
Received April 5, 2021, accepted April 25, 2021, date of publication May 13, 2021, date of current version June 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3080136

YOLBO: You Only Look Back Once–A Low Latency
Object Tracker Based on YOLO and Optical Flow
DANIEL S. KAPUTA , (Member, IEEE), AND BRIAN P. LANDY
Rochester Institute of Technology, Rochester, NY 14623, USA

Corresponding author: Daniel S. Kaputa (dskiee@rit.edu)

This work was supported in part by the Moog Space and Defense Group.

ABSTRACT One common computer vision task is to track an object as it moves from frame to frame within
a video sequence. There are a myriad of applications for such capability and the underlying technologies
to achieve this tracking are very well understood. More recently, deep convolutional neural networks have
been employed to not only track, but also to classify objects as they are tracked from frame to frame. These
models can be used in a tracking paradigm known as tracking by detection and can achieve very high tracking
accuracy. The major drawback to these deep neural networks is the large amount of mathematical operations
that must be performed for each inferencewhich negatively impacts the number of tracked frames per second.
For edge applications residing on size, weight, and power limited platforms, such as unmanned aerial
vehicles, high frame rate and low latency real time tracking can be an elusive target. To overcome the limited
power and computational resources of an edge compute device, various optimizations have been performed
to trade off tracking speed, accuracy, power, and latency. Previous works on motion based interpolation with
neural networks either do not take into account the latency accrued from camera image capture to tracking
result or they compensate for this latency but are bottlenecked by the motion interpolation operation instead.
The algorithm presented in this work gains the performance speedup used in previous motion based neural
network inference papers and also performs a novel look back operation that is less cumbersome than other
competing motion interpolation methods.

INDEX TERMS CNN, classifier, detector, neural network, low latency, tracker, UAV, YOLO, look back,
drone, image processing.

I. INTRODUCTION
Computer vision [CV] and deep learning [DL] are enabling
technologies behind advanced driver-assistance systems
[ADAS], augmented and virtual reality [AR/VR] devices,
UAV collision avoidance systems, and a myriad of other
applications not yet realized. This paper focuses on a subset of
computer visionwhich pertains to the algorithms that are used
for object detection, object tracking, and object classification
within video sequences. These terms are very inter-related
and it is worth taking the time to clearly define them. Object
detection can be performed on a single image and it is akin
to the ‘‘Where’s Waldo’’ books where one must find Waldo
somewhere on the page. Object tracking is different in that
the goal is to determine the location of an object as the
object moves from video frame to video frame. The most
obvious way to perform object tracking would be to simply

The associate editor coordinating the review of this manuscript and

approving it for publication was Zijian Zhang .

perform object detection on each frame and is referred to as
tracking by detection [TBD]. This is an inefficient implemen-
tation however and a more efficient approach involves sparser
detection combined with traditional tracking methods. Not
only is TBD inefficient but how does one reconcile the sce-
nario where a tracked unmanned aerial vehicle [UAV] flies
behind a tree? The answer is that techniques other than TBD
can be used such as determining an object’s trajectory and
then inferring the future position of the object even when
it becomes occluded. The field of determining an object’s
motion trajectory is quite deep and is actually the basis for
many kinds of video compression algorithms such as MPEG
encoding. In this paper the concept of using motion infor-
mation to track an object is sometimes referred to as motion
interpolation ormotionmarching asmotion vectors are strung
together to march an object’s location from frame to frame.
Lastly, object classification refers to determining the class
that an object in an image belongs to. For example, did a UAV
fly into a restricted air space or was it just an unladen swallow.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 82497

https://orcid.org/0000-0002-5620-6193
https://orcid.org/0000-0001-5688-4691
https://orcid.org/0000-0002-6313-4407


D. S. Kaputa, B. P. Landy: YOLBO: YOLBO–Low Latency Object Tracker

The three above mentioned computer vision tasks have
traditionally relied on techniques such as matched filtering,
motion vectors, edge detection, principal component analy-
sis, and other well developed methods. Recently, with the
advent of deep convolutional neural networks, the vision
scientist can pick and choose how to combine traditional
and artificial intelligence [AI] based algorithms in order to
achieve the desired result. Traditional algorithms such as
the matched filter can take less computation time than a
convolutional neural network [CNN] however they do not
typically possess the scale and rotational invariance that a
well trained CNN does. Lin et al. [1] came up with a way to
combine the benefits of traditional methods with those of the
newer AI methods in order to find the sweet spot of object
detection, tracking, and classification. The approach entails
performing CNN inference on inference frames [I frames
in this work] and object tracking via traditional methods on
extrapolation frames [M frames in this work]. This technique
requires one to determine a skip factor which ultimately sets
the ratio between I and M frames and proportionally scales
the frames per second [FPS] that can be achieved. This frame
rate speedup is not without a cost however as there is a slight
drop in tracking accuracy asmotion error is accrued. Skipping
to speedup tracking throughput is a concept seen in the work
of Zhu et al. [2], Ujiie et al. [3], Meenakshi et al. [4], and
Buckler et al. [5].
The main contribution of this work is YOLBO, a tun-

able low latency lightweight tracker based on a CNN object
detector and augmented with optical flow motion vectors
that is capable of running on an edge embedded system
with no cloud offloading. Our algorithm makes use of a
look back technique which effectively marches forward pre-
vious ‘‘stale’’ CNN inferences by means of stored optical-
flow-generated motion vectors. This algorithm does not rely
on hardware specific video encoding/decoding capabilities
which allows it to be readily ported to Graphics Processing
Unit [GPU] or Field Programmable Gate Array [FPGA] edge
compute devices. The optical flow based ROI-to-centroid
tracking technique of this article reduces motion interpolation
processing cost as compared to similar works and smooths out
the overall processing frame rate by pre-calculating motion
adjustments for different objects previously identified by the
tracker. YOLBO is profiled on a standard desktop PC as
well as on an Nvidia Jetson TX2 with different CNN models
to show the benefits compared to the non-motion baseline
inference case.

An example that demonstrates the benefits of YOLBO
would be a scenario where images are being processed at
30 FPS on-board a UAV, that is one new frame every 33 ms.
It also takes a full frame update from photon capture to read
out of the frame into the on-board processor where it can
be read. Traditional algorithms will therefore take 2 frame
updates [66 ms] before adjusting the flight control surfaces
based on visual information. For a drone flying at 180mph [6]
which is roughly 80 m/s, a UAV will travel 4.84 meters
before making an action based on what it sees. For sense and

avoid scenarios when flying through cluttered environments,
operating on information that is 30 feet old is not an ideal
scenario. YOLBO would allow for a UAV to cut the tracking
latency in half and to act based on information that is only
15 feet delayed.

II. RELATED WORK
There is a need for a low latency, high frame rate, embedded
object tracker and classifier for visual serving of UAVs for
many applications such as UAV formation flying, collision
avoidance, target acquisition, and more. It does not make
sense to run the object tracker and the object classifier at the
same rate as objects typically move much faster than they
change class. By leveraging a traditional object tracker that is
updated via deep learning key frames, the best of both worlds
is possible as the classifier can be run at a slower rate and
its scale and shift invariance capability effectively reloads the
traditional tracker on every key frame.

This traditional computer vision and deep learning fusion
finds a balance between frame rate, latency, and accuracy
that new edge applications demand. The goal of this work
is to improve on existing CNN and motion based trackers
by significantly reducing the latency of the tracker without
adding significant accuracy degradation. Great works with
interpolation based object detection at the edge are performed
by Zhu et al. [2], andUjiie et al. [3], but both accrue large bulk
latency delays due to the CNN inference time. Murray [7]
summarizes this challenge best when he says, ‘‘. . . there is a
trade-off when designing a tracker as a more powerful tracker
gives more accurate detections, which facilitates the tracking,
but at the same time runs slower which makes tracking harder
since more frames must be skipped’’. The concept of using
motion-based interpolation to reduce latency has been put to
use to adjust 3D point cloud data in [8] by Nicolai et al. and
also in a similar manner by Liu et al. [9] and Chen et al. [10]
to combat network latency for remote inference.

In [9], data is sent to the cloud and inference time is
relatively small resulting in very few M frames. This means
motion marching is only for a small frame interval, and
instead of logging inter-frame motion and marching it, [9]
only calculates the motion from the inference frame to the
final frame in one go by using reference picture select [RPS]
to set the source frame to the frame of the cached detections.
H.264 decoded motion vectors are generated for non consec-
utive frames, rather than logging the inter-frame differences
and marching at the end. This succeeds due to temporal
coherence between close frames however for network-denied
edge applications with longer inference times this technique
may not perform as well. A solution for devices with long
inference times would need to take into account framemotion
between many consecutive M frames and perform motion
vector marching to preserve temporal continuity.

The closest implementation of look back motion marching
is demonstrated in Glimpse [10], however there were some
self reported issues in tracking due to the nature of the tracked
feature selection due to device constraints but Glimpse sought

82498 VOLUME 9, 2021



D. S. Kaputa, B. P. Landy: YOLBO: YOLBO–Low Latency Object Tracker

to alleviate these with their methods. For example, many
edge points are tracked for objects in a frame and all motion
information is cached in an ‘‘active cache’’ until ‘‘stale’’
detections are received from a remote server. There is unfor-
tunately too much motion information stored in the active
cache to update the stale boxes to the current frame if every
frame is processed. To mitigate against this scenario, [10]
selects only a fraction of these cached frames which ‘‘swiftly
catch up to the current frame, but might degrade performance
since [they] discard many frames; a bigger [percent of cache]
ensures reliable tracking, but it takes more time and [they]
would be left with stale results’’, [10]. Because of the number
of points tracked with the Glimpse region of interest [ROI]
technique, and the size of the active cache, frames have to be
removed from the latency reducing march operation, which
lowers accuracy sooner over time when compared to using
all possible motion information. But this information, may
sometimes be worth removing as no motion may have been
recorded. This is one of the ways Glimpse worked to solve
the problem of latency reduction. In this article, Glimpse-like
and ROI-Every-Frame will refer to ROI optical flow every
frame, which presents the same issues that Glimpse sought to
solve with their paper’s techniques. We present an alternative
in this work.

Cintas et al. propose vision-basedUAV tracking by another
UAV by use of YOLOv3 and kernalized correlation filters
[KCF] [11]. They recognized the need for deep learning
key frames to effectively generate the new correlation tem-
plates that can be used in-between successive math-heavy
inference-based key frames. The problem with the KCF
approach [12] for target tracking is that they are very robust to
translation changes of a target template within and image but
are not immune to rotational or scale changes. Opromolla [13]
uses YOLOv2 as well as bounding box refinement in order
to better hone in on the centroid of another UAV flying in
front of the tracking UAV. Opromolla however only scans the
middle portion of the full image for targets to track which
is not ideal in scenarios where a UAV must sense and avoid
objects entering the scene from the top or bottom of the field
of view.

Many others have exploited the temporally coherent prop-
erties of video, as mentioned by Feichtenhofer et al. [14],
to improve object detection and tracking. A relevant field
of study has formed which combines video based motion
tracking with CNNs. These trackers use many traditional
tracking techniques such as optical flow, motion vectors and
simple macroblocks in combination with object detectors like
YOLO.

For a UAV tracker that is simply monitoring ground based
objects, the low latency advantage of the YOLBO trackermay
not be necessary as the UAV is not flying at high speeds and a
delay of 30 ms will not be very impactful to operation as seen
in the work of Shao et al. [15]. For a future scenario though
where thousands of UAVs are dog-fighting with each other at
high speeds it will be important to not only follow aUAVwith
very low tracking latency but also to determine if that UAV

is a friend or foe. YOLBO allows the modern UAV to track
the present target with very high accuracy and low latency
and also acquire new objects as they enter the field of view.
Ultimately the vision control loop of the UAV will make a
decision of whether or not to stay locked on an existing target
or to modify its trajectory to jump to tracking a higher priority
target. The capability to track and potentially follow multiple
targets will become more and more important with the advent
of military drone swarms as was demonstrated by the Indian
army with a swarm of 70 UAVs [16].

Other applications involve high speed flight through a
cluttered environment especially when there is no map or
GPS signal. The fast, lightweight, and autonomous [FLA]
program was developed by DARPA to focus on achieving
this capability. Being able to not only recognize edges as is
commonly done with Sobel filtering, but to be able to classify
the edge as a tree leaf rather than a tree branch would mean
the UAV might not have to change its trajectory. CNN-based
classification allows for this secondary layer of contextual
awareness that enables UAVs to make the best decision based
upon their camera inputs. As mentioned in the introduction,
the main contribution of this work is YOLBO, which is a tun-
able low latency lightweight tracker based on a CNN object
detector and is augmented with optical flow motion vectors
that is capable of running on an edge embedded system with
no cloud offloading.

III. EDGE COMPUTING
A. EDGE DEVICES
There is a need to perform inference and localization on
the edge especially for many military applications such as
counter UAS. Some of the available edge compute topologies
include ASICs, GPUs, FPGAs, CPUs, DSPs, and microcon-
trollers. Although any of these compute paradigms could
be used, a typical size, weight, and power [SWaP] trade is
performed on the technical side as well as a cost, schedule,
and risk trade on the financial side. Most of the UAV trackers
employ GPU based systems due to their low cost, familiar
coding framework [CUDA], and relatively low SWaP num-
bers. Other parameters namely latency and frame rate must
be considered though which point to FPGA-based systems
overtaking GPU systems for embedded object tracking [17].
YOLBO was initially run on a desktop PC with an NVIDIA
1070ti GPU and then ported to the TX2 due to the straight-
forward and similar coding framework, however the ultimate
goal is to port YOLBO to the Fusion 2 stereo camera and then
to the Fusion 1 UAV [18] for UAV to UAV tracking.

B. LATENCY, FRAME RATE, ACCURACY
When designing a tracker, frame rate is an important charac-
teristic to keep in mind. Frame rate is the number of frames
per second and is the throughput of a computer vision system.
Latency on the other hand is the time required to process a
frame from photon capture to algorithm output and can be
very different than frame rate as shown in Fig 1. Frame rate
has been shown to increase when detected object locations are

VOLUME 9, 2021 82499



D. S. Kaputa, B. P. Landy: YOLBO: YOLBO–Low Latency Object Tracker

FIGURE 1. Latency without Motion Vectors [a], Latency with other
Trackers [b], Motion Marching [YOLBO Tracker, Glimpse] [c].

interpolated with motion vectors as shown in [1] and [3] how-
ever these algorithms still suffer from a single inference bulk
latency. YOLBO takes advantage of the frame rate speedup
via motion-based interpolation however completely removes
the bulk latency associated with competing algorithms.

IV. PROPOSED SYSTEM
The various components of the YOLBO tracker are presented
below and are discussed as they pertain to the tracking appli-
cation depicted in Fig 2. Our look back algorithm is similar
to that described in [10] however ROI-to-centroid tracking
as well as motion vector pre-calculation routines have been
added to reduce computation overhead. An enhancement to
the core YOLBO tracker is an IoU-based keep alive feature
which is found inmany other state of the art trackers. Lastly as
mentioned above, YOLO and optical flow are used for object
detection and motion interpolation.

A. OBJECT DETECTOR
The detectors used for this work come from the YOLO
family of object detectors namely YOLOv2-Tiny, YOLOv3,
and YOLOv4-Tiny. Although any object detection model
could have been chosen, YOLO is a great start for
edge inference. There are different reasons to chose
YOLOv2-Tiny or YOLOv3, or even something like
YOLOv4-Tiny and YOLOv4-Tiny_3L. Bulkier object detec-
tors with more layers and learned filters may perform better
with small objects. Using pruned or reduced versions may
have less coefficients and infer faster, however, speed is not
everything. If a system can not react to an object because it
is not detected, then the speed at which the model performs
detection is mute. YOLOv3 is a large model that takes a long
time to run on the Jetson TX2 with native Darknet, but the
look back based tracking and latency marching yield action-
able results for small objects. YOLOv2-Tiny may be quick
and require less skips, but is not as reliable for smaller objects.
YOLOv3 was a good baseline for desktop operation as it was
accurate and not too fast such that the benefits of skipping
were not observable. YOLOv2-Tiny had decent accuracy
performance on a PC and has the smallest weight size out of
all, making it a good start for an FPGA based detector with

limited on-chip memory. YOLOv4-Tiny yielded the highest
FPS on the Jetson TX2 and the desktop environment and is
considered state of the art in terms of light weight object
detection.

B. MOTION ESTIMATION
Lucas-Kanade Optical flow motion estimation was the tech-
nique of choice for YOLBO due to its speed and ease of
implementation with OpenCV. Various full frame, region of
interest [ROI] and ROI-to-centroid tracking schemes were
developed and are discussed in the methodology section
below. Subdividing the image into discrete macroblocks was
also attempted, however without a dedicated video decoder
the required extra overhead was deemed too expensive. Opti-
cal flow block sizes of 8 × 8 pixels were used. For ROI
generation of points, Harris Corner Detection is used.

C. CORE FEATURES
Look back tracking is fundamentally based around motion
interpolation of object detections in a video sequence. Look
back is aimed at reducing latency of tracking by adjusting
outdated detection information with logged motion which
is a similar idea to the operation of the work in [8], [9],
and [10] and many more works. This motion logging and
interpolation is a necessary part of look back, as the algorithm
does not wait for CNN detections on frame N to finish before
outputting a tracking result for frame N. A visual depiction of
look back tracking can be seen in the frame sequence found
in Fig 2. The top row of UAV images show the internals of
the look back algorithm and the lower row of UAV images
show the resultant bounding boxes derived from the look back
algorithm. The colors are used for illustrative purposes only
as the output bounding boxes for all frames are the same color
in the actual implementation of YOLBO. Before diving into
how the look back algorithm is different than the algorithms
found in [3] and [10], some background nomenclature must
first be introduced.

One common and well used method to speedup the frame
rate of object detection via neural network inference is to
perform inference on various key frames and to interpolate
themotion of detected objects during the intermediate frames.
In this work the inference frames are called I frames and
marched or skip frames are called M frames. M frames are
where existing information is interpolated from one frame
to the next as in [2] and [3]. The variable N is the number
of total frames that span a CNN inference time and it is
mathematically equal to the number of M frames+ 1 or [N=
M+ 1]. Fig 2 depicts a scenario where 2 frames are marched
or skipped thus resulting in N with a value of 3.

The UAV enters the field of view in frame 0 and inference
is started. This mode for the object is denoted as U which
stands for untracked. Note that since motion interpolation
is much faster than CNN inference, the inference does not
finish until frame 3 [N]. While frame 0 is being processed
by the neural network the object in the frame continues its
motion which renders the inference result ‘‘stale’’, a term

82500 VOLUME 9, 2021



D. S. Kaputa, B. P. Landy: YOLBO: YOLBO–Low Latency Object Tracker

FIGURE 2. Look Back Video Sequence Details.

FIGURE 3. Method of Skipping Between Detections with Motion from [3].

coined in [10]. The solid yellow bounding box in frame 3 is
at the same spatial location of the dashed yellow bounding
box in frame 0 albeit stale or delayed by 3 frames. Many
motion augmented AI-based trackers effectively use the solid
yellow stale inference results and delay their frame display
[by 3 frames in this case] so that the inference better lines
up with the image of the object. This bulk delay of one
full inference duration is conceptually depicted in Fig 1 and
detailed in Fig 3 where frame 0 results do not appear until
frame N. The bulk inference delay degrades tracking results
as can be seen by comparing the location of solid yellow and
dashed yellow bounding boxes within the same frame.

Once the frame 0 inference is complete and the solid
yellow bounding box in frame 3 is produced, the object has
transitioned into the locking or L mode. In this mode the look
back algorithm understands that the location of the object
is stale and that the actual object location should be within
a certain tolerance of the stale bounding box. Look back
grows the stale bounding box by roughly 20 percent and
uses the enlarged bounding box [orange bounding box in
frame 3] as a region of interest for the optical flow motion
algorithm. Up to 15 key points are tracked by this optical flow
implementation and they consist of the orange and blue stars
in frames 3 [N], 4 [N+1], and 5 [2N−1]. Upon completion
of the frame 3 inference as depicted by the frame 6 [2N] solid
yellow bounding box, a search is performed to determine

which of the 15 tracked points back in frame 3 originally lied
within the dashed yellow bounding box of frame 3. These
points which are shown as blue stars in frames 3, 4, and
5 are the points that are actually located on the object being
tracked. This optical flow motion vector reduction technique
makes sure that points not belonging to the object are not
used formotion interpolation. Frames 3,4, and 5 are displayed
as shown in the second row of UAV images however these
bounding boxes are not very accurate due to the object not
being fully tracked yet.

The next step after reducing the 15 tracked points down to
a subset of marching points is to average all marching motion
vectors [vectors associated with blue stars] down to a single
motion vector and to march that forward to arrive at the solid
purple ‘‘marched’’ bounding box. This solid purple bounding
box in frame 6 is the location of an object determined via look
back and it can be seen that it will be at a slightly different
location than the dashed yellow inference bounding box in
frame 6. The difference between these boxes manifests itself
as the accuracy degradation based on motion vector errors of
the look back approach compared to the CNN inference every
frame approach.

Lastly, starting at frame 6, the object enters tracking or T
mode where the purple bounding box centroid denoted with
the purple star is marched forward every frame via single
point optical flow. This transition from multiple point ROI
based tracking as used in L mode into single point centroid
tracking in Tmode is a key feature [ROI-to-centroid tracking]
that allows look back to run faster than ROI-every-frame
approaches, and more like other mobile trackers such as [10].
At T mode, the bounding box is on the actual target as soon
as the next frame is read in and the object can now be tracked
with a centroid generated by its box position. With this cen-
troid tracking data, the critical marching latency for a stale
detection frame can be reduced and distributed over the past N
number of frames as well. In frame 7 the motion vector from

VOLUME 9, 2021 82501



D. S. Kaputa, B. P. Landy: YOLBO: YOLBO–Low Latency Object Tracker

frame 6 [determined via optical flow on the purple centroid]
to frame 7 [2N+1] is determined and the purple bounding box
is displayed. In frame 8 [3N−1] however the motion vector
is determined from frame 6 to frame 8. In this manner, by the
time that frame 9 [3N] is reached a motion vector has been
determined that links or marches from frame 6 to frame 9.

Instead of marching the purple bounding box from frame 6
to frame 9 [thus arriving at the dashed purple box in frame 9],
there is new inference information available at frame 9 that is
used to ’snap back’ the motion tracking error. At frame 9,
the yellow dashed bounding box from frame 6 is finished
processing and the yellow dashed box is marched forward via
the stored motion vector linking frames 6 and 9 to arrive at
the green solid bounding box. This stored motion vector that
skips multiple frames from 6 to 9 is the motion vector pre-
calculation. The accumulated motion of the single tracked
point used from 6 to 9 is used again and has already been
calculated. This is better than the ROI method as it does not
need to determine if several points are within a new bounding
box thus resulting in greatly reduced marching latency. Note
that the green dashed boxes in frames 7 and 8 are marched
boxes and are not displayed or even calculated as the ROI-
to-centroid vector addition from frame 6 to frame 9 skips
over these frames. Fig 3 sourced from [3], shows the imple-
mentation of the tracker that does not have motion marching
capability and the track of frame N is always off by one
inference delay worth of time. With look back, this inference
latency is cut out as the limiting factor.

D. KEEP ALIVE
TheYOLBO tracker also uses a ‘‘keep alive’’method that will
keep an inferred object’s box alive in memory for a certain
number of frames after its association from one tracklet to
the next fails. This feature mitigates faulty detections where
an object is not picked up in the I frame but still exists in the
video sequence. When an object has left the sequence possi-
bly due to occlusion, small object size, poor network train-
ing, etc.., and the number of keep alive frames is exceeded,
the object is subsequently set to F mode. YOLBO generates
tracklets for N frames and each tracklet is linked to the next
via IoU based matching. A unique ID is assigned to each
matched object track for indexing purposes and unmatched
objects receive a new ID. Objects that disappear are kept alive
for a certain number of frames depending on the configura-
tion settings. This keep alive feature pulls in the last detection
result from a previous tracklet and re-uses it in case the CNN
failed to predict a bounding box with enough confidence for
an object in the next tracklet. This tracklet association process
is explained in [3] and [7] and is detailed in [19] as well.

V. FRAMEWORKS AND DATASETS
A. DARKNET
For this implementation, Darknet, developed by Red-
mon [20] was chosen to be the object detection framework.
The C language backbone of this framework is a good starting

point for bare-metal work and it can be compiled and run
without any GPU support. Along with the Darknet frame-
work, several YOLO object detection models were put to
use and the selected models [21]–[23] profiled are accessible
to anyone and are sourced from the active forked version
of Darknet [24]. The selected models were all trained on
the same datasets and were left unmodified for the purpose
of reproducibility. The MS-COCO and ImageNet trained
models will be used to demonstrate the look back track-
ing algorithm. To this day, Darknet is an actively supported
framework as well.

B. MS-COCO AND ImageNet
The models selected for this experiment were
YOLOv2-Tiny, YOLOv3, YOLOv4, and YOLOv4-Tiny. All
were trained using the MS-COCO dataset and started as
ImageNet pre-trained weights. No special training for certain
circumstances was performed for this work. The models used
here are all sourced from, and can be found at [24]. The only
modification to the models operation was a pruning of all
non-people detections for the sequences.

C. OTB
To evaluate model performance, the Object Tracking Bench-
mark [OTB], by Wu et al. [25] was used. While YOLBO
produces multi object tracking results, single object tracking
sets were used for testing. The selected sequences from this
set were any sequenceswhich tracked a full figure of a person.
This led to the selection of a large subset of OTB being used
for testing. All results in the look back experimentation are
compared to a best case scenario where motion tracking is
not needed and an object detector is run on each frame. The
metrics being reported on this set are bounding box overlap
with the ground truth [IoU] and normalized centroid drift
[NCD] from the ground truth to the predicted result. Since
it is common for an IoU of 50% to be the threshold for a
true positive [TP] detection, an IoU over 50% will serve as
a consolidated summary of performance. This will allow for
comparisons between models and skip counts to be made,
but not a comparison to other OTB bench marked models.
All models used for YOLBO are based on the unmodified
MS-COCO and ImageNet models so they have already been
bench-marked. For this analysis only the OTB sequences that
contained tracked people were used.

VI. METHODOLOGY
A. DESIGN AND IMPLEMENTATION
The first steps to implementing the YOLBO algorithm was
to choose appropriate frameworks to develop with in order
to make baseline measurements. The plan was to implement
look back with desktop GPUs and processors first and then
move to a more optimized and low level implementation.
Python was the language of choice as it is available for use on
desktop PCs, the Nvidia Jetson TX2, and a variety of Xilinx
Zynq UltraScale+ MPSoC platforms. This portability made

82502 VOLUME 9, 2021



D. S. Kaputa, B. P. Landy: YOLBO: YOLBO–Low Latency Object Tracker

python a good first choice as it was much more suitable for
development as changes could be made quickly and with the
aid of the python debugger. Development time has a trade off
however as python has some performance limiting properties
that could potentially disappear when switching to a more
bare metal and deterministic application written directly in
C or C++ with a reliable real time operating system.
The next step was to determine which object detection

algorithm to use. Single shot detectors were chosen over
region proposal based CNNs for speed reasons and perfor-
mance with lower resources. Darknet is a prominent and
well supported framework originally developed by [20] and
maintained on a fork by [24]. After building all required
libraries with and without GPU support, baseline inference
was completed on a Desktop. Inference was done with python
wrapped around a Darknet DLL with OpenCV used in vari-
ous image processing, reading and display functions. Within
OpenCV, optical flow was added to the inference loop to do
inter-frame interpolation following the scheme implemented
by [26]. Originally, this interpolation relied on full frame
Lucas-Kanade optical flow. This was the basis for the frame
skipping model and yielded a speedup as expected and shown
in prior work. This approach was altered to cache motion
information and perform look back to reduce latency per
frame. Ground truth testing with OTB was added to the
process to track accuracy, and timing information was logged
to track and audit performance.

After all accuracy evaluations were complete, the applica-
tion was modified for a multi-threaded environment where
detections could be generated in the background and process-
ing could still happen on the CPU. Python was a great rapid
development tool, but the global interpreter lock proved to
get in the way of true parallel processing. Multiprocessing
replaced multi-threading as it allows 2 python process with
2 separate global interpreter locks to operate independently
while still sharing relevant information in queues between
each other. Multiprocessing is meant for compute bound
applications andmulti-threading is meant for I/O bound oper-
ations. Tracking frame rate continued to increase with these
developmental changes and latency was reduced as well.
Operation of the algorithm is based around python multipro-
cessing events.

B. NORMALIZED CENTROID DRIFT METRIC
When presenting results for a specific algorithm the first
step is to clearly specify the metrics to be used. Most object
detectors use an intersection over union metric to determine
how accurate each inference is, and then deduce a mean
average precision [mAP] value based on true positives as well
as other factors such as false positives [FP] and false negatives
[FN]. In this work, tracking accuracy is a comparison of the
percent of true positive frames from the look back tracker to
the base CNN inference which is run on every frame. For this
reason the directive is to disregard the mAP metric and focus
solely on the IoU TP metric and compare the degradation
over skip amounts. Included as well in our analysis is the

FIGURE 4. IoU vs NCD Errors.

normalized centroid drift metric. This is the distance vector
magnitude from the predicted centroid to the ground truth
bounding box centroid, with each component normalized by
the ground truth bounding box width and height. The reason
for using the NCD metric is that for UAV applications one
cares about staying focused on the center of the object that
the UAV is tracking. When using look back the predicted
boxes are from previous frames, so as an object travels from
the foreground to the background scale change can occur,
however the centroid can still be accurate. The same applies
to scale changes of an object due to shape; when tracking a
walking person, outstretched arms can create a larger bound-
ing box, but 10 frames later, the arms may be tucked in
and the ground truth will be much narrower. The resulting
IoU would most likely not result in a TP, but the centroids
could be perfectly overlapped. In Fig 4 one can see the blue
bounding box as the ground truth and the white bounding box
is the inference. In this case the IoU is 35.53% however the
tracked centroid is a match at exactly 5.0% with NCD. The
inferred bounding box would be very accurate for closing
visual tracking loops because the edges of the bounding box
are not used, rather the center or mass or centroid of the object
that is being tracked is used. For completeness sake, both IoU
and NCD are logged. IoU true positive count and normalized
centroid distance true positive count are averaged over all
sequences and presented as a single value for consolidated
result reporting. The aim is to show the degradation of TP
frames over number of skips to illustrate the performance
loss against latency benefit. This code base was written with
development freedom and portability first in mind, and still
does enough to show expected improvements due to the
look back tracking algorithm, despite added overhead due to
python.

C. YOLO EVERY FRAME BASELINE
To determine the baseline level of accuracy, latency, and
frame rate, YOLO was run every frame on various OTB
videos. This use case is what many pure inference appli-
cations typically run and it does not take into account any
motion vectors or do any interpolation. It does benefit from

VOLUME 9, 2021 82503



D. S. Kaputa, B. P. Landy: YOLBO: YOLBO–Low Latency Object Tracker

IoU based association between tracklets that can increase
accuracy by linking previous detections forward to overcome
detection flaws, but nothing is adjusted with motion. The
accuracy and timing numbers for the YOLO every frame
baseline can be seen by inspecting the Y axis values in Fig 5
corresponding to the X axis skip value of 0.

D. MOTION OFF
The motion off line in Fig 5 shows the worst case scenario
where stale detections are not marched and there is no motion
being recorded. This scenario is akin to performing inference
on a decimated video sequence or simply throwing away
frames between inference key frames. This motion off idea
from [3] is great for visualizing the benefits and themaximum
speed of operation for various interpolation techniques. The
motion off line demonstrates the fastest possible processing
time per frame and the worst case accuracy per frame as well.
It will serve to demonstrate the ceiling and floor for accuracy
and timing.

E. ROI OPTICAL FLOW EVERY FRAME
As seen in [10], every object in every frame has ROI based
optical flow performed upon it. Fig 5 shows the timing and
IoU results of the Glimpse-like ROI-every-frame method
with varying skip amounts but no other Glimpse techniques
like frame differencing. It is important to note that the
ROI dimensions of the detections have a tunable margin
for accepting motion information [10 pixels outward in all
dimensions in this case] and that although accuracy could
potentially be improved, the timing results would not change
significantly. ROI based optical flow maintains accuracy
while skipping, but takes more time in processing optical
flow points while marching than the algorithm proposed for
YOLBO. This is due to the ROI method needing relevant
detection data in order to perform the motion march, and
it processing more motion data than necessary. This delay
before marching would be compounded on slower devices.
The ROI-every-frame march is not as efficient and in the
case of this experiment, performed worse than centroid based
marching and tracking. The reasoning for this is that the
ROI-Every-Frame approach uses more points to track
deformable objects and this adds noise to the trajectory of
tracked objects when all points are considered. This accuracy
loss could potentially be mitigated by only accepting the
largest group of motion points for tracking that move together
with the same directional components.

F. FULL FRAME OPTICAL FLOW EVERY FRAME
Out of curiosity we explored full frame optical flow which
turned out to be slower and less accurate than ROI based
optical flow. As shown in Fig 5, when using full frame optical
flow, the speedup due to frame skipping is severely bottle-
necked by the march operation and is even worse than the
Glimpse-like ROI-every-frame based tracker. This amount of
processing produces negative returns after a certain point and
is mentioned in detail in [10]. The same is true when using

FIGURE 5. Recreated Results of ROI-every-frame Algorithm from [10] with
YOLOv3 on Desktop PC.

ROI on each object in each frame, as in Fig 5, but to a lesser
extent than full frame.

G. YOLO WITH LOOK BACK [YOLBO]
The next step was to run the exact same OTB videos through
the YOLO look back algorithm with the desired frame skip.
The optimal frame skipping rate was determined manually
and was based on getting the most speedup for the minimal
amount of accuracy loss. This look back method uses the
ROI-to-centroid tracking improvement for reducing critical
latencies as well. The pre-calculation benefit is demonstrated
more when there are many objects in a frame being tracked.
The results of the YOLBO tracker are discussed in the next
section.

VII. RESULTS
YOLOv2-Tiny, v3, and v4-Tiny were all evaluated while
using the look back tracking algorithm. Data was logged
to compare the frame skip experiments to experiments with
inference performed on each frame. Look back tracking
YOLOv3 with a frame skip of 4 is compared to YOLOv3 on
every frame in Fig 6 to observe the differences in NCD, frame
read-to-output latency and IoU per frame. In this sequence
comparison, a per-frame latency smoothing delay was intro-
duced to lock the latency at 5 ms minimum per frame at
frame 40. For a skip of 4 frames, per-frame latency was
reduced 5 times as shown. Latency results, NCD, and IoU
were tracked for all sequences and models. The average per-
formance in terms of latency and accuracy for each frame skip
of this look back based tracker for YOLOv3 on a PC is shown
graphically in Fig 7. The YOLBO algorithm is shown in pink
and the motion off results are shown in blue. The benefit
of look back to frame latency is demonstrated and shown.
For a skip of 1 frame, look back allows the inference delay
to be distributed over 2 frames. In this scenario look back
based tracking will never exceed a maximum latency, from
frame read to output, of half the inference time. For a frame
skip of 3, look back prediction distributes inference time over
3 frames and themaximum latency for a framewill not exceed
one third of the inference time. This trend only continues

82504 VOLUME 9, 2021



D. S. Kaputa, B. P. Landy: YOLBO: YOLBO–Low Latency Object Tracker

FIGURE 6. Metrics for Walking OTB Sequence with Basic Spin Lock
Latency Smoothing Enabled at Frame 40.

as long as the other compute resources are able to keep up
with the desired number of skip frames. Visualizations such
as Fig 7 are important for determining how tracker skips
should be decided. Accuracy fall off is mostly linear but
model inference times have a decaying return that saturates.
An ideal skip is one that achieves the performance benefit
required without skipping more than needed. Some important

FIGURE 7. YOLOv3 Consolidated Performance on Desktop with Look Back.

TABLE 1. YOLOv2-Tiny with Look Back Results.

test time characteristics of this model include a keep alive
frame number of 10 frames, an expanded bounding box for
ROI with a scale factor of 1.2, and IoU based association.
The ROI bounding box expansion can be tuned for the speed
of objects being tracked. Faster objects generally require a
larger ROI zone as they can move further. In testing, 1.2x
was a good size for acquiring objects, but this can always
be adjusted. The frame display, object drawing and all other
unnecessary operations have been turned off for this analysis.

The recorded results of YOLOv2-Tiny on this set of OTB
test sequences is shown in Table 1. For NCD, the TP threshold
was biased to a value that would generate the same number
of TP frames as IoU with a skip of 0 (no skipping) for
each model. IoU and NCD will have different degradation
rates but started at the same number of TP samples. This
illustrates the effect of bounding box scale variation on the
IoU results, and allows NCD to add validity to higher frame
skips because that accuracy metric is not affected by target
to ground truth scale differences. The same evaluations were
performed on a Desktop and averages were calculated for
YOLOv3 as shown in table 2 as well as YOLOv4-Tiny in
table 3. The results for YOLOv4 are shown in table 4 in
order to illustrate the comparison between YOLOv4 and
YOLOv4-Tiny. YOLOv4-Tiny, being the smaller model,
is faster on a PC than YOLOv4 until about a skip of 5 is
used. However, a combination of both YOLBO and model
optimization is the goal for future usage.

VOLUME 9, 2021 82505



D. S. Kaputa, B. P. Landy: YOLBO: YOLBO–Low Latency Object Tracker

TABLE 2. YOLOv3 with Look Back Results.

TABLE 3. YOLOv4-Tiny with Look Back Results.

TABLE 4. YOLOv4 with Look Back Results.

VIII. LIMITATIONS
Optical flow processing and motion vector marching will
eventually have diminishing accuracy returns as the skip size
is drastically increased. Due to the nature of the latency
minimization from look back this accuracy degradation will
happen earlier than with normal optical flow interpolation
between detection frames. This phenomena is because for
each detection period the last frame before a re-detect has
been marched 2*N-1 times rather than N-1 times as is done
with standard motion interpolation schemes that do not mini-
mize latency. The mitigation to this limitation is to be mindful
of the skip number and to take into account the latency to
accuracy ratio according to the skip number for one’s desired
application.

IX. CONCLUSION AND FUTURE WORK
This work demonstrates the usefulness of look back track-
ing for edge devices. The work builds upon many already
successful tracking paradigms and is portable for differ-
ent use cases and hardware topologies. Look back tracking
with YOLOv3 in native Darknet, on a desktop PC, achieves

a 4.91× latency reduction in exchange for a 5.97% IoU
accuracy drop. When only looking at NCD from ground
truth, this drop is only 2.72%. On the Nvidia Jetson TX2,
YOLOv2-Tiny receives a 9.2× latency reduction and speedup
in exchange for an 8.48% IoU accuracy drop and 2.86%
increase in NCD error. Similarly, YOLOv4-Tiny on the
TX2 received a 2.82× latency reduction for a 4.84% drop
in IoU accuracy and 1.77% increase in NCD error. These
benefits extend to power benefits as well, as look back track-
ing allows for sparser use of a high power usage compute
resource on an edge device. Look backwith the TX2 andGPU
frequency reduction saved 7.35 W of power for an accuracy
drop that corresponds to look back with a skip of 10 while
still providing results at a consistent frame rate. The GPU
frequency was able to be lowered without heavily impact-
ing frame rate. This has large implications for edge device
throughput, power usage and response time for UAV based
lightweight trackers due to the less cumbersome centroid
tracking.

A newer version of YOLBO is being created that integrates
a dynamic frame rate feature as seen in [3] and [2]. This will
allow for the frame rate to be tuned in relation to desired
power draw, latency, accuracy, or a combination of several
factors. This dynamic tuning capability is highly desirable for
devices which have different power modes such as a UAV that
is running low on battery and needs to get back to base but still
needs to perform collision avoidance maneuvers. Additional
work entails targeting YOLBO to an embedded FPGA SoC
such as the Fusion 2 camera and performing quantization on
the layers of YOLOv2 to achieve a further frame rate increase.

ACKNOWLEDGMENT
This article consists of general capabilities information that
is not defined as controlled technical data under ITAR Part
120.10 or EAR Part 772.

REFERENCES

[1] L. Lin, B. Liu, and Y. Xiao, ‘‘An object tracking method based on CNN
and optical flow,’’ in Proc. 13th Int. Conf. Natural Comput., Fuzzy Syst.
Knowl. Discovery (ICNC-FSKD), Jul. 2017, pp. 24–31.

[2] Y. Zhu, A. Samajdar, M. Mattina, and P. Whatmough, ‘‘Euphrates:
Algorithm-SoC co-design for low-power mobile continuous vision,’’
in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput. Archit. (ISCA),
Jun. 2018, pp. 547–560. [Online]. Available: https://ieeexplore.ieee.
org/document/8416854/

[3] T. Ujiie, M. Hiromoto, and T. Sato, ‘‘Interpolation-based object detec-
tion using motion vectors for embedded real-time tracking systems,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Jun. 2018, pp. 616–624. [Online]. Available: https://ieeexplore.
ieee.org/document/8575254/

[4] G. N. Meenakshi Sundaram, ‘‘A survey on real time object detection
and tracking algorithms,’’ Int. J. Appl. Eng. Res., vol. 10, pp. 8290–8297,
Apr. 2015.

[5] M. Buckler, P. Bedoukian, S. Jayasuriya, and A. Sampson, ‘‘EVA2:
Exploiting temporal redundancy in live computer vision,’’ 2018,
arXiv:1803.06312. [Online]. Available: http://arxiv.org/abs/1803.06312

[6] K. Stephanson. (Jul. 2017). The Drone Racing League Sets Quadcopter
Speed Record. [Online]. Available: https://www.guinnessworldrecords.
com/news/commercial/2017/7/the-drone-r%acing-league-builds-the-
worlds-fastest-racing-drone-482701

82506 VOLUME 9, 2021



D. S. Kaputa, B. P. Landy: YOLBO: YOLBO–Low Latency Object Tracker

[7] S. Murray, ‘‘Real-time multiple object tracking—A study on the
importance of speed,’’ 2017, arXiv:1709.03572. [Online]. Available:
http://arxiv.org/abs/1709.03572

[8] P. Nicolai, J. Raczkowsky, and H. Wörn, ‘‘Continuous pre-calculation of
human tracking with time-delayed Ground-truth—A hybrid approach to
minimizing tracking latency by combination of different 3D cameras,’’ in
Proc. 12th Int. Conf. Informat. Control, Autom. Robot., 2015, pp. 121–130.

[9] L. Liu, H. Li, andM.Gruteser, ‘‘Edge assisted real-time object detection for
mobile augmented reality,’’ in Proc. 25th Annu. Int. Conf. Mobile Comput.
Netw., Aug. 2019, pp. 1–16, doi: 10.1145/3300061.3300116.

[10] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
‘‘Glimpse: Continuous, real-time object recognition on mobile devices,’’
in Proc. 13th ACM Conf. Embedded Netw. Sensor Syst., Nov. 2015,
pp. 155–168, doi: 10.1145/2809695.2809711.

[11] E. Cintas, B. Ozyer, and E. Simsek, ‘‘Vision-based moving UAV tracking
by another UAV on low-cost hardware and a new ground control station,’’
IEEE Access, vol. 8, pp. 194601–194611, 2020.

[12] J. F. Henriques, R. Caseiro, P.Martins, and J. Batista, ‘‘High-speed tracking
with kernelized correlation filters,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 37, no. 3, pp. 583–596, Mar. 2015.

[13] R. Opromolla, G. Inchingolo, and G. Fasano, ‘‘Airborne visual detec-
tion and tracking of cooperative UAVs exploiting deep learning,’’
Sensors, vol. 19, no. 19, p. 4332, Oct. 2019. [Online]. Available:
https://www.mdpi.com/1424-8220/19/19/4332

[14] C. Feichtenhofer, A. Pinz, and A. Zisserman, ‘‘Detect to track and
track to detect,’’ 2017, arXiv:1710.03958. [Online]. Available: http://arxiv.
org/abs/1710.03958

[15] Y. Shao, X. Tang, H. Chu, Y. Mei, Z. Chang, X. Zhang, H. Zhan, and
Y. Rao, ‘‘Research on target tracking system of quadrotor UAV based
on monocular vision,’’ in Proc. Chin. Autom. Congr. (CAC), Nov. 2019,
pp. 4772–4775.

[16] D. Hambling. Indian Army Shows off Drone Swarm of Mass Destruction.
Section: Aerospace & Defense. Accessed: Mar. 26, 2021. [Online]. Avail-
able: https://www.forbes.com/sites/davidhambling/2021/01/19/indian-
army-shows%-off-drone-swarm-of-mass-destruction/

[17] M. Blott, T. Preusser, N. Fraser, G. Gambardella, K. O’Brien, and
Y. Umuroglu, ‘‘FINN-R: An end-to-end deep-learning framework for
fast exploration of quantized neural networks,’’ 2018, arXiv:1809.04570.
[Online]. Available: http://arxiv.org/abs/1809.04570

[18] D. S. Kaputa and K. J. Owens, ‘‘Quadrotor drone system identification
via model-based design and in-flight sine wave injections,’’ in Proc. AIAA
Scitech Forum, Jan. 2020, p. 1238, doi: 10.2514/6.2020-1238.

[19] E. Bochinski, T. Senst, and T. Sikora, ‘‘Extending IOU based multi-object
tracking by visual information,’’ in Proc. 15th IEEE Int. Conf. Adv. Video
Signal Based Surveill. (AVSS), Nov. 2018, pp. 1–6.

[20] J. Redmon. (2013).DarkNet: Open Source Neural Networks in C. [Online].
Available: https://pjreddie.com/darknet/

[21] A. Bochkovskiy, C.-Y. Wang, and H.-Y. Mark Liao, ‘‘YOLOv4: Opti-
mal speed and accuracy of object detection,’’ 2020, arXiv:2004.10934.
[Online]. Available: http://arxiv.org/abs/2004.10934

[22] J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ 2016,
arXiv:1612.08242. [Online]. Available: http://arxiv.org/abs/1612.08242

[23] Z. Wang, K. Xu, S. Wu, L. Liu, L. Liu, and D. Wang, ‘‘Sparse-YOLO:
Hardware/software co-design of an FPGA accelerator for YOLOv2,’’ IEEE
Access, vol. 8, pp. 116569–116585, 2020.

[24] A. Bochkovskiy. (Jan. 2021). AlexeyAB/Darknet. Original-date: 2016-12-
02T11:14:00Z. [Online]. Available: https://github.com/AlexeyAB/darknet

[25] Y. Wu, J. Lim, and M.-H. Yang, ‘‘Online object tracking: A benchmark,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2013,
pp. 2411–2418.

[26] C.-E. Lin. (Apr. 2019). Introduction to Motion Estimation with Optical
Flow. [Online]. Available: https://nanonets.com/blog/optical-flow/

DANIEL S. KAPUTA (Member, IEEE) was born
in Troy, IL, USA, in 1980. He received the B.S.
degree in computer engineering, and the M.S. and
Ph.D. degrees in electrical engineering from the
State University of New York at Buffalo, in 2002,
2004, and 2007, respectively. He worked at indus-
try for ten years at various mil-aero companies,
such as Lockheed Martin Gravity Systems and the
Moog Space and Defense Group. He is currently
working as an Assistant Professor with the Depart-

ment of Computer Engineering, Rochester Institute of Technology. He is also
the Director of Ravven Labs (www.ravvenlabs.com). His research interests
include FPGA-based embedded vision, artificial intelligence, unmanned
aerial vehicles, and augmented and virtual reality. He is a member of AIAA.
He has served for the Mathworks Advisory Board for several years. He is
heavily involved with the use and development of model-based design tools.

BRIAN P. LANDY was born in Ridgewood, New
Jersey, USA, in 1997. He received the B.S. degree
in computer engineering from the Rochester Insti-
tute of Technology, Rochester, NY, USA, in 2020,
where he is currently pursuing the M.S. degree in
computer engineering.

He has worked at several internship positions as
an Embedded Software Engineer with Philips and
a Verification Engineer with Crestron Electronics.
He has participated in two research efforts with the

RIT Machine Intelligence Laboratory, while studying at RIT. These include
work with optical character recognition and Neural Sign Language Transla-
tion. In his final year and a half at RIT, from 2020 to 2021, he joined Ravven
Labs to work on embedded computer vision applications and drone-focused
systems.

VOLUME 9, 2021 82507

http://dx.doi.org/10.1145/3300061.3300116
http://dx.doi.org/10.1145/2809695.2809711
http://dx.doi.org/10.2514/6.2020-1238

