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ABSTRACT As a nondestructive testing technology, γ -photon imaging shows immense potential in the
industrial field. However, the limitations of γ -photon imaging theory and detection technology result in
various problems, such as low image resolution and edge blur. The technology is particularly difficult to apply
to industrial detection that requires high imaging speed and high resolution. Therefore, this study proposes a
reconstruction algorithm for regions of interest (ROI) in γ -photon images. The proposed algorithm is suitable
for fast industrial detection and is based on the reconstruction algorithm for sinusoidal graph data, that is,
the ordered subset expectation maximization (OSEM) image reconstruction algorithm. It is an improvement
of the traditional point-and-line system matrix (SM) model. In the application of the proposed algorithm,
the probability weight of a pixel is determined by the solid angle of the crystal bar at both ends of the line
of response (LOR) to the pixel it passes through. In this work, the known contour parameters of industrial
parts are used to describe the area of nuclide distribution as the ROI. Only the pixels through which the LOR
passed in the ROI are counted, and the probability weights of these pixels are calculated to construct the SM.
Gaussian filters are added in each iteration to suppress the clutter of scattered noise inside the image. The
effectiveness of the algorithm was verified in two model experiments. A closed cavity detection experiment
on industrial hydraulic parts was also conducted to compare the image reconstruction effects before and after
the improvement. Results showed that the proposed algorithm can effectively improve image resolution and
image edge contours. In the tee pipe model experiment and cavity detection experiment on hydraulic parts,
the image reconstruction speed increased by more than 6 and 10 times, respectively. Hence, the proposed
algorithm provided a feasible solution for quickly obtaining images with clear edges and high resolution
under a large aperture detector ring.

INDEX TERMS γ -photon imaging, OSEM, ROI, system matrix, industrial nondestructive testing.

I. INTRODUCTION
Positron emission tomography (PET) is a noninvasive imag-
ing diagnostic technique widely used in clinical prac-
tice. It provides metabolic information in vivo by imaging
radionuclides injected in vivo [1]–[4]. γ -photon imaging
is not extensively studied in the industrial field; however,
positron annihilation can produce a reverse emission of a
511 keV γ -photon pair, and γ -photon has strong penetration
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(penetration thickness of a 30 mm single crystal aluminum,
intensity attenuation of 50%) and electric neutrality and
is minimally affected by materials, structures, electromag-
netic field, and other factors. Therefore, studying industrial
γ -photon imaging technology in combination with prior
knowledge of industrial parts is of great significance.

Fig. 1 presents a schematic of the inspection process
for industrial parts. A solvent labeled with radionuclides is
poured into a confined cavity of the measured industrial part.
Then, the positrons emitted by the decay of the tracer nuclide
combine with nearby electrons and annihilate to produce
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FIGURE 1. Schematic of industrial γ -photon detection and imaging.

γ -photon pairs. A coincidence detection ring is used to
capture and record the γ -photon pairs to determine the
LORs. Finally, the image of nuclide activity distribution in
the inner cavity of the tested industrial part can be restored
by a large number of LORs so as to realize the nondestructive
detection of the restricted cavity state of the industrial part.

In recent years, the application of γ -photon imaging
technology in the industrial field has gradually progressed.
In 2015, the Timo team in Germany used the method of single
tracer particle detection to detect the density distribution of
positrons at a cone angle and then measure the size of the
cone angle [5]. In 2016, Liu Jiantang et al. successfully tested
the defect of an ant nest cavity with γ -photon imaging tech-
nology and solved the nondestructive testing of an irregular
cavity [6]. In 2017, YaoMin et al. successfully used γ -photon
imaging technology to image a confined space combustion
flow field and observed the state of the combustion field [7].
In 2020, Sun Tong et al. proposed a compensatory scattering
correction algorithm to improve the quality of reconstructed
γ -photon images for the problem of γ -photon scattering
caused by high-density industrial metals [8].

With the development of science and technology,
γ -photon imaging technology as a precision imaging tech-
nology has become a necessity in numerous applications.
From small animal research-based PET to large-scalemedical
PET for the diagnosis of human tissue lesions, the aperture of
γ -photon detectors has become increasingly large; for exam-
ple, the diameter of the Inveon PET [9] detector ring
(Siemens, Germany) is 16.1 cm, that of the Discovery
PET/CT 710 [10] detector ring (GE, United States) is
81 cm, that of the Biograph mCT PET/CT [11] detector ring
(Siemens, Germany) is 84.2 cm, and that of the Gemini TF
PET/CT [12] detector ring (Philips, Netherlands) is 90.34 cm.
At present, PET systems still image whole spaces. Especially
for large aperture PET systems, the image reconstruction pro-
cess consumes a significant amount of time and computing
storage resources.

The materials of industrial parts are mostly composed of
high-density alloy and composite materials. On the one hand,
when a nuclide solvent is injected into the cavity of an indus-
trial part through perfusion, the high-density alloy material

causes significant photon scattering [13], [14], which in turn
causes the image to appear in a place with no activity and
thus affects image quality. On the other hand, the detection
of industrial parts with nuclides requires a certain scanning
time. Hence, the nuclide solvent may infiltrate the material
during this time and thereby cause blurred edges in the image
and even the ‘‘expansion’’ phenomenon. These two issues
continue to restrict the application of γ -photon imaging tech-
nology in the cavity detection of industrial parts. Hence,
a feasible scheme should be developed to achieve the rapid
and accurate imaging of the cavities of industrial parts.

In the current work, a ROI imaging algorithm is developed
on the basis of the maximum likelihood–expectation maxi-
mization (ML-EM) algorithm and the existing point-and-line
system matrix (SM) model. Furthermore, imaging resolution
is improved by enhancing the existing point-and-line SM
model and adding a Gaussian filter in each iteration to sup-
press the high-frequency noise in images. The feasibility of
the algorithm is verified by multigroup simulation experi-
ments and internal cavity detection experiments on hydraulic
parts.

II. THEORETICAL BASIS OF γ -PHOTON IMAGE
RECONSTRUCTION
A. CONSTRUCTION OF SM
The SM establishes a physical model between the PET detec-
tor and the measured object that connects the projection space
and the image space. This model is the key to the statistical
iterative reconstruction algorithm. Its formula is as follows:

Y = A ∗ I (1)

where Y is the vectorized sinusoidal image and I is the vec-
torized tomographic image. A denotes the SM, which estab-
lishes the relationship between the sinusoidal graph and the
tomographic image. In general, the SM reflects two aspects:
the coupling location between a pixel and the LOR, that is,
whether the photon emitted by a pixel is detected by the LOR;
and the coupling degree between a pixel and the LOR, that is,
the probability that the photon emitted by a pixel is detected
by the LOR. The quality of the SM affects the quality of the
reconstructed image to a great extent.

71616 VOLUME 9, 2021



M. Yao et al.: Reconstruction Algorithm for ROI in γ -Photon Images

As shown in Fig. 2, the point-and-linemodel is widely used
as a simple SM construction method. It assumes that the pixel
in the image space is an ideal lattice point and that the LOR is
an ideal straight line connecting two detector crystals. When
calculating the SM, the probability of the photon emitted
by the pixel being detected by two LORs is obtained by
linear interpolation on the basis of the distance between the
pixel and the two adjacent LORs. The total probability of
a LOR may also be considered to be 1. If the LOR can
interact with N pixels, then the total probability is evenly
distributed to N pixels, that is, the probability weight of each
pixel is 1/N.

FIGURE 2. Schematic of point-and-line SM model.

B. STATISTICAL ITERATIVE ALGORITHM BASED ON
MAXIMUM LIKELIHOOD FUNCTION
The expected value maximization model of the maximum
likelihood function is built on the assumption that the emis-
sion process of γ photons detected by PET obeys the Poisson
distribution [15]. Each pixel value is considered as a param-
eter to be estimated, and the likelihood function is approx-
imated to the maximum value through continuous iteration
and updating so as to obtain the maximum likelihood esti-
mate. According to the principle, the formula of the ML-EM
[16], [17] image reconstruction algorithm is as follows:

λk+1j =
λkj
I∑
i=1

aij

I∑
i=1

aij
yi

J∑
t=1

aitλkt

(2)

where λk+1j is the result of the activity of pixel j after the k+1
iteration, λk+1j is the result of the activity of pixel j after the k
iteration, aij represents the probability that the photon emitted
by pixel j is detected by the LOR of article i, yi denotes the
actual measured value of the LOR of article i (current value
of the LOR in the sinogram). Eq. (2) comprises three parts,
which are presented in Eqs. (3), (4), and (5).

cj =
I∑
i=1

aij (3)

qi =
J∑
t=1

aitλkt (4)

bj =
M∑
i=1

aij
yi
qi

(5)

The sensitivity correction factor cj represents the synthesis
of the probability that the emitted photons in pixel j are
detected by any LOR. It gives the sensitivity of each point
in the system field of view, which is also known as the
normalization factor. qi represents the contribution of pixels
passing through the LOR of article i to the projection value
of the LOR of article i. This process is called orthographic
projection, and the corresponding back projection process is
represented by bj. As shown in Eq. (6), the process is an image
updating process.

λk+1j =
λkj

cj
bj (6)

However, the ML-EM algorithm has low data utilization
and slow convergence speed. Hence, the OSEM image recon-
struction algorithm was proposed by Hudson and Larkin [18]
on the basis of the ML-EM. The formula is shown in Eq. (7).

λk+1j =
λkj∑
i∈Sn aij

∑
i∈Sn

aij
yi

J∑
t=1

aitλkt

(7)

where Sn is the n th subset of the total number of events.
In this algorithm, the total number of events is divided into
n subsets according to some method, and the subsets are iter-
ated each time. This approach can improve the data utilization
and accelerate the convergence speed. In this work, the total
number of events is divided by the angle method.

C. TOMOGRAPHIC IMAGE RECONSTRUCTION
ALGORITHM FOR ROI
In the traditional statistical iterative reconstruction algorithm,
image reconstruction is based on the assumption that the
annihilation point has equal probability in LOR. Thus, all
pixels within a certain length from the LOR should be
assigned probability weights. In this case, imaging appears
where radioactivity should not exist in the γ -photon image,
the intensity of the place for actual imaging is weakened,
and the pixel value of the image deviates from the actual
value. Moreover, the radioactivity concentration in the active
area is reduced, the size of the image increases, the bound-
ary becomes blurred, and the phenomenon of ‘‘expansion’’
occurs. In industrial nondestructive testing, rapid imaging
at a low scanning time is required. This requirement tends
to lead to the obvious attenuation of image intensity in the
activity region along its center toward the periphery. The edge
contrast also decreases. As shown in Fig. 3(a), the physical
model of Derenzo is commonly used to verify the imaging
resolution of PET. Fig. 3(b) shows the image reconstructed
by the Derenzo model.
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FIGURE 3. Derenzo model and its reconstructed tomographic image.

When the industrial equipment is unchanged, that is,
the nuclide injection area is unchanged, the imaging resolu-
tion decreases if the detector aperture is increased to obtain
the ROI reconstruction image of the same size. As shown
in Fig. 4, if the same part is installed in a detector system with
different apertures, then the ROI of the part to be detected
is the same, that is, the nuclide injection area is the same.
If the ROI imaging size remains unchanged, then the number
of effective pixels for ROI imaging of the large aperture
detector system shown in Fig. 4(a) is 4; that of the small
aperture detector system shown in Fig. 4(b) is 16, which
greatly reduces the ROI imaging resolution.

FIGURE 4. Schematic diagram of large and small aperture detectors with
the same parts.

To eliminate the edge effect and improve the imaging res-
olution, this study proposes an ROI-SM tomographic image
reconstruction algorithm. According to prior information
about the contour parameters of industrial parts, the SM A
is improved, and only the pixels in the activity area are given
probability weights to form a new SM AROI . This approach
limits the area of positron annihilation to the ROI. From the
perspective of probability analysis, annihilation point can be
distributed accurately and thereby facilitate the generation of
high-resolution images in a large aperture detection system
within a short period.

As shown in Fig. 5(a), the traditional method cannot
determine the precise position of the annihilation point on
the LOR. Thus, the method considers the annihilation point
as occurring on all pixels through the LOR with equal

probability. Fig. 5(b) shows the schematic of the full pixel
allocation for the ROI. According to the known structural
parameters of the part, the annihilation point occurs in the
pixel of the activity area through which the LOR passes.
Therefore, all pixels passed through by the LOR in the activ-
ity area are allocated with equal probability, and Eq. (8) is
deduced on the basis of Eq. (2).

λk+1j =
λkj∑

i∈Sn,j∈� a
ROI
ij

∑
i∈Sn

aROIij
yi∑

t∈� a
ROI
it λkt

(8)

In Eq. (8), aROIij denotes the contribution probability
of the i th LOR to pixel j; here, � represents the ROI,
and the other elements are the same as those defined for
Eq. (2). This method can deal with the edge problem of
γ -photon imaging caused by permeation and scattering.
Moreover, it can quickly and accurately image the internal
complex state of industrial parts in the large aperture detec-
tion system.

D. OPTIMIZATION OF ALGORITHM
To obtain an accurate and high-quality image, the SM weight
in the ROI-based OSEM algorithm is optimized, and the
Gaussian filter is used to denoise the results of each itera-
tion according to the characteristics of the γ -photon image.
Section B introduces the common point-and-line SM model.
In this model, the probability of detection by the same LOR
is the same for all pixels that pass through the same LOR.
In fact, the probabilities of the concordant detection of pixels
located at different positions on the same LOR are quite
different. When the pixel size of the point-and-line model
is extremely small relative to the LOR, the approximation
degree of the point-and-line model will not be considerably
large. In most cases, the point-and-line model is too rough,
the accuracy is not high, and the reconstruction effect is not
ideal. Therefore, the solid angle model is proposed on the
basis of the point-and-line model. The solid angle model
assumes that the pixel is an ideal grid point and that the
line of the crystal bars has a certain cross section. The solid
angle of the crystal bar relative to the pixel is taken as the
corresponding SM weight. As the two γ photons produced
by positron annihilation are not independent of each other,
the smaller solid angle is chosen as the coincidence detection
probability.

As shown in Fig. 6, point Q is the pixel at the midpoint of
the LOR connecting probe crystal A and probe crystal B. The
smaller solid angle corresponding to pixel Q is the maximum
solid angle of the LOR and is denoted as θmax . Point P is a
pixel passed through by the LOR connecting probe crystal A
and probe crystal B. The smaller solid angle corresponding
to pixel P is denoted as θ . The probability that the photon
emitted by pixel P is detected by the LOR is θ

θ max , and the
probability that the photon emitted by pixel Q is detected
by the LOR is 1. The high-resolution image reconstruction
formula for the ROI based on the solid angle model is shown
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FIGURE 5. Schematic of weight distribution of LOR.

FIGURE 6. Schematic of solid angle model.

as follows:

λk+1j =
λkj∑

i∈Sn,j∈�

(
θij

θimax

)∑
i∈Sn

(
θ ij

θimax

)
yi∑

t∈�

(
θit

θimax

)
λkt

(9)

In the calculation of the SM, the LOR is actually only
related to a small part of the pixels. The same is especially true
for the full pixel allocation within the ROI proposed in this
work. This condition limits the positron annihilation point to
the pixel at the intersection of the LOR and ROI, which only
occupies a small part of the whole image. Therefore, the SM
has high sparseness, and zero elements do not play a role in
the reconstructed projection and back projection. Therefore,
a triplet structure is adopted, that is, only the rows, columns,
and values of nonzero elements are stored in this compact
form. This approach reduces the storage space by about 98%
and further improves the reconstruction speed.

III. EXPERIMENTAL VERIFICATION AND ANALYSIS
A. IMAGE EVALUATION INDEX
The mean gradient A, image entropy H, and reconstruction
time T are used in this work to evaluate the quality of the

reconstructed image and thereby verify the effect of the
OSEM reconstruction algorithm for the ROI.

The γ -photon image is divided into two regions: the ROI
with activity and the region outside the activity. For the
γ -photon image as a discrete two-dimensional function, the
gray value is ideally a step change at the ROI contour edge,
and the gradient value is large. However, because of scattering
and leakage, the image becomes blurred, the gray level of
the contour edge can be easily changed, the gradient value
is small, and the image contour is not obvious. Therefore,
the mean gradient is selected as one of the indicators to mea-
sure the γ -photon image. The formula is shown in Eq. (10).

A =

m−1∑
i=1

n−1∑
j=1

√
(f (i,j)−f (i+1,j))2+(f (i,j)−f (i,j+1))2

2

(m− 1)(n− 1)
(10)

In the formula, f(i,j) is the pixel value of row i and column j;
m and n are the numbers of rows and columns of the image,
respectively. The mean gradient refers to the ability of the
image to express the contrast of the tiniest details. The larger
the value is, the clearer the image is, and the better the contrast
expression ability is.

To further measure the detail gap of γ -photon images, this
study proposes another index, that is, image entropy. Image
entropy is a statistical form of image features that can reflect
the information contained in the aggregation features of the
gray distribution in an image. Its formula is shown in Eq. (11).

H =
255∑
t=0

(pi log pi) (11)

where t refers to all possible gray values contained in the
imagewith a range of [0,255] and pi represents the probability
of pixel i appearing. Image entropy represents the index of
image details. The larger the image entropy is, the greater the
image details are, and the better the effect is.
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B. RESEARCH ON MODEL EXPERIMENT
Geant4 is a Monte Carlo software package widely used in
nuclear physics and particle physics. GATE (Geant4 Appli-
cation for Tomographic Emission) is a specific application
of Geant4 on emission faults [19]–[21]. The GATE simula-
tion of this experiment runs on Ubuntu 16.04. By construct-
ing a geometric model of the trans-PET detector (Table 1),
the corresponding simulation parameters are set for the PET
simulation.

Two groups of models are used in the experiments to verify
the effectiveness of the algorithm. The first is a set of practical
experiments, in which a model is used to simulate the convex
defect of the actual tee pipe interface. Themodel is 3D printed
with polylactic acid (PLA) material. The second is a group
of simulation experiments involving cylinders with different
diameters.

As shown in Figs. 7(a)–(b), the pipe has a convex defect,
and the inside is the ROI filled with 18F-FDG radionuclide.
After the PET test, the 26th reconstructed slice image of
the defective tee pipe model is selected for the comparative
study. In Fig. 8, the defect with more image features after
reconstruction is marked by a red box to observe the differ-
ence of different SM imaging clearly. Figs. 8(a)–(d) present
the slices reconstructed by the OSEM algorithm using the
traditional 100×100 point-and-linemodel SM, the traditional
200×200 point-and-line SMmodel, the improved 200×200
solid angle SM model, and the improved 200× 200 SM with
ROI restriction. Fig. 8(a) shows the slice magnified twice
after reconstruction. The data are divided into four subsets
and iterated four times. A Gaussian filter is added in the
iterative process, and the filter width is fixed at 6 mm. The
image in Fig. 8(a) is the most blurry, its edge transition
is the smoothest, and the imaging effect is the worst. That
in Fig. 8(b) is much less blurry, and the edge is better than
that in Fig. 8(a). The image in Fig. 8(c) is relatively clear, and
the edge is more enhanced than that in Fig. 8(a). Fig. 8(d),
especially themodel contour, appears to be clear and has good
step characteristics.

FIGURE 7. Schematic of tee pipe model.

Fig. 9 presents a curve showing the variation of recon-
struction imaging time of four different SMs with the number
of iterations in Fig. 8. The reconstruction algorithms in this
work are all run on the MATLAB platform, and the computer
is configured with Intel Corporation i5-8300H @ 2.3 GHz

FIGURE 8. Results of four iterations of OSEM: (a) 100 × 100
point-and-line SM imaging (b) 200 × 200 point-and-line SM imaging
(c) improved 200 × 200 solid angle SM imaging, (d) improved 200 × 200
ROI-SM imaging.

FIGURE 9. Imaging time of each iteration for four types of SM.

quad-core processor. According to Fig. 9, the imaging time
of the improved solid angle SM is basically the same as that
of the traditional point-and-line SM. Moreover, the imaging
time of the improved 200 × 200 ROI-SM is the shortest and
is about six times faster than that of the traditional 200× 200
point-and-line SM and even about three times faster than
that of the traditional 100 × 100 traditional point-and-line
SM. Hence, the imaging speed of this algorithm is greatly
accelerated in the case of improved resolution.

To prove the convergence of this method, this study draws
the curves of the mean gradient and image entropy with
the number of iterations. The results are shown in Fig. 10.
According to the mean gradient curve in Fig. 10, the mean
gradient value of the image rises rapidly from the first itera-
tion to the fifth iteration. After the 30th iteration, the mean
gradient of the image converges to a fixed value of 1.54.
The image entropy change curve shows that the value of
image entropy increases obviously in the first 20 iterations,
especially in the first 10 iterations. After the 20th iteration,
the image entropy converges to a fixed value of 1.23.

The simulation experiment uses a cylinder model to eval-
uate the improvement effect of the ROI-SM algorithm on
edge and clarity. As shown in Fig. 11(c), the gray part of the
cylinder model is set as an aluminum alloy shell. The white
circular part is the ROI evenly filled with nuclide; its diameter
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FIGURE 10. Mean gradient and image entropy of each iteration of the
algorithm.

FIGURE 11. Schematic of cylinder model: (a) Slice image reconstruction
based on point-and-line SM, (b) slice image reconstruction based on
ROI-SM, (c) cylinder model.

FIGURE 12. Cut view of reconstructions in Fig. 11.

is 12, 16, 20, 16, and 12 mm from left to right, and the
center point is the center of symmetry. 18F-FDG radioactive
tracer with the same concentration is set in the five horizontal
holes. With consideration of the property of rapid detection
in industrial applications, the simulation scanning time is set
to 30 s, and the point-and-line SM and improved ROI-SM are
respectively used to reconstruct the 200×200 high-resolution
images. As shown in Figs. 11(a) and (b), the OSEM algorithm
is used to iterate for 30 times, and the 26th slice is selected.

As shown in Fig. 12, the differences between the two slice
images are compared by drawing into a curve the gray values
of the pixels that the red line segment passes through in the
reconstructed image. The curve of the image reconstructed
based on ROI-SM has the best step performance at the trough

FIGURE 13. Application and measuring instrument of hydraulic parts.

and peak value at the crest. Hence, the resolution of the image
obtained by this algorithm is relatively high, and the edge
performance is particularly prominent.

C. DETECTION EXPERIMENT OF HYDRAULIC PARTS
To verify the feasibility of the proposed algorithm in indus-
trial detection, the research team used the all-digital Trans-
PET developed by Suzhou Ruipaining Company of China
for the imaging of the inner cavities of hydraulic parts (the
parameters are shown in Table 1).

TABLE 1. Characters of Trans-PET.

Hydraulic technology is based on the Pascal principle and
is one of the key technologies to realize modern transmission
and control. It has the advantages of large power weight
ratio, small volume, small motion inertia, and fast reaction
speed. Therefore, hydraulic parts are widely used in many
fields. As a result of the high oil pressure in the inner cavity
of a hydraulic part, the hydraulic oil easily leaks through
the seal or clearance, thereby causing the consumption of
hydraulic media and causing environmental pollution. There-
fore, the research team tested the inner cavities of hydraulic
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FIGURE 14. Comparison of reconstructed images in different scanning times.

parts. Fig. 13(a) shows the application of hydraulic parts in
aircraft landing gear, Fig. 13(b) shows the actual hydraulic
parts used in this work, and Fig. 13(c) shows an all-digital
trans-PET for testing hydraulic parts.

The wall thickness of the hydraulic part used in the exper-
iment is 5 mm, the outer diameter is 73 mm, and the material
is made of stainless steel. The activity of the nuclide injected
into the cavity of the hydraulic part is 500 µCi. To study the
imaging speed and image improvement effect under differ-
ent scanning times, this study sets the scanning time of the
hydraulic parts to 5, 10, 20, 30, and 40 s. The traditional
100×100 point-and-line SM, the traditional 200×200 point-
and-line SM, the improved 200×200 solid angle SM, and the
improved 200 × 200 ROI-SM are used for two-dimensional
reconstruction, and the sixth slice image after reconstruction
is selected. The slice image reconstructed by the traditional
100× 100 point-and-line SM is enlarged twice and is shown
in Fig. 14.

Fig. 14 shows the slice images reconstructed by four dif-
ferent SMs. The vertical comparison shows that the image

reconstructed by the first line of the traditional 100 × 100
point-and-line SM is the most blurred. The image recon-
structed by the improved solid angle SM in the third line is
clearer than that in the second line of the traditional point-
and-line SM. The fourth line of the ROI-SM reconstruction
image has no noise outside the contour, and the edge improve-
ment is obvious. Moreover, the whole image looks ‘‘clean’’
and relatively clear. To make an objective vertical compari-
son, this study selects the reconstructed slice image with the
best quality and scanning time of 40 s for sectioning in the
red line in Fig. 14 (Fig. 15(a)). The image reconstructed by
the improved ROI-SM is obviously the highest in both peaks
and shows good step performance in the trough, high contrast,
and good quality. The image reconstructed by the traditional
point-and-line SM is the lowest in the two peaks, that is, it has
low contrast and low quality. The results show that the image
quality of the improved ROI-SM is satisfactory.

The horizontal comparison shows that with an increase
in scanning time, the clarity and brightness of the image
increases. To compare the ROI-SM reconstructed images
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FIGURE 15. (a) Gray value of the image pixel passed by the red line
segment in Fig. 14, (b) mean gradient and image entropy of different
scanning times of this algorithm.

objectively, we calculate the mean gradient and image
entropy of the five images in the fourth line of Fig. 14.
As shown in Fig. 15(b), with the increase of scanning time,
the mean gradient and the image entropy become large, but
the increase drops gradually and tends to be flat. The results
show that the longer the scanning time is, the better the image
quality reconstructed by the ROI-SM. However, when the
scanning time reaches a certain point, the image quality is
no longer improved significantly.

To further measure the reconstruction effect of the four
types of SM, we statistically analyze the reconstruction
time of different SMs along with scanning time. As shown
in Table 2, the reconstruction time of the OSEM algorithm
is not related to the length of the scanning time, and the
reconstruction time of the improved SM is almost the same as
that of the traditional point-and-line SM. The reconstruction
time of the improved ROI-SM (200) is the shortest, and it is
nearly 10 times faster than that of the traditional point-and-
line SM (200) with the same size. It is even nearly five times
faster than the traditional point-and-line SM (100) with four
times less data. This result fully demonstrates the rapidity of
the proposed reconstruction algorithm based on the ROI-SM.

TABLE 2. Reconstruction time of four different SM images using Intel
i5-8300H @ 2.3 GHz.

IV. CONCLUSION
In this work, an image reconstruction algorithm based on the
ROI-SM is proposed for use in γ -photon imaging technology
in the industrial field, especially for the cavity detection
of industrial parts. The cylinder model and tee pipe model
with defects are designed for the simulation experiments,
and a field test on the hydraulic parts is conducted. The
experimental results show that relative to the traditional point-
and-line SM, the improved solid angle model in this work
improves the resolution of reconstructed images at the same
reconstruction time. Combined with the ROI image recon-
struction algorithm, the proposed model improves the image
edge obviously, and the reconstruction speed is greatly accel-
erated. In the simulation experiment, the reconstruction speed
is increased by more than six times. Image quality improves
with the increase in the number of iterations, and the image
quality tends to be stable after 20 iterations. In the test on
the hydraulic parts, the imaging speed is increased by more
than 10 times, and the image quality is found to improve with
the increase of the scanning time. Therefore, the proposed
algorithm can also provide a feasible solution for the fast
imaging of the details of a large diameter PET detection
system.
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