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ABSTRACT In this study, we consider the downlink beamforming problem in millimeter wave (mmWave)
systems subjected to both path blockages and imperfect channel state information (CSI), and propose a
new robust hybrid sum-outage minimizing design as a solution. We first formulate the problem as an
empirical risk minimization (ERM) stochastic learning problem, whose solution can be obtained by the
alternate iteration of a baseband digital and a radio frequency (RF) analog Riemann manifold-constrained
beamforming updates through a mini-batch stochastic gradient descent (MSGD) approach, with gradient
minimizing update rules given in closed-form, and learning rates optimized based on the lower-bounds
of the corresponding Lipschitz constants. Unlike existing solutions to the path blockage-robust mmWave
beamforming problem, wherein out-of-band side information is required or perfect CSI is assumed, our
method relies only on the estimates and statistical knowledge of the channel’s angles of departure (AoD) and
complex gains, which are simultaneously captured in a Bernoulli-Gaussian model and used to generate the
training data for theMSGD-based optimizer. Further, unlike preceding fully-digital or fully-connected hybrid
contributions, the proposed scheme assumes a virtually-configured partially-connected setup; therefore, it is
compatible with coordinated multipoint (CoMP) architectures, which are known to be crucial in terms
of exploiting the full potential of mmWave systems. Simulation results confirm the effectiveness of our
MSGD-based robust hybrid CoMP mmWave beamformer in mitigating the effects of path blockage and CSI
error, demonstrating its superiority to state-of-the-art (SotA) alternatives.

INDEX TERMS Millimeter wave systems, distributed hybrid beamforming, stochastic gradient descent,
cooperative multi-point downlink beamforming.

I. INTRODUCTION
The ever-growing demands for data-rate andmassive wireless
connectivity have driven the fifth generation (5G) standard
to incorporate technologies that exploit the mmWave spec-
trum available in the 24–30 [GHz] bands [1]–[3]. This trend
is expected to continue, with 5G New Radio (NR) aiming
to support spectrum bands up to 71 [GHz] in Release 17.

The associate editor coordinating the review of this manuscript and
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Higher frequencies in the sub-Terahertz (i.e.>100 GHz)
bands are planned to be added [4].

MmWave systems have much wider bandwidths than sub-
6GHz, and they enable highly directional communications
owing to the dense packing of antenna elements, which
yields numerically large arrays of small physical dimen-
sions, such that multiple-input multiple-output (MIMO)
and beamforming techniques play key roles in mmWave
technology [5]. Despite the advantages of higher achiev-
able throughputs (data rates) and improved radio access
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(user capacity), mmWave systems suffer from
communications-impairing effects such as increased path
loss, higher atmospheric absorption, higher sensitivity to
phase noise, and random path blockage [6]–[10]. These
phenomena pose challenges to the practical implementation
of mmWave, which over the years has attracted the attention
of the research community, leading to several important
advancements.

Early contributions concentrated on mitigating the path
loss issue by exploiting the high directivity of mmWave
antenna arrays [11], [12] and therefore aimed at taking
advantage of the sparsity of the mmWave channel. To this
end, novel sparse signal processing methods were developed,
albeit under the assumption of perfect CSI and for a single-
user single-carrier setup. These designs were then extended to
multi-user and multi-carrier systems by incorporating fully-
connected hybrid architectures, where the RF threads are
connected to all the phase shifters equipped, e.g., [13].
It was shown that beamforming can take advantage of the
homoscedasticity and variance correlations of channel covari-
ance across subcarriers.

Under the argument that accurate RF components at
mmWave bands are expensive, cost reduction via the design
of partially connected hybrid beamformers such as those
in [14], [15] has been motivated. The same argument that
lower-cost RF components lead to various imperfections,
which in turn can be counterweighted by robust hybrid
designs, motivated works such as [16] in which the authors
proposed that the alternating maximization of a smooth
signal-to-noise-ratio (SNR)-driven optimization problem can
be solved via orthogonal matching pursuit (OMP), for the
realization of transceivers and amplify-and-forward (AF)
relays with CSI uncertainty; in [17], a transmit beamform-
ing scheme was designed via a fractional programming
approach and was matched with a minimum mean square
error (MMSE) receive beamformer to mitigate hardware and
CSI imperfection; and [18] aimed to maximize the sum-rate
under imperfect CSI feedback, employing a robust convolu-
tional neural-network approach.

Despite the contributions that helped solidify robust hybrid
beamforming as the prevailing approach that ensures the fea-
sibility of mmWave systems, the random path blockage prob-
lem inherent to the mmWave channel has not been addressed
sufficiently compared to the other issues discussed previ-
ously. The fundamental challenge remaining is that mmWave
signals are susceptible to random blockage of propagation
paths with probabilities ranging between 20% and 60%,
which if not counteracted can significantly detract from the
high-throughputs that mmWave communication systems can
potentially deliver [7], [8], [10].

An early proposal to combat such effects is the CoMP
scheme described in [19], in which quality of service (QoS)
was maintained despite path blockages by synchronizing
transmissions from multiple base stations (BSs) and access
points (APs). The CoMP approach is not only attractive in
the context of mmWave systems owing to the reduced radio

coverage, but it is also shown analytically to offer strong
theoretical guarantees to achieve capacity in the presence of
a path blockage [20], which, however, is unfortunately not
accompanied by procedures for practical implementation.

The latter gap is filled by the current article, which presents
an extensive robust stochastic learning approach to minimize
outage probability in mmWave CoMP systems subjected to
random path blockage, thus effectively maintaining high-
throughput service guarantees. To this end, it may be empha-
sized that the present work is compatible with some existing
side-information-aided approaches such as the sub-6 [GHz]
side-signaling assumed in [21], [22] or the visual (camera-
based) information used in [23]–[25]. In addition, our contri-
butions are also alignedwith recent works on robust mmWave
beamforming in which path blockage is assumed to be ran-
dom and dealt-with dynamically, a few examples of which
are discussed below.

In [26] a high-speed railway communications environ-
ment was considered, where it can be assumed that path
blockages, detected during a first probing stage, remain con-
stant during a subsequent transmission stage (i.e., coherent
blockage assumption). The article then proposed a cor-
responding two-stage (detect-and-avoid) mmWave hybrid
beamforming mechanism based on greedy matching pursuit
optimization, aimed at minimizing MMSE and maximiz-
ing sum-rate maximization (SRM) under the assumption of
perfect CSI.

Besides the coherent blockage assumption, the latter con-
tribution did not consider the benefit of CoMP transmis-
sion, which was previously shown in [19], [20] to be cru-
cial for high-performing mmWave systems. In turn, [27]
considered a robust CoMP setup under the assumption that
blockage affects line-of-sight (LoS) paths in an incoherent
manner. Subsequently, a greedy digital beamforming prob-
lem was formulated aimed at maximizing the system’s min-
imum sum-rate, which was solved iteratively via convex
approximations.

The LoS-only path blockage assumption adopted in [27]
can be further extended to match empirical evidence on the
behavior of mmWave channels [7], [8], [10]. This gener-
alization has been made by the stochastic gradient descent
(SGD) approach employed in [28], where a digital CoMP
beamforming scheme was proposed to minimize outage in
mmWave systems subjected to Bernoulli-distributed block-
ages of both LoS and non-line-of-sight (NLoS) paths. This
work was later complemented in [29], which extended the
digital outage-minimizing (OutMin) contribution of [28] to
a fully-connected hybrid design in which the CoMP archi-
tecture was replaced by a single BS assisted by the auxiliary
support of emerging intelligent reflecting surfaces (IRSs).

Common among the aforementioned references on the
design of mmWave beamforming schemes to combat path
blockage [26]–[29] are two important challenges that need
to be addressed. The first is that these methods are either
digital or fully-connected hybrid radio architectures, which
can be further extended to the partially-connected hybrid
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architecture1 [12]–[16] owing to their lower costs and scal-
ability advantages. The second is that these recent beam-
forming schemes, while assuming perfect knowledge of the
channel coefficients when considering path blockages, devi-
ate from earlier trends toward solutions that are robust against
CSI-errors [16]–[18]. Therefore, it can be said that these first
solutions have taken a well-justified scientific license for
sacrificing CSI-error robustness and low-cost architectural
premises in the design of mmWave beamforming schemes,
with the goal of developing insights on combating the path-
blockage problem.

Now is the time to address the integration of path-blockage
mitigation knowledge with other enabling, building towards
feasible and resilient mmWave systems. To this end, we pro-
pose a novel SGD-based hybrid-beamforming scheme for
mmWave systems that is robust to both CSI imperfection and
incoherent random path-blockage under the limited partially-
connected CoMP paradigm.

A. CONTRIBUTIONS
The following is a summary of the article’s contributions:
• In Subsection II-B, we incorporate into a Bernoulli-
Gaussian probability density function (PDF) the
statistical features of both path blockages [6]–[8],
[10], [11] andCSI errors [16]–[18], resulting in an inte-
grated stochastic mmWave channel model that enables
both challenges to be addressed simultaneously.

• In Subsection II-C, the latter model is employed in the
elaboration of the resulting mmWave CoMP downlink
receive signal subject to both path blockage and CSI
imperfection. Subsequently in Subsection II-D, the cor-
responding stochastic signal-to-interference-plus-noise
ratio (SINR) is formulated, enabling the formulation of a
new stochastic sum-outage-probability minimization
problem for the design of robust virtually-configured
partially-connected cooperative hybrid beamform-
ers suitable to mitigate both path blockages and imper-
fect CSI in mmWave systems.

• In Subsection III-A the aforementioned formulation is
transformed via smooth relaxation into a new ERM
stochastic learning problem for sum-outage minimiza-
tion with hinge-based soft outage detection, whose solu-
tion can be achieved efficiently by the MSGD method,
in which gradient minimizing updates of the digital
and analog beamforming components are obtained alter-
nately and iteratively.

• In Subsections III-B and III-C, original closed-
form expressions for the SGD-based update rules
are obtained, for the baseband digital and the RF
analog Riemann manifold-constrained beamforming
sub-problems, respectively.

• In Subection IV, the designed learning rates to accel-
erate the convergence of the digital and analog beam-
forming problems are derived in closed-form, based

1This indicates that the RF beamforming matrix is not dense.

on lower-bounds of the corresponding Lipschitz con-
stants, and integrated with the results of the preceding
subsection to compose the proposed scheme summa-
rized in Algorithm 1.

• Comparisons of the proposed MSGD-based robust
hybrid CoMPmmWave beamformer against SotAmeth-
ods are offered in Section V, which demonstrate the
overall effectiveness of the aforementioned contribu-
tions in mitigating the effects of path blockages and CSI
errors onto the performance of mmWave systems.

B. NOTATION
The following notations are used throughout the article. The
set of complex numbers is denoted by C. Complex-valued
matrices and vectors are respectively denoted by bold upper
and lower case, respectively, as X and x, while scalars are
denoted using a normal font as in x. The circularly symmetric
complex Gaussian distribution with mean µ and variance σ 2

is denoted by CN (µ, σ 2). The operators <{X} and ={X}
denote the real and imaginary parts of X , respectively. The
`p-norm is denoted by ‖x‖p, where p ≥ 0. The transpose,
conjugate, and conjugate transpose (Hermitian) of a matrix
X are denoted by XT,X* and XH, respectively. The N -sized
identity, all-one and all-zero matrices are respectively repre-
sented as IN , 1N and 0N . The operator ◦ and ⊗ respectively
denotes the Hadamard product and the Kronecker product.
The functions vec, unvec, and Retr denote the vectorization,
matricization (i.e., the inverse vectorization), and retraction,
respectively.

II. CHANNEL AND SYSTEM MODEL
A. MOTIVATION: PATH BLOCKAGE IN mmWave
Consider a CoMP downlink system operating at mmWave
frequency bands as illustrated in Figure 1, where multiple
synchronized APs simultaneously and cooperatively transmit
data symbols to multiple single-antenna users subjected to
sudden and random channel path blockages and imperfect
small-scale fading coefficient estimates. It has been observed
experimentally [7], [19] that mmWave channels are suscep-
tible to path blockages of likelihood between 20% to 60%.
Models for such path blockage processes have since been
proposed [8], [10] and employed to demonstrate the severe
impact of the phenomenon on system performance [20].
It has also been demonstrated that the blockage probability

of each channel path component can be estimated and pre-
dicted [22]–[24], and thus utilized in the design of robust
beamformers with the objective of mitigating performance
losses that would result from the aforementioned channel
uncertainties [26], [28], [29].
Motivated by the gravity of the aforementioned problem

and the relative success of preliminary solutions, we seek
to contribute a new and improved robust coordinated hybrid
beamforming method to combat path blockage in mmWave
systems. To this end, we employ the following system and
channel models, consistent with preceding literature.

VOLUME 9, 2021 74473



H. Iimori et al.: Stochastic Gradient Descent Approach for Hybrid mmWave Beamforming With Blockage and CSI-Error Robustness

FIGURE 1. Illustration of the downlink system model of a CoMP mmWave
communications system with random path blockages. Smart phones
represent single-antenna UEs, while cars and a human are regarded as
obstacles.

B. BERNOULLI-GAUSSIAN mmWave PATH
BLOCKAGE CHANNEL MODEL
It is assumed that APs are each equipped with a uniform
planar array (UPA) of Nt antennas – and thus individually
capable of 3D beamforming [30] – and are also connected
through a wired fronthaul link to a common central process-
ing unit (CPU) such that the ensemble of CPU-coordinated
APs can perform cooperative robust beamforming.

It is assumed that the mmWave channel contains a random
number, Kb,u, of clusters [5], modeled as a lower-bounded
Poisson random variable, Kb,u ∼ max (1,Possion (λ)), with
the intensity parameter λ, as proposed in [6]. It is also
assumed that CSI is acquired and tracked continuously,
exploiting the reciprocity between the uplink and downlink
channels of standard time division duplex (TDD) systems.
Consequently, channel estimates can be modeled as

ĥb,u =

√
1

Kb,u

Kb,u∑
k=1

gkb,uaNt (θ
k
b,u, φ

k
b,u), (1)

where b ∈ B , {1, 2, · · · ,B} and u ∈ U , {1, 2, · · · ,U}
denote the AP and UE indices, respectively, with B and U
denoting the total number of APs and UEs; θkb,u and φkb,u
are the elevation and azimuth AoD of the m-th cluster from
the b-th AP towards the u-th downlink user, respectively;
aT (θkb,u, φ

k
b,u) represents the array response vector; and g

k
b,u is

the associated channel gainmodeled as gkb,u ∼ CN
(
0, σ 2

b,u,k

)
,

with σ 2
b,u,k = 10−PL

k
b,u/10 and PLkb,u = α+10β log10

(
db,u

)
+

ξ [dB], in which db,u is the distance (in meters) between the

b-th AP and the u-th user, with the parameters α, β, and ξ as
given in [6, Table 1].2

Assuming that the UPAs equipping the APs have a regu-
lar square shape with

√
Nt antenna elements on each axis,

the array response vector aT (θkb,u, φ
k
b,u) can be written as

aNt (θ
k
b,u, φ

k
b,u)

= c√Nt
( 1
2 sin(θ

k
b,u) cos(φ

k
b,u)

)
⊗ c√Nt

( 1
2 cos(θ

k
b,u)

)
, (2)

where ⊗ denotes the Kronecker product, and cN represents
the array response vector of a uniform linear array (ULA)
with N antenna elements, which can be expressed as

cN (x) ,
1
√
N

[
1,ej2πx , · · · , ej2π (N−1)x

]T
∈ CN×1. (3)

Despite the knowledge of ĥb,u, during actual downlink,
the system might be subjected to partial blockage if and
when any or some of the LoS and NLoS clusters become
temporarily blocked, such that the actual channel between the
b-th AP and the u-th user can be modeled as

hb,u =

√
1

Kb,u

Kb,u∑
k=1

ωkb,u(g
k
b,u)aNt (θ

k
b,u, φ

k
b,u), (4)

with ωkb,u ∼ f (pkb,u; g
k
b,u, ζ

2
b,u,k ), where f (p

k
b,u; g

k
b,u, ζ

2
b,u,k )

denotes the Bernoulli-Gaussian distribution given by

f (pkb,u; g
k
b,u, ζ

2
b,u,k ) = pkb,uδ(ω

k
b,u)

+ (1− pkb,u)CN (gkb,u; ζ
2
b,u,k ), (5)

with pkb,u, δ(·), and ζ
2
b,u,k denoting the corresponding block-

age probability, Dirac delta function, and channel gain esti-
mation uncertainty variance, respectively.

It should be noted that the random variable model ωkb,u
adopted here is a generalization of that utilized in most
related literature, including our own previous work [28].
In particular, while the blockage model typically used in the
mmWave literature is simple Bernoulli, the model in equation
(5) is Bernoulli-Gaussian [34], with the first term modeling
the mean random blockage that occurs with probability pkb,u,
while the second term captures variations of the small-scale
fading coefficients, which occur due to a summation of effects
including CSI imperfection, channel aging, and partial block-
age. Setting ζ 2b,u,k = 0, the Bernoulli-Gaussian model of
equation (5) reduces to the usual Bernoulli blockage model
considered in the literature [27]–[29], and the path of the
m-th cluster from the b-th AP to the u-th user gets completely
blocked when ωkb,u = 0.

2Although we consider a frequency-independent outdoor urban mmWave
channel model, one can consider other mmWave channel models such
as indoor scenarios [31], rural macrocell scenarios [32], and frequency-
dependent wideband scenarios [33]. In any case, since the proposed algo-
rithm presented later does not assume any particular channel model, the pro-
posed algorithm can be easily extended to such different scenarios, which is
however out of scope of this article.
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C. PARTIALLY CONNECTED HYBRID COOPERATIVE
DOWNLINK SIGNAL MODEL
Under the assumption that the number of RF chains at each
AP is limited to NRF � Nt , and considering the channel
model detailed above, let f b,u ∈ CNRF×1 denote the trans-
mit digital baseband beamforming vector from the b-th AP
towards the u-th user, and Vb ∈ CNt×NRF be the transmit
analog beamforming matrix employed by the b-th AP when
transmitting to all users, subject to the unit modulus constraint
(i.e., |[Vb]i,j| = 1) [12].
Then, introducing the aggregate digital baseband beam-

forming matrix Fb , [f b,1, · · · , f b,u] employed by the b-th
AP, the received signal yu at the u-th user can be written as

yu =
∑
b∈B

hHb,uVbFbx+ nu

=

∑
b∈B

hHb,uVbf b,uxu +
∑

u′∈U\u

∑
b∈B

hHb,uf b,u′xu′ + nu

= hHuVf uxu︸ ︷︷ ︸
intended signal

+

∑
u′∈U\u

hHuVf u′xu′︸ ︷︷ ︸
interuser interference

+ nu, (6)

where x , [x1, · · · , xU ]T is the symbol vector trans-
mitted cooperatively from all APs to all users, with xu
denoting a symbol targeting at the u-th user; nu denotes
independent and identically distributed (i.i.d.) circularly sym-
metric zero-mean additive white Gaussian noise (AWGN)
at the u-th user,3 i.e. nu ∼ CN (0, ξ2u ); and finally
the cooperative analog beamforming matrix, V ,
blkdiag(V1, · · · ,VB) ∈ CBNt×BNRF , the aggregate channel
vector, hu ,

[
hT1,u, · · · ,h

T
B,u

]T
∈ CBNt×1, and digital

baseband beamformer, f u ,
[
f T1,u, · · · , f

T
B,u

]T
∈ CBNRF×1

from all APs to the u-th user are implicitly defined and
introduced in the last equation, for notational simplicity.

We emphasize that the block-diagonal structure of the
analog beamforming matrix V implies that the cooperative
downlink transmission scheme yielding the received signal
described by equation (6) is a virtually-configured partially-
connected hybrid beamforming architecture, unlike the fully-
connected counterpart considered in related works.

D. STOCHASTIC FORMULATION OF ROBUST
COOPERATIVE BEAMFORMING PROBLEM
The task of performing mmWave robust CoMP down-
link hybrid beamforming subject to random path blockage
can be formulated as a constrained optimization problem
without resorting to the standard deterministic robust opti-
mization framework. To elaborate further, our strategy is
to build resilience against random blockages by minimiz-
ing the stochastic sum-outage-probability subjected to this

3It should be noted that this method will be proposed later for different
types of noise. For the sake of simplicity, the common AWGN model is
assumed here.

phenomenon, which can be formulated as

minimize
f ,V

∑
u∈U

Pr {0u (f ,V |hu) < γu} (7a)

subject to ‖VbFb‖2F ≤ Pmax,b, ∀ b, (7b)

Vb ∈MNRFNt
cc , ∀ b, (7c)

where γu denotes the target SINR for the u-th user, and the
effective SINR 0u can be given by

0u (f ,V |hu) =
|hHuVf u|

2∑
u′∈U\u |h

H
uVf u′ |2 + ξ2u

, (8)

with f ,
[
f T1, · · · , f

T
U

]T
∈ CBUNRF×1.

In equation (7), MNRFNt
cc denotes an NRF-by-Nt

sub-Riemannian circle manifold in CNRF×Nt , defined as

MNRFNt
cc ,

{
z∈CNRF×Nt

∣∣∣|zi|=1, i={1, · · ·,NRF×Nt }
}
.

(9)

It should be noted that the problem formulated in equation
(7) differs fundamentally from related robust beamforming
methods. The objective of the problem formulated in equation
(7) is to enable reliable communication even under harm-
ful random blockages and CSI errors, by minimizing sum-
outage, which is more practical from a system point-of-
view. In addition, unlike deterministic formulations, which
are often based on a max-min sum rate maximization frame-
work followed by convex approximations with complexity
that grows rapidly, equation (7) is stochastic and has only as
many constraints as the number of APs owing to the power
constraints on top of the unit modular constraint for analog
beamforming.

Therefore, it can be said that the proposed approach has
a core advantage of being inherently practical, both from
mathematical and application viewpoints.

III. PROPOSED METHOD PART 1: UPDATE RULES
A. REFORMULATION AS TRAINED EMPIRICAL RISK
MINIMIZATION PROBLEM
In this section, we determine the update rules for the dig-
ital and analog beamformers, f and V , required to solve
equation (7). To that end, we employ the Gauss-Seidel-type
block-coordinate stochastic gradient technique [35] in con-
junction with manifold optimization to decouple the variables
f and V , so that the intractability imposed jointly by the
stochastic objective and the non-convex constraint can be
mitigated, providing an iterative alternate solution for the
problem formulated in equation (7).

To this end, owing to the ambiguity of the objective
function, we first introduce the following indicator function
10u(f ,V |hu)<γu given by

10u(f ,V |hu)<γu =

{
1 if 0u (f ,V |hu) < γu

0 otherwise
, (10)
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such that equation (7) can be written as a type of expectation
minimization problem, namely

minimize
f ,V

∑
u∈U

Eωkb,u
[
10u(f ,V |hu)<γu

]
(11a)

subject to ‖VbFb‖2F ≤ Pmax,b, ∀ b, (11b)

Vb ∈MNRFNt
cc , ∀ b. (11c)

Under the assumption that the channel gains and AoDs
are obtained from the preceding channel estimation process,
while also considering that some of those paths might be
under random blockage during the actual data transmission,
one may notice that possible combinations of blockage pat-
terns due to ωkb,u can be randomly generated and utilized as a
training dataset for problem (11). This is based on the estab-
lished fact that the path blockage probabilities of mmWave
channels can be estimated, as demonstrated in [22]–[24].

Considering the above, we define hmu as the m-th training
data batch for the channel hu of the u-th user, such that the
ERM problem formulation of equation (11) can be further
rewritten in terms of the summation, i.e.

minimize
f ,V

1
M

M∑
m=1

∑
u∈U

10u(f ,V |hmu )<γu
(12a)

subject to ‖VbFb‖2F ≤ Pmax,b ∀ b, (12b)

Vb ∈MNRFNt
cc ∀ b, (12c)

whereM denotes the size of the training dataset.
To address the intractable non-smoothness of the ERM

problem given in equation (12), we further introduce a smooth
surrogate function νu

(
f ,V |hmu

)
so that a gradient expression

of (12a) can be efficiently computed. To this end, we exploit
the fact that equation (12) can be seen as a classification prob-
lem; therefore, the indicator function (12a) can be replaced by
the hinge surrogate function [36], [37]

νu
(
f ,V |hmu

)
=


0 if 1−

0u
(
f ,V |hmu

)
γu

< 0,

1−
0u
(
f ,V |hmu

)
γu

otherwise,

(13)

which in turn enables equation (12) to be rewritten as

minimize
f ,V

1
M

M∑
m=1

∑
u∈U

νu
(
f ,V |hmu

)
(14a)

subject to ‖VbFb‖2F ≤ Pmax,b ∀ b, (14b)

Vb ∈MNRFNt
cc ∀ b. (14c)

The latter formulation of the proposed robust cooperative
hybrid mmWave beamforming problem can be recognized as
a type of differentiable non-convex stochastic optimization
problem with manifold constraints, whose solution can be
found via a block-coordinate descent algorithm such as that
proposed in [35]. To this end, however, the gradients of the

objective (14a) with respect to the digital baseband matrix f
and the analog RF beamforming matrix V must be derived,
which is the subject of the next two subsections.

Following a standardMSGD framework [38], this task will
be pursued under a hybrid and alternate approach in which
the gradients of the objective function (14a) with respect
to the digital baseband component f with V constant, and
with respect to the analog RF component V with f constant
will be considered. In addition, we consider a minimization
algorithm for variance reduction in terms of gradient direction
at each iteration [39] by means of mini-batches.

B. DIGITAL BASEBAND COMPONENT: GRADIENT WITH
RESPECT TO f WITH V CONSTANT
For notation simplicity, we hereafter define the mini-batch
size employed at the i-th algorithmic iteration as Mi, with
1� Mi � M .

For a fixed V , and over a mini batch of size Mi, the opti-
mization problem (14) reduces to the subproblem

minimize
f

1
Mi

Mi∑
m=1

∑
u∈U

νu
(
f |V ,hmu

)
(15a)

subject to ‖VbFb‖2F ≤ Pmax,b ∀ b. (15b)

Since the entries of the digital baseband beamforming
vector f can be any complex value that satisfies the power
constraint (15b), the gradient of νu

(
f |V ,hmu

)
with respect to f

can be computed by taking its derivative for a fixed V , which
yields

∇νu
(
f |V,hmu

)
=


0 if 1−

0u
(
f |V ,hmu

)
γu

< 0

−
∇0u

(
f |V ,hmu

)
γu

otherwise,

(16)

where the gradient of the SINR expression 0u can be com-
puted by introducing its alternative formula for the stacked
baseband beamforming vector f

∇0u(f |V,hmu )=∇
f H8m

f f

f H9m
f f + ξ

2
u
,

=
8m
f f

f H9m
f f+ξ

2
u
−

f H8m
f f

(f H9m
f f+ξ

2
u )2

9m
f f , (17)

where the second equality follows from the Wirtinger deriva-
tive and the auxiliary matrices 8m

f and 9m
f are respectively

defined as

8m
f , diag (eu)⊗ VHhmu h

mH
u V , (18a)

9m
f , diag (ēu)⊗ VHhmu h

mH
u V , (18b)

where eu ∈ {0, 1}U×1 denotes the u-th vector of the standard
orthonormal basis of dimension U and ēu denotes the logical
negation of eu (i.e., ēu = 1− eu).
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From the above, the update of f for a fixed analog RF
beamforming matrix V can be written as

f (i)=P
‖VbFb‖2F≤Pmax,b

(
f (i−1)−

α
f
i

Mi

Mi∑
m=1

∑
u∈U
∇νu

(
f |V,hmu

))
,

(19)

where f (i−1) indicates the solution obtained at the (i − 1)-
th iteration, αfi is the corresponding step-size to be tuned
later, and P

‖VbFb‖2F≤Pmax,b
(·) denotes the projection onto the

feasible convex set defined by the power constraint per-AP
given by inequality (15b).

C. ANALOG RF COMPONENT: GRADIENT WITH RESPECT
TO V WITH f CONSTANT
Analogous to the above, for a fixed f , and over a mini batch
of size Mi, the optimization problem (14) with respect to V
reduces to the subproblem

minimize
V

1
Mi

Mi∑
m=1

∑
u∈U

νu
(
V |f ,hmu

)
(20a)

subject to Vb ∈MNRFNt
cc ∀ b. (20b)

Unlike digital baseband beamforming f , however, calcu-
lating the gradient direction with respect to V is challenging.
This is because of the unit modular constraint defined by the
complex circle manifold MNRFNt

cc ; thus, manifold optimiza-
tion techniques [40] must be employed. To that end, we first
define the tangent space at a given z ∈ MNRFNt

cc , which can
be written as

TzMNRFNt
cc , {τ ∈ CNRFNt |<{τ ◦ z∗} = 0}, (21)

which contains all tangent vectors to MNRFNt
cc at a certain

point z.
Since the complex circle manifold MNRFNt

cc is a smooth
Riemannian manifold, a positive-definite inner product can
be defined on the tangent space given by equation (21),
such that the Riemannian gradient ∇Mνu

(
V |f u,h

m
u
)
at z on

MNRFNt
cc can be expressed as the orthogonal projection of the

Euclidean gradient ∇νu
(
V |f u,h

m
u
)
onto its tangent space.

In other words, we may define

∇
Mνu

(
V |f ,hmu

)
, PTzM

NRFNt
cc

(∑Mi
m=1∇νu

(
V |f ,hmu

)
Mi

)
=

1
Mi

Mi∑
m=1

∇νu
(
V |f ,hmu

)
−<

{
1
Mi

Mi∑
m=1

∇νu
(
V |f ,hmu

)
◦ V∗

}
◦ V (22)

To facilitate the derivation of the Euclidean gradient
∇νu

(
V |f u,h

m
u
)

with respect to V , we reformulate the
received signal and the SINR expressions so as to form

a tractable optimization variable. In particular, we rewrite the
received signal originally given in equation (6) as

yu = hHuVf uxu +
∑

u′∈U\u
hHuVf u′xu′ + nu

= ((xuf u)
T
⊗ hHu )vec(V ) (23a)

+

∑
u′∈U\u

((xu′ f u′ )
T
⊗ hHu )

,v︷ ︸︸ ︷
vec(V )+nu (23b)

where vec(·) denotes the vectorized (column stacked) repre-
sentation of a matrix, such that the implicitly defined vector-
ized representation v , vec(V ) is a sparse vector owing to
the partially connected structure of V .

It will prove convenient, therefore, to further define the
auxiliary matrix Ṽ ,

[
V1, · · · ,VB

]
such that its vectorized

representation ṽ , vec(Ṽ ) is a dense vector, and we may
write

yu = ((xuf u)
T
⊗ hHu )Wṽ+

∑
u′∈U\u

((xu′ f u′ )
T
⊗ hHu )Wṽ+ nu,

(23c)

where W denotes the transform matrix mapping the dense
vector ṽ onto its sparse representation v.
In light of equation (23), the SINR originally expressed as

in equation (8) can be rewritten for a given channel hmu as

0u
(
ṽ|f ,hmu

)
=

ṽH8m
ṽ ṽ

ṽH9m
ṽ ṽ+ ξ

2
u
, (24)

where

8m
ṽ , WH(f Tu ⊗ hmu

H)H(f Tu ⊗ hmu
H)W , (25a)

9m
ṽ , WH

∑
u′∈U\u

(
f Tu′ ⊗ hmu

H)H(f Tu′ ⊗ hmu
H)W . (25b)

Given the above, the Euclidean gradient ∇νu
(
ṽ|f ,hmu

)
can

be represented as

∇νu
(
ṽ|f ,hmu

)
=


0 if 1−

0u
(
ṽ|f ,hmu

)
γu

< 0

−
∇0u

(
ṽ|f ,hmu

)
γu

otherwise,

(26)

where, based on the SINR reformulation given in equation
(24), the Euclidean gradient of the SINR can be expressed
similarly to equation (17), i.e.

∇0u
(
ṽ|f ,hmu

)
=

8m
ṽ ṽ

ṽH9m
ṽ ṽ+ξ

2
u
−

ṽH8m
ṽ ṽ(

ṽH9m
ṽ ṽ+ξ

2
u
)29m

ṽ ṽ.

(27)

In light of the above, the Riemannian gradient can be
finally rewritten as

∇
Mνu

(
ṽ|f ,hmu

)
=

1
Mi

Mi∑
m=1

∇νu
(
ṽ|f ,hmu

)
−<

{
1
Mi

Mi∑
m=1

∇νu
(
ṽ|f ,hmu

)
◦ ṽ∗

}
◦ṽ,

(28)
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which can be recognized as a variation of equation (22) over
the vectorized dense representation ṽ of V .

Based on the Riemannian gradient of equation (28),
the updated vector ṽ obtained over the tangent space and

mapped onto the complex circle manifold MNRFNt
cc can be

written as

ṽ(i)=Retr
(
ṽ(i−1)− αvi

∑
u∈U
∇
Mνu

(
ṽ(i−1)|f ,hmu

))
, (29a)

where Retr(·) denotes the retraction operator that rescales a
given vector to element-wise unit modular entries [40] and
αvi is a step size to be given later.

After obtaining ṽ(i), the update of V for a fixed digital
baseband beamforming matrix f can finally be obtained by
unvectorizing its associated sparse version, i.e.

V (i)
=unvec(Wṽ(i)). (29b)

IV. PROPOSED METHOD PART 2: LEARNING RATES
A. CRITERIA FOR CONVERGENCE GUARANTEE
Having derived gradient updates corresponding to both the
digital baseband beamforming matrix f and the virtually con-
figured partially connected analog RF beamformingmatrixV
constrained by the unit modular manifold Mcc, we proceed
to propose a new blockage-robust hybrid beamforming algo-
rithm via the block-coordinate stochastic gradient descent
(BSGD) framework for CoMP systems operating at mmWave
bands. To that end, we first need to determine the learn-
ing rates αfi and αvi employed in equations (19) and (29a),
respectively.

There are two well-known (but not necessary) convergence
criteria for SGD algorithms, namely, the shrinkage crite-
rion [41], which entails a shrinking learning rate α1 > · · · >
αi > · · · satisfying

∑
∞

i=1 αi → ∞ and
∑
∞

i=1 α
2
i < ∞; and

the Lipschitz criterion [35], according to which convergence
is ensured by setting αi ∈ (0, 1/L], ∀i, where L is the
Lipschitz constant.

Although it is highly challenging to determine the exact
Lipschitz constant for the problem at hand, it was shown
in [35] that setting αi = ρ/(

√
i · L∗), where L∗ is a lower

bound of the Lipschitz constant L and ρ is a scaling coef-
ficient, has led to convergence. With that in mind, one can
leverage the well-known Taylor theorem to obtain a lower
bound of the Lipschitz constant. In particular, upon momen-
tarily altering our notation and using νu to denote the u-th
term of either of the surrogate objective functions in equations
(15a) and (20a), the Taylor Theorem yields Lu ·I � ∇2νu H⇒

Lu ≥ λmax(∇2νu), where λmax(·) is the largest eigenvalue
(spectral norm) of a given matrix, such that the lower bound
on the Lipschitz constant is given by

L∗ =
U∑
u=1

λmax(∇2νu). (30)

In light of the above, we offer below the derivation of the
Lipschitz constant lower bounds L∗f and L∗v corresponding

to the stochastic-gradient-based solutions of the subproblems
described by equations (15) and (20), respectively.

B. DIGITAL BASEBAND COMPONENT: LIPSCHITZ
BOUND FOR f WITH V CONSTANT
The Hessian of νu

(
f |V ,hmu

)
is given by

Hf (νu
(
f |V ,hmu

)
)

, ∇2νu
(
f |V ,hmu

)
=


0 if 1−

0u
(
f |V ,hmu

)
γu

< 0

−Hf
(
0u(f |V ,hmu )

)
γu

otherwise,
(31)

where Hf (0u
(
f |V ,hmu

)
) is the Hessian of the SINR with

respect to f , which in turn is given by

Hf
(
0u(f |V ,hmu )

)
, ∇20u

(
f |V ,hmu

)
=


∂20u

(
f |V ,hmu

)
∂f ∗∂f T

∂20u
(
f |V ,hmu

)
∂f ∗∂f H

∂20u
(
f |V ,hmu

)
∂f ∂f T

∂20u
(
f |V ,hmu

)
∂f ∂f H



=

,q1︷ ︸︸ ︷
1

f H9m
f f + ξ

2
u

[
8m
f 0

0 8m
f
T

]

−

,q2︷ ︸︸ ︷
f H8m

f f

(f H9m
f f + ξ

2
u )2

[
9m
f 0

0 9m
f
T

]

−

,q3︷ ︸︸ ︷
2

[
8m
f f f

H9m
f 8m

f f f
T9m

f
T

8m
f
Tf ∗f H9m

f 8m
f
Tf ∗f T9m

f
T

]
(f H9m

f f + ξ
2
u )2

+
2f H8m

f f

(f H9m
f f + ξ

2
u )3

[
9m
f f f

H9m
f 9m

f f f
T9m

f
T

9m
f
Tf ∗f H9m

f 9m
f
Tf ∗f T9m

f
T

]
︸ ︷︷ ︸

,q4

.

(32)

Given the relation between ∇
2νu

(
f |V ,hmu

)
and

Hf (0u
(
f |V ,hmu

)
), as per equation (31), it follows from equa-

tions (30) and (32) that, for a given user, we have

L∗fu =
1
γu
λmax(−Hf (0u(f |V ,hmu )))

≤
1
γu

(
λmax(−q1)+λmax(q2)+λmax(q3)+λmax(−q4)

)
,

(33)

where the latter inequality follows straightforwardly from the
triangular inequality.
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Note that q1 and q4 are both rank-1 positive semi-
definite matrices, which implies that λmax(−q1) = 0 and
λmax(−q4) = 0. In addition, for q3, we have

λmax(q3) =
2(f H8m

f 9
m
f f + f

T8m
f
T9m

f
Tf ∗)

(f H9m
f f+ξ

2
u )2

=
4f H8m

f 9
m
f f

(f H9m
f f+ξ

2
u )2
= 0, (34)

where we employed the fact that 8m
f 9

m
f = 0.

Using these results in equation (33), we obtain

L∗fu ≤
1
γu
λmax(q2), (35)

with

λmax(q2) =
f H8m

f f

(f H9m
f f+ξ

2
u )2

λmax(9m
f )

≤
f H8m

f f

ξ4u
λmax(9m

f )

=
Tr
(
Vf uf

H
uV

Hhmu h
m
u
H)
‖hmu

HV‖22
ξ4u

≤ BNtNRF
‖ĥu‖42
ξ4u

B∑
b=1

Pmax,b, (36)

where the identity λmax
([ A 0

0 AT

])
= λmax(A) and the bound

Tr (AB) ≤ λmax(A)Tr (B) combined with the trivial result
Tr
(
VVH

)
= BNtNRF were used in the first equation and the

last inequality, respectively.
Combining equations (30), (35), and (36), we finally have

L∗f ≤ BNtNRF

B∑
b=1

Pmax,b ·

U∑
u=1

‖ĥu‖42
γuξ4u

, (37)

from which it follows that the learning rates αfi to be
employed at each iteration of equation (19) in order to solve
problem (15) and obtain the optimal digital baseband beam-
former f is given by

α
f
i = ρ

(
√
iBNtNRF

B∑
b=1

Pmax,b ·

U∑
u=1

‖ĥu‖42
γuξ4u

)−1
. (38)

C. ANANLOG RF COMPONENT: LIPSCHITZ BOUND
FOR V WITH f CONSTANT
Following steps similar to the above, the Hessian matrix with
respect to ṽ is given by

Hv
(
νu(ṽ|f ,hmu )

)
, ∇20u

(
ṽ|f ,hmu

)
=


∂20u

(
ṽ|f ,hmu

)
∂ ṽ∗∂ ṽT

∂20u
(
ṽ|f ,hmu

)
∂ ṽ∗∂ ṽH

∂20u
(
ṽ|f ,hmu

)
∂ ṽ∂ ṽT

∂20u
(
ṽ|f ,hmu

)
∂ ṽ∂ ṽH



=

,`1︷ ︸︸ ︷
1

ṽH9m
ṽ ṽ+ξ

2
u

[
8m
ṽ 0

0 8m
ṽ
T

]

−

,`2︷ ︸︸ ︷
ṽH8m

ṽ ṽ

(ṽH9m
ṽ ṽ+ξ

2
u )2

[
9m
ṽ 0

0 9m
ṽ
T

]

−

,`3︷ ︸︸ ︷
2
[
8m
ṽ ṽṽ

H9m
ṽ 8m

ṽ ṽṽ
T9m

ṽ
T

8m
ṽ
Tṽ∗ṽH9m

ṽ 8m
ṽ
Tṽ∗ṽT9m

ṽ
T

]
(ṽH9m

ṽ ṽ+ξ
2
u )2

+
2ṽH8m

ṽ ṽ

(ṽH9m
ṽ ṽ+ξ

2
u )3

[
9m
ṽ ṽṽ

H9m
ṽ 9m

ṽ ṽṽ
T9m

ṽ
T

9m
ṽ
Tṽ∗ṽH9m

ṽ 9m
ṽ
Tṽ∗ṽT9m

ṽ
T

]
︸ ︷︷ ︸

,`4

,

(39)

with λmax(−`1) = λmax(−`4) = 0, such that

L∗vu=
1
γu
λmax(−Hv(0u(ṽ|f ,hmu )) ≤

λmax(`2)+λmax(`3)
γu

,

(40)

where

λmax(`2) =
ṽH8m

ṽ ṽ

(ṽH9m
ṽ ṽ+ξ

2
u )2

λmax(9m
ṽ ), (41a)

λmax(`3) =
4ṽH8m

ṽ 9
m
ṽ ṽ

(ṽH9m
ṽ ṽ+ξ

2
u )2

. (41b)

For the sake of future convenience, we introduce the
following equalities:

WH(f Tu ⊗ hmu
H)H(f Tu ⊗ hmu

H)W
= WH(f ∗uf Tu ⊗ hmu h

m
u
H)W (42a)

WH
∑

u′∈U\u

(
f Tu′ ⊗ hmu

H)H(f Tu′ ⊗ hmu
H)W

= WH
∑

u′∈U\u

(
f ∗u′ f

T
u′ ⊗ hmu h

m
u
H)W , (42b)

where we utilized (A⊗ B)(C ⊗ D) = (AC ⊗ BD).
Then, we obtain

λmax(9m
ṽ ) = Tr

(
WH(f ∗uf Tu ⊗ hmu h

m
u
H)W) ,

≤

B∑
b=1

Pmax,b‖ĥu‖22, (43)

and

ṽH8m
ṽ ṽ

(ṽH9m
ṽ ṽ+ξ

2
u )2
≤
BNtNRF

∑B
b=1 Pmax,b

ξ4u
‖ĥu‖22, (44a)

4ṽH8m
ṽ 9

m
ṽ ṽ

(ṽH9m
ṽ ṽ+ξ

2
u )2
≤

4BNtNRF(
∑B

b=1 Pmax,b)2

ξ4u
‖ĥu‖42, (44b)

VOLUME 9, 2021 74479



H. Iimori et al.: Stochastic Gradient Descent Approach for Hybrid mmWave Beamforming With Blockage and CSI-Error Robustness

Algorithm 1 Proposed Outage Minimum MSGD Coopera-
tive MmWave Blockage-Robust Hybrid Beamformer

Parameters: Number of iterations Itot and mini-batch
size(s)Mi.
Input: Channel gain and angle estimates gkb,u, θ

k
b,u and

φkb,u; corresponding uncertainty variance ζ 2b,u,k ; received
signals yu; maximum transmit power Pmax,b and target
SINR γu ∀ u, b, k
Output: Digital and analog beamformers V and f .

1: Initialize V (0) by phase matching to ĥb,u.
2: Initialize f (0) by phase matching to ĥb,u.
3: for i = 1, 2, · · · Itot
4: Generate mini batch of Mi samples of channel vectors

hmu ,
[
hmT1,u, · · · ,h

mT
B,u

]T
, with m = 1, · · · ,Mi and

where each hmb,u is in likeness of equation (4).
5: Update f (i) via equation (19), with analog beamformer
V (i−1) and learning rate αfi as in equation (38).

6: Update V (i) via equations (29a) and (29b) with digital
beamformer f (i) and learning rate αvi as in equation (46).

7: end for
8: Retain last V = V (i) as the final analog beamformer.
9: Obtain final digital beamformer f via equation (19)

with the last beamformer V and learning rate αfi as in
equation (38).

which, when combined with equations (40) and (41) and
ultimately substituted into equation (30), yield

L∗v ≤ 5BNtNRF

(
B∑
b=1

Pmax,b

)2
·

∑
u

‖ĥu‖42
γuξ4u

. (45)

Consequently, the learning rates αvi to be employed at each
iteration of equation (29a) in order to solve problem (20) and
obtain the optimal digital baseband beamformer V according
to equation (29b) are given by

αvi = ρ

√i5BNtNRF

(
B∑
b=1

Pmax,b

)2
·

∑
u

‖ĥu‖42
γuξ4u

−1. (46)

D. BLOCK-COORDINATE STOCHASTIC GRADIENT
Combining the results of Subsections IV-B, IV-C, III-B, and
III-C, a complete scheme to solve the stochastic formu-
lation of the mmWave cooperative hybrid blockage-robust
beamforming design described originally in equation (7) is
achieved, which is summarized in Algorithm 1.
Note that in order to control the variance of the gradi-

ent direction, we adopt an MSGD-type variance reduction
technique, which updates the solution by taking the sample
mean over a small fraction of the training dataset at each
algorithmic iteration. With regards to generating the training
dataset, we remark that the CSI error level ζ 2b,u,k is typically

several orders of magnitude smaller than its corresponding
mean quantity gkb,u, which can also be systematically incor-
porated into the robust beamforming design in Algorithm 1.
In summary, the proposed algorithm exhibits robustness

not only against random blockages but also against CSI
errors, which to the best of our knowledge is a novel contribu-
tion that has not been presented before. Finally, the efficacy
of the method is elucidated in the next section.

V. PERFORMANCE ASSESSMENT
In this section, we evaluate the sum-outage-minimizing
hybrid robust mmWave beamforming method proposed
above, comparing its performance against three fully dig-
ital schemes, namely, the OutMin technique of [28], the
SRM method [42], and the classic maximum ratio transmis-
sion (MRT).

Since fully digital approaches assume that transmit beams
are optimized without restrictions (employing a BNt × U
fully digital beamforming matrix to serve U users), the per-
formances of fully digital methods serve as bounds on those
of their hybrid counterparts.

In our simulations, a setup similar to that employed in the
measurement campaign carried out for the 28 [GHz] band
reported in [43] is considered, unless mentioned otherwise.
In particular, a mmWave square microcell model, with sides
100 meters wide and with B = 4 APs each located at a
corner of the square, is assumed, while U = 2 UEs are ran-
domly placed within the square being served by the system.
We set the heights of the APs and UEs to 15 [m] and 1.6 [m],
respectively, and it is assumed that each AP is equipped with
Nt = 16 transmit antennas but only NRF = 2 digital RF
chains, with the maximum transmit power constrained to
Pmax,b = 30 [dBm].

The mmWave channel propagation model proposed in
[6, Table 1] is utilized to characterize the path loss and the
number of clusters, and the AWGN variance ξ2u of each UE
is set such that

10 log10
(
ξ2u

)
= 10 log10 (1000κT )+ 10 log10 (W )+ NF,

(47)

where κ ≈ 1.38 × 10−23 is the Boltzmann constant, T =
293.15 [K] is the physical temperature at each user location
in Kelvins (i.e., 20 degrees Celsius), W = 100 [MHz] is
the subcarrier bandwidth, and NF = 5 [dB] is the standard
noise figure corresponding to each UE, ultimately yielding
ξ2u ≈ −89 [dBm].
Finally, we set the target data rate to be either

3 or 5 [bits/s/Hz] depending on the user requirements, where
γu is the desired SINR as defined in equation (7), while the
mini-batch sizeMi = 16.

A. CONVERGENCE BEHAVIOR
We start our assessment by evaluating the convergence
behavior of the proposed hybrid beamforming method in
terms of outage probability, which is the objective cost
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FIGURE 2. Convergence behavior of the proposed method for different
channel conditions.

function of interest in this study. For the sake of simplicity
and illustration, we assume that the blockage probabilities
(pkb,u ∀ m, b, u) are identical, regardless of the superscripts
and subscripts, i.e., pkb,u = p ∀ m, b, u, and p is assumed
to vary from 20% to 60% as suggested by the findings
in [8], [10]. With that in mind, three blockage scenarios are
investigated in the simulations, namely, 20%, 40%, and 60%,
which are referred to as moderate, severe, and critical block-
age conditions, respectively. In turn, the CSI uncertainty
ζ 2b,u,k is considered to be proportional to the corresponding
average small-scale fading coefficient, that is, ζ 2b,u,k = ζ 2 ·

gkb,u, where ζ
2 is a parameter that controls the CSI accuracy

level.
The first set of results is presented in Figure 2, which

depicts the convergence of the proposed iterative hybrid
beamforming design for blockage-robust CoMP mmWave
systems, as a function of the number of algorithmic

iterations, for the three distinct blockage scenarios described
above. It is found that regardless of the severity of the sce-
nario in terms of blockage probability, the proposed method
quickly learns the crucial blockage patterns and converges
to a stationary point, not only under the ideal assumption of
perfect CSI typically adopted in related literature, as shown
in Figure 2a, but also under the more realistic assumption that
fluctuation of the small-scale fading coefficients takes place
(i.e., imperfect CSI), as shown in Figure 2b. In fact, in both
cases (perfect or imperfect CSI), and under all blockage
scenarios (moderate, severe, and critical), the number of iter-
ations required for the proposed beamformer to converge is
approximately the same, which demonstrates the remarkable
robustness of the method.

Finally, it is also observed (interestingly but as expected)
that the outage performance of the proposed method is domi-
nated by probabilities of random path blockages themselves,
rather than by the CSI error variances. This fact will be
elucidated further in the next subsection.

B. STATISTICAL ANALYSIS OF THROUGHPUT
Next, we numerically analyze, via Monte Carlo simulations,
the statistical behavior of the four beamformingmethods con-
sidered herein—the proposed design, MRT, OutMin method
of [28], and SRM method—in terms of their achievable
throughput and outage probability under different channel
conditions.

We again emphasize that the fully digital versions of the
MRT, OutMin, and SRM schemes are simulated such that
the corresponding performances should be considered per-
formance upper-bounds for their hybrid counterparts. Finally,
to demonstrate that the advantage of the proposed method
extends beyond average performance, all results are offered in
the form of throughput cumulative density functions (CDFs).

In Figures 3 and 4, the CDFs of the achievable through-
put obtained by the four beamforming methods, with tar-
get rates of 3 and 5 [bps/Hz], respectively, are shown for
different blockage scenarios and under perfect CSI, while
Figures 5 and 6 display equivalent results obtained under
CSI uncertainty. Since the bandwidth of the system is
W = 100 [MHz], these target rates imply that in the cases
corresponding to Figures 3 and 5, the system is set to ide-
ally serve each user with at least 300 [Mbps], while in
Figures 4 and 6, the system aims to serve each user with at
least 500 [Mbps], respectively.

In all figures, lines without markers are used for the SotA
methods, while a solid line with a white circular marker
indicates the proposed method. For readability, the target
throughput is highlighted in the figures by a blue vertical line
annotated with the text ‘‘Target Rate’’. In addition, the out-
age probability achieved by each beamforming method —
as defined in equation (48) — is marked by an arrow also
annotated with the corresponding numerical value.

Pr
{
log2(1+ 0u (f ,V |hu)) < log2(1+ γu)

}
. (48)
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FIGURE 3. CDF of achieved data rates for different blockage probabilities
with target rate of 3 [bps/Hz] and perfect CSI.

FIGURE 4. CDF of achieved data rates for different blockage probabilities
with target rate of 5 [bps/Hz] and perfect CSI.
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FIGURE 5. CDF of achieved data rates for different blockage probabilities
with target rate of 3 [bps/Hz] and CSI errors.

FIGURE 6. CDF of achieved data rates for different blockage probabilities
with target rate of 5 [bps/Hz] and CSI errors.
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In all the figures, the proposed hybrid method achieves a
lower outage probability than the fully digital MRT and SRM
beamformers, regardless of CSI quality and blockage condi-
tions. Furthermore, the new technique is found to consistently
approach the performance of the also-fully-digital OutMin
method. Taking into account that the proposed hybrid scheme
makes use of only NRF = 2 RF chains per AP, as opposed
to fully digital methods which require all NRF = Nt = 16
RF chains per AP, the results demonstrate the remarkable
effectiveness of the proposed hybrid method in combatting
path blockage with significant potential to reduce hardware
costs (by alleviating RF chain requirements) without compro-
mising outage performance.

As for the impact of CSI errors, a comparison of
Figures 3 and 4 against Figures 5 and 6 indicates that the
overall impact of CSI errors is to retract some sharpness
from the outage minimization approaches in enforcing the
prescribed target rate. Even under such an effect, however,
both the relative gain over the MRT and SRM beamform-
ers, as well as the proximity in performance of the pro-
posed scheme to the ideal OutMin method, remain mostly
unchanged.

To cite a few examples, both under perfect and imperfect
CSI, the proposed hybrid CoMP beamformer, under 20%path
blockage probability and a target throughput of 3 [bps/Hz],
achieves an outage reduction of approximately 30% and
10% over the MRT and SRM beamformers, respectively
(see Figures 3a and 5b). Similarly, at 60% blockage proba-
bility and a target rate of 5 [bps/Hz], the new hybrid scheme
outperforms the MRT and SRM methods by approximately
30% and 25% in terms of the reduction of outage probability,
respectively, both under perfect and imperfect CSI conditions
(see Figures 4c and 6c).

Thus, the results demonstrate that the proposed SGD
approach for cooperative hybrid beamforming aimed at min-
imizing outage in mmWave systems subjected to path block-
age and CSI imperfections is highly effective.

An interesting and final conclusion that can be drawn from
the comparison of the results shown in Figures 3 through 6
is that among the considered methods, the MRT, OutMin,
and new hybrid techniques are in fact all somewhat robust
to CSI imperfections, whereas the SRM schemes seems to
be the most sensitive to the quality of channel estimates.
This is somewhat unsurprising, since the SRM method is
not designed to minimize outage, but rather to maximize the
achievable rate, such that one could argue that the aforenoted
comparison is ‘‘unfair’’ to that particular approach. Scru-
tinizing this conclusion is a worthy exercise, nevertheless,
as it provides insight on the conceptual question of whether
rate maximization is the most suitable figure of merit in the
optimization of mmWave systems, which in practice needs to
be carefully chosen depending on the system objectives and
requirements, as implied by Figures 3 through 6.
To that end, we compare in Figure 7 the effective through-

put (i.e., the average throughput at and above the target rate)

FIGURE 7. Effective throughput as a function of the blockage
probabilities, with and without CSI uncertainty.

achieved by each of the considered beamforming schemes,
as a function of the path blockage probability and for both
evaluated channel estimation conditions, namely, perfect CSI
(ζ = 0) and imperfect CSI with ζ = 10−1. Following
the related literature, the effective throughput is defined as
E[log2(1+ x)], where x = 0u (f ,V |hu) if 0u (f ,V |hu) ≥ γu
and x = 0 otherwise.
It is found, once again, that the proposed hybrid beam-

forming scheme performs only slightly worse than its fully
digital couterpart [28], outperforming the other SotA meth-
ods, regardless of the CSI conditions and blockage proba-
bilities. The only exception is the case of perfect CSI for
blockage probabilities below 25%, where it is found that
the SRM scheme outperforms the proposed method. It must
be emphasized, however, that: a) the SRM scheme is fully
digital, employing a total of Nt×B=16×4=64 RF chains to
serve U=2 users, in contrast to the proposed hybrid scheme,
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which requires only NRF×B=2×4=8 RF chains; and b) that
the SRM scheme is designed to maximize effective through-
put, paying to that end the price of sacrificing overall QoS
by allowing higher outage probabilities (see e.g., Figure 4a
where it is shown that the SRM beamformer with perfect CSI
under 20% blockage probability leads to outages above 35%).

By contrast, when subjected to CSI errors, even that even-
tual localized ‘‘advantage’’ of the SRM approach is lost.
In fact, as shown in Figure 7b, the SRM approach proves
the most sensitive to both path blockages and CSI errors,
exhibiting a significantly higher degree of degradation in
performance than all other methods.

In summary, the results demonstrate collectively that the
proposed method offers a competitive approach to mitigate
the path blockage challenge in mmWave systems; notably,
it also possesses robustness against CSI imperfections and
exhibits little sacrifice in performance, compared to the fully
digital OutMin approach, for the significant potential reduc-
tion in hardware cost due to its hybrid architecture.

VI. CONCLUSION
Aiming at the minimization of sum-outage in mmWave sys-
tems subjected to both path blockages and imperfect CSI,
we proposed a new hybrid CoMP beamforming algorithm.

The proposed design is based on an empirical risk min-
imization stochastic learning problem formulation, solved
through the alternate iteration of baseband digital and RF
analog Riemann-manifold-constrained beamforming sub-
problems via a mini-batch stochastic gradient descent
approach, with gradient-minimizing update rules given in
closed form; further, learning rates are designed via lower
bounds of the corresponding Lipschitz constants.

In contrast with previously proposed solutions, in which
perfect CSI is assumed [26]–[29], our method relies on con-
ventional initial estimates of the channels’ angles of departure
and complex gains, and on statistical knowledge of the cor-
responding blockages [6]–[8], [10], [11] and estimation error
probabilities [16]–[18]. The channel uncertainties, including
path blockages and imperfect CSI, are captured jointly in a
newly introduced Bernoulli-Gaussian model, which is used
to generate the training data for the MSGD-based optimizer,
altogether resulting in a stochastic learning beamforming
solution that is robust to both types of impairments.

Unlike preceding contributions, which employ either dig-
ital or fully connected hybrid beamforming architectures,
the proposed scheme employs a virtually configured par-
tially connected hybrid beamforming architecture, having
therefore the advantage of being suitable for CoMP systems.
This advantage is aligned with the existing theoretical find-
ings [19], [20] that illustrate that the CoMP approach can
achieve the full potential (i.e., capacity-approaching rates and
low outages) of mmWave systems in the presence of path
blockages.

Simulation results were offered to confirm the effective-
ness of our MSGD-based robust hybrid CoMP mmWave

beamformer in mitigating the effects of path blockages and
CSI errors.

Lastly, we point out that since mmWave CoMP systems
might be required to serve extremely high data rates, wide-
band technology needs to be considered in order to meet
such requirements. When considering wideband transmis-
sions, one of themain bottlenecks is known to be beam squint,
which may degrade the communication performance. Given
the above, a wideband extension taking into account path
blockages, CSI errors, and beam squint is left for a future
work.
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