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ABSTRACT The need for efficient and effective data exploration has resulted in several solutions that
automatically recommend interesting visualizations. The main idea underlying those solutions is to auto-
matically generate all possible views of data, and recommend the top-k interesting views. However, those
solutions assume that the analyst is able to formulate a well-defined query that selects a subset of data, which
contains insights. Meanwhile, in reality, it is typically a challenging task to pose an exploratory query, which
can immediately reveal some insights. To address that challenge, in this work we propose utilizing query
refinement as one technique that allows to automatically adjust the analyst’s input query to discover such
valuable insights. However, a naive query refinement, in addition to generating a prohibitively large search
space, also raises other problems such as deviating from the user’s preference and recommending statistically
insignificant views. In this paper, we address those problems and propose a novel suit of schemes, which
efficiently navigate the refined queries search space to recommend the top-k insights that meet all of the
analyst’s pre-specified criteria.

INDEX TERMS Visual data exploration, data visualization, query refinement, view recommendation.

I. INTRODUCTION
Visual data exploration is becoming a key component in
a widely diverse set of discovery-oriented applications in
healthcare monitoring, manufacturing, financial analysis,
education, and transportation planning, just to name a few [1],
[2]. Visual data exploration typically involves an analyst
going through the following steps: 1) selecting a subset of
data, 2) generating different visualizations of that subset of
data, and 3) sifting through those visualizations for the ones
which reveal interesting insights. Based on the outcome of the
last step, the analyst might have to refine their initial selection
of data so that the new subset would show more interesting
insights. This is clearly an iterative and time-consuming pro-
cess, in which each selection of data (i.e., exploratory input
query) is a springboard to the next one.

Motivated by the need for an efficient and effective
visual data exploration process, several solutions have been
proposed towards automatically finding and recommending
interesting data visualizations (i.e., steps 2 and 3 above)
(e.g., [3]–[8]). The main idea underlying those solutions is
to automatically generate all possible views of the explored
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data, and recommend the top-k interesting views, where the
interestingness of a view is quantified according to some
utility function. Recent work provides strong evidence that
a deviation-based formulation of utility is able to provide
analysts with interesting visualizations that highlight some
of the particular trends of the analyzed datasets [3], [6], [7],
[9]. In particular, the deviation-basedmetricmeasures the dis-
tance between the probability distribution of a visualization
over the analyzed dataset (i.e., target view) and that same
visualization when generated from a comparison dataset (i.e.,
comparison view), where the comparison dataset is typically
the entire database. The underlying premise is that a visual-
izations that results in a higher deviation is expected to reveal
insights that are very particular to the analyzed dataset.

Existing solutions have been shown to be effective in rec-
ommending interesting views under the assumption that the
analyst is ‘‘precise’’ in selecting their analyzed data. That is,
the analyst is able to formulate a well-defined exploratory
query, which selects a subset of data that contains interest-
ing insights to be revealed by the recommended visualiza-
tions. However, such assumption is clearly impractical and
extremely limits the applicability of those solutions. In reality,
it is typically a challenging task for an analyst to select a
subset of data that has the potential of revealing interesting
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insights. Hence, it is a continuous process of trial and error,
in which the analyst keeps refining their selection of data
manually and iteratively until some interesting insights are
revealed. Therefore, in this work we argue that, in addition
to the existing solutions for automatically recommending
interesting views, there is an equal need for solutions that can
also automatically select subsets of data that would poten-
tially provide such interesting views. Hence, our goal in this
work is not only to recommend interesting views, but also
to recommend exploratory queries that lead to such views.
To further illustrate the need for such solution, consider the
following example.
Example 1: Consider an analyst wants to explore and find

interesting insights in the U.S. Census income dataset [10],
which is stored in table C . Her intuition is that analyzing the
subset of data of those who have achieved a high level of edu-
cation might reveal some interesting insights. Therefore, she
selects that particular subset in which everyone has completed
their 12th year of education (i.e., graduated high school) via
the following query:
Q: SELECT ∗ FROM C WHERE education ≥ 12

To find the top-k visualizations, she might use one of the
existing approaches (e.g., [3], [7]), in which all the target and
comparison aggregate views are generated and their deviation
is computed by using a distance function (e.g., Euclidean dis-
tance). Figure 1 shows the top-k visualization recommended
by such approaches. Specifically, the figure shows that among
all the attributes in the Census dataset, the recommendedmost
interesting visualization is based on plotting the probabil-
ity distribution of the Hours per week attribute of the
dataset. That is, a histogram-like distribution of the number
of hours worked per week for those who graduated high
school (i.e., education ≥ 12) vs. the population. Such visu-
alization is equivalent to plotting the probability distributions
of the target view Vt and the comparison View Vc, which are
expressed in SQL in Figure 1. Hence, the deviation value
shown in Figure 1 is the Euclidean distance between the
probability distribution of Vt and Vc. However, by carefully
examining Figure 1, it is clear that there is not much differ-
ence between those who graduated high school and the pop-
ulation with respect to the Hours per week dimension.
That is, the target and comparison views are almost the same,
which is also reflected by the low-deviation value of 0.0459.
Despite that, such visualization would still be recommended
by existing approaches because it achieves the maximum
deviation among all the views generated over the data subset
selected by query Q, even though that maximum deviation
value is inherently low.

The previous example illustrates a clear need for a query
refinement solution that is able to automatically modify
the analyst’s initial input query and recommend a new
query, which selects a subset of data that includes interest-
ing insights. Those hidden insights are then easily revealed
using existing solutions that are able to recommend inter-
esting visualizations. To that end, one straightforward and
simple approach would involve generating all the possible

subsets of data by automatically refining the predicates of
the input query. In our example above, that would be equiv-
alent to generating all refinements of the predicate WHERE
education ≤ 12. Consequently, for each subset of data
selected by each query refinement, generate all possible
aggregate views (i.e., visualizations). In addition to the obvi-
ous challenge of a prohibitively large search space of query
refinements, that naive approach would also lead to visualiza-
tions that might appear to be visually interesting but they are
irrelevant from the analyst’s perspective, which is illustrated
in the following example.
Example 2: Now assume that the naive approach

described above is applied to Example 1, such that all possible
refinements of Q are generated so that to find and recom-
mend visualizations that are more interesting than those in
Figure 1. Particularly, after generating all those possible
refined queries with all the possible values for the predi-
cate on the education attribute, the recommended top
visualization is shown in Figure 2. That visualization is
recommended based on the following refined query:
Q1:SELECT * FROM C WHERE education ≤ 1
As Figure 2 shows, that visualization is based on plotting

the probability distribution of the occupation attribute for
those who never went to school (i.e., education ≤ 1)
vs. the population. Clearly, Figure 2 is visually interesting as
the probability distribution of the target view is significantly
different from the comparison view (i.e., deviation= 0.2614).
However, there are two issues with that refinement, and in
turn the recommended visualization:

1) Similarity-oblivious: a blind automated refinement
that is oblivious to the analyst’s preferences might
result in a refined query that is significantly dis-
similar from the input query. For instance, in this
example the analyst’s intention is to analyze the sub-
set of data for those who completed high school
(i.e., education ≥ 12), whereas the refined query
selects for the analysis those who never went to school
(i.e., education ≤ 1).

2) Statistical insignificance: the subset selected by the
refined query can be too small and as a result the
target views generated from that subset will miss a
number of values for the dimension attribute. This leads
to views with high deviation values but statistically
insignificant. As shown in Figure 2, the target view
is missing a number of values for the occupation
attribute, which indicates that the subset selected by the
refined query Q1 is possibly too small for analysis, and
in turn statistically insignificant.

The two issues mentioned above highlight the need for
automatic refinement solutions that are guided by the user’s
preference and statistical significance, which is the focus of
this work. In particular, we propose a novel scheme for auto-
mated query refinement for view recommendation in visual
data exploration, calledQuRVe. Before discussing the details
of QuRVe in the next sections, we illustrate its benefits using
the following example:
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FIGURE 1. View on input query Q.

FIGURE 2. View on refined query Q1.

FIGURE 3. View on refined query Q2.

Example 3: Figure 3 shows the top view recommended by
QuRVe based on the input query Q provided in Example 1.
That view is generated based on automatically refining Q
into the new modified and statistically significant query Q2,
which is specified as: Q2:SELECT * FROM C WHERE
education ≥ 16. Notice that Q2 is clearly more sim-
ilar to the input query Q than the previously refined
query Q1 from Example 2. Particularly, instead of select-
ing the data for those who completed high school (i.e.,
education ≥ 12), the refined query Q2 selects those

who completed a college degree (i.e., education ≥ 16).
Equally important, the recommended view based on the
refined Q2 shows a uniquely interesting insight. Specifically,
as Figure 3 shows, highly educated people tend to work more
hours than the rest of the population. More precisely, only
13% of the population work more than 50 hours a week,
whereas for those who have completed college that percent-
age goes up to 30%.

Based on the previous example, our key goal in designing
QuRVe is to recommend interesting visualizations, while at
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the same time achieving high effectiveness and efficiency.
To ensure that desired effectiveness, we formulate the prob-
lem of refining query for recommending top-k aggregate
visualization as a multi-objective optimization problem. Par-
ticularly, given an input queryQ, the optimization objective is
to find those top-k interesting visualizations from all possible
refinements of the input query according to a similarity-aware
utility function, subject to predefined constraints on statistical
significance. Clearly, such formulation is challenged by the
large number of possible refinements and the corresponding
visualizations generated per refinement.

After the QuRVe framework was first introduced in the sec-
ond author’s PhD thesis [8], our later work in [11] showed
that QuRVe is able to efficiently reduce the prohibitively
large search space of possible views by utilizing some of
the salient characteristics of our multi-objective optimization
problem described above. In this work, we expand on our
basic QuRVe, and propose two new novel schemes that are
able to further reduce the search space of refined queries,
and in turn minimize the query execution cost incurred in the
process of recommending those interesting aggregate visu-
alizations. Particularly, the key idea underlying the QuRVe
family of schemes is to calculate an upper bound on the max-
imum possible utility achieved by each view without actu-
ally executing the aggregate query that generates that view.
Then only those promising views with expected high-utility
are processed and the top-k are recommended. This allows
QuRVe to prune a large number of unnecessary views, and in
turn reduces the overall processing time for recommending
the top-k views. However, our original QuRVe [11] utilizes
a theoretical loose bound when estimating that maximum
possible utility provided by a view. That theoretical bound
is oblivious to the characteristics of the analyzed data, and
in turn tends to overestimate the utility provided by each
view. Consequently, it limits QuRVe’s power in pruning some
unnecessary low-utility views.

To address that limitation and achieve higher efficiency in
view recommendation, in this work we propose the uQuRVe
and pQuRVe schemes. Both schemes utilize the characteris-
tics of the analyzed data to estimate a tight upper bound on the
utility of a view. Hence, they allow pruningmore unnecessary
views, and save the costs for processing those eliminated
views. Furthermore, pQuRVe controls the order of navigating
the views search space so that high-utility views are visited
and processed first, and consequently finding the top-k views
rather early in the search process.

In summary the main contributions of this work are as
follows:
• We formulate the problem of query refinement for rec-
ommending visualizations and introduce a novel hybrid
multi-objective utility function, which guides the query
refinement and view recommendation process.

• We propose the QuRVe, uQuRVe and pQuRVe schemes,
which introduce novel search algorithms that are partic-
ularly optimized to leverage the specific features of the
problem for pruning the search space.

• We conduct extensive experimental evaluation on real
datasets, which illustrate the benefits achieved by the
QuRVe family of schemes.

Roadmap: In Section II, we describe the background for
our problem.We formally describe our multi-objective utility
function and problem statement in Section III. Our proposed
search algorithms are discussed in Section IV.We present our
testbed and experiments on real data in Sections V and VI.
The related work is discussed in Section VII, and finally
conclusion in Section VIII.

II. PRELIMINARIES
In this section, we first describe the basics of view recom-
mendation, followed by automatic query refinement and sta-
tistical significance for view recommendation. All symbols
are summarized in Table 1.

TABLE 1. Summary of symbols.

A. VIEW RECOMMENDATION
Similar to recent work on visual data exploration
(e.g., [3], [7]), we assume a multi-dimensional dataset
D(A, M), where A is the set of dimension attributes, M is
the set of measure attributes. Further, F is the set of possible
aggregate functions over the measure attributes M. In a typi-
cal visual data exploration session the user chooses a subset
DS of the datasetD by issuing an input queryQ. For instance,
consider the query Q: SELECT * FROM D WHERE T;
In Q, T specifies a combination of predicates, which selects
DS for visual analysis (e.g., education ≥ 12 in Exam-
ple 1). A visual representation ofQ is basically the process of
generating an aggregate view Vi of its result (i.e., DS ), which
is then plotted using some visualization methods such as bar
charts, scatter plots, etc. Therefore, an aggregate view Vi over
DS is represented by a tuple (A,M ,F, b) where A ∈ A,
M ∈ M, F ∈ F and b is the number of bins in case A is
numeric. That is, DS is grouped by dimension attribute A
and aggregated by function F on measure attribute M . For
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instance, the tuple (Hours per Week, *,COUNT,2)
represents the aggregate view shown in Figure 1.

Manually finding interesting and insightful views of data is
a time-consuming task. Towards automated visual data explo-
ration, recent approaches have been proposed for recom-
mending interesting visualizations based on deviation based
metric (e.g., [3], [7]). In particular, that metric measures the
deviation between the aggregate view Vi generated from the
subset data DS vs. that generated from the entire database
D, where Vi(DS ) is denoted as target view, whereas Vi(D) is
denoted as comparison view. To ensure that all views have
the same scale, each target view Vi(DS ) and comparison view
Vi(D) is normalized into a probability distribution P[Vi(DS )]
and P[Vi(D)] and it is bounded by the maximum deviation
value DM . Accordingly, the deviation D(Vi), provided by a
view Vi, is defined as the normalized distance between those
two probability distributions.

D(Vi) =
dist(P[Vi(DS )],P[Vi(D)])

DM
(1)

Then, the deviation D(Vi) of each possible view Vi is
computed, and the k views with the highest deviation are rec-
ommended (i.e., top-k) [3], [7], [9], [12]. Hence, the number
of possible views to be constructed isN = 2×|A|×|M|×|F|,
which is clearly inefficient for a large multi-dimensional
dataset.

As explained earlier, the input exploratory query Q is the
cornerstone for recommending interesting views. However,
formulating an input query that results in interesting views
is a non-trivial task. Therefore, in this work we propose to
automatically refine that input query to select subsets of data
that reveal interesting insights. In the next section we discuss
the preliminaries of query refinement.

B. QUERY REFINEMENT
Automatic query refinement is a widely used technique for
DBMS testing, information retrieval and data exploration.
In a nutshell, in this technique the user provides an initial
query and then it is progressively refined to meet a partic-
ular objective [13]–[16]. In the context of data exploration
and aggregate queries, query refinement has been used to
automatically recommend queries satisfying cardinality and
aggregate constraints [13], [14], explaining outliers [15] and
answeringwhy not questions [16]. In this work, we propose to
automatically refine an input exploratory query for the objec-
tive of view recommendation. Particularly, as mentioned in
Section II-A, the user provides an input query Q, in which T
specifies a conjunction of predicates. ThenQ is progressively
refined by automatically enumerating all combinations of
predicates for the objective of generating interesting views.

Particularly, we consider queries having selection predi-
cates with range (<,≤, >,≥) operators. These predicates are
defined on a set of numeric dimension attributes denoted asP.
The number of predicates is p, such that |P| = p. Each of
those range predicates is in the form li ≤ Pi ≤ ui where
Pi ∈ P and li and ui are the lower and upper limits of query Q

along predicate Pi. The domain of predicate Pi is limited by
a Lower bound Li and upper bound Ui.
A refined query Qj for an input query Q is generated by

modifying the lower and/or upper limits for some of the
predicates in Q. That is, for a predicate li ≤ Pi ≤ ui in
queryQ, a refined predicate inQj takes the form l ′i ≤ Pi ≤ u

′
i.

Notice that a predicate that is not included in T would be
equivalent to Li ≤ Pi ≤ Ui.
Similar to [13], [17], we convert a range predicate into two

single-sided predicates. Therefore, li ≤ Pi ≤ ui is converted
to two predicates: Pi ≤ ui

∧
−Pi ≤ −li. This allows

refinement of one or both sides of the range predicates and
this results in the total number of single sided predicates to
be 2p. Consider the following example to clearly understand
how to convert a range to two single-sided predicates.
Example: Consider the query Q in Example 1, in Q only

li = 12 is defined explicitly, however ui = Ui = 16
is automatically added and Q is completely defined as,
Q: SELECT * FROM C WHERE 12 ≤ education
≤ 16. After converting to single sided predicated it would
become Q: SELECT * FROM C WHERE education
≤ 16 AND -education ≤ -12

Finally, query refinement can be in one of the two direc-
tions: i) contracting i.e., decreasing the value of the predicate
and ii) expanding i.e., increasing the value of the predicate.
The set of all of the refined queries is denoted as Q. Clearly,
the number of all possible refinements is exponential in p and
forms a combinatorial search space. For instance, if predicate
Pi is discrete and is refined in steps of 1.0, then the number
of all possible refinements of Pi is ni =

ai(ai+1)
2 , where

ai = Ui−Li. For a total of p such predicates, the combinations
of all possible refinements is: n1 × n2 × . . . . . . np ≈ np. In
other words, the size of the set Q is approximately np (i.e.,
|Q| ≈ np).
A refined query Qj is obtained by changing one or more

predicates Pi ∈ T to P′i, which naturally makes the refined
queryQj different from the input queryQ. However, a refined
query that is significantly dissimilar from its counterpart
input query would result in loss of user preference and might
be deemed irrelevant to the analysis. Hence, to quantify
the change made to transform Q into the refined query Qj,
we define a similarity measure S(Q,Qj) in terms of the dis-
tance between Qj and Q (i.e., s(Q,Qj)).

S(Q,Qj) = 1− s(Q,Qj) (2)

While the exact specification of s(Q,Qj) is deferred to
Section III, it is worth pointing out the impact of query
refinement on the deviation computation defined in Eq. 1.
Particularly, when utilizing refinement, a view Vi can be
either generated from the input query, or a refined one.
To associate each view with its underlying query, we denote a
view as Vi,Qj to specify the ith view generated over the result
of query Qj. Accordingly, Eq. 1 is modified to define the
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deviation D(Vi,Qj ) of a view Vi,Qj , as:

D(Vi,Qj ) =
dist(P[Vi(DQj )],P[Vi(D)])

DM
(3)

C. HYPOTHESIS TESTING
In visual data exploration, it is often the case that an
observed high-deviation is actually statistically insignificant.
This problem leads to misleading ranking of such views, and
in turn inaccurate recommendations [18]–[20]. For instance,
in our recent work on the MuVE scheme [7], [12], we made
the following observations:

1) Some of the recommended top-k target views have very
few underlying tuples, which leads to higher deviation
values. Consequently, such views receive higher rank
despite of the lack of real insight, for instance, the target
view shown in Figure 2 of Example 2.

2) Often the data selected by the exploratory query result
in only low-deviation views. Consequently, the top-k
recommend views will exhibit low-deviation, as shown
in Example 1. However, such top-k recommendations
are clearly statistically insignificant.

To determine whether the observed difference is statis-
tically significant, we employ the widely used approach
hypothesis testing. Hypothesis testing determines if there is
enough evidence for inferring that a difference exists between
two compared samples or between a sample and population.
A difference is called statistically significant if it is unlikely
to have occurred by chance [18]. Hypothesis testing involves
testing a null hypothesis by comparing it with an alternate
hypothesis. The hypothesis to be tested is called the null
hypothesis, denoted as H0. The null hypothesis states that
there is no difference between the population and the sam-
ple data. The null hypothesis is tested against an alternate
hypothesis, denoted as H1, which is what we have observed
in the sample data. For instance, in Figure 1 of Example 1,
the hypothesis is that ‘‘high school graduates work different
number of hours per week (Hours worked is divided into
two categories) as compared to the population’’, and this
becomesH1. The correspondingH0 is that no such difference
exits. Likewise, each possible view Vi from each refined
query become a H1, which is to be tested for significance
before recommendation.

Depending on the nature of the statistical test and the
underlying hypothesis, different null hypothesis statistical
tests have been developed, e.g., chi-square test for categorical
dimension attributes. Furthermore, after stating H0 and H1,
the chosen statistical test returns a p-value. The p-value is the
probability of obtaining a statistic at least as extreme as the
one that was actually observed, givenH0 is true. Specifically,
the p-value is compared against a priori chosen significance
level α, where the conventionally used significance level is
0.05. Hence, if pvalue(Vi) ≤ α, then H0 must be rejected,
which means the Vi is statistically significant. Clearly, due
to the nature of the statistical test involved, the acceptance or
rejection ofH0 can never be free of error. If the test incorrectly

rejects or accepts H0, then an error has occurred. Hypothesis
testing can incur the following two types of error: 1) If H0 is
rejected, while it was true, it is called Type-I error and 2) If
H0 is accepted, while H1 was true, it is called Type-II error.
Type-II error is critical in our case because we want to avoid
rejecting views that might be interesting. The probability of
Type-II error is specified by a parameter β, which normally
has a value 0.10 − 0.20. An alternate term is power, which
is the probability of rejecting a false H0, therefore, power =
1− β. A priori power analysis is employed to determine the
minimum sample size that is necessary to obtain the required
power. By setting an effect size (ω), significance level (α),
and power level (β), the sample size to meet specification can
be determined [21].

Putting it together, blindly applying query refinement in
search for queries that generate high-deviation views can
often lead to the paradox of selecting queries with very few
underlying tuples. Accordingly, the target views generated
from those queries typically have missing groups, and in
turnmisleadingly exhibit high-deviation from the comparison
view.

This leads to false discoveries as the high deviation is
because of insufficient sample size, and not due to the
different distribution of target view from comparison view.
Therefore, we perform power analysis, estimate theminimum
sample size required to achieve the specified power, and
employ it as a constraint in our problem definition. Conse-
quently, only the refined subsets that satisfy the minimum
sample constraint participate in our search of top-k views.

III. PROBLEM DEFINITION
In this section, we formally define the problem of query
refinement for view recommendation.

In a nutshell, the goal of this work is to recommend the
top-k bar chart visualizations of the results of query Q and
all its corresponding refined queries Qj ∈ Q, according to
some utility function. When the recommended visualizations
are only based on query Q, such goal simply boils down
to recommending the top-k interesting views based on the
deviation metric, as described in Section II-A. However, that
simple notion of utility falls short in capturing the impact
of refinement on the input query. In particular, automatic
refinement introduces additional factors that impact the level
of interestingness, and in turn the utility of the recommended
views. Accordingly, in our proposed scheme, we employ
a weighted multi-objective utility function and constraints
to integrate such factors. In particular, for each view Vi,Qj ,
we evaluate the following components:

1) Interestingness: is the ability of view Vi,Qj to reveal
some insights about the data, which is measured using
the deviation-based metric D(Vi,Qj ) (Eq. 3).

2) Similarity: is the similarity between the input query
Q, and the refined query Qj underlying the view Vi,Qj ,
which is measured as S(Q,Qj) (Eq. 2).

3) Statistical Significance: is the ability of the refined
query Qj and the view Vi,Qj to generate a statistically
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significant result, which is captured by checking that
the size of the subset selected by Qj satisfies the con-
straint power(Qj), and the significance of the viewVi,Qj
satisfies the constraint pvalue(Vi,Qj ).

To capture the factors and constraints mentioned above,
we employ a weighted multi-objective utility function, which
is defined as follows:

U (Vi,Qj ) = αS × S(Q,Qj)+ αD × D(Vi,Qj ) (4)

where S(Q,Qj) is the similarity between input query Q and
refined queryQj of the view Vi,Qj , andD(Vi,Qj ) is the normal-
ized deviation of view Vi,Qj from the overall data. Parameters
αS and αD specify the weights assigned to each objective in
our hybrid utility function, such that αS + αD = 1. Those
weights can be user-defined so that to reflect the user’s prefer-
ence between interestingness and similarity. Also, notice that
all objectives are normalized in the range [0, 1]. Accordingly,
the overall multi-objective utility function takes value in the
same range (i.e., [0, 1]), where the goal is to maximize that
overall utility under specified constraints.
Definition Query Refinement for View Recommendation:

Given a user-specified query Q on a database D, a multi-
objective utility function U , a significance level α, statistical
power 1− β and a positive integer k . Find k aggregate views
that have the highest utility values, from all of the refined
queriesQj ∈ Q such that pvalue(Vi,Qj ) ≤ α and power(Qj) >
1− β.

In short, the premise is that a view is of high utility for
the user, if it satisfies the specified constraints, shows high-
deviation, and is based on a refined query that is highly
similar to the user specified query. To estimate the cost
incurred in solving the problem defined above, note that for
each refined query Qj ∈ Q, the number of aggregate queries
posed to the database equals to the number of aggregate views
generated i.e., 2×|A|× |M|× |F|. Furthermore, as discussed
in the previous section, the number of refined queries is
exponential to the number of predicates p. Therefore, with
query refinement, the total number of candidate views N is:
N ≈ np × 2 × |A| × |M| × |F|. Clearly, this is a very
large search space and requires an effective navigation with
minimum cost.

Before introducing our search schemes in the next section,
we first provide the detailed definition of the similarity
component of our objective function mentioned above (i.e.,
S(Q,Qj)). Particularly, to fully define the similarity compo-
nent of our utility function, we revisit Eq. 2 which quantifies
the distance between Q and Qj. In the literature, a number
of methods have been proposed to measure the distance
between two range queries [16], [22], [23]. Similar to [14],
[17], we calculate the distance in terms of absolute change in
predicate values (Eq. 5). This method provides a reasonable
approximation of the change in data selected by the refined
query at a negligible cost. Additionally, we normalize it by
predicate bounds to accommodate the different scales of var-
ious predicates. Recall that Eq 2 quantifies the change in an
input query Q to get to a refined query Qj, in terms of the

FIGURE 4. Query space Q.

distance between Q and Qj.

s(Q,Qj) =
1
p

p∑
i=1

|l
Qj
i − l

Q
i | + |u

Qj
i − u

Q
i |

2|Ui − Li|
(5)

Example: Consider Q and Q1 from Examples 1 and 2
respectively. Note that the range of predicate education
is [1,16]. Hence, the distance between Q and Q1 is:
s(Q,Q1) =

|1−12|+|1−16|
2|16−1| = 0.86 In other words this mean

there is 14% similarity between Q and Q1. Similarly, Con-
sider Q and Q2 in Example 3, note that in this case Q and Q2
have 87% similarity.

IV. SEARCH SCHEMES
For an input query Q, each possible query refinement of Q
can be represented as a point in a p-dimensional space, where
|P| = p (please see Section II-B for more details). Clearly,
one of the points in that space is the input query Q itself, and
the remaining points belong to the set of refined queries Q.
Our high-level goal is to: 1) generate the setQ, 2) compute the
utility of all the aggregate views generated from each query
in Q, and 3) recommend the top-k views after ranking them
based on their achieved utility. To that end, clearly the large
size of Q and the corresponding aggregate views, together
with the complexity of evaluating the statistical significance
and utility function of each view, makes the problem highly
challenging. Hence, in this section, we put forward various
search strategies for finding the top-k views for recommen-
dation.

A. THE LINEAR SCHEME
Clearly, a naive way to identify the top-k objects is to use a
linear scheme, which scores all objects based on a scoring
function, sort, and return the top-k objects. Accordingly, this
Linear scheme is basically an exhaustive and brute force
strategy, in which views from all refined queries are gener-
ated and ranked according to their utility. As we consider
predicates on continuous dimensions, infinite possible val-
ues can be assigned to predicates in those refined queries.
Therefore, each dimension is discretized with a user specified
parameter γ , which divides the range of dimension attribute
into 1/γ equi-width intervals. That discretization results in
a grid, where a grid for a two-dimensional space is shown
in Figure 4.
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In this linear scheme, irrespective of Q, iteratively all
refined queries are generated using all combinations of Pred-
icates P1,P2 . . .Pp. For instance, in Figure 4, each intersec-
tion point on the grid represent a refined query at γ = 1

23
having dimensions P1 and P2,.
For each query Qj ∈ Q, to check the constraint

power(Qj) < 1 − β, a function powerTest(Qj, ω, β, α) is
defined, which returns true value if the constraint is satisfied,
else it returns false. The cost of checking this constraint is
one database probe, where a COUNT query with predicates
of Qj is executed to get the sample size of Qj. Moreover,
for the queries that satisfy the statistical power constraint, all
views are generated. Then for each view Vi,Qj the constraint
pValue(Vi,Qj ) < α is checked. Specifically, for this pur-
pose, another function significanceTest(Vi,Qj , α) is defined,
which returns a true value if p-value< α. Consequently,
for each view Vi,Qj that satisfies the constraint, its utility
value U (Vi,Qj ) is computed, and finally the top-k views are
returned.

B. THE QuRVe SCHEME
Clearly, the linear search scheme, described above, visits
every possible view, therefore, it is very expensive in terms of
execution time. In this section, we present the QuRVe scheme,
which reduces cost by pruning a large number of views.

Notice that our problem of finding top-k views is similar to
the problem of top-k query processing, which is extensively
studied in various settings [24]. Generally in these settings
objects are evaluated by multiple objectives that contribute
to the overall score of each object. A scoring/utility function
is therefore usually defined as an aggregation over partial
scores of defined objectives. In terms of efficiency, the best
performing techniques for various top-k problem settings
are based on the threshold algorithm (TA) [24], [25]. TA
generates sorted lists of objects on partial scores for every
objective, visits the lists in round robin fashion and merges
objects from different lists to compute the aggregated scores.
Typically, it early terminates the search as soon as it has the
top-k objects (i.e., long before reaching the end of the lists).

In our settings, we have a similar configuration. That is,
we have two partial scores of a view Vi,Qj , namely: 1) Simi-
larity score S(Q,Qj), and 2) Deviation score D(Vi,Qj ). Those
scores are maintained in two lists: Slist and Dlist . Conversely,
we also have some key differences: 1) for any view Vi,Qj the
values of S(Q,Qj) and D(Vi,Qj ) are not physically stored and
are computed on demand, 2) calculating D(Vi,Qj ) for a view
is an expensive operation, and 3) the size of the view search
space is prohibitively large and potentially infinite.

Obviously, a forthright implementation of TA is infeasible
to our problem due to the limitations mentioned before. How-
ever, recall that the similarity objective S(Q,Qj) is the com-
parison of predicates of Qj with Q and involves no database
probes. Hence, a sorted list Slist can be easily generated at
a negligible cost. However, populating the Dlist in a similar
fashion is not possible, as it involves expensive database

probes. Therefore, to minimize the number of probes and
efficiently populate Dlist , the Sorted-Random (SR) model
of the TA algorithm [24] is employed. In the SR model
the sorted list (S) provides initial list of candidates and the
random list (R) is probed only when required. Accordingly,
QuRVe provides Slist as the initial list of candidate views,
by incrementally generating refined queries in decreasing
order of similarity and populating the Slist . The views in Slist
have their partial scores, the final scores are only calculated
for the views for which the Dlist is also accessed. To limit
the number of those views, QuRVe maintains the following
variables:

1) UUnseen: Stores the maximum possible utility of the
views that are not probed yet.

2) USeen: Stores the k th highest utility of a view seen so
far.

Specifically, to calculate UUnseen, the upper bound on devi-
ation is used. Particularly, consider Vi,Qj as the next view in
Slist and let the upper bound on its deviation be Du(Vi,Qj ).
Moreover, let the normalized upper bound on deviation from
all views be Du then Du = Max[Du(Vi,Qj )]. Consequently,
UUnseen = αS × S(Q,Qj) + (1 − αS ) × Du. To set and nor-
malize the value forDu, we notice that the maximum possible
deviation is simply

√
2 (for the sake of brevity, the derivations

needed to obtain that value are detailed in the next section).
Given that maximum value, and after normalization, then
theoretically Du = Max[Du(Vi,Qj )] = 1.
In detail, QuRVe starts with initializations as: (i) there are

no views generated yet, therefore USeen = 0, (ii) UUnseen =
Du, and (iii) Q has the highest similarity i.e., S(Q,Q) = 1,
therefore, Q is added to Qlist as the first member. Then,
the power of the currently under consideration query Qj
is checked by the function powerTest(Qj, ω, β, α). Next,
the corresponding views are generated by the function
generateViews(Qj) and the statistical significance test is per-
formed on each view by the function significanceTest(Vi,Qj ,
α). The Utility of the views that pass the test is computed.
Accordingly, the list topk is updated. The utility of k th highest
view is copied into USeen, to maintain the bound on the seen
utility values. This completes processing the currently under
consideration query Qj. Later, the next set of neighboring
queries are generated.

In the next iteration, another query Qj is taken from the
Qlist in order of the similarity objective value and accordingly
the value of UUnseen is updated. The iterations continue, until
either there are no more queries to process, or the utility of
the remaining queries will be less than the already seen utility
(i.e., UUnseen > USeen is false). If QuRVe terminates because
of the first condition that means its cost is the same as Linear
search, as the early termination did not get a chance to step
in. However, often QuRVe terminates because of the second
condition (i.e., UUnseen > USeen is false) and achieves early
termination.
Example:Consider the example shown in Figure 5a, which

shows 8 views (V1 − V8) that are based on 8 queries
(Q1 − Q8), where Q1 is the original input query, and the rest
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FIGURE 5. The QuRVe scheme.

are refinements of Q1. Those 8 views are sorted according
to their precomputed similarity, as shown in column S(Vi).
Naturally, view V1, which is based on the input query Q1,
appears at the top of the list with S(V1) = 1, followed by the
remaining views in descending order of S(Vi). The parame-
ters are set as k = 1, αS = 0.6 and αD = 0.4. Additionally,
D(Vi) and U (Vi) columns correspond to the deviation and
utility values of the view Vi, which are computed on demand.
For instance, when view V1 is probed, its deviation is 0.1.
Then its utility is computed as: 0.6× 1 + 0.4 × 0.1 = 0.64.
In linear search, all of the 8 views are probed to compute
their deviation and utility values. However, for QuRVe, after
probing V6, UUnseen = 0.6 × 0.25 + 0.4 × 1 = 0.55 while
USeen = 0.64, therefore, the condition UUnseen > USeen
becomes false, hence the search is early terminated and two
of the views get pruned.

QuRVe reduces the cost of finding top-k views by pruning
unnecessary views. However, it is most efficient with partic-
ular settings of input parameters or when the refined query
that have the view with the maximum utility is near the input
query. For instance, consider Figure 5b, which shows the
same example of Figure 5a but with αS = αD = 0.5. In that
particular example, as the deviation has more weight, there-
fore, the value of UUnseen is bigger, while USeen is smaller,
as compared to Figure 5a and as a result QuRVe fails to prune
any views. The performance of QuRVe is restricted by the
maximum value of UUnseen. The most efficient performance
of QuRVe is expected whenUUnseen decreases quickly during
search and early termination can be triggered. In the next
section, we propose uQuRVe, which is particularly designed
to set the utility of not yet seen views (i.e.,UUnseen) to a tighter
bound instead of the loose upper bound utilized by QuRVe.

C. THE uQuRVe SCHEME
Recall that the fundamental idea underlying our proposed
QuRVe scheme is to early terminate the search based on the
upper bound of the utility of not yet seen views (i.e.,UUnseen).
Particularly,UUnseen is computed by using the similarity value
of the next view on the list, together with the upper bound on
deviation Du. Hence, if UUnseen is less than the already seen
maximum utility (USeen), then all of the remaining views have
no chance of making it up to the top-k. Therefore, QuRVe
terminates the search at that point, and those remaining views

are pruned. Note that the Du used by QuRVe to calculate
UUnseen is basically a theoretical extreme value and it is
oblivious to the analyzed data. Hence, in practice, that upper
bound Du is typically loose as it tends to overestimate the
upper bound on deviation between the target and comparison
views. Consequently, many chances of pruning unnecessary
views are missed.

In our problem setting views are generated correspond-
ing to the input query Q, as well as all its refinements
(i.e.,Qj ∈ Q). In that setting, we observe that while the target
views for every Qj are generated from scratch (i.e., require
a separate query execution), the comparison views are only
generated once for the input queryQ and those same compari-
son views are reused later for eachQj. Such observation is the
main idea underlying our novel uQuRVe scheme introduced
in this section. Particularly, uQuRVe leverages such observa-
tion to provide a tighter upper bound on deviation by using
those already executed comparison views, together with the
properties of the deviation function, as explained next.

We first outline the properties of our deviation function to
provide a tighter bound on deviation. Specifically, according
to Equation 1 any distance metric can be used for computing
deviation, we take Euclidean distance as our metric. Let Vc
and Vt be the comparison and target views with c categories,
the squared Euclidean distance is:

dist2PVc ,PVt =
c∑

x=1

(PVc [x]− PVt [x])
2.

dist2PVc ,PVt =
c∑

x=1

PVc [x]
2
+

c∑
x=1

PVt [x]
2

−2×
c∑

x=1

(PVc [x]× PVt [x]) (6)

Recall, in QuRVe, Du is the theoretical maximum value
of the distance between Vt and Vc. This maximum value
is achieved when the last term in Equation 6 is zero and
consequently:

dist2PVc ,PVt =
c∑

x=1

PVc [x]
2
+

c∑
x=1

PVt [x]
2

To be precise thismaximumvalue is only possible when for
each category x either PVc [x] or PVt [x] is zero. Accordingly,
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dist2PVc ,PVt = 2 and the maximum deviation value DM =
√
2.

To maintain our multi-objective function (Eq. 4) normalized
for all views, the deviation of each view is divided by that
maximum deviation valueDM (Eq. 1), leading to the normal-
ized upper bound on deviation to simply being Du = 1.
However, this is the theoretical maximum, when the exact

probability distribution of Vc and Vt are unknown. While,
in our problem settings, PVc is known from the already
executed comparison views for Q. Hence, we propose the
uQuRVe scheme, which takes advantage of the already cal-
culated PVc and calculates more realistic Du(Vi,Qj ) and Du.
Particularly, let the upper bound on deviation for a target

view Vt corresponding to a comparison view Vc be Du[Vc].
The main idea is to calculate the Du[Vc] for each comparison
view and use it later for two purposes: 1) calculate upper
bound on the utility of a target view, which can result in short
circuiting of that view, and 2) calculate UUnseen, which can
result in early termination of the search.

Note that the query for the comparison view has been
executed and its P[Vc] is known. However, without executing
the target query, we assume a hypothetical target probability
distribution P[Vt ], such that it will result in the maximum
value of deviation. Particularly, the upper bound Du[Vc] will
be achievedwhen for the category inPVc having theminimum
value, the corresponding value in PVt is maximum (i.e., 1.0).
For this to happen, and since the overall

∑c
x=1 PVt [x] has to

be equal to 1.0, then all other values in PVt have to be 0.0.
Consequently, all other categories in PVt are 0 and Eq. 6 is
modified as:

dist2PVc ,PVt =
c∑

x=1

(PVc [x])
2
+

c∑
x=1

(PVt [x])
2

− 2×min
x∈c

(PVc [x])× 1 (7)

For instance. assume a comparison view having four cate-
gories and PVc = [0.3, 0.4, 0.1, 0.2]. The minimum value is
in the third category, hence, to have a maximum deviation
let the hypothetical target view have P[Vt ] = [0, 0, 1, 0].
Resultantly, the distance will be: dist2 = (0.32 + 0.42 +
0.12+0.22)+ (12)− (2×0.1×1) = 1.1, and the normalized
upper bound on deviationDu[Vc] will be 0.7. Comparing that
value to the theoretical upper bound used by QuRVe, which
is 1, shows that in this example, our new upper bound is 30%
less than the theoretical upper bound (i.e., significantly tighter
bound).

Once Du[Vc] is calculated for all comparison views,
Du = Max(Du[Vc]). Du remains fixed for all iterations as
the views are accessed in order of similarity value and there
is no order on the deviation or upper bound of deviation
of the views. Then UUnseen is updated as UUnseen = αS ×

S(Q,Qj)+(1−αS )×Du. Before executing the target query, the
upper bound on utility of a view is calculated as U (Vi,Qj ) ≤
αS × S(Q,Qj) + (1 − αS ) × Du(Vi,Qj ). If U (Vi,Qj ) ≤ USeen
then the target query is not executed and that view is pruned
(short circuit). Clearly, uQuRVe is expected to performs better
than QuRVe since the tighter upper bound on utility allows

FIGURE 6. The uQuRVe example.

for more views to be short circuited and pruned, leading to a
quicker early termination.
Example: Consider the example of Figure 5b again. Now

we have calculated the upper bound on deviation for all
views as shown by column DU (Vi) in Figure 6, and Du =
Max(Du(Vi)) = 0.8. Moreover, we added an additional
column U (Vi), in which the left side shows the upper bound
on the utility of Vi, whereas the right side shows the actual
utility of Vi if it is not pruned, and its actual deviation
is to be computed. For instance, the figure shows that the
utility of V1 has to be less than an upper bound of 0.9
(i.e., U (V1) <= 0.9), while its actual utility after it was
processed was found to be 0.55. Similar to QuRVe, at the start
USeen = 0 and UUnseen = 1. The first view in Slist is V1,
initially it is checked for short circuit. Particularly, its upper
bound of utility is computed as U <= 0.5+0.5×0.8 = 0.9.
As the upper bound is greater than USeen, therefore short
circuit is not possible, and the view is probed for deviation
and actual value of U is computed. After probing V1 to V4 in
order of similarity, USeen = 0.55 and UUnseen = 0.65. For V5
when the upper bound on utility is computed using Du(V5),
it is equal to USeen. Therefore, V5 is short circuited and its
deviation is not probed. Afterwards, after probing V6,UUnseen
becomes smaller than USeen, therefore the search is early
terminated. In comparison to QuRVe which probed 8 iviews
(as shown in Figure 5b), uQuRVe probed only 5 views.

In summary, both QuRVe and uQuRVe schemes maintain
an Slist , which provides sorted(S) access, and Dlist which
provides random(R) access only. The Dlist is accessed when
the view under consideration can have a utility greater than
USeen. Specifically, the access to Dlist means calculating the
statistical significance and eventually the deviation value for
the view by generating the database probes for target query.
Such probes constitute the cost incurred in finding and the
recommending the top-k views. The QuRVe scheme reduces
this cost by early terminating the search, based on the theoret-
ical upper bound on UUnseen. While uQuRVe further reduces
this cost by: i) short circuiting the unnecessary low-utility
views, and ii) allowing faster early termination by setting
a tighter upper bound on UUnseen. Clearly, that cost can be
further minimized if the views with high utility are visited
earlier in the search process, which results in settingUSeen to a
relatively higher value and achieve more pruning power. That
is precisely the intuition underlying our pQuRVe scheme,
which is presented next.
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D. THE pQuRVe SCHEME
The QuRVe and uQuRVe schemes presented in the previous
sections are based on the special case Sorted-Random (SR)
model of the Threshold algorithm (TA). That is, only one
objective is stored in a sorted list, whereas the second objec-
tive is accessed at random. In the context of our problem,
that mapped to the similarity objective being calculated and
sorted, whereas the deviation objective is accessed at random,
and calculated on demand whenever a view Vi is not pruned,
and its deviation valueD(Vi) is needed. Clearly, the SRmodel
provided the benefit of eliminating the need to process pruned
low-utility views, and in turn, save the query execution costs
that would have been incurred to process them. However,
as mentioned in Section IV-B, if the values of all the objec-
tives in a top-k problem are readily available, then the SR
model is outperformed by the more general model of the
threshold algorithm (TA), in which all objectives are stored in
sorted lists and each list also provides both sorted and random
access [24], [25]. Hence, in this section we propose our new
scheme, pQuRVe, with the goal of combining the benefits of
both models.

The main idea underlying this scheme is to have more con-
trol on the ordering of probed views. Ideally, in a hypothetical
oracle scheme, that ordering should lead to views with high
utility to be probed first. While clearly that is not possible
in a practical scheme, QuRVe and uQuRVe came close by
ordering the views based on their similarity to the input query.
Accordingly, in pQuRVe, instead of processing each view to
compute its provided deviation, we rather utilize a reliable
‘‘proxy’’ for that deviation, as explained next.

Recall that the deviationD(Vi,Qj ), provided by a view Vi,Qj ,
is measured as the deviation between the aggregate view Vi
when generated from a selected subset of data DQj vs. that
view when generated from the entire database D (please see
Eq. 3). Hence, intuitively, a refined query that selects a large
subset of data is expected to generate views that are more
similar to those generated from the entire database, which
in turn exhibit low deviation. In other words, as a general
trend, as the cardinality of the refined query result increases,
the deviation of the views generated from that refined query
generally decreases.

Given the intuition mentioned above, let QD be the query,
which selects the whole dataset D. Further, assume Qj is a
refined input query. Hence, the more dissimilar (i.e., far) is
Qj from QD, the higher the expected deviation of the views
generated fromQj. Accordingly, for a view Vi,Qj based onQj,
we define a metric Od (Vi,Qj ), which acts as a proxy for the
deviation provided by Vi,Qj . Particularly, Od (Vi,Qj ) is defined
in terms of the distance between Vi,Qj ’s underlying refined
query (i.e., Qj) and the query QD. To measure that distance,
we use the distance metric defined in Equation 5 to specify
O(Vi,Qj ) as:

Od (Vi,Qj ) = s(QD,Qj) (8)

As mentioned in Section IV-B, computing s(QD,Qj) does
not require any database probes, therefore it is computed for

all views at negligible cost. Hence, in the pQuRVe scheme,
an additional list named Olist is used to store the sorted Od
values for all views. As such, thatOlist acts as a computation-
ally inexpensive proxy for what would have been the sorted
deviation list for those views.

As discussed earlier, differently from the SR model, in the
optimized TA model, all the objective lists must provide both
sorted and random access. Then TA proceeds iteratively in
a round robin fashion, where in each iteration one of the
lists is visited, and the top item in that list is identified using
sorted access. For that item, all its objective scores are then
fetched from all other lists using random access, and its
overall objective score is then calculated.

Meanwhile, in our setting, the lists Slist and Olist provide
precisely those sorted and random accesses. However, it is
important to notice that a straight forward implementation of
TA on those sorted lists will often lead to inaccurate results
sinceOlist provides a proxy indicator of the deviation, but not
the actual deviation itself. For instance, in the context of our
problem, if a view is examined from the Slist , probing theOlist
for its deviation will result in an incorrect overall utility score.

To overcome that limitation, we adapt the TA algorithm
so that for a view Vi,Qj , if it does not satisfy the pruning
condition then: 1) if the unpruned Vi,Qj is visited through the
Slist , then its actual deviation is simply computed on demand
using the Dlist as in uQuRVe, and 2) if Vi,Qj is visited from
the Olist , then its similarity is probed from the Slist using
random access, and if unpruned then its actual deviation
is also computed on demand using the Dlist . Hence, as in
uQuRVe, the Dlist is only accessed when required, whereas
the two lists Slist and Olist are traversed according to the TA
algorithm in a round robin fashion. That is, pQuRVe takes
turns visiting the views across the two lists in descending
order of their scores until a termination condition is reached.
To detect early termination, similar to uQuRVe, UUnseen and
USeen are maintained and when UUnseen > USeen is false the
search is terminated. However, under pQuRVe, a quick early
termination is expected since the round robin traversal allows
those views that are expected to have high-deviation to be
visited early in the search process as they have a high chance
of appearing at the top of the Olist .
Example: Consider again the same example shown in

Figure 5b and further expanded here in Figure 7 to illustrate
pQuRVe. Recall that the views V1 − V8 shown in figure are
based on a set of refined queries Q1 − Q8. Further, in this
example, assume that the analyst has no input query in mind,
so she basically wants to analyze the entire database. Hence,
in that case, the input query (i.e., Q1) is simply equivalent
to QD. Accordingly, as the figure shows, in the Olist the
proxy deviation value for V1 is 0. That is, for view V1
which is based on the entire database, it is unexpected to
find some interesting insights since the view will show the
normal patterns exhibited by the entire database. As shown
in figure, pQuRVe employs an Slist sorted on the similarity
value and a Olist sorted on the proxy deviation Od . Similar
to our previous QuRVe schemes, at the start USeen = 0
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FIGURE 7. pQuRVe example.

and UUnseen = 1. As discussed earlier, pQuRVe access the
lists in round robin fashion similar to TA. Therefore, in the
first iteration shown in Figure 7, the first view V1 in Slist is
visited. As V1 does not satisfy the pruning and short circuit
test, its utility is calculated by computing its actual deviation
from dlist , as in uQuRVe. Consequently, USeen is updated
by the value of U (V1) = 0.55. Following the TA round
robin traversal, pQuRVe alternates and visits the Olist list,
in which V8 is the top view. The upper bound on V8’s utility
is computed, as shown in figure, U (V8) <= 0.475. Hence,
V8 is pruned since its maximum possible utility (i.e., 0.475)
is less thanUSeen. pQuRVe alternates back to Slist , where now
V2 is probed and its final utility value is computed as 0.425.
Continuing with the round robin traversal, V7 is accessed
from the Olist list and is pruned. Then in the last round,
pQuRVe probes V3 from the Slist and V6 from the Olist . After
that point, no more views pass the upper bound check and
eventually pQuRVe reaches early termination. As such, in this
simple example, pQuRVe incurred the cost of processing only
4 views, as compared to uQuRVe requiring the processing
of 5 views.

As shown in our experimental evaluation presented in the
next section, pQuRVe typically achieves higher cost reduc-
tions than uQuRVe. This is because pQuRVe first visits the
views which have high probability of having top-k utility val-
ues. Consequently, it sets USeen to a high value very quickly
and the condition UUnseen > USeen becomes false very early
as compared to uQuRVe. It is worth pointing out that the
gains from pQuRVe become even more pronounced when
the analyst is not particularly familiar with the analyzed data
and make no initial hypothesis about expected insights (i.e.,
no input query is provided). In that case, the analyst would
caremost about finding interesting insights, and the similarity
metric is irrelevant. Particularly, that setting is equivalent
to αS = 0 and αD = 1. Consequently, the overall util-
ity value completely depends on the deviation objective. In
QuRVe, that maps to accessing all views in the unsortedDlist ,
therefore, it will actually perform same as the linear scheme.
However, pQuRVe leverages theOlist , which partially ensures
that views are accessed in pseudo order of high utility.

V. EXPERIMENTAL TESTBED
We perform extensive experimental evaluation to measure
both the efficiency and effectiveness of our proposed QuRVe

TABLE 2. Summary of parameters.

schemes. Here, we present the different parameters and set-
tings used in our experiments.
Setup: We built a platform for refining query and rec-

ommending visualizations to evaluate the different search
schemes presented in this paper. Our experiments are per-
formed on a Corei7 machine with 16GB of RAM memory.
The platform is implemented in Java, and PostgreSQL is used
as the backend database management system.
Data Analysis: We assume a data exploration setting in

which multi-dimensional datasets are analyzed. Table 2 lists
down the parameters for data analysis, their default values,
and ranges. We use CENSUS: the census income dataset [10]
and FLIGHTS: the flight delays dataset [26]. The CENSUS
dataset has 14 attributes and 48,842 tuples. The independent
categorical attributes of the dataset are used as dimensions
(e.g., occupation, work class, hours per week, sex, etc.),
whereas the observation attributes are used as measures (cap-
ital gain, capital loss, etc.) and the numerical independent
attributes are used for predicates (e.g., education, age, etc.).
The same split of attributes is used for the FLIGHTS, which
has 18 attributes and more than 5M tuples. For both datasets,
in our default setting, |A| = 3, |M| = 3, |F| = 3 and p = 3,
where p is the number of predicates used in refinement, where
the aggregate functions used are SUM, AVG and COUNT.
The CENSUS dataset is used as the default dataset for our
experiments.

In our analysis, αS is set in the range [0− 1], where αS +
αD = 1. In the default setting αS = 0.5, k = 10 and γ = 1

23
.

For the purpose of statistical significance, in our experiments
we use chi-square goodness of fit test, which is the standard
test for comparing difference between sample and population
data for categorical dimension attribute.
Schemes: While our work is the first to introduce query

refinement for visual data exploration, we include in our
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evaluation two baseline schemes that are closest to our work.
As a baseline scheme, we include SeeDB [3], in which the
goal is to maximize the overall utility of recommended views
in terms of their deviations without attempting to refine
the analyst’s input queries. Additionally, we also include
Hill Climbing (HC), with halving search as another base-
line method [27]. Aside from visual analytics, HC has been
widely used for addressing the query refinement problem
since it has been introduced in [27]. Our QuRVe schemes are
compared to those baselines, as well as with the exhaustive
Linear scheme presented in Section IV.
Performance: We evaluate the efficiency and effective-

ness of the different recommendations schemes in terms of
incurred query processing cost and their achieved overall
utility. Particularly, as mentioned in Section III, the cost of
a scheme is the total cost incurred in processing all the gener-
ated views. Hence, we use the total views probed and execu-
tion time as the cost metric. Meanwhile, also as mentioned in
Section III, the achieved utility is the sum of the utilities of the
recommended top-k views. It is worth mentioning that all our
proposed QuRVe schemes provide the same utility, as they
consider both the similarity and deviation objectives of the
utility function. However, that is clearly not the case for the
baseline schemes SeeDB and HC, where each considers only
one of those objectives. In our evaluation, each experiment is
performed with 10 randomly generated input queries, spread
around the search space defined by the predicates in P, then
the average of the cost and overall utility is presented.

VI. EXPERIMENTAL EVALUATION
Impact of the α parameters (Figure 8): In this set of exper-
iments, we measure the impact of the α values on cost (i.e.,
total number of views probed and execution time). Figure 8
shows how the cost of Linear, QuRVe, uQuRVe and pQuRVe
schemes is affected by changing the values of αS for the CEN-
SUS and FLIGHTS datasets. In Figure 8, αS is increasing
while αD is implicitly decreasing, for instance at αS = 0 the
corresponding αD = 1 (i.e., αD = 1− αS ). Moreover, notice
that all 4 of those schemes provide the same utility, hence,
our focus in this experiment is on cost, whereas the results on
utility are deferred to Figure 10.
For the Linear baseline scheme, Figure 8 shows that the

Linear scheme has same the cost for all values of αS , which
is as expected since it performs exhaustive search over all
combinations of refined queries, dimensions, measures and
aggregate functions. Therefore, its cost depends on the num-
ber of all possible combinations, irrespective of the value
of αS .

As for the different measures of cost, Figure 8a shows cost
in terms of number of views probed. It shows that QuRVe
has almost the same cost as Linear for αS = 0 − 0.2, but
outperform it as the value of αS increases. This happens
because in theQuRVe scheme, the upper bound on deviation is
set to the theoretical maximum bound i.e., Du = 1 and when
αS = 0, UUnseen = 0× S + 1× Du = 1, consequently early
termination is not possible. On the contrary, as αS increases,

FIGURE 8. Impact of αS and αD on cost.

chances of applying the early termination condition based
on the similarity value becomes possible. Consequently, this
prunes many of the database probes.

The amount of achieved pruning is further increased for
αS ≤ 0.8 under uQuRVe, because of its tighter upper bound
on deviation. Consequently, this results in earlier early ter-
mination and increased number of short circuits on deviation
calculation. For instance, in Figure 8 at αS = 0.3, uQuRVe
shows around 50% reduction in cost as compared to QuRVe.
The cost is further reduced by pQuRVe, which is able to
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FIGURE 9. Impact of k on cost at αS = 0.3, αD = 0.7 and αS = 0.6,
αD = 0.4.

prune deviation calculations even more because it visits the
most promising top-k views first before low utility views. For
instance, Figure 8 shows that pQuRVe reduces the processing
cost by more than 35%, compared to uQuRVe, at αS = 0.2.
Notice uQuRVe and pQuRVe are able to prune views for all
values of α due to the tighter upper bound on utility.
Figure 8b shows the cost for the CENSUS dataset in terms

of execution time. The figure clearly shows that the execution
time pattern exhibited by all schemes is the same as Figure 8a.
Naturally, this is because the execution time is I/O-bound and
it is directly proportional to the number of probed views.

Figures 8c and 8d show the cost in terms of execution
time and number of views probed for the FLIGHTS dataset.
Figure 8d shows that the execution time for Linear is rather
high as compared to Figure 8b because of the larger size of
the dataset. Moreover, the figure also shows that uQuRVe has
lower execution time compared to the QuRVe scheme for all
values of αS due to the optimized upper bounds. However,
for αS ≤ 0.5 QuRVe performs similar to linear because the
dataset lacks high deviation views. Particularly, across all the
possible views in that dataset, the highest exhibited deviation
is 0.25, which results in low value of USeen and consequently
less early termination opportunities. Note that the cost of
uQuRVe and pQuRVe is almost the same for the FLIGHTS
dataset, differently from the CENSUS dataset. This is because
for the FLIGHTS dataset, the low-cardinality high-deviation
views turned out to be statistically insignificant, and as a
result pQuRVe converged to perform similar to uQuRVe in
terms of pruning power.
Impact of k (Figure 9): In the previous experiments,

the value of k is set to 10 (i.e., top-10 views are recom-
mended). Figures 9b and 9b show the sensitivity of our

FIGURE 10. Impact on effectiveness.

schemes to different values of k, while keeping αS and αD
fixed. Particularly, Figures 9a and 9b show that the Linear
scheme is insensitive to the increase in the value of k. This
is because it visits all views and sort them according to their
utility irrespective of the value of k.

For Figure 9a, αS = 0.3, QuRVe performs better than
Linear for small values of k. However, as k increase it almost
performs same as Linear, because QuRVe uses loose upper
bounds on deviation and with higher values of k the early
termination does not get a chance to trigger. Figure 9a also
shows that uQuRVe has lower cost than QuRVe for all val-
ues of k . This is because as soon as uQuRVe has seen the
top-k highest utility views, early termination will be enabled
leading to pruning many unnecessary low utility views. For
instance, in case of top-1, uQuRVe reduces cost by up to 65%
compared to the Linear scheme. Moreover, pQuRVe performs
even better than uQuRVe for all values of k as it utilizes the
proxy to deviation to increase its pruning power. In Figure 9b,
αS = 0.6, all QuRVe schemes perform multiple folds better
than Linear, and the performance remains stable even with
the increasing number of k . This is because, for higher values
of αS , the similarity objective starts to dominate the overall
utility function, while the deviation objective receives less
weight, leading to favorite conditions for pruning and early
termination.
Impact on Effectiveness ((Figure 10): As mentioned in

Section V, we also evaluate the performance of the baselines
SeeDB and Hill climbing (HC) in comparison to our QuRVe
schemes. Particularly, in this experiment we first focus on
the effectiveness provided by those baselines in terms of
the achieved overall utility. Since all the QuRVe schemes
provide the same effectiveness, we only include the results
from pQuRVe, which is also the most efficient QuRVe scheme
in terms of minimizing processing costs.
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Figures 10a and 10b show the cost and overall utility of all
the mentioned schemes. Figure 10a shows that SeeDB has the
same high cost for all values of αS , as it is only designed to
maximize deviation, and is incognizant to similarity. There-
fore, its cost depends on the number of all possible combina-
tions, irrespective of the values of αS . Figure 10a also shows
that the HC scheme provides the same cost regardless of αS
value. This is because HC is a local search based scheme,
which is expected to hit a local maxima, hence, always has
low cost. Meanwhile, the cost of pQuRVe decreases with the
increase in αS due to the early terminations and short circuits
of the scheme.

Figure 10b shows SeeDB provides a constant utility, which
is significant lower than pQuRVe for α ≥ 0.5. This is because
SeeDB is purely based on the deviation metric, and is oblivi-
ous to similarity. Hence, when αD starts decreasing, the views
selected by SeeDB would lack similarity to the input query,
and the overall utility starts to decrease as compared to the
overall utility provided by pQuRVe. Meanwhile, our hybrid
objective utility function is incorporated in HC, which leads
to improving the utility as αS increases. However, as men-
tioned earlier, HC is a local search greedy scheme, therefore,
it typically provides a local maxima solution and falls short
in achieving the global maxima. To the contrary, the pQuRVe
scheme achieves the maximum utility value for all values
of αS .
Scalability - Impact of Dimensionality (Figure 11): We

note that the search space for our problem depends on |A|,
|M |, |F |, the number of predicates p, and grid resolution γ ,.
Increasing any of those factors naturally leads to increasing
the search space. Consequently, the processing cost incurred
by all schemes increases as there are more views that are
visited in search for the top-k views.

Figure 11 shows the impact of the number of dimensions on
cost. Particularly, for this experiment the number of dimen-
sions (|A|) is increased from 1 to 9, while in the previous
experiments the number of dimensions was set to 3. As
expected, Figure 11 shows that the increase in the cost of
Linear is linear with the increase in |A|. However, for the
QuRVe family, the increase in cost occurs at a much slower
rate. It is worth noting that in addition to the number of dimen-
sions, the data characteristics of each dimension also have
an impact on the cost QuRVe. Particularly, in this experiment
we observed that the cost of QuRVe and uQuRVe increases as
the number of dimensions is increased from 1 to 3, because
the schemes search from more views to generate top-k views.
However, as we added more dimension and reached |A| = 5,
the cost of both schemes started to decrease. This drop in
cost happened because the newly introduced dimensions gen-
erated views with high deviation, which in turn resulted in
increasing the value ofUSeen and triggering early termination.
We also note a special case, in which the cost of pQuRVe

scheme is higher than that of uQuRVe for |A| = 1 − 3. The
reason for that discrepancy is that pQuRVe attempts to find
high-deviation views early in the search. However, when the
dataset lacks such high-deviation views, as it has been the

FIGURE 11. Impact of dimensions on cost.

case with |A| = 1−3, then pQuRVe is expected to experience
some overhead. Particularly, pQuRVe as it traverses the Slist
and Olist in round robin, it will be probing views from the
Olist in attempt to quickly find those high-deviation views.
In the absence of such viewswith significantly high deviation,
pQuRVe might end up probing more views in comparison to
uQuRVe. However, in the typical case where the dataset con-
tains some interesting high deviation views, pQuRVe consis-
tently outperforms uQuRVe, as it is shown in the figure where
|A| ≥ 5.
Scalability - Impact of Grid Resolution (Figures 12–13):

As mentioned in Section IV, to enable the refinement of
continuous dimensions, those dimensions are discretized
by a user specified parameter γ . Figures 12 and 13 show
the impact of this discretization factor, or grid resolution,
on the cost and overall utility value achieved by all schemes.
Note that a large value of γ represents a sparse grid with
wider cells, which means there are fewer refined queries to
explore. Alternatively, as γ decreases, the grid cell width
decreases, which means the possible number of refined
queries increases. More refined queries generally implies
increase in cost but it should also be able to improve the
overall utility of the top-k views. Figure 12 clearly shows
that as the grid becomes dense the cost of the Linear scheme
increase as it has to search through a larger number of refined
queries for top-k views. At the same time, the reduction in
cost by the QuRVe schemes are more prominent for dense
grids (i.e., low γ ). This is because the number of possible
refined queries increases and it gives the QuRVe schemes
more opportunities to prune unnecessary views. Figure 12b
shows the same results of Figure 12a by using a log scale
on the y-axis to further underscore the performance gains
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FIGURE 12. Impact of grid resolution on cost (log scale).

FIGURE 13. Impact of grid resolution on overall utility.

provided by QuRVe. For instance, the figure clearly shows
that at γ = 0.0625, the cost of pQuRVe is more than
10 folds less than that for Linear. Finally, Figure 13 shows
the achieved overall utility (i.e., the sum of the utility of
top-k views). Clearly, all four schemes provide the same
overall utility as all schemes recommend the same top-k
views. However, it can be clearly seen that as γ decreases
the overall utility increases, since a denser grid allows for
a high resolution query refinement, and in turn discovering
those particular subsets of data that are both: 1) most similar
to the analyzed data subset, and 2) reveal interesting insights
in terms of providing high deviation.

VII. RELATED WORK
In this section, we present our review of related work in
the areas of visualization recommendation, query refinement,
and hypothesis testing.
Visualization Recommendation:Many efforts in the visual

data exploration domain have been directed towards the

development of effective tools and techniques for visualiza-
tion recommendation. On the one hand, some recent research
efforts have focused on learning human perception for rec-
ommending interesting visualizations. In particular, the focus
is understanding which visualization and transformation is
good under which scenarios and using that learning to mine
for interesting visualizations [28]–[30]. However, such sys-
tems involve heavy interaction with the user in the learning
phase, hence these systems are less effective when users are
rapidly exploring unfamiliar or complex datasets. On the
other hand, data-driven efficient techniques have been devel-
oped for recommending top-k visualizations based on some
utility metric such as deviation, similarity, correlation, out-
liers etc. [3], [4], [6], [7], [9], [12]. The main idea underlying
those solutions is to automatically generate all possible views
of the explored data, and recommend the top-k interesting
views, where the interestingness of a view is quantified
according to a pre-specified objective function that captures
the utility of the view. Our work proposed in this paper
advances the data-driven visualization recommendation one
step further towards full automation by not only recommend-
ing the top-k interesting views, but also recommending the
queries that lead to such views. Specifically, in this work,
we explore all possible subsets of data for discovering inter-
esting views. Orthogonal to recommending visual aggrega-
tions, which is the focus of our work, exploring a data search
space to find those interesting data subsets has been the
focus of some recent research efforts. For instance, the work
in [31] models the behavior of data subsets by progressively
adding filters. The objective of that work is to recommend
a network of visualizations within a subset of data where
interestingness is quantified in terms of the distance between
the parent and the child visualizations. Meanwhile, the work
in [32] investigates another version of the problem, in which
LOF (local outlier factor) is the employed utility metric.
Accordingly, it explores all possible subsets of data specified
by a single predicate only, where such predicate is defined on
a categorical attribute.
Query Refinement: In this work, we propose to

automatically refine an input exploratory query for the objec-
tive of view recommendation. In the domain of data explo-
ration, automatic query refinement has been used on different
flavors of problems that involve generating refined queries
with answers that satisfy some cardinality constraints. For
instance, it has been used in works focused on cardinality,
similarity and aggregate constraints [13], [14], [17], [27],
[33], exploring predicates to answer why questions and
to explain outliers [15], [16], to solve empty query result
problem [34], [35]. The cardinality constrained based query
refinement is a computationally expensive problem, therefore
heuristics that efficiently return approximate results were
developed. However, in our case those heuristics, such as
Hill Climbing, fall short in meeting our goal to rank views
optimally not approximately. Moreover, differently from the
simple objective of finding queries that satisfy a certain
constraint on cardinality result, our goal is to search for
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those queries that generate views, whichmaximize our hybrid
multi-objective utility function. Further for the cardinality
constrained based query refinement problem, an interac-
tive model of refinement was proposed that incorporated
user feedback to capture user preferences for the refined
queries [13]. That work addressed a relaxed problem com-
pared to ours, as only partial combinations of refinements
were generated due to interactivity with the user. In compari-
son, the core of our work is around the automated data-driven
objective, however we also combine the user preference and
other control parameters of the proposed schemes. Scorpion,
similar to us, is a system to analyze large datasets through
aggregates [15]. However, while our QuRVe refines predi-
cates to find interesting aggregate views, Scorpion takes a set
of outlier points in an aggregate query result as input and finds
predicates that explain those outliers [15]. The properties of
aggregate operators are used to derive the search and prune
the predicates search space. SAQR [17] proposed a scheme
for similarity-aware refinement of aggregate queries, which
satisfy the aggregate and similarity constraints imposed on
the refined query and maximize its overall utility. Another
query refinement work that considers the similarity to the
input query has been introduced in [14]. However, the goal
of that work is to generate a set of alternative queries to
meet the constraint on similarity to the original query and
the aggregate constraint. Meanwhile, our goal is to gen-
erate alternative queries that maximize our multi-objective
utility function, which is based on similarity to the orig-
inal query, as well as the deviation from the comparison
dataset.
Hypothesis testing: Hypothesis testing is a well studied

area in the domain of statistics. Moreover, it also recently
found several applications in the domain of data exploration
in terms of determining the statistical significance of discov-
ered insights. For instance, the work in [36] is one of the
initial efforts towards exploratory hypothesis testing, which
enabled researchers to use computational methods to examine
large numbers of hypotheses and to identify those that have
a reasonable chance of being true. The proposed framework
generates subsets using existing frequent pattern mining tech-
niques, pair the subsets to form tentative hypotheses, and rank
the statistically significant hypotheses in ascending order of
their p-value. Additionally, [36] introduces restricted monte
carlo tests for validating correlations of datasets, where initial
experiments indicate that those significance tests can improve
the data discovery process. Finally, the work in [19] auto-
matically creates hypothesis based on aggregate queries and
performs significance testing based on chi-square tests. How-
ever, [19] focuses on controlling the rate of false discoveries,
while our proposed schemes, in addition to eliminating false
discoveries, they also allow efficient navigation of the views
search space.

VIII. CONCLUSION
Motivated by the need for visualizations recommendation
that leads to interesting discoveries and avoid common

pitfalls such as random or false discoveries, in this paper
we formulated the problem of query refinement for view
recommendation and proposed the QuRVe schemes for view
recommendation. QuRVe refines the original query in search
for more interesting views. It efficiently navigates the refined
queries search space to maximize utility and reduce the over-
all query processing cost. That cost is further reduced with
the uQuRVe scheme, which applies tight upper bounds to
prune more views. Further, we also proposed the pQuRVE
scheme, which navigates the refined queries search space
in an order that resembles a utility-based sorted order of
the views. Our experimental results show that employing
the QuRVe schemes offer significant reduction in terms
of the costs incurred in recommending top-k aggregate
views.
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