first divided into low-power,
medium-power, and high-power categories based on the
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FIGURE 5. Classification feature curves and centroid curves of each category.

TABLE 2. Different schemes of two-level clustering.

TABLE 3. Classification and recognition results.

average power value, and then each power level is sub-
divided into 3 trends according to the defined distance.
In this way, the samples are divided into 9 categories labeled
as 0, 1, 2,... 7, 8.

Based on the labeled samples provided by two-level clus-
tering, the CNN classification model is trained and used to
perform mode recognition on the test set. The number of
samples included in each category is shown in Table 3.

Fig.4(A) and Fig.4(B) respectively show the classification
result of the training set and the recognition result of the test
set. Taking Fig.4(A) as an example: categories with different
power levels, such as category 1, category 4, and category 7,
are clearly distinguished in power value; categories with the
similar power level, such as category 3, category 4, and
category 5, although they all belong to medium-power, their

power trends are different, which are respectively rising, flat
and falling. The results reflect that the method proposed has
a strong ability to distinguish characteristics of samples.

Fig.5 shows the classification features, that is, the
pre-training features of samples mined by CNN. Obviously,
the feature vectors of samples belonging to the same cate-
gory have high similarity, and the feature vectors of sam-
ples belonging to different categories have great difference.
In fact, it is the feature similarity and feature difference
between samples that guarantee the accuracy of classifica-
tion. In more detail, the classification features of samples
belonging to the same category are not exactly the same,
because these features contain not only the sample similarity,
but also the unique information of each sample itself.

D. PREDICTION RESULTS
For Belgium data, Table 4 and Table 5 show the predic-
tion errors of each category from a micro perspective, and
Table 6 is a summary of all categories. Fig.6 and Fig.7 are the
visualization results of the prediction performance of each
model. For NREL data, the performance of the models is
shown in Table 7.

To sum up, it can be concluded that:
1) According to the summary results in Table 6 and Table 7,

the WPF errors of the multi-category models are smaller than
that of the unclassified models. Taking the Belgium 1-hour-
ahead forecast results as an example: RMSE and MAE of
LSTM are 0.0478 and 0.034, MAE and RMSE of MLSTMs
are 0.0453 and 0.0315. Specific to a single category, such
as category 1, as shown in Table 4, RMSE and MAE of
MLSTMs are 0.0195 and 0.013, which are significantly
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TABLE 4. 1-hour-ahead: prediction errors of each category.

TABLE 5. 4-hour-ahead: prediction errors of each category.

TABLE 6. Summary results for Belgium: prediction errors of models.

smaller than the average errors on the entire dataset. Based on
these results, it is safe to say that the proposed method based
on sample similarity analysis can significantly improve the
accuracy of WPF.

2) According to Table 6 and Table 7, the errors of predic-
tion models considering classification features are smaller.
In both 1-hour-ahead forecast task and 4-hour-ahead fore-
cast task, CNN-MLSTMs-T and CNN-MLSTMs-D perform
better than MLSTMs, especially CNN-MLSTMs-T. In more
detail, Table 4 and Table 5 show the effect of classification
features on each category: for most categories, the addition

of classification features enhances the feature information of
samples, which is beneficial for prediction. For categories
with few training samples, increasing the feature dimension
of samples will lead to overfitting of the model, such as
category 8 belonging to the high-power level, it contains few
samples because in real-world scenarios, such strong wind
energy is rarely seen. In this case, enriching historical data,
considering adjacent wind farm data, and further processing
features under supervision are all paths worth exploring to
improve theWPF accuracy. On the whole, it is safe to say that
the classification features with sample similarity are helpful
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FIGURE 6. 1-hour-ahead: prediction results of models.

TABLE 7. Summary results for NREL: prediction errors of models.

to the establishment and training of prediction models, and
it is meaningful to strengthen the coupling and connec-
tion between wind power mode classification and numerical
prediction.

3) CNN-MLSTMs-D adds features in dimension direction,
so it is necessary to align features with other input vectors,
resulting in a limitation of feature size. CNN-MLSTMs-T

adds features in time direction, so the calculation takes longer,
which is determined by the structure of LSTM. For category
1 with 1184 training samples, the training time of CNN-
MLSTMs-D and CNN-MLSTMs-T are 10.2s and 13.8s,
respectively (Intel Core i5-10300H CPU/ 16.00GB RAM/
GeForce GTX 1650). Therefore, both of them can meet the
time-consuming needs of ultra-short-term forecasts.
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FIGURE 7. 4-hour-ahead: prediction results of models.

IV. CONCLUSION
Based on the sample similarity analysis, this paper decom-
poses theWPF problem into two strongly related tasks: mode
classification and numerical prediction. The process of wind
power mode classification is essentially the analysis of sam-
ple similarity and sample difference, which is beneficial to the
selection of training samples for prediction models. In mode
classification task, two-level clustering, as an accurate and
efficient classification method, can divide the wind power
database into multiple categories corresponding to different
real-world scenarios, and provide a large number of labeled
samples for CNN classification model. In numerical predic-
tion task, the necessity of separately modeling and the role of
feature transfer learning are verified. Simulation results based
on real-world datasets prove the effectiveness and superiority
of the above methods.

LSTM does not perform well in every category, so the
combination of the sample similarity analysis idea and other
hybrid models will be our future research focus. Besides,
we will analyze other tasks that are strongly coupled with
WPF, such as monitoring and numerical prediction of wind
speed and wind direction, and working status monitoring of
wind turbines, so as to realize knowledge sharing and joint
optimization of multi tasks.
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