
Received March 11, 2021, accepted May 6, 2021, date of publication May 12, 2021, date of current version May 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3079799

Integrity Checking for Aggregate Queries
SOMAYEH DOLATNEZHAD SAMARIN AND MORTEZA AMINI
Department of Computer Engineering, Sharif University of Technology, Tehran 1458889694, Iran

Corresponding author: Morteza Amini (amini@sharif.edu)

ABSTRACT With the advent of cloud computing and Internet of Things and delegation of data collection and
aggregation to third parties, the results of the computations should be verified. In distributed models, there
are multiple sources. Each source creates authenticators for the values and sends them to the aggregator.
The aggregator combines the authenticated values and creates a verification object for verifying the
computation/aggregation results. In this paper, we propose two constructions for verifying the results of
countable and window-based countable functions. These constructions are useful for aggregate functions
such as median, max/min, top-k/first-k, and range queries, where the distribution of values is not visible for
sources but is visible to the aggregator. The proposed constructions are secure based on the RSA problem
in the random oracle model and have the correctness and succinctness properties. Experimental results
show that the communication and computation costs of the constructions are acceptable in practice and
the proposed solution can be employed for real-world applications.

INDEX TERMS Integrity, cloud computing, secure delegation of computation, data aggregation.

I. INTRODUCTION
Data aggregation is the process of gathering data and extract-
ing statistical information from them in a summary form.
Nowadays, data aggregation is widely used in various appli-
cations including network traffic analysis, wireless sensor
networks (WSNs), Internet of Things (IoT), and data stream
management systems (DSMSs). In some applications, a large
number of source nodes are distributed over a network
while engaging in gathering data. Each source continuously
generates data and sends them to a designated aggregator.
By increasing the volume of the distributed data, the aggre-
gator needs more storage, processing power, and network
bandwidth. In such a way, data aggregation could be done
by a powerful third-party system or more than one node.

With the widespread adoption of cloud computing plat-
forms, enterprises or individuals may tend to outsource their
storage and computation to the cloud. In the outsourcing of
data aggregation, three main entities participate, (1) source
nodes, (2) one or more external aggregators, and (3) an end-
user. The aggregators receive values sent by all sources and
execute registered queries (each query executes an aggregate
function) on them and send the results to the end-user. The
end-user can also be the owner of the sources and can dis-
tribute the sources over the network.

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessandra De Benedictis.

In the outsourcing scenario, the aggregators as external
entities are not trusted and can compromise the confidential-
ity and integrity of the data and computations. Confidentiality
is out of the scope of this paper, and this paper only focuses
on the integrity of the data and computations. Actually, in this
paper, we propose a solution for checking the integrity of
the range and aggregate queries in a system with distributed
sources.

Among the existing approaches proposed for different
applications such as the DSMSs, WSNs, and IoT, homomor-
phic authenticators (homomorphic MACs or homomorphic
signatures) are commonly used for checking the integrity
of the aggregate queries. In most of the schemes proposed
for homomorphic authenticators (in the single-source [1] or
multi-source models [2]), each source generates an authen-
ticated value and sends it to the aggregator. The aggregator
executes aggregate queries on the authenticated values, gen-
erates a verification object (VO) for verifying the results, and
sends the results and the verification object to the end-user.

In this paper, we also use a RSA-based homomorphic
authenticator to authenticate the result of linear functions,
statistical aggregates, and range queries on data collected
from distributed sources. It should be noted that the system
model considered in our paper is close to the system model
considered in DSMSs. On the other hand, aggregate queries
and window-based aggregate queries addressed in our paper
are widely used in DSMSs.

74068 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7269-779X

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

TABLE 1. A detailed overview of the different methods for checking the integrity of the results in DSMSs.

Table 1 summarizes a detailed overview of the proposed
solutions in DSMSs and our method. As we can see in this
table, regarding the supported query type, the paper proposed
by Li et al. [3] is the only solution that supports the range and
statistical aggregate queries in DSMSs. They used theMerkle
hash tree for verifying the integrity of results in a single
source model. In their solution, the source collects b number
of values, creates a Merkle tree using these values, and sends
the signed root of the tree to the server. On the server-side,
the server creates the Merkel tree for each b values, executes
the query on the values fallen in the window with size n > b,
and sends the results and the verification object to the verifier.
For each tree that fall in the window, a separate verification
object is created. The verifier may receive some additional
values (when n is not a multiplication of b) and should filter
the false positives according to the query. In their paper, they
claim that their solution supports distributive aggregates, but
they do not specify how the result of aggregate queries such as
Top-k and Median that may fall in different trees are verified.

Although using the Merkle tree is a common method for
verifying the range and aggregate queries, but in a distributed
system, creating a unified Merkle tree with distributed leaf
values is not possible. In this paper, we use the bucket parti-
tioning concept to create the appropriate authenticators that
can be combined on the server-side.

To the best of our knowledge, there is not any solution
for verifying statistical aggregate queries such as max/min,
top-k/first-k, range, and median in DSMSs with more than
one source node. In these queries, the output of the query
is a subset of the input values and the order of the input
values, in computing the output, is also important. We call
these queries countable queries, because we use the counting
operation to verify the integrity of the results. We summarize
our contributions as follows.
• We propose the first scheme for verifying all countable
aggregate queries, especially the median (needs to ver-
ify the distribution of all input values) in DSMSs in a
multi-source model with different data owners.

• We propose a general construction for verifying count-
able queries using the bucket partitioning algorithm,
counting operation, and linear homomorphic authenti-
cators. Actually, in our construction, we use an efficient
linear homomorphic signature. This signature is based
on the signature proposed by Gennaro et al. [4], which is
secure in the random oracle model. In fact, the proposed
construction for verifying countable queries depends on
the construction defined for verifying linear functions.
This makes the proof of the security and correctness of
our construction dependent on the proof of security and
correctness of the construction used to verify linear func-
tions. We can also simply (with a few changes) replace
the linear homomorphic authenticator used in our con-
structionwith another linear homomorphic authenticator
that is multiplicatively homomorphic.

• To the best of our knowledge, our paper is the first paper
that shows how we can use the bucket partitioning to
accurately verify the integrity of the aggregate queries.
Bucket partitioning is mainly used for executing range
queries with encrypted bounds on the encrypted values.

• We provide formal security proofs for the succinctness,
correctness, and security of the proposed constructions.

The rest of the paper is organized as follows. In Section II,
related works are reviewed. In Section III, the model of the
system and the threat model are described. We recall a few
notions and standard preliminaries about the bucket partition-
ing and labeled programs in Section IV. The proposed scheme
for verifying the integrity of the countable functions, its
correctness and security definition is presented in Section V.
Based on this scheme, three constructions are introduced
in sections VI, VII, and VIII. The first construction is for
authenticating linear functions and the second one extends the
first one for authenticating countable queries. The last con-
struction is proposed for window-based countable queries.
Section IX describes the experimental results obtained by
implementing the constructions, and, finally, Section X con-
cludes the paper.

VOLUME 9, 2021 74069

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

II. RELATED WORK
There are some research trends concentrated on the
verification of computations such as (1) verifiable compu-
tations, (2) homomorphic authenticators and (3) methods
proposed for verifying the results in specific applications
such as outsourced database management system (DBMS),
data stream management system (DSMS), wireless sensor
network (WSN), and Internet of Things (IoT).

A. VERIFIABLE COMPUTATIONS
In the verifiable delegation of computations, a client wants to
delegate the computation of a function to an untrusted party.
The untrusted party tries to convince the client by providing a
proof for the correctness of the results. The proof is generated
using the cryptography and complexity theory primitives.
Arora et al. [10] proposed the first method for the proof-based
verifiable computation systems. Their method is completely
theoretical and cannot be implemented in practice. In 2007,
Ishai et al. [11] proposed a solution that significantly reduced
the memory and timing complexity of this method. After
that, many studies have been carried out to make these meth-
ods applicable in current computing systems [4], [12]–[14].
Nowadays, there are several projects where their prototypes
have been implemented [12], [13], [15].

In all methods pointed above, the client uses the input
values to verify the results. This approach is not applicable
when the source and the verifier are not identical or the source
does not store all values (in the case that the source and client
are the same).

B. HOMOMORPHIC AUTHENTICATORS
Homomorphic authenticators (HAs) are used to authenticat
the results of functions executed on more than one authen-
ticated data. The scheme proposed for HAs are useful for
systems that input values are not available for the verifier.

Schemes proposed for HAs are divided into two categories:
homomorphic signatures and homomorphic MACs. In the
homomorphic signatures, the verification key is public, while
in the homomorphic MACs, the verification key is private.
Each of these categories contains schemes for single-key and
multi-key HAs. In the single-key HAs, a single private key is
used to generate authenticators, and a single verification key
is used to verifying the results. In the multi-key HAs, there
are multiple sources that each of them has a different key.
In these schemes, the verifier needs the verification keys of
all sources.

The initial proposed single-key HA schemes authenticated
the results of linear functions [4], [16]–[18]. After that, some
schemes were proposed for bounded degree polynomial func-
tions [19], [20] and general functions with bounded polyno-
mial depth circuits [21], [22].

In 2016, Fior et al. [2] provided the first formal definition
of a multi-key HA scheme. They used the standard lattice to
propose a construction for multi-key homomorphic signature.
They also introduced a multi-key homomorphic MAC which

is based on a family of pseudo-random functions. At the same
time, Lai et al. [23] proposed another scheme using SNARKs
(Succinct, Non-Interactive Argument of Knowledge) and a
digital signature for creating a multi-key homomorphic sig-
nature. Schabhüser et al. [24] proposed a construction for
linear functions based on the bilinear pairing that has the
context-hiding property. This property ensures that the ver-
ifier cannot obtain additional information about the inputs by
observing the results. In this method, the succinctness of the
proof and authenticators is related to the number of sources.

C. APPLICATION SPECIFIC METHODS
In the literature, there are some methods proposed for ver-
ifying the result of functions in specific applications. Some
of these applications are verifiable outsourcing of databases
and data-stream management systems, and verifiable data
aggregation in WSNs.

1) OUTSOURCED DBMSS
In outsourced database management systems (DBMSs), ver-
ifying the integrity of queries is done using the authenticated
data structures or probabilistic methods. The methods based
on the authenticated data structures usually use a Merkle tree
or chained signatures. A Merkle tree is a binary tree used
for checking the membership of a value in a set. Since the
size of the tree and the communication overhead grows as
the number of the outsourced data increases, the methods
use the Merkle tree [25]–[27] are not proper for check-
ing the integrity of the complex and multi-attribute queries.
Chained signatures are proposed for reducing the communi-
cation overhead of tree-based approaches. This approach is
widely used for verifying the range queries [28]–[30]. In these
methods, the signer creates a chained signature (by chaining
the values of a column in different rows) for each value
in the table. The server aggregates the signatures according to
the query and creates a combined signature for the results.

2) IN-NETWORK AGGREGATION IN WSNS
In a wireless sensor network (WSN), data produced by dif-
ferent sensors are routed to the base station. For reducing
the network traffic, data are aggregated in middle nodes and
the results are sent to the base station. Therefore, verify-
ing the integrity of the results is needed. For the sake of the
little energy consumption, current solutions in this area com-
monly used replication [31]–[33] and probabilistic methods
[34], [35]. In two-tier WSNs, the power of the aggregators
is more than the source nodes, so the cryptography tools can
also be used in these systems. The methods that use the cryp-
tography primitives, provide the confidentiality and integrity
of specific queries such as range, top-k, and max/min
[36]–[38] and there is not a general approach for supporting
a wide range of queries.

3) OUTSOURCED DSMSS
In 2007, Li et al. [3] proposed the first algorithm for verifying
the result of queries executed on streams in data stream

74070 VOLUME 9, 2021

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

management systems (DSMSs). They used Merkle-tree for
verifying the integrity of the results, but their solution has
some drawbacks. It does not support multi-source models
and the authentication information that is generated by a
source is dependent on the type of the query executed at the
server (the verifier may receive some false positives). After
that, the verification of the GROUP BY SUM and Group
By Count queries were noticed by Yi et al. [5]. They used
the algebraic and probabilistic methods to compute a small
synopsis to check the correctness of the results. The source
computes the synopsis according to the query executed on the
server side and sends it directly to the verifier. In 2013, Nath
and Venkatesan [6], extended this solution using the discrete
logarithm problem to provide a publicly verifiable signature
instead of the secret synopsis. In their method, the source
node computes a set of combined signatures for all values
in different groups. When the verifier needs to authenticate
the result, it can request the combined signature to verify the
results.

At the same time, Papadopoulos et al. [7] proposed the
first method for verifying the result of linear algebraic queries
such as sum, inner products, and matrix multiplications.
In their model, data are gathered from different sources, but
all sources are managed by the same owner. So, each source
can create values and signatures on behalf of other sources.
After that, Liu et al. [8] proposed a construction for verifying
inner products and matrix multiplication on data streams
that are gathered from multiple sources with different keys.
Although they proposed the first publicly verifiablemethod in
themulti-sourcemodel, but their method does not support sta-
tistical aggregate functions.Wang et al. [9] also demonstrated
that the constructions proposed by Liu et al. [8] are not secure,
explained the attacks on their proposed constructions, and
improved the constructions to resist against the discovered
attacks.

III. SYSTEM AND THREAT MODEL
The system model that we consider in this paper is shown
in Fig. 1. In our model, we have three entities: (1) the dis-
tributed sources, (2) the aggregator, and (3) the user/verifier.

The system owner creates public parameters PP,
secret-keys 〈ssk, (sk1, sk2, . . . , skns)〉, and a verification-key
VK . The public parameters (PP) are given to all entities.
The secret-key ski with i ∈ [ns] is given to the source i,
the shared secret-key ssk is shared between all sources, and
the verification-key is just available for the verifier. Since
each source doesn’t have the secret-key of other sources,
we can assume that each source can be managed by a
different data owner. Each source i computes the authenti-
cation information (AIi) for its value (vi) and sends vi and AIi
to the aggregator. The aggregator collects the values and their
authentication information from all sources and executes the
registered aggregate query on them (the query is registered
by the verifier). The aggregator computes the results (Vf) and
creates a verification object (VO) for verifying the authentic-
ity of them and sends the results and the verification object to

FIGURE 1. System model.

the verifier. The verifier verifies the authenticity of the results
by checking the verification object using the verification key.
Threat Model: The privacy of values is not the subject of

our paper, and we only concentrate on the integrity of data
and computations. We assume that all sources are trusted and
the aggregator is untrusted. We also assume the sources are
not corrupted and cannot collude with the aggregator. The
untrusted aggregator can initiate a pollution attack. In the pol-
lution attack, the malicious server can deceive the verifier in
various ways: (1) the untrusted server can change or remove
some of the input values, (2) change the results, (3) produce
random results, (4) execute the query on some values, not on
all of them for saving its resource.

In such a model, the results of the query should be verified.
So, the main problem is creating a verification object for
the aggregation results to authenticate them and confront the
mentioned malicious activities.

IV. PRELIMINARIES
Notation: Let λ be the security parameter and [n] :=

{1, . . . , n}. The notation s
$
←− S denotes uniformly sampling

the value s from the set S. A function negl(.) is said negligible
in λ, if for every polynomial function p, there exists an integer
N such that for all integer n > N , negl(λ) < 1

p(n) . If A
be a probabilistic algorithm (uses random coins), y ← A(.)
denotes assigning the output of the execution of A to the
variable y. The list of the notations used in this paper is shown
in Table 4.
Definition 1 (Bucket Partitioning [39]): Let the domain

of the variableX isD = [α, β] where α and β are two positive
integers. Bucket partitioning divides this domain tom buckets
B = {〈B1, t1〉, . . . , 〈Bm, tm〉} where ti is a tag assigned to the
bucket Bi, and the following three conditions are hold:

1) D = B1 ∪ B2 ∪ . . . ∪ Bm
2) ∀〈Bi, ti〉, 〈Bj, tj〉 ∈ B, Bi 6= Bj ⇒ Bi

⋂
Bj = ∅

3) ∀〈Bi, ti〉, 〈Bj, tj〉 ∈ B, Bi 6= Bj ⇒ ti 6= tj
Two common preprocessing partitioning algorithms, which
could be used for this purpose, are equal-width and
equal-depth partitioning [40]. In the equal-width partitioning
technique, the domain of values is divided into m equal

VOLUME 9, 2021 74071

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

TABLE 2. List of frequently used symbols in this paper.

size partitions (For example the domain D = [0, 100] is
divide to 5 equal-width partitions [0, 20), [20, 40), [40, 60),
[60, 80), [80, 100]). In the equal-depth partitioning tech-
nique, the domain of values is divided into m partitions such
that given S sample of values; each partition contains approx-
imately S

m number of values.

A. LABELED PROGRAMS
We recall the notion of labeled programs introduced by
Gennaro and Wichs [22]. This notion is extended by
Fiore et al. [2] for programs with inputs from more than one
source.

The input program in the most homomorphic authenticator
schemes is modeled as a labeled program. A labeled program
P = 〈f , (`1, . . . , `n)〉 consists of an n variate function f :
Mn

→ Mn′ and a set of labels `1, . . . , `n ∈ {0, 1}∗.
Labeled programs P1,. . . ,PN can be composed using a func-
tion G :MN

→MN ′ . The inputs of the composed program
P∗ = G(P1, . . . ,PN) are all distinct inputs of the labeled
programs P1, . . . ,PN (the inputs with the same labels are
grouped together). For multi-key homomorphic authenticator
schemes [2], the identity of the source (i.e. id) are added to
the labels such that ` = (id, τ) where τ is a tag. Actually, τ is
a string to determine a data item in a set of inputs generated
by the user with identity id .
Multi-Labeled Programs [41]: A multi-labeled program

P1 is a pair (P,1), where P is a labeled program and
1 ∈ {0, 1}∗ is a dataset identifier. Multi-labeled pro-
grams P1,1,P2,1, . . . ,PN ,1 with the same 1, can also
be composed using a function G : MN

→ MN ′ as
P∗1 = G(P1, . . . ,PN).
Definition 2 (Well-Defined Multi-Labeled Programs [20]):

Let c be a constant value, 1 ∈ {0, 1}∗ is a dataset identifier
and L1 is a list of label and message pairs. A multi-labeled
program P1 = 〈f , (`1, . . . , `n)〉 is well defined with respect
to the list L1, if one of the following two conditions holds:

- for each label (`i, .) ∈ L1, there exists message value vi
such that (`i, vi) ∈ L1.

- if there exist labels `i with i ∈ [n], such that (li, .) /∈ L1,
then f (vj(`j,vj)∈L1 ∪ v

′
j(`j,v′j)/∈L1

) = c, for all v′j ∈M.

V. COUNTABLE QUERY AUTHENTICATION SCHEME
We define the syntax, correctness, security, and succinct-
ness of the countable query authentication scheme or CQAS
according to the schemes proposed by Boneh et al. [42] as
follows.
Definition 3 (CQAS Syntax): An Countable Query

Authentication Scheme is a collection of four polynomial-time
algorithms 5 = (Setup, AIGen, Comb, Vrfy).

- (PP, SP,VK)← Setup(1λ, n, ns)
Setup is a probabilistic polynomial-time (PPT) algo-
rithm that is run by the owner of the system. It takes
as input the security parameter λ, the input size n,
and the number of sources ns, and returns as out-
put the public parameter PP, the secret parameters
SP = 〈(sk1, . . . , skns), ssk〉 which contains the
secret-key of all sources and a shared secret key between
the trusted sources, and the verification-key VK . The
public parameter is the default input to all other algo-
rithms. This parameter determines a message space M,
an authenticator space Y , a label space L = ID × T
(where ID is an identity space and T is a tag space), a set
of admissible functions F :Mn

→Mk with k ≤ n, and
other public values required in the constructions.

- AI ← AIGenssk (sk, v,1, ` = (id, τ))
AIGen is a PPT algorithm, which is run by each source.
It uses the shared secret-key ssk and takes as input
the secret-key of the source sk , the message value v,
the dataset identifier 1, and a label of the message
` ∈ L, and returns as output the authentication informa-
tion AI . It should be noted that for each newly generated
value (or a set of values), a new dataset identifier is
created.

- VO := Comb(f ,1,A)
Comb is a deterministic polynomial-time algorithm,
which is run by the aggregator. It takes as input,
the countable (aggregate or range) function f ∈ F ,
the set of authentication information A = {AI1, . . . ,AIn}
corresponding to the labels and values pairs {(`i, vi)}ni=1,
and returns as output the verification object VO
which validates the correctness of the result set
Vf = f (v1, . . . , vn).

- b := Vrfy(P,VK ,Vf ,VO,1)
Vrfy is a deterministic polynomial-time algorithm that
is run by the user/verifier. It takes as input, a labeled
programP corresponding to the countable (aggregate or
range) function f , the verification key VK , the result set
Vf , the verification object VO and the dataset identifier
1, and returns as output a bit b while b = 1 meaning a
valid result and b = 0 meaning an invalid result.

Definition 4 (CQAS Correctness): We say CQAS is cor-
rect if for every sufficiently large security parameter λ, any

74072 VOLUME 9, 2021

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

input size n, and any number of sources ns ∈ N (polynomial
in the security parameter λ), it has two properties:

1) AuthenticationCorrectness:Authentication correctness
means that all authentication information generated by
all sources, are verified correctly. More precisely, let
λ is a security parameter, n is the input size of the
function f , and ns is the number of sources contributed
in the computation. Let Setup(1λ, n, ns) generates PP,
SP = 〈(sk1, . . . , skns) , ssk〉, and VK . Let for every
source with identifier id ∈ ID and any value v ∈ M
in any dataset 1 ∈ ZN , and any label ` = (id, τ) ∈ L,
AI ∈ Y be the authentication information generated by
running the algorithm AIGenssk (skid , v,1, `). We say
CQAS has the authentication correctness property if
we have Vrfy(I,VK , v,AI ,1) = 1 where I = 〈I , `〉
is an identity program such that I (v) = v.

2) Evaluation Correctness: Evaluation correctness means
that the result of executing an admissible countable
function on a set of authenticated values, is correct.
In more formal, let λ is a security parameter, n is
the input size of the function f , and ns is the num-
ber of sources contributed in the computation. Let
Setup(1λ, n, ns) generates PP, SP = 〈(sk1, . . . , skns)
, ssk〉, and VK . For a fixed dataset identifier 1 ∈ ZN ,
a labeled program P = 〈f , (`1, . . . , `ω)〉 with ω > 0,
corresponding to the function f , and all label, message
and authenticator triples {(`i = (idi, τi), vi, AIi)}ωi=1
∈ L ×M × Y where AIi = AIGenssk (skidi , vi, 1,
`i), if for each i, Vrfy(I, VK , vi, AIi, 1) = 1, then
we have Vrfy(P, VK , Vf , VO, 1) = 1 where VO :=
Comb(f , 1, {AIi}ωi=1) and Vf = f (v1, , . . . , vω).

Definition 5 (CQAS Security): Let 5 = (Setup, AIGen,
Comb, Vrfy) be an countable query authentication scheme,
and A be a probabilistic polynomial-time adversary. For
defining the security of the scheme, we define a game
expCQAS

A,5 (λ) between the adversary A and the challenger C
as follows:

- We assume the adversary A knows the labeled program
P = 〈f , (`1, . . . , `n)〉, the security parameter λ, and
chooses ns, which is the number of sources.

- C runs (PP, SP,VK)← Setup(1λ, n, ns) and sends the
public parameter PP to A.

- A is given the oracle access to the AIGenssk algorithm
(OAIGen) and can adaptively send requests of the for
(`, v,1) toOAIGen. C assigns a setV (1) for each dataset
1. This set contains tuples like (`, v). When A sends
his/her request, C examines the following conditions and
sends AI to A:
- If A requests 1 for the first time, C defines V (1)
and computes AI , and adds (`, v) to V (1).

- IfA requests ` from the dataset1, for the first time,
C computes AI and adds (`, v) to V (1).

- If A requests ` for the dataset 1 for the second or
more time, C ignores it.

Finally, A outputs a tuple (P∗, 1∗, V ∗f , VO∗) where
P∗ = 〈f ∗, (`1∗, . . . , `ω∗)〉.

- The adversary A wins the game, if and only if Vrfy(P∗,
VK , V ∗f , VO

∗,1∗) = 1 and at least one of the following
conditions hold:
1) Type-I Forgery: 1∗ is a new dataset that is not

queried before.
2) Type-II Forgery:1∗ is not a new dataset,P∗ is well

defined with respect to L1∗ , and V ∗f 6= f ∗(V (1∗)),
3) Type-III Forgery: 1∗ is not a new dataset and P∗

is not well defined with respect to L1∗ . In other
words, the inputs of f ∗ contains a value v such
that (`, v) 6∈ V (1∗). Namely, there is a value or
identifier in V (1∗) which is not queried before and
not appeared in L1∗ .

We say that scheme 5 is secure if for all probabilistic
polynomial-time adversariesA, there is a negligible function
negl(.) such that:

Pr[expCQAS
A,5 (λ) = 1] ≤ negl(λ)

Definition 6 (CQAS Succinctness): Let λ is a security
parameter, n is the input size of the function f , and ns is
the number of sources contributed in the computation. Let
PP, SP = 〈

(
sk1, . . . , skns

)
, ssk〉, and VK are generated by

running the Setup(1λ, n, ns) algorithm. We say a countable
query authentication scheme has the succinctness property,
if and only if the size of the verification object VO, which
is the output of the Comb(f ,1,{AIi}ni=1) algorithm such that
each AIi (for the value vi with a label `i = (idi, τi)) is gen-
erated by running AIGenssk (skidi , vi,1, `i), logarithmically
depends on n, but possibly linearly in ns. Namely, there is a
fixed polynomial p such that |VO| = p(λ, ns, log(n)).

VI. LINEAR QUERY AUTHENTICATION (LQA)
For authenticating countable (aggregate or range) queries,
we use the linear query authentication scheme as a
building block. Linear functions have the general form
f (v1, v2, . . . , vn) =

∑n
i=1 αivi. For authenticating linear

queries, we use a homomorphic RSA-based signature which
is secure in the random oracle model under the standard RSA
assumption.

This signature is based on the homomorphic signature
introduced by Gennaro et al. [4] for the network coding
application. In their signature, a source splits a file into mul-
tiple parts, each part is a vector of values (v1, . . . , vn), signs
each vector and sends them via the network to the receivers.
The middle nodes in the network combine the received vec-
tors (signatures) and send the results to the next node. Finally,
the designate receiver reconstructs the file from the combined
vectors and checks whether it is correct or not. They have
considered the following assumptions in their constructions:

- The public-key is (N , e, g1, g2, . . . , gn) where the pair
(N , e) is the RSA public-key and (g1, g3, . . . , gn) are
random generators of a cyclic group QRN (quadratic
residues modulo N) where N is the product of two safe
primes.

- The secret-key is (N , d), the RSA signature secret-key.

VOLUME 9, 2021 74073

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

- The homomorphic hash function is defined as H : Zn→
QRN such that H(v1, v2, . . . , vn) =

∏n
i=1 g

vi
i .

The definition of the basic homomorphic RSA-based
signature proposed by Gennaro et al. [43] is as follows.
Definition 7 (Basic Homomorphic RSA-Based Signa-

ture [4]:) The homomorphic RSA-based signature of vector
of values is defined as sign(v1, . . . , vn) =

(
H(v1, .., vn)

)d
mod N . The homomorphic property is obvious such that
sign(αv+βw)= sign(v)αsign(w)β where v = (v1, v2, . . . , vn)
and w = (w1,w2, . . . ,wn).
For authenticating the values generated by each sources,

we use the basic homomorphic RSA-based signature and
make some changes in it. We choose the hash fuction H(v) =

rgv such that sign(v) =
(
rgv
)d mod N , where r

$
←− QRN is a

random value, and g is a random generator of a cyclic group
QRN (quadratic residue modulus N).

A. LQA CONSTRUCTION
According to the scheme5 = (Setup, AIGen, Comb, Vrfy)
defined in Definition 3 and the RSA-based homomorphic sig-
nature proposed byGennaro et al. [4], we define a lightweight
linear query authentication (LQA) construction for authen-
ticating the linear queries. This construction is used as a
building block for the construction proposed for the countable
queries authentication (CQA). It should be noted that our
construction for authenticating countable queries is a generic
construction and its security, correctness, and succinctness
depend on the security, correctness, and succinctness of the
LQA scheme. Therefore, any linear multiplicative homomor-
phic signature scheme that sign(α)× sign(β) = sign(α+ β),
and is compatible with Definition 3, can also be used in it.
Let P = 〈f , (`1, . . . , `n)〉 is a labeled program for the linear
function f (v1, v2, . . . , vn) =

∑n
i=1 αivi where `i = (idi, i).

1) (PP, SP,VK) ← Setup(1λ, n, ns): At the setup of the
system, in the off-line phase, theSetup algorithm is run
by the owner of the system. This algorithm determines
the following parameters:
Public parameters PP = 〈(N , e), QRN , g〉:

- (N , e) is an RSA public-key whereN is the product
of two primes p and q. e is a prime number such that
e > nαM where α is the maximum coefficient in
the admissible linear functions and M is the maxi-
mum value that can be appeared in the exponent of
g in creating authenticators in each source (e can
be chosen to be a number of low Hamming weight
to have an acceptable efficiency).

- QRN is the description of the cyclic group
quadratic residue modulus N and g is a random
generator of this group.

Secret parameters SP = 〈
(
skid1 , . . . , skidns

)
, ssk〉:

-
(
skid1 , . . . , skidns

)
is the secret key of all sources.

For each source with identifier idi ∈ ID such that
i ∈ [ns], a random secret-key skidi ∈R {0, 1}

λ is
opted.

- ssk = 〈N , d〉 is the RSA private key that is shared
between the trusted sources.

Verification key VK = (skid1 , . . . , skidns).
The public parameters are available for all entities in
the system. In each source machine, a unique identifier,
the secret key of the source, and the shared secret keys
are set. We assume that the verification key is sent to
the verifier via a secure channel.

2) AIi ← AIGenssk (skid , v,1, `): In the AIGen algo-
rithm, for the newly generated value v belonging to the
dataset1 and the label (id, i) where i ∈ [n], the source
with identifier id , generates an authentication informa-
tion AIi as follows:

σi =
(
rid . gv

)d mod N (1)

where rid = gskidh(1||i) mod N , and h : {0, 1}∗ →
ZN is a hash function. The dataset identifier 1 can
be a time-stamp or a synchronized sequence number
between all sources. Finally, the authentication infor-
mation AIi = 〈`, σi〉 is sent to the aggregator.

3) VO := Comb(f ,1, {AIi}ni=1): The aggregator collects
the authenticated values (belonging to the dataset 1)
and parses each authenticator AIi with i ∈ [n] to
〈` = (idi, i), σi〉. Then, the aggregator executes the
combine algorithm. This algorithm outputs the verifi-

cation object VO = σ ′ for the result Vf =
n∑
i=1
αivi as

follows:

σ ′ =

n∏
i=1

σ
αi
i mod N (2)

4) b := Vrfy(P,VK ,Vf ,VO,1): The verification algo-
rithm is executed as bellow:

F = g

n∑
i=1

skidih(1||i)αi

(σ ′)e ?
= F . gVf mod N (3)

It should be noted that the verifier registers the linear
function on the aggregator and knows the labels and
coefficients. For reducing the computation cost, for
each linear function, computing F could be amortized
by preprocessing.

B. CORRECTNESS AND SECURITY
For proving the correctness and security of LQA, we present
the following theorems.
Theorem 1: LQA is correct.
Proof 1:According to Definition 4, we prove the authen-

tication and evaluation correctness of LQA. We show that
if all authenticators are created correctly and are combined
according to the Comb algorithm, the verification algorithm
outputs one. The complete proof of this theorem is provided
in Appendix A.1.
Theorem 2: If the RSA problem is hard relative to the

RSA-Gen algorithm and the hash function h is modeled as
a random oracle, then the LQA construction is secure.

74074 VOLUME 9, 2021

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

TABLE 3. Cost of different operations.

Proof 2: For proving this theorem, we use Definition 5
and show that if the adversary A can do a forgery, the RSA
problem is inverted. The complete proof of this theorem is
provided in Appendix A.2.

C. SUCCINCTNESS AND PERFORMANCE
If the verifier receives all values and their authentication
information (standard RSA digital signatures) directly from
all sources, the communication overhead is O

(
n(λ+ logN)

)
where n is the input size, λ is the maximum length of the
input values, and N is the RSA modulus. In this construction,
the size of the verification object is constant and it is equal
to the size of the combined signature, which is at most logN
bits. So, this construction has succinctness property as well.

The cost of different operations, which are obtained by
some experiments in practice, is shown in Table 3.1 In each
source, the cost of creating an authenticator for each input
value is Csrc = Ch+CMadd+2CMmul+CMexp. The aggregator
computes nmodular exponentiations and multiplications and
its cost is Cagg = n(CMmul + CMexp). The overhead in the
verifier side in the amortized sense is Cvrf = 2CMexp+CMmul
and it is constant for different number of sources.

If the verifier receives all values and their standard RSA
digital signatures directly from all sources, checks the validity
of all authentication information, and computes the linear
function, the computation cost will be Cvrf = O(n(Ch +
CMexp) + Cf) where Cf = O(n) is the cost of computing a
linear function.

VII. COUNTABLE QUERY AUTHENTICATION (CQA)
Let P = 〈f , (`1, . . . , `n)〉 is a labeled program for the count-
able aggregate function f . In countable aggregate functions
such as median, max/min, range, and top-k/first-k, the result
Vf = f (v1, . . . , vn) contains a subset of the values in the
inputs (Vf ⊆ {v1, . . . , vn}), and the order of the values is
also important. In the median function, if the number of the
input values be even, we assume without loss of generality,
two middle values are returned in Vf .

The proposed construction for authenticating countable
queries, named Countable Query Authentication or CQA,
is based on the scheme 5 = (Setup, AIGen, Comb, Vrfy)
defined in Definition 3. The algorithms of this construction
uses the algorithms of the LQA construction, a bucket par-
titioning algorithm, and a hash function h : {0, 1}∗ → ZN .
We use the bucket partitioning for determining the location
of a value among the other values. The partitioning algorithm

1The cost of different operations has been computed in the experimental
environment explained in Section IX. Each operation was executed 1000
times and the average time of the operation was computed.

(such as the equal-width and equal-size algorithms) is used in
the setup phase.

1) (PP, SP,VK)← Setup(1λ, n, ns,R) : The setup algo-
rithm has some differences with the previous construc-
tion and it involves some other parameters related to the
partitioning. It takes the domain R = [α, β] of the input
values as the last argument and involves the following
steps:

Step 1: Execute the setup algorithm of LQA
construction as

(PP′, SP′,VK ′)← LQA.Setup(1λ, n, ns)

Step 2: Execute the bucket partitioning algorithm
on R as

P← Bucket_Partitioning(R)

P contains the number of buckets m, the domain
of the values [R1,Rm], the intervals or buckets
[R0,R1), [R1,R2), . . . , [Rm−1,Rm], and random
tags {t1, . . . , tm} of all buckets where ∀i ∈ [m],
ti ∈R {0, 1}λ.
Step 3: Set the parameters PP = (PP′,P),
SP = SP′ and VK = VK ′.

2) AIi ← AIGenssk (skid , v,1, `) : In countable queries
such as the median, the order of the values is important.
So the verifier needs to verify the results and their
orders. For this purpose, the AIGen algorithm creates
AIi = 〈` = (id, i), σB,i, σL,i〉 that contains two sig-
natures for a given value v. One for authenticating the
bucket of the value and another for authenticating the
location of the value in the bucket. For authenticating
the bucket of v, the bucket that the value belongs to it
is found. Let tj is the tag of this bucket where j ∈ [m].
The signature of the bucket is created as follows.

σB,i = LQA.AIGenssk (skid , h(tj),1, ` = (id, i))

This authenticator helps the verifier to investigate that
the buckets of the results are correct or not. For authen-
ticating the location of the value in the bucket, another
authenticator is created. Let [Rj,Rj+1) is the interval
of the bucket that v belongs to it. The source or signer
determines the distance of the value from the beginning
of the bucket as dst = (v−Rj+ 1) and then creates the
following location signature.

σL,i = LQA.AIGenssk (skid , h(tj||dst),1, ` = (id, i))

Finally, the authentication information generated by the
source i, for the value vi is the tuple AIi =

〈
`, σB,i, σL,i

〉
.

3) VO := Comb(f ,1, {AIi}ni=1) : The aggregator gathers
the values and authentication information sent by dif-
ferent sources and executes the countable labeled pro-
gram P = 〈f , (`1, . . . , `n)〉 on the set of the label and
value pairs V (1) = {(`1, v1), . . . , (`n, vn)} belonging
to the same dataset 1, and finds the results such that
Vf = f (v1, . . . , vn). For creating VO, the aggregator
follows the steps described in Algorithm 1.

VOLUME 9, 2021 74075

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

Algorithm 1 Combine Algorithm for Countable Queries

Step 0: Let V (1) = {(`1, v1), . . . , (`n, vn)} is the set of the value and label pairs gathered from all sources,
belonging to the same dataset 1. Execute the countable aggregate function f on the input values and
find the results such that Vf = f (v1, . . . , vn) where Vf ⊆ {v1, . . . , vn}.

Step 1: Count the number of values in each bucket and create the vector C =
(
c1, c2, . . . , cm

)
where ci is

the number of values in the i-th bucket.
Step 2: Parse each authentication information AIi to ((idi, i), σB,i, σL,i). Let PC = 〈fC , (`1,, `n)〉 be

a labeled program for the linear function fC (x1, . . . , xn) =
∑n

i=1 xi such that xi ∈ ZN . All of the
coefficients of fC are set to one, and its labels are the same as the ones used inP (i.e. the labeled program
of the countable aggregate function). Use the Comb algorithm of the LQA construction to combine the
signatures of buckets as bellow:

σB = LQA.Comb(fC ,1, {(`i, σB,i)}ni=1)

Step 3: Let get_bucket is a function that takes a value and partitioning information as inputs and outputs
bid ∈ [m] as the identifier of the bucket that the given value falls in it (this function is defined in
Appendix B). Let the server finds the following sets:
- B = {tj|∃v ∈ Vf , j = get_bucket(P, v)} which contains the tag of all buckets that have at least one
result value in it.

- AL = {(`i, σL,i)|(`i, vi) ∈ V (1)∧ tget_bucket(P,vi) ∈ B} which contains the authentication information
for the locations of the values fallen in the buckets that have at least one result value in it.

- AB = {(`i, σB,i)|(`i, vi) ∈ V (1) ∧ tget_bucket(P,vi) ∈ B} which contains the authentication information
for the buckets of the values fallen in the buckets that have at least one result value in it.

Step 4: Define the set S such that S = {Si|i ∈ [m] ∧ ti ∈ B}. Each Si ∈ S (which is related to the bucket with
the tag ti) is defined as a vector Si = {(j, sj)|0 ≤ j < len ∧ 1 ≤ sj ≤ log(n)} where len = Ri+1−Ri+ 1
is the length of the bucket with the tag ti and sj denotes the number of values that their distance from the
beginning of the bucket (i.e. Ri) is equal to j.

Step 5: Create a labeled program PAL = 〈fAL , ({`i}(`i,σB,i)∈AL)〉 for the linear function fAL(x1, . . . , x|AL|) =∑|AL|
i=1 xi; such that xi ∈ ZN and all of its coefficients are set to one. Combine the locations signatures

using the Comb algorithm in the LQA construction as follows.

σL = LQA.Comb(fAL ,1,AL)

Step 6: Create a labeled program PAB = 〈fAB, ({`i}(`i,σB,i)∈AB)〉 for the linear function fAB(x1, . . . , x|AB|) =∑|AB|
i=1 xi; such that xi ∈ ZN and all of its coefficients are set to one. Combine these signatures using the

Comb algorithm in the LQA construction as follows.

σB′ = LQA.Comb(fAB,1,AB)

Step 7: The verification object for verifying the result Vf is the tuple VO=
〈
C, S, σB, σL , σB′

〉
, which is sent

to the verifier.

4) b := Vrfy(P,VK ,Vf ,VO,1) : When the ver-
ifier receives the results Vf and the verification
object VO, parses the verification object to a tuple〈
C, S, σB, σL , σB′

〉
, and executes the algorithm Vrfy.

The verifier needs to follow the steps shown in
Algorithm 2 for verifying the correctness of the results.

A. CORRECTNESS AND SECURITY
As specified in the previous section, all algorithms of the
CQA construction are based on the algorithms defined in
the LQA construction. So, we can infer the correctness and
security of the CQA construction according to the correctness
and security of the LQA construction.
Theorem 3: If LQA is correct, then CQA is correct as well.

Proof 3: The proof of this theorem is obvious. In the
CQA construction, both σB,i and σL,i are computed simi-
lar to the authenticators created in the LQA construction.
Therefore, the proof of the authentication and evaluation
correctness of CQA are the same as the proof provided for
LQA with some differences that in these signatures, instead
of the data values, we use the hash of some values and instead
of the coefficients in the linear functions, the values in the sets
C and S are used.
Theorem 4: If LQA is secure, then CQA is secure as well.
Proof 4: The proof of this theorem is also obvious.

In the Step 2 and Step 3 of the verification algorithm in
the CQA construction, we use the LQA.Vrfy algorithm to
verify the signatures created using the LQA.Comb algorithm.

74076 VOLUME 9, 2021

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

Algorithm 2 Verification Algorithm for Countable Queries

Step 1: Using the result values Vf , the vectors C =
(
c1, c2, . . . , cm

)
, S = (S1, . . . , Sk), and considering

the labeled program P = 〈f , (`1, . . . , `n)〉 for the aggregate function f , the verifier calls f _Validate
function defined in Appendix B (f is replaced with the name of the aggregate function). This function
checks that the values in the set Vf are valid or not. For example, for the max query, the last bucket that
the number of the values fallen in it is not zero, is the bucket containing the result and the maximum
value should be the last value in this bucket.

Step 2: If the results were compatible with C and S, the verifier checks the validity of the signature σB as
follows.
1) The verifier computes V ′ =

∑m
j=1 cjh(tj) using the vector C .

2) Then, the verifier executes the Vrfy algorithm in the LQA construction as follows.

b := LQA.Vrfy(PC ,VK ,V ′, σB,1)

where PC = 〈fC , (`1,, `n)〉 is a labeled program for the linear function fC (x1, . . . , xn) =∑n
i=1 xi such that xi ∈M, all coefficients of this linear function are set to one, and its labels are

the same as the labels used in P (the main aggregate program). In other words, the verifier checks
the following equation is correct or not.

σ eB
?
=
(
F . gV

′)
mod N

where F = g

∑
(idi,i)∈PC

skidih(1||i)

.
Step 3: If the previous two steps are passed, the verifier checks that σL is correct or not. For checking σL ,

two steps are needed:
1) The verifier computes V ′′ =

∑
Si∈S

(
− cih(ti)+

∑
(j,sj)∈Si (sj.h(ti||j))

)
.

2) Then, executes the Vrfy algorithm in the LQA construction as follows.

b := LQA.Vrfy(Pcst ,VK = {0},V ′′, σL . (σB′−1),1)

where Pcst = 〈fcst , 0〉 is a labeled program for the constant function fcst = c. In other words,
the verifier checks the following equation is correct or not.

(σL . (σB′
−1))

e ?
= gV

′′

mod N

For verifying σL , we use σB′ and compute V ′′ =
∑

Si∈S
(
−

cih(ti) +
∑

(j,sj)∈Si (sj.h(ti||j))
)
. Since the correctness of∑

Si∈S cih(ti) is verified in Step 2 and in σB′ this summation

is used, we can use σB′ and g
∑

Si∈S
−cih(ti) for verifying the

identity of the sources that have at least a value in the result
buckets. Therefore, since LQA is secure, CQA is secure as
well.

B. SUCCINCTNESS AND PERFORMANCE
In the CQA construction, the verification object is〈
C, S, σB, σL , σB′

〉
and its size is O(Lm log(n) +3 logN)

where L ∈ ZN is the maximum size of a bucket length, n
is the input size, and N is the RSA modulus.

If all sources directly send their values and authentication
information (Standard RSA digital signatures) to the verifier,
the overhead is O(n(λ + logN)) where λ is the maximum
size of the input values. We assume Lm � n, therefore, our
construction has the succinctness property.

Let Cf = O(k1n) is the cost of computing the function f
with a constant coefficient k1 which differs according to the

aggregate function. The computation costs in each entity in
our model, according to Table 3, are as follows:

- Each source finds the bucket of a value in O(m) and
creates the signatures in Csig = 3Ch + 3CMmul
+2CMadd +2CMexp. So, the cost in each source is
Csrc = O(m+ Csig).

- The aggregator computes the function f in Cf , and
follows the steps mentioned in Algorithm 1. Totally,
the cost in the aggregator side is Cagg = O

(
n(3CMmul +

m)+ Cf
)
where n is the input size.

- The cost in the verifier side consists of the costs of all
steps mentioned in Algorithm 2. In Step 1, checking
the validity of the values received from the aggregator
is done in Cvalidity = O(k2m +L) where 1 ≤ k2 ≤ n
depending the type of the query and the size of the result
set (In the Max/Min and Median queries k2 = 1, in the
Top-k/First-k queries k2 = k , and in the range queries,
it is at most n, when all the inputs are in the result
set). We assume the costs of computing hashes and F
are amortized by preprocessing. The cost of Step 2 is
O
(
m(CMmul + Cadd) + 2CMexp

)
. The cost of final step

VOLUME 9, 2021 74077

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

FIGURE 2. Partitioning of the input values.

is O
(
mL(CMadd + CMmul)+ CMmul+ 2CMexp

)
. Overall,

the cost in the verifier side is Cvrf = O
(
m(L(CMadd +

CMmul)+ k2) +4CMexp
)
.

If all sources directly send their values and standard RSA
digital signatures to the verifier, the computation cost in
the verifier side would be Cvrf = O(n× (Ch+CMexp)+
Cf). It should be noted that CMexp and Ch are the most
expensive operations in Table 3.

C. CASE STUDY: MEDIAN QUERY AUTHENTICATION
For a better understanding, we explain the construction pro-
posed for authenticating countable queries with an example
for median queries. A median function which is run by the
aggregator is formally defined in Definition 8.
Definition 8 (Median of a Set [44]): Let X = {x1, x2,

. . . , xn} be a set of numbers and S(x) =
∑n

i=1 |x − xi|.
The real value x that minimize S(x), is the median of X .
In other word, if the values in the set X are sorted such that
x1 ≤ x2 ≤ . . . ≤ xn we have

- if n is odd, namely n = 2k − 1 with k ∈ N, then the
median value is xk .

- if n is even, namely n = 2k with k ∈ N, then the median
value is x = xk+xk+1

2 .

Let n = ns = 9, m = 4, R1 = 0, R4 = 100 and
the bucket intervals are [1, 25), [25, 50), [50, 75), [75, 100]
which are partitionedwith the equal-width binning algorithm.
Let the tags of the buckets are {t1, t2, t3, t4}. We assign a label
`i = (i, i) to the i-th source. The values created by all sources
are {33, 4, 13, 90, 40, 65, 33, 35, 82} at the time-stamp
τ (considered as the dataset identifier 1), respectively. The
partitioning of the inputs are shown in Fig. 2.

The signatures created by all sources are shown in Table 4.
The aggregator collects the values and the signatures,
finds the median value, and follows the steps mentioned
in Algorithm 1.

- Step 0: Vf = median(33, 4, 13, 90, 40, 65, 33, 35,
82) = 35

- Step 1: C = (2, 4, 1, 2)
- Step 2: σB =

∏9
i=1 σB,i

- Step 3: Define the following arrays:

- B = {t2}
- AL = {(`1, σL,1), (`5, σL,5), (`7, σL,7), (`8, σL,8)}
- BL = { (`1, σB,1), (`5, σB,5), (`7, σB,7), (`8, σB,8)}

- Step 4: Define the array S = {S2} as S2 = {(9, 2),
(11, 1), (16, 1)} where each entry in this array

determines the number of values in each location of
the second bucket.

- Step 5:Compute σL = (σL,1 . σL,5 . σL,7 . σL,8)mod N
- Step 6:Compute σB′ = (σB,1 . σB,5 . σB,7 . σB,8)mod N

The verification object and the result are sent to the verifier.
The verifier follows the steps mentioned in Algorithm 2 and
verifies the result.

- Step 1: Run the Median_Validate(.) algorithm described
in Appendix B. According to the array C = (2, 4, 1, 2)
and the median function, the result should be in the sec-
ond bucket. As we can see 35 ∈ [25, 50). On the other
hand, 35 is the third value of the second bucket. As we
see S2[11] = 1, two values exist before it, and one
value exists after it which is compatible with C[2]. So,
according to the set C and S, 35 is a valid median value.

- Step 2: Compute V ′ = (2h(t1)+ 4h(t2)+ h(t3)+ 2h(t4))
and check that

σB
e ?
= (g

∑9
i=1 h(τ ||i)ski . gV

′

)

- Step 3: Compute V " = −4h(t2)+2h(t2||9)+h(t2||11)+
h(t2||16) and check that

(σL . (σB′
−1))

e ?
= gV " mod N

VIII. WINDOW-BASED COUNTABLE QUERY
AUTHENTICATION (WCQA)
In some applications like data stream management systems,
source nodes generate values in a period and then send them
to the aggregator. Each source can sign each value separately
or create a combined signature for all values generated in a
window, which reduces the communication overhead.
For generating a signature for all values in a window,

we made some changes in the algorithms of the CQA con-
struction and define a new construction calledWindow-based
Countable Query Authentication or WCQA.
Let wid with id ∈ [ns] is the number of values gen-

erated by the source with identifier id , and the generated
values and the labels pairs belonging to the dataset 1 are
Vid (1) = {(`id,1, vid,1), . . . , (`id,wid , vid,wid)}.
1) 〈PP, SP,VK 〉 ← Setup(1λ, n, ns,R,W): In WCQA,

the Setup algorithm takes additional inputs R and
W , where R is the domain of the inputs and
W = (w1, . . . ,wns) determines the number of val-
ues in the window for each sources such that n =∑ns

i=1 wi. We assume the tags of the input values
i.e. (τ1,, τn), are assigned to the sources, respec-
tively. For example the array of tags (τ1,, τw1) and
(τw1+1,, τw1+w2) are assigned to the sources with
identifiers 1 and 2, respectively. The setup algorithm
executes 〈PP′, SP′,VK ′〉 ← LQA.Setup(1λ, n, ns)
and P ← Bucket_Partitioning(R), then sets
PP = (PP′,P,W), SP = SP′, and VK = VK ′.

2) AI ← AIGenssk (skid , {vid,i}
wid
i=1,1, ` = (id, [τs, τe])):

The AIGen algorithm generates σB and σL for the val-
ues belonging to the source with identifier id . It takes
as input the secret key of the source, the set of values

74078 VOLUME 9, 2021

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

TABLE 4. Bucket and location signatures of the generated values.

generated in a window, the data set identifier, and the
labels of the values shown as an interval for the start and
end of the tags. This algorithm determines the buckets
of the values and their distances from the beginning of
their buckets and computes the following signatures.

σB =
(
g
skid

e∑
i=s

h(1||τi)+
wid∑
i=1

h(tid,i))d mod N
σL =

(
g
skid

e∑
i=s

h(1||τi)+
wid∑
i=1

h(tid,i||dstid,i))d mod N (4)

where tid,i = tget_bucket(P,vid,i) and dstid,i = (vid,i −
Rget_bucket(P,vid,i)−1 + 1). Then, this source sends the
tuple 〈` = (id, [τs, τe]), σB, σL〉 as the authentication
information to the aggregator.

3) VO := Comb(f ,1, {AIi}
ns
i=1): The aggregator executes

the Comb algorithm on all values, following the same
steps explained in Algorithm 1 and creates the verifi-
cation object VO = 〈C, S, σB, σL , σB′〉. For verifying
σL , an additional step should be added to the Comb
algorithm. In this step, the aggregator computes a hash
value hLB. In σL , in addition to the values in the result
buckets, all of the values generated by the sources that
have a value in the result buckets are used. So, this step
is for providing the additional information needed for
verifying the results.
For each source with identifier id in AL, let
{v1, . . . , vzid } are all values generated by this source but
not appeared in the result Vf . Let {(t1, dst1), . . . , (tzid ,
dstzid)} determines the buckets of these values and their
locations in the buckets. Using this set, the value hLB is
computed as follows.

hLB =
zid∑
j=1

h(tj||dstj)−
zid∑
j=1

h(tj)

Finally the aggregator sends the verification object
VO =

〈
C, S, σB, σL , σB′ , hLB

〉
and the result set Vf to

the verifier.
4) b := Vrfy(P,VK ,Vf ,VO,1): For verifying the

results, the Vrfy algorithm follows the steps explained
in Algorithm 2 but the last step of this algorithm is
changed as follows.

Step 3: The verifier checks whether σL is correct or
not. The verifier computes

V ′′ = hLB +
∑
Si∈S

(
− cih(ti)+

∑
(sj,j)∈Si

(sj.h(ti||j))
)

Then, executes the Vrfy algorithm in the LQA
construction as follows.

b : = LQA.Vrfy(Pcst ,VK = {0},V ′′,
σL . (σB′

−1),1)

where Pcst = 〈fcst , 0〉 is a labeled program for
the constant function fcst = c. In other words,
the verifier checks the following equation is correct
or not.

(σL . σB′
−1)e ?
= gV

′′

mod N

A. CORRECTNESS AND SECURITY
For proving the correctness and security of WCQA, two
theorems are presented.
Theorem 5: WCQA is correct.
Proof 5: The authentication correctness of this construc-

tion is similar to the LQA construction with a difference that
in this construction in theAIGen algorithm, instead of a value
and a label, the sum ofwid number of hash values is used (wid
is the number of values generated by the source with identi-
fier id). We prove that the evaluation of the authentication
information received from all sources is also correct for both
signatures created by the Comb algorithm. The complete
proof of this theorem is provided in Appendix A.3
Theorem 6: If LQA is secure, then WCQA is secure as

well.
Proof 6: The proof of this theorem is obvious according

to the proof explained for the security of the CQA construc-
tion.

B. SUCCINCTNESS AND PERFORMANCE
In WCQA construction, let n be the total number of inputs.
In this construction, the size of the verification object is
O(Lm log(n)+4 logN), where L ∈ Z is the maximum size of
a bucket length, n is the input size, andN is the RSAmodulus.
If all sources directly send their values and authentication
information (standard RSA digital signature) to the verifier,

VOLUME 9, 2021 74079

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

the overhead is O(n(λ + log(N))). So this construction has
also the succinctness property.

Let the maximum length of a bucket is L ∈ ZN , w ∈ ZN is
the maximum number of values can be generated by a source,
and Cf = O(k1n) is the cost of computing the function f
with constant value k1 which differs depending on the chosen
aggregate function. The computation costs in each entity in
our model, according to Table 3, are as follows:

- Each source computes two signatures with the max-
imum cost of Csrc = 3wCh+ (3w + 2) CMadd+
2CMexp+ 3CMmul .

- The cost in the aggregator is the sum of the cost
of the aggregator in the CQA construction, which is
O
(
n(3CMmul + m) + Cf

)
, and the cost of the final

additional step, which is O(2w(Ch + CMadd))). Totally,
the cost in the aggregator side is Cagg = O

(
n(3CMmul +

m))+ 2w(Ch + CMadd)+ Cf
)
.

- The verification cost is the same as the verification
cost in the CQA construction, which is O

(
m(L(CMadd +

CMmul)+ k2) +4CMexp
)
.

IX. IMPLEMENTATION AND EXPERIMENTAL
RESULTS
We implemented our constructions in Java using JDK
1.8.0_151 and used UniCrypt library [45] for implementing
the needed primitives and cryptographic operations. For the
hash function h, we used the SHA256 algorithm.We also used
the RSA-2048 as the underlying cryptosystem.All entities are
deployed on the Ubuntu 15.10 operating system running on a
machinewith Intel Core i7- 2.7GHzCPU and 10GB of RAM.

A. EVALUATION DATASETS
We used two real-world datasets including Intel Lab11 and
Speed Camera Violations in Chicago data portal21 for evalu-
ating the proposed constructions in data stream management
systems. In Intel Lab dataset, 54 sensors collected 2.3 mil-
lion records for one month. We used temperature values
collected by the sensors during 03/01/2004 to 03/10/2004 (in
other days, all sensors were not attended in recording the
temperature). For the second dataset, more than 130 cam-
eras measured the number of speed violations in a day.
This dataset contains 176000 records from 01/01/2015 to
02/06/2019. We used the values recorded by 130 cameras
during 01/01/2019 to 02/06/2019.We also generated a dataset
with random values for 1000 number of sources.

At the initialization of the system, the Setup algorithm is
run once and the generated parameters are used in different
entities. The setup time is almost similar in all construc-
tions. Generating two safe primes and the generator of the
group QRN is the most time consuming parts of the setup.
In Table 5, the setup time for different number of sources are
shown.

11http://db.csail.mit.edu/labdata/labdata.html
12https://data.cityofchicago.org/Transportation/Speed-Camera-

Violations/hhkd-xvj4

TABLE 5. Average setup time.

TABLE 6. LQA computaion costs.

TABLE 7. CQA computation and communication costs.

B. EVALUATION OF LQA CONSTRUCTION
For the linear query authentication (LQA) construction,
according to the number of sources, we have generated ran-
dom coefficients αi where i ∈ [ns] for the linear function∑ns

i=1 αivi. Table 6 illustrates the computation and communi-
cation costs evaluated in our experiments for different number
of sources. In this construction the size of AI and VO are
288 and 256 bytes (RSA modulus) which are independent of
the number of sources.

C. EVALUATION OF CQA CONSTRUCTION
According to the type of the values, for adjusting the distri-
bution of the values among the buckets, different algorithms
of partitioning can be used. We considered nine buckets for
dataset-1 (containing values between 0 and 140), seven buck-
ets for dataset-2 (containing values between 0 and 300), and
four buckets for dataset-3 (containing values between 0 and
140). We measured the cost of the three queries including
max, median, and range. The average time of AIGen is
39 millisecond and the size of the authentication information
generated by each source is 544 bytes. The time of other
algorithms is reported in Table 7.

We also measured the growth in the computation cost and
the size of the verification object with respect to the number
of the source in Figure 3. For this purpose, we created random
values for different number of the source.

D. EVALUATION OF WCQA CONSTRUCTION
In the WCQA construction, each source generates wi values
and sends all of them with authentication information to the
aggregator. We evaluated the computation and communica-
tion costs for the Intel lab dataset with different window sizes

74080 VOLUME 9, 2021

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

FIGURE 3. CQA computation and communication costs for different number of the sources.

FIGURE 4. WCQA computation and communication costs for different window sizes.

(we assume that all sources generate the same number of
values). The evaluation results are shown in Figure 4.

E. DISCUSSION
The time complexity of the verification algorithm and size of
the verification object are two main measures that determine
the efficiency of the proposed solution in the outsourcing
model. In the LQA construction, the verification time and
the size of the VO are constant, independent of the number
of sources. This is a great achievement because the linear
functions can be used as a basic function for creating other
functions that are used in our real-life applications.

For the second construction, CQA, if the system expert,
partitions the domain of the values in such a way that the
distribution of the values in all buckets are about uniform,
the size of the verification object will be a minimal proportion
of the size of all values. As we see in Table 7, the size of
the verification object grows smoothly with the growth in the
number of the sources and the verification time is almost the
same for different numbers of sources and different types of
queries.

The last construction, WCQA, is useful for applications
process streams of values like aggregating sensor data in
wireless sensor networks. As we see in Fig. 4, the growth in
the verification time slightly depends on the total number of
the values and the growth in the size of the verification object
is acceptable for the real-world applications.

X. CONCLUSION
In this paper, we proposed constructions for linear, countable,
and window-based countable queries, when data are collected
from multiple sources. We first defined a lightweight lin-
ear query authentication construction (LQA) based on the
RSA-based homomorphic signature, which is secure in the
random oracle model.

Then we used the LQA construction to verify the results of
the countable queries (such as max/min, top-k/first-k, range,
and median), and window-based countable queries. In the
proposed constructions for the countable and window-based
countable queries, we utilized the bucket partitioning for
verifying the distribution of the results among the all gathered
values for aggregation. In these two constructions, the results

VOLUME 9, 2021 74081

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

are verified by verifying the correctness of the result buckets
and the location of the result values in these buckets.

We proved the correctness, succinctness, and security of
our constructions and implemented them for experimenting
their applicability in real-world systems. The experiment
results show that the communication and computation costs
of the method are acceptable in practice for real-world appli-
cations. It should be noted that the verification cost and
the size of the verification object are constant in LQA, but
they grow smoothly in CQA and WCQA constructions by
increasing the number of gathered values.

As future works, we want to propose a solution for the
corrupted sources, solve the collusion problem between the
sources and aggregator, and propose a construction with
the publicly verifiable verification object (by proposing a
compiler that converts amulti-key linear homomorphic signa-
ture to a multi-key homomorphic signature for the countable
queries, and design methods for verifying the results of the
multi-attribute range queries.

APPENDIX A
A.1 PROOF OF THEOREM 1
The correctness of the LQA construction is verified according
to Definition 4.
Authentication Correctness: For verifying a signa-

ture σ according to the equation (3), we have σ e =(
gskidh(1||i)+v

)de mod N . As we know in the RSA signature
‘‘de mod φ(N) = 1’’, so we have σ e =

(
gskidh(1||i)+v

)
mod N

which is correct according to the equation (3) and Defini-
tion 4.
Evaluation Correctness: The evaluation is correct because

the created authenticators have the homomorphic property.
The Vrfy algorithm in the LQA construction checks the fol-
lowing equality.

(σ ′)e =
(∏ω

i=1
σ
αi
i

)emod N
=

∏ω

i=1

(
gskidih(1||τi)+vi

)αi mod N
= g

∑ω
i=1(skidiαih(1||τi)+αivi) mod N

=
(
g
∑ω

i=1 skidiαih(1||τi)gVf
)
mod N

Which is correct according to the equation (3).

A.2 PROOF OF THEOREM 2
For proving Theorem 2, we show that if the adversary A can
do a forgery, the RSA problem is inverted. Let λ is the security
parameter and n is the number of inputs. For inverting the
RSA problem, N , e, and y ∈R Z∗N are given to the solver and
the solver tries to find x = y

1
e mod N . We assume that the

challenger C can solve the RSA problem if the adversary A
can do a forgery in the proposed construction. For solving this
problem, C invokes A as a subroutine and gives N and g =
y2 mod N to it. A plays the game introduced in Definition 5
and sends the queries of the form (` = (id, i),1, v) to C. Let
στ = (rigv)d mod N , where ri ∈R QRN . For creating the
authentication information for the value v, C computes the

random value ri as follows:

ri = hei .g
−v, hi ∈R QRN

Then, C computes the authentication information AIi, which
is equal to 〈`, hi〉 and sends it to A. Finally, A outputs a
tuple (P∗,1∗,V ∗f ,VO∗), whereP∗ = 〈f ∗, (`1

∗, . . . , `ω
∗)〉 and

VO∗ = σ ′
∗ is a valid verification object for the result value

V ∗f which is obtained by executing f on the values belonging
to the dataset 1∗. If V ∗f /∈ Span(v1, . . . , vn) where the values
{v1, v2, . . . , vn} are exist in S(1∗), we have

σ ′
∗
= (

ns∏
i=1

he.αii . g−
∑ns

i=1 αivi . gV
∗
f)d mod N

σ ′
∗
=

ns∏
i=1

hαii . (g
V ∗f −

∑ns
i=1 αivi)d

Then, we have

(gV
∗
f −

∑ns
i=1 αivi)d =

σ ′
∗∏ns

i=1 h
αi
i

Let σ ′
∗∏ns

i=1 h
αi
i
= z, then we have ze = y2(V

∗
f −

∑ns
i=1 αivi).

As gcd(e,2(V ∗f −
∑ns

i=1 αivi))= 1, because e is a large prime,
we have two integers a and b such that 1 = ae + b(2(V ∗f −∑ns

i=1 αivi)). So, we can find a and b using the extended
Euclidean algorithm, and compute y

1
e = yazb.

A.3 PROOF OF THEOREM 5
The correctness of σB is obvious according to the previous
constructions and we just prove the correctness of σL . We
recall two sets B = {tj|∃v ∈ Vf , j = get_bucket(P, v)} and
AL = {(`i, σL,i)|(`i, vi) ∈ V (1) ∧ tget_bucket(P,vi) ∈ B}. The
set B contains the tags of all buckets that have at least one
result value in it, and the set AL contains the authentication
information for the locations of the values fallen in the buck-
ets that have at least one result value in it.
σL is the combination of all signatures exist in AL and is

computed as σL =
∏

((idi,i),σL,i)∈AL σL,i mod N . Let V is the
set of values fall into the result buckets, and V is the set of
values that don’t fall into the result buckets, such that V and
V include the values generated by all sources with identifier
((id, .), .) ∈ AL. For a value v, let tv and dstv are the tag
of the bucket that the value v belongs to it and its distance
from the beginning of that bucket, respectively. For verifying
σL according to the equation (4) and the verification object
VO = 〈C, S, σB, σL , σB′ , hLB〉, the following equations are
valid and the combined signature σL is correct.

(σL)e =
∏

(idi,i)∈AL

σL,i
e mod N

=

∏
(idi,i)∈AL

gskidih(1||i)

×

∏
v∈V

gh
(
tget_bucket(v)||(v−Rget_bucket(v)−1+1)

)
74082 VOLUME 9, 2021

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

×

∏
v∈V

gh
(
tget_bucket(v)||(v−Rget_bucket(v)−1+1)

)
mod N

= σB′ . g
hLB−

∑
Si∈S

cih(ti) .∏
Si∈S

g
∑

(j,sj)∈Si
(sj.h(ti||j))

APPENDIX B
We explain the algorithms for verifying the median
(Algorithm 2) and max (Algorithm 5) queries using the

Algorithm 3 get_bucket Function
Function get_bucket(.) is

Input: P,v
Output: bnum
for i = 1 To m do

if v ≥ Ri−1 and v < Ri then
bnum = i;

end
end

end

Algorithm 4Median Query Validation
FunctionMedian_Validate(.) is

Input: P, Vf , C , S
Output: b
Set b = 1, cleft = 0, cright = 0, odd = false;
if size(Vf) = 1 then

jl = get_bucket(P,Vf [0]);
dstl = Vf [0]− R(jl−1) + 1;
jr = jl ;
dstr = dstl ;
odd = true;

end
else if size(Vf) = 2 then

jl = get_bucket(P,Vf [0]);
dstl = Vf − R(jl−1) + 1;
jr = get_bucket(P,Vf [1]);
dstr = Vf − R(jr−1) + 1;

end
for i = 1 To jl − 1 do

cleft+ = C[i];
end
for i = jr + 1 To m do

cright+ = C[i];
end
for i = 0 To dstl − 1 do

if exists Sjl .get(i) then
cleft+ = Sjl .get(i);

end
end
for i = dstr + 1 To Rjr − Rjr−1 + 1 do

if exists Sjr .get(i) then
cright+ = Sjr .get(i);

end
end
d = |cleft − cright |;
r = (Sjr .get(dstr)+ Sjl .get(dstl)− 2− d) mod 2;
if r 6= 0 then

b = 0;
end

end

result set (Vf), the public partitioning parameter (P), and
two tuples C and S which are part of the verification object
(VO). We recall that P contains the number of the buckets
(m), the domain of the values ([R0,Rm]), the intervals or
buckets ([R0,R1), [R1,R2), . . ., [Rm−1,Rm]), and the tags
({t1, . . . , tm}) of all buckets.

Algorithm 5Max Query Validation
FunctionMax_Validate(.) is

Input: P, max = Vf [0], C , S
Output: b
Set b = 1;
j = get_bucket(P,max);
dst = max − R(j−1) + 1;
if C[j] = 0 or Sj[dst] = 0 then

b = 0;
end
else

for (i = j+ 1 To m) {
if C[i] 6= 0 then

b = 0;
end

}

for (i = dst + 1 To R(j) − R(j−1) + 1) {
if exists Sj.get(i) then

b = 0;
end

}

end
end

REFERENCES
[1] R. Johnson, L. Walsh, and M. Lamb, ‘‘Homomorphic signatures for digital

photographs,’’ in Financial Cryptography and Data Security, G. Danezis,
Ed. Berlin, Germany: Springer, 2012, pp. 141–157.

[2] D. Fiore, A. Mitrokotsa, L. Nizzardo, and E. Pagnin, ‘‘Multi-key homo-
morphic authenticators,’’ in Advances in Cryptology—ASIACRYPT 2016,
J. H. Cheon and T. Takagi, Eds. Berlin, Germany: Springer, 2016,
pp. 499–530.

[3] F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios, ‘‘Proof-infused streams:
Enabling authentication of sliding window queries on streams,’’ in Proc.
33rd Int. Conf. Very Large Data Bases (VLDB), 2007, pp. 147–158.

[4] R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin, ‘‘Secure network coding
over the integers,’’ in Public Key Cryptography—PKC 2010, P. Q. Nguyen
and D. Pointcheval, Eds. Berlin, Germany: Springer, 2010, pp. 142–160.

[5] K. Yi, F. Li, G. Cormode, M. Hadjieleftheriou, G. Kollios, and
D. Srivastava, ‘‘Small synopses for group-by query verification on out-
sourced data streams,’’ ACM Trans. Database Syst., vol. 34, no. 3,
pp. 15:1–15:42, Sep. 2009.

[6] S. Nath and R. Venkatesan, ‘‘Publicly verifiable grouped aggregation
queries on outsourced data streams,’’ in Proc. IEEE 29th Int. Conf. Data
Eng. (ICDE), Apr. 2013, pp. 517–528.

[7] S. Papadopoulos, G. Cormode, A. Deligiannakis, and M. Garofalakis,
‘‘Lightweight authentication of linear algebraic queries on data streams,’’
in Proc. Int. Conf. Manage. Data (SIGMOD). New York, NY, USA: ACM,
2013, pp. 881–892.

[8] X. Liu, W. Sun, H. Quan, W. Lou, Y. Zhang, and H. Li, ‘‘Publicly
verifiable inner product evaluation over outsourced data streams under
multiple keys,’’ IEEE Trans. Services Comput., vol. 10, no. 5, pp. 826–838,
Sep. 2017.

[9] X. A.Wang, Y. Liu, A. K. Sangaiah, and J. Zhang, ‘‘Improved publicly ver-
ifiable group sum evaluation over outsourced data streams in IoT setting,’’
Computing, vol. 101, no. 7, pp. 773–790, Jul. 2019, doi: 10.1007/s00607-
018-0641-6.

[10] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, ‘‘Proof
verification and the hardness of approximation problems,’’ J. ACM, vol. 45,
no. 3, pp. 501–555, May 1998.

VOLUME 9, 2021 74083

http://dx.doi.org/10.1007/s00607-018-0641-6
http://dx.doi.org/10.1007/s00607-018-0641-6

S. D. Samarin, M. Amini: Integrity Checking for Aggregate Queries

[11] Y. Ishai, E. Kushilevitz, and R. Ostrovsky, ‘‘Efficient arguments without
short PCPs,’’ in Proc. 22nd Annu. IEEE Conf. Comput. Complex. (CCC),
Jun. 2007, pp. 278–291.

[12] B. Parno, J. Howell, C. Gentry, and M. Raykova, ‘‘Pinocchio: Nearly
practical verifiable computation,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2013, pp. 238–252.

[13] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig,
B. Parno, and S. Zahur, ‘‘Geppetto: Versatile verifiable computation,’’ in
Proc. IEEE Symp. Secur. Privacy, May 2015, pp. 253–270.

[14] Y. Kalai and O. Paneth, Delegating RAM Computations. Berlin, Germany:
Springer, 2016, pp. 91–118.

[15] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M. Walfish,
‘‘Verifying computations with state,’’ in Proc. 24th ACM Symp. Operating
Syst. Princ. New York, NY, USA: ACM, Nov. 2013, pp. 341–357.

[16] S. Agrawal, D. Boneh, X. Boyen, and D. M. Freeman, ‘‘Prevent-
ing pollution attacks in multi-source network coding,’’ in Public Key
Cryptography—PKC 2010, P. Q. Nguyen and D. Pointcheval, Eds. Berlin,
Germany: Springer, 2010, pp. 161–176.

[17] D. Boneh and D. M. Freeman, ‘‘Linearly homomorphic signatures over
binary fields and new tools for lattice-based signatures,’’ in Public Key
Cryptography—PKC 2011, D. Catalano, N. Fazio, R. Gennaro, and
A. Nicolosi, Eds. Berlin, Germany: Springer, 2011, pp. 1–16.

[18] D. Catalano, D. Fiore, and B. Warinschi, ‘‘Efficient network coding
signatures in the standard model,’’ in Public Key Cryptography—PKC
2012, M. Fischlin, J. Buchmann, and M. Manulis, Eds. Berlin, Germany:
Springer, 2012, pp. 680–696.

[19] D. Boneh and D. M. Freeman, ‘‘Homomorphic signatures for poly-
nomial functions,’’ in Advances in Cryptology—EUROCRYPT 2011,
K. G. Paterson, Ed. Berlin, Germany: Springer, 2011, pp. 149–168.

[20] D. Catalano, D. Fiore, and B. Warinschi, ‘‘Homomorphic signatures
with efficient verification for polynomial functions,’’ in Advances in
Cryptology—CRYPTO 2014, J. A. Garay and R. Gennaro, Eds. Berlin,
Germany: Springer, 2014, pp. 371–389.

[21] S. Gorbunov, V. Vaikuntanathan, and D. Wichs, ‘‘Leveled fully homomor-
phic signatures from standard lattices,’’ in Proc. 47th Annu. ACM Symp.
Theory Comput. New York, NY, USA: ACM, Jun. 2015, pp. 469–477.

[22] R. Gennaro and D. Wichs, ‘‘Fully homomorphic message authenticators,’’
inAdvances in Cryptology—ASIACRYPT 2013, K. Sako and P. Sarkar, Eds.
Berlin, Germany: Springer, 2013, pp. 301–320.

[23] R. W. F. Lai, R. K. H. Tai, H. W. H. Wong, and S. S. M. Chow, ‘‘Multi-
key homomorphic signatures unforgeable under insider corruption,’’ in
Advances in Cryptology—ASIACRYPT 2018, T. Peyrin and S. Galbraith,
Eds. Cham, Switzerland: Springer, 2018, pp. 465–492.

[24] L. Schabhüser, D. Butin, and J. Buchmann, ‘‘Context hiding multi-key lin-
early homomorphic authenticators,’’ IACRCryptol. ePrint Arch., vol. 2018,
p. 629, Mar. 2018.

[25] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine, ‘‘Authentic
data publication over the Internet,’’ J. Comput. Secur., vol. 11, no. 3,
pp. 291–314, Jul. 2003.

[26] M. T. Goodrich, R. Tamassia, and N. Triandopoulos, ‘‘Super-efficient
verification of dynamic outsourced databases,’’ in Proc. Cryptopgra-
phers’ Track RSA Conf. Topics Cryptol. (CT-RSA). Berlin, Germany:
Springer-Verlag, 2008, pp. 407–424.

[27] H. Li, R. Lu, L. Zhou, B. Yang, and X. Shen, ‘‘An efficient merkle-tree-
based authentication scheme for smart grid,’’ IEEE Syst. J., vol. 8, no. 2,
pp. 655–663, Jun. 2014.

[28] M. Narasimha and G. Tsudik, ‘‘Authentication of outsourced databases
using signature aggregation and chaining,’’ in Proc. 11th Int. Conf.
Database Syst. Adv. Appl. (DASFAA). Berlin, Germany: Springer-Verlag,
2006, pp. 420–436.

[29] H. Pang, J. Zhang, and K. Mouratidis, ‘‘Scalable verification for out-
sourced dynamic databases,’’ Proc. VLDB Endowment, vol. 2, no. 1,
pp. 802–813, Aug. 2009.

[30] W. Song, B. Wang, Q. Wang, Z. Peng, and W. Lou, ‘‘Tell me the truth:
Practically public authentication for outsourced databases with multi-user
modification,’’ Inf. Sci., vol. 387, pp. 221–237, May 2017.

[31] T. Claveirole, M. D. de Amorim, M. Abdalla, and Y. Viniotis, ‘‘Securing
wireless sensor networks against aggregator compromises,’’ IEEE Com-
mun. Mag., vol. 46, no. 4, pp. 134–141, Apr. 2008.

[32] L. Hu and D. Evans, ‘‘Secure aggregation for wireless networks,’’ in Proc.
Symp. Appl. Internet Workshops, Jan. 2003, pp. 384–391.

[33] W. Du, J. Deng, Y. S. Han, and P. K. Varshney, ‘‘A witness-based approach
for data fusion assurance in wireless sensor networks,’’ in Proc. IEEE
Global Telecommun. Conf. (GLOBECOM), Dec. 2003, pp. 1435–1439.

[34] B. Przydatek, D. Song, and A. Perrig, ‘‘SIA: Secure information aggrega-
tion in sensor networks,’’ in Proc. 1st Int. Conf. Embedded Netw. Sensor
Syst. (SenSys). New York, NY, USA: ACM, 2003, pp. 255–265.

[35] M. Garofalakis, J. M. Hellerstein, and P. Maniatis, ‘‘Proof sketches: Veri-
fiable in-network aggregation,’’ in Proc. IEEE 23rd Int. Conf. Data Eng.,
Apr. 2007, pp. 996–1005.

[36] Y.-T. Tsou, C.-S. Lu, and S.-Y. Kuo, ‘‘SER: Secure and efficient retrieval
for anonymous range query in wireless sensor networks,’’ Comput. Com-
mun., vol. 108, pp. 1–16, Aug. 2017.

[37] C. M. Yu, G. K. Ni, I. Y. Chen, E. Gelenbe, and S. Y. Kuo, ‘‘Top-k query
result completeness verification in tiered sensor networks,’’ IEEE Trans.
Inf. Forensics Security, vol. 9, no. 1, pp. 109–124, Jan. 2014.

[38] Y. Yao, N. Xiong, J. H. Park, L. Ma, and J. Liu, ‘‘Privacy-preserving
max/min query in two-tiered wireless sensor networks,’’ Comput. Math.
with Appl., vol. 65, no. 9, pp. 1318–1325, May 2013.

[39] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, ‘‘Executing SQL over
encrypted data in the database-service-provider model,’’ in Proc. ACM
SIGMOD Int. Conf. Manage. Data (SIGMOD). New York, NY, USA:
ACM, 2002, pp. 216–227.

[40] J. Dougherty, R. Kohavi, and M. Sahami, ‘‘Supervised and unsupervised
discretization of continuous features,’’ in Machine Learning Proceed-
ings 1995, A. Prieditis and S. Russell, Eds. San Francisco, CA, USA:
Morgan Kaufmann, 1995, pp. 194–202.

[41] M. Backes, D. Fiore, and R. M. Reischuk, ‘‘Verifiable delegation of
computation on outsourced data,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS). New York, NY, USA: ACM, 2013, pp. 863–874.

[42] D. Boneh, D. Freeman, J. Katz, and B. Waters, ‘‘Signing a linear subspace:
Signature schemes for network coding,’’ in Public Key Cryptography—
PKC 2009, S. Jarecki and G. Tsudik, Eds. Berlin, Germany: Springer,
2009, pp. 68–87.

[43] R. Gennaro, C. Gentry, and B. Parno, ‘‘Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers,’’ in Proc. 30th Annu.
Conf. Adv. Cryptol. (CRYPTO). Berlin, Germany: Springer-Verlag, 2010,
pp. 465–482.

[44] D. Jackson, ‘‘Note on the median of a set of numbers,’’ Bull. Amer. Math.
Soc., vol. 27, no. 4, pp. 160–164, 1921.

[45] P. Locher and R. Haenni, ‘‘A lightweight implementation of a shuf-
fle proof for electronic voting systems,’’ Informatik, vol. 44, no. 232,
pp. 1391–1400, 2014.

SOMAYEH DOLATNEZHAD SAMARIN is cur-
rently pursuing the Ph.D. degree in informa-
tion technology engineering (data security field)
with the Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran. Her
research interests include intrusion detection sys-
tems, database security, cloud computing security,
and verifiable computations.

MORTEZA AMINI received the Ph.D. degree in
software engineering (data security field) from the
Sharif University of Technology, in 2010. He is
currently an Associate Professor with the Depart-
ment of Computer Engineering, Sharif University
of Technology, Tehran, Iran. He is also one of
the directors of Data and Network Security Lab-
oratory (DNSL) with the Department of Com-
puter Engineering. His research interests include
database security, access control, intrusion detec-

tion systems, and formal methods in information security.

74084 VOLUME 9, 2021

