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ABSTRACT Equivalent Consumption Management Strategy (ECMS), a representative energy management
strategy for hybrid electric vehicles (HEVs) derived from Pontryagin’s minimum principle, is known to
produce a near-optimal solution if the costate or equivalent factor of electric use is appropriately determined
according to the driving conditions. One problem when applying the control concept to real-world scenarios
is that it is difficult to precisely evaluate the performance of the control parameter before driving is complete,
so the costate cannot be determined properly. To address this issue, this study proposes a practical method
for estimating an appropriate costate based on Deep Q-Networks (DQNs), which is a reinforcement learning
algorithm that uses a Deep Neural Network to evaluate the performances and determine the best control
parameter or costate. The control concept benefits vehicle energy management by selecting the control
parameter most related to stochastic conditions or future driving information based on artificial intelligence
(AI), while optimal control is deterministically conducted by ECMS if the control parameter is given. Simply,
only the implicit part of the optimal controller is solved via artificial intelligence. In the simulation results,
not only does the proposed control concept outperform an existing ECMS that uses an adaptive technique for
determining the costate, but the concept is also very feasible, in that it does not need a model for evaluating
the performances.

INDEX TERMS Energy management strategy, adaptive ECMS, machine learning, reinforcement learning,
hybrid electric vehicles, deep Q-learning, optimal control.

I. INTRODUCTION
Extensive research and development to reduce energy con-
sumption based on alternative vehicle technologies have been
conducted over the last few decades. In particular, Fuel
Cell Electric Vehicles (FCEVs) and Battery Electric Vehi-
cles (BEVs) that can realize zero emissions have become
popular. However, it will take time to replace all conventional
vehicles with zero-emission vehicles because infrastructure
such as hydrogen and electric charging stations is neces-
sary; additionally, petroleum is still a cost-competitive energy
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solution. Therefore, by taking advantage of partial electrifi-
cation, Hybrid Electric Vehicles (HEVs) may be promising
solutions not only for saving fuel usage but also for penetrat-
ing automotivemarkets. It is known that HEVs could improve
fuel economy by up to 50% or more by using electric motors,
but this requires sophisticated control for maximizing the use
of electric components.

Many control concepts for balancing energy and man-
aging powertrain components have been proposed, and the
Equivalent Consumption Minimum Strategy (ECMS) shows
outstanding fuel-saving performances [1], [2]. The ECMS
defines the sum of fuel and electricity consumption as an
equivalent value, and then it finds the control inputs that

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 72759

https://orcid.org/0000-0003-3975-8364
https://orcid.org/0000-0003-4894-7087
https://orcid.org/0000-0002-8748-1497
https://orcid.org/0000-0003-1737-962X
https://orcid.org/0000-0002-1330-7883
https://orcid.org/0000-0001-9255-0752


W. Lee et al.: Real-Time Intelligent Energy Management Strategy for HEVs Using Reinforcement Learning

minimize this consumption at every moment. It turns out
that this energy management strategy can be interpreted in
terms of the optimal control, as realized through Pontrygin’s
Minimum Principle (PMP), so it is possible that near-optimal
solutions can be obtained based on ECMS [3], [4]. In this
control concept, an equivalent factor called the costate is
used to evaluate the energy consumption, which determines
the relative value of the electric energy. For optimal energy
management, an appropriate costate should be determined
according to the driving conditions, which is related to future
driving information. Assuming that future driving informa-
tion is fully known, a method to find the ideal costate
using a numerical approach (e.g., Newton Raphson, Shooting
Method) was studied [5]. However, suchmethods are difficult
to apply to real applications because it finds an ideal costate
through iterative simulations. Another approach for a practi-
cal control concept is selecting an appropriate costate based
on the current vehicle status [6],[7]. For instance, an adaptive
ECMS that updates the costate based on current SOC levels
showed the best performance for HEVs in the IEEE VTS
Motor Vehicles Challenge 2018 [8]. On the other hand, given
that sensors and communication technologies have advanced
in recent years, vehicles can predict and utilize future driving
information for better control. Therefore, there is need for an
intelligent method that can determine costates in real-time by
utilizing future driving information.

Reinforcement learning is a specialized field in machine-
learning control optimization, and the control policy is rein-
forced to maximize the total rewards of the system while
the environment and the agent interact with each other [9].
Reinforcement learning enables model-free control, which
makes it possible to deal with control problems even when
no information is provided regarding the environment.

The traditional method, model-based control, can be used
when the correlations between the states and the output
of the system are known, and an absolute solution can
be obtained if the model is deterministic because rein-
forcement learning is based on Bellman’s optimality [10].
Model-free control relies on the experience of the model to
learn, and the evaluation of the reward can be conducted
through Monte Carlo (MC) learning or Temporal Differ-
ence (TD) learning algorithms [11], [12]. The MC learning
algorithm grants rewards to the agent collectively after the
episode is over. Therefore, its convergence is excellent, but
it is not suitable for online learning. On the other hand,
the TD learning algorithm assigns rewards to the agent every
moment, so the convergence may be lower than that of the
MC algorithm, but this makes the online learning process
possible.

As a representative algorithm, Q-learning, which is based
on TD learning methods, is used in this study to estimate
the costate of ECMS. The policy in Q-learning is deter-
mined based on a Q-table, where optimal rewards are updated
according to states and actions [13]. If the Q-table is sat-
urated, it is possible to utilize the table to select the best
control option. However, the dimensions of the state and

FIGURE 1. The real-time intelligent energy management strategy based
on ECMS.

action are often too large to be effectively handled by the
controller. Therefore, deep Q-learning, which approximates
the Q-table using deep neural networks, has been used in this
study [14]–[17].

Whereas Q-learning is already becoming popular for HEV
control problems [18], [19], we propose an efficient control
concept that combines the optimal control strategy with the
reinforcement learning algorithm, as shown in Fig. 1. The
organization of the proposed control is divided into two parts,
a stochastic part and a deterministic part. The stochastic,
or intelligent, control part estimates the optimal costate based
on Q-learning, where future driving information is the input
status of the learning algorithm. The future driving informa-
tion concerns what can be predicted from the connected sys-
tems, such as average vehicle power demand, average vehicle
speed and average vehicle acceleration. Such control cannot
be deterministic because there is no available perfect future
prediction. In the deterministic control part, the powertrain
components are managed by the ECMS for saving equivalent
consumption. This control concept is very efficient because
it can be applied to a real-time controller, and optimality of
the EMCS is still guaranteed in the deterministic part, which
means that the stochastic information related to future driving
is handled in the intelligent part only.

This paper is organized as follows: Section II introduces
multi-mode hybrid systems and ECMS. Section III proposes
two methodologies to estimate the optimal costate in the
controller. Section IV evaluates the performances of the two
control concepts. Finally, in Section V, conclusions derived
from this study are presented.

II. ENERGY MANAGEMENT STRATEGY BASED ON
OPTIMAL CONTROL
This section introduces a multi-mode hybrid system used in
this study and an energy management strategy for the vehicle.

A. MULTI-MODE HYBRID SYSTEM
There are several hybrid systems that have been introduced
by global manufacturers. Toyota has introduced power-split
hybrid systems (e.g., the Prius series) using planetary gear
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FIGURE 2. The powertrain system configuration of volt 1st Gen.

TABLE 1. Operating modes of volt 1st Gen.

FIGURE 3. Operating modes of volt 1st Gen characterized by a lever
system.

sets [20]–[22], and Hyundai Motors has been develop-
ing Transmission-Mounted Electric Device (TMED) sys-
tems (e.g., Ioniq, Sonata) [23], [24]. General Motors has
introduced multi-mode hybrid systems (e.g., Voltec, Malibu,
Cadillac CT6) that can implement several operating modes
with clutches and planetary gears [25]–[27]. This system
can selectively use an optimal operating mode according to
the driving conditions. Fig. 2 shows the powertrain system
of GM Volt 1st Gen and it is an Extended Range Electric
Vehicles (EREV) with plug-in. This system can realize two
EV modes, a series mode and an output split mode, with one
planetary gear and three clutches as shown in Table 1 and
Fig. 3. The EV1 mode is operated at low speed and the
series mode is activated when SOC charging is required.
The vehicle drives in either EV2 or output split mode at
high speeds. This hybrid system is selected for comparative
study because this vehicle model was present in the IEEE
VTS Motor Vehicles Challenge 2018 [8], and the results
of this competition can serve as a reference for evaluating
the control performance using the reinforcement learning
algorithm.

FIGURE 4. Engine power depending on the battery power.

B. THE CONCEPT OF ECMS
Drivers control the acceleration and brake pedals according
to the driving situation ahead, including traffic information,
signal lights, or speed limits, and the demand power for
driving is determined from these pedal signals. The engine,
which is the only power source in a conventional vehicle,
must provide the demand power requested by the driver.

HEVs, however, have multiple power sources, and thus
there aremany control options to distribute the demand power
between the motors and engine. Fig. 4 and Fig. 5 show the
process of determining optimal candidates for engine oper-
ating points in HEVs when the vehicle speed and demand
power are given. First, if battery power is selected, the engine
can choose any of the points on the blue, green, or brown
dashed lines seen in Fig. 4, where particular lines indicate
the output power is equal to the demand power. However,
the best control option is given by the yellow dot-dash Opti-
mal Operating Line (OOL) because it contains the most
efficient engine operating points out of the available options.
Fig. 5 shows all available engine operating points and the
best operating points with respect to battery power, which
is obtained by projecting all operating points in Fig. 4 into
a different space in Fig. 5, with axes defined by the battery
power and the fuel consumption rate. In terms of fuel econ-
omy, if the battery power is determined, the controller should
use the minimum point to save on fuel usage, as described by
the Pareto frontier in Fig. 5 [3]. On the other hand, the ECMS
concept is derived from the idea of minimizing both battery
and engine power at the same time.

This concept can be interpreted in terms of optimal control
theory and can be expressed as the following equations [3].

minJ =
∫ tf

t0
g (Pbat , t) dt, (1)

SȮC = f (SOC,Pbat) , (2)

SOCinit = SOCfinal (3)

Here, g is the fuel consumption rate, Pbat is the battery
power and SOC is the state of charge of the battery. The cost
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FIGURE 5. Pareto Frontiers for GM volt 1st when the transmission output
torque and speed are 200Nm & 200rad/s.

function and state equation can be combinedwith λ, called the
costate, based on constrained optimization, as follows [3]:

H = g (Pbat , t)+ λ · SȮC (4)

where H is the Hamiltonian, which can be interpreted as
equivalent consumption. This is obtained based on the Pareto
frontier with a specific costate value, and an example of
the Hamiltonian is shown in Fig 6. There can be up to
four Hamiltonian lines available for a specific output torque
and wheel speed because GM VOLT 1st has four different
operating modes. For instance, the output split mode with
the battery power of -7kW is the optimal point, which is
superior to any other operating option. As described above,
the main concept of ECMS is to calculate the Hamiltonian
with a specific costate value at every moment, so the costate
becomes a significantly important parameter. The problem is,
however, that the costate is not given prior to driving because
it is related to the electric energy, which itself depends on
the driving conditions. Therefore, the controller should have
methodologies to appropriately estimate the costate.

III. COSTATE ESTIMATION
This section explains the meaning of the costate and pro-
poses a method for estimating it. In this study, an adaptive
control concept based on current driving information and an
intelligent control technique based on reinforcement learning
using short-term future driving information are introduced,
where the former was introduced in the 2018 IEEE VTS
Challenge [8]. The performances of the two control strategies
will be compared via simulation results.

A. IMPACT OF COSTATE
The impact of the costate on energy management has been an
interesting topic in HEV control problems [28], [29]. Asmen-
tioned in Section II, the costate plays a role in determining
the relative value of electric use. If the absolute value of
the costate is high, the SOC will be charged as electricity

FIGURE 6. Hamiltonian (Output Torque: 200Nm, Wheel Speed: 200rad/s,
Costate: -2400g/s). The point that minimizes the Hamiltonian in output
split mode is −7kW.

FIGURE 7. Costate meaning according to the SOC and future driving
information.

becomes more valuable, and the SOC will be discharged oth-
erwise. Additionally, when the absolute value of the costate
is appropriately determined, the energy use is properly dis-
tributed between the fuel and the electricity, so the SOC is
well-balanced. This balancing task and the costate are related
to future driving information. For example, recognizing an
uphill load ahead, the controller can predict that the vehicle
will need high power for climbing the hill during the next few
minutes. Therefore, a possible control strategy is to charge
the SOC in advance by setting the absolute value of the
costate to high, so the motors can assist the engine on the
uphill road. Conversely, if the vehicle knows that there is a
downhill road ahead, it consumes the SOC in advance, so the
vehicle can fully recuperate its braking energy when it arrives
at the downhill road. As shown in Fig. 7, the costate can
be adjusted to maximize the efficiency by observing future
driving information
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FIGURE 8. A concept of costate estimation of the adaptive energy
management strategy.

B. ADAPTIVE ENERGY MANAGEMENT STRATEGY
The IEEE Vehicular Technology Society (VTS) held the
IEEE VTS Challenge 2018 with the aim to minimize fuel and
electric consumption of GM Volt 1st under the assumption
that future driving information is unknown. In this com-
petition, an adaptive energy management strategy based on
optimal control using only the current driving information
was developed, showing the best performance [8]. Although
the costate can be appropriately estimated by considering
future driving information and the current SOC, the proposed
controller in [8] utilized only the current SOC because future
information was not available. The adaptive energy manage-
ment strategy updates the costate by selecting one of five opti-
mal costate values that appropriately manage the SOC during
representative driving cycles, such as UDDS, HWFET, SC03,
US06, and WLTC. In case the controller fails to manage the
SOCwith the 5 costate values, an emergency state is activated
to restore the SOC to a normal operating range, as shown in
Fig. 8. Based on this concept, adaptive ECMS is expected to
improve the fuel economy of the vehicle and properlymanage
the SOC level of the battery. This was verified when this
adaptive ECMS showed the best performance out of other
controllers in the competition [8].

C. INTELLIGENT ENERGY MANAGEMENT STRATEGY
Among machine learning techniques, reinforcement learning
is a specialized concept in control optimization that reinforces
the control policy to maximize the rewards obtained from the
environment while the agent and the environment continually
interact. There are various reinforcement learning algorithms,
which can be classified into the two categories: model-based
control and model-free control.

As mentioned in the introduction section, there are two
types of model-free control: MC learning method and TD
learning method. In this study, the online controller using TD
learning algorithm is selected because i) a practical control
algorithm should be able to estimate and update the costate
in real-time and ii) a high-fidelity vehicle model is available
to evaluate the energy consumption in the online controller.
In this study, the intelligent controller in Fig. 1 using the TD
learning algorithm implements the online learning process by
observing the reward without information about the vehicle
model.

Reinforcement learning calculates rewards while observ-
ing states and actions, and selects controls that can maximize

FIGURE 9. A concept of Q-learning and deep Q-learning.

FIGURE 10. Reinforcement learning framework with Autonomie.

long-term rewards, Q, as follows:

Q (s, a)=Eπ [rt+1+γ rt+2+γ 2rt+3 + · · · |st = s, at = a]

(5)

where r is a reward, γ is a discount factor, s is the state, a is
the action. TheQ-learning algorithm calculates this long-term
reward every moment as follows:

Q (s, a) = r + γ max
a
Q(s′, a) (6)

where s′ is the next state. The Q-learning algorithm updates
the policy to improve the performance based on the
Q-table. Here, a neural network model is used for the Q-table
because the states inhabit a large space and the actions are
too numerous to be implemented in a table, which is why the
Deep Q-Network (DQN) is used, as shown in Fig. 9. Deep
Q-learning, simply, updates the policy by minimizing the loss
function, which is defined as follows:

Li (θi)=E(s,a)
[(
r+γ max

a
Q
(
s′, a′; θi−1

)
−Q (s, a; θi)

)2]
(7)

where θ is the weighting factor of deep neural networks.
The loss function represents a measure of the deep neu-
ral network performance, and the deep Q-learning algo-
rithm updates the weighting factor to minimize this loss
function, which is used for estimating the costate in this
study [31], [32]. If the loss is 0, the equation (7) becomes
the same as equation (6), which means that ideally deep
Q-learning can achieve the same performance as Q-learning
despite having an approximated Q-table. Fig. 10 shows the
reinforcement learning framework applied in this study, and
a high-fidelity model built in Autonomie, a performance anal-
ysis tool, developed by Argonne National Laboratory (ANL),
which was used for the environment [33]. The states include
current driving information and short-term future driving
information as follows:
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FIGURE 11. The recurrent neural network.

• Current battery SOC
• Current wheel torque demand
• Current costate value
• Predicted average power demand (10s)
• Predicted average vehicle speed (10s)
• Predicted average acceleration (10s)
The predicted average power demand is the sum of

the average acceleration power demand and driving loss
power. This study was conducted under the assumption that
short-term future driving information (10s) can be accu-
rately predicted, but the average values were used to make
it easier to predict the future when using the prediction
model [34], [35]. In the ECMS, based on optimal control,
when the costate is determined, the equivalent consumption
of electric use is estimated and optimization is performed to
minimize the total consumption. Optimality can be guaran-
teed if the SOC is appropriately managed by the selected
costate [4]. Therefore, the reward from Q-learning is defined
to help manage the SOC in the desired range, which is
expressed as:

r = − (SOCcurrent − SOCdesire)2 /D (8)

SOC =
1
Cb

∫ t

t0
i dt (9)

where D is the total travel distance of the vehicle, which
is used to normalize the performances in different driving
cycles, and Cb is the battery capacity. The agent uses a deep
neural network to approximate the Q-network. Alternatively,
a solution to the Q-table that selects the action with the
maximum expected reward while observing the states can be
used, where a Recurrent Neural Network (RNN) is used for
the network model. The RNN includes a hidden state with
memory functions, so it handles sequential problems such as
time-series simulations well, as shown in Fig. 11 [31]. The
hidden states and output can be expressed as follows

ht = fwx,h (ht−1, xt) and yt = fwy (ht ) (10)

where h is a hidden state, x is the input vector and y is the
output vector. The deep neural networks based on the RNN
are designed by using the parameters, as shown in Table 2 and
Fig. 12. A sequence input layers, two fully connected layers,
two relu layers, a long short-term memory model (LSTM)
layer and an output layer are used. The sequence input layer
inputs sequence data to the network. The fully connected
layers and output layer multiplies the input by aweight matrix

TABLE 2. Parameters of the deep neural networks.

FIGURE 12. The deep Q-Network based on the RNN.

and then adds a bias vector. The LSTM layer, one of the
RNN, learns the long-term dependencies between the time
steps of the time series and the sequence data. The relu layer,
an activation function, performs a threshold operation on each
element of the input, and values less than zero are set to zero.
The activation function helps themodel learn complex data by
normalizing the output of each neuron. The action, control, is
defined as the discretized costate values.

a = [−2800,−2790, . . . ,−2110, 2100] (11)

Since the model-free control depends on its experience,
it is important to explore the various paths the state can
reach. If the optimal action is selected only by the deep
Q-network, the state may only go to the path previously
searched. To address this issue, the epsilon-greedy explo-
ration method is used for this study. It randomly chooses
the action with a specific probability, called epsilon, without
depending on the deep Q-network, where epsilon ε can be
expressed as follows:

ε = ε · (1− k) and ε ≥ 0.01 (12)

where k is the epsilon decay, and the minimum value for
epsilon is set to 0.01 in this study. The simulation results for
the controller using the deep Q-network are obtained based
on these training conditions.

IV. SIMULATION
This section shows the process and results for the controller
using the reinforcement learning framework introduced in the
previous section. The control policy is, then, validated by
testing untrained episodes, and its performance is compared
to that of the controller using the adaptive costate concept.

A. PERFORMANCES OF INTELLIGENT CONTROLLER
To train the networks and obtain the control policy, the learn-
ing algorithm uses 1500 episodes of a UDDS cycle, where
the parameters listed in Table 3 are used for the training.
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TABLE 3. Parameters for reinforcement learning.

FIGURE 13. Training reward for one cycle (UDDS).

The change of reward is altered according to the progress
of the training process, as shown in Fig. 13. The blue line
represents the total reward per episode, and the orange line
represents the average reward for the latest 20 episodes. The
total reward is well-converged following the training process,
and the intelligent controller using the deep Q-networks can
be obtained via the learning algorithm, although there is
still room for further improving the training performance by
optimizing the learning parameters.

The performance of the intelligent controller is evalu-
ated by comparing its simulation results with the results
obtained by a controller using an optimal costate, where
the optimal costate is determined by an iterative process to
satisfy the boundary condition of the SOC [5]. Since most
plug-in hybrids balance SOC around 0.3, the SOC boundary
is defined as 0.3. Fig. 14 shows the training results for the
UDDS cycles. In Fig. 14 (b), it was found that the intel-
ligent controller, which implements reinforcement learning,
estimates the costate very well, with an estimate similar to
the optimal value for SOC balancing. Therefore, the SOC is
appropriately managed by the intelligent controller, in which
the controller does not only exceed the limits of the SOC
range, but also produces a trajectory of the SOC that is similar
to the optimal SOC, as shown in Fig. 14 (c).

B. MULTIPLE DRIVING SCENARIOS AND VALIDATION
The feasibility and performance of the intelligent controller
produced from reinforcement learning are evaluated over

FIGURE 14. Training results for the UDDS Cycle: (a) Speed Profile,
(b) Costate Trajectories, (c) SOC Trajectories.

FIGURE 15. Training reward for multiple cycles (UDDS, HWFET, SC03,
US06, WLTC).

multiple driving cycles by comparing the simulation results
with the results obtained by the controller using the adaptive
concept, introduced in Section III. B. The controller based on
adaptive concepts is a good reference for comparison with the
intelligent controller since such an adaptive controller showed
the best performance and has been tested in unknown driving
cycles during competition [8].

For this comparative study, the intelligent controller results
are obtained by training the networks in 5 representa-
tive cycles, particularly UDDS, HWFET, SC03, US06, and
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TABLE 4. Parameters for reinforcement learning.

FIGURE 16. Validation results with untrained episodes (City cycle).

WLTC, using the training parameters in Table 4. The learning
rate represents howmuch the reward from the current episode
is significant for estimating the final reward [15].

The smaller it is, the slower the learning speed is expected,
however the stability of convergence increases. Training on
multiple driving cycles that have different characteristics
requires additional training episodes to ensure convergence
of the reward, so a lower learning rate is empirically selected
to obtain an appropriate control policy rather than using the
learning rate for a single cycle in Table 3. In addition to the
reward being well-converged in a single cycle in Fig. 13,
the reward also appropriately converges over multiple cycles,
as shown in Fig. 15, although it requires additional episodes
for the training process. In the next step, driving cycles that
are not used for the training process are selected for com-
paring the performances between the intelligent controller
and the adaptive controller. First, the intelligent controller
appropriately updates the costate and manages the SOC in the
desired ranges, even in the untrained driving cycles, as shown
in Fig. 16 and Fig. 17.

FIGURE 17. Validation results with untrained episodes (Highway cycle).

FIGURE 18. Cost improvement of the adaptive and intelligent energy
management strategy compared to the rule-based control strategy from
Autonomie.

TABLE 5. Average cost improvement.

Simply, the intelligent controller is tested in 15 driving con-
ditions by including 5 city, 5 rural, and 5 highway cycles, and
the controller did not once fail to manage the SOC. Further,
the performances of the intelligent controller using reinforce-
ment learning are compared to those of the adaptive ECMS
used in IEEE VTS Challenge 2018, as shown in Table 5 and
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Fig. 18. The improvements of the two control concepts are
estimated by using results produced by a baseline controller
provided in Autonomie, where the baseline controller uses a
rule-based concept for managing the operating modes and the
component controls. The combined cost of gas and electricity
was derived from the U.S. Energy Information Administra-
tion (IEA) in 2016 and the average electricity cost in 2016,
which is the same as the method used in the competition [8].

Cost = gascost + electricitycost (13){
gascost = 0.795US $/kg.
electricitycost = 0.137US $/kWh.

(14)

In the comparative results, the intelligent controller shows
better performances on average. Given that the controller
using reinforcement learning is created based on a stochastic
model, it is not possible that the intelligent controller is
always superior to the other control concept—the other one is
selected as the best controller in the competition. It is, how-
ever, expected that the intelligent controller would provide
better performance than others if a sufficient number of tests
are completed. Further, a control obtained from stochastic
dynamic programming does not always guarantee superiority,
but is considered as an absolute one if the stochastic mode is
fixed [36], [37]. Based on the simulations, we have shown that
intelligent, AI-based control could be a promising solution
that can be implemented in real-world and real-time applica-
tions and which can produce outstanding performances.

V. CONCLUSION
Although the ECMS derived from an optimal control has
shown excellent performances, it is not a very feasible
solution because it is difficult to determine the key control
parameter or costate, which is related to upcoming driving
conditions. In this study, an intelligent control concept using
deep Q-learning, which is a representative reinforcement
learning algorithm, is proposed, so that the costate is esti-
mated as soon as future driving information is available. The
important feature of the control concept is that the stochastic
part of the controller that determines the costate utilizes the
reinforcement learning, whereas the deterministic part of the
controller still relies on the optimal control concept. Based
on the proposed concept, the fuel efficiency can be improved
compared to the adaptive ECMS. These study results can be
used to bring the benefits of reinforcement learning tech-
nology to the control problems of HEVs. A feasible control
organization and development process were introduced in this
study, and the performance of the control concept was eval-
uated via a comparative study. Here, the intelligent control
concept showed better improvements in fuel economy, from
0.5 to 1.5% depending on the cycle, than the improvements
of the adaptive concept.
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