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ABSTRACT Many NAND flash storage systems access flash memories by generating flash commands
to process input/output (I/O) requests from a host system. Because the order in which flash commands
are processed affects the I/O performance, command scheduling has been performed in previous studies
to prioritize flash read commands for improving the read performance. However, in addition to the flash
commands for accessing user data requested by the host, flash commands for internal tasks that improve
the I/O performance and operation efficiency of the flash storage are issued. Particularly in embedded
flash storage, the flash commands by the map cache management have a significant influence on the
latency of I/O requests. The processing time of the I/O request depends on the execution time of the
flash commands for mapping information and the flash commands for user data. In this paper, we propose
command scheduling to improve read performance to address the occurrence of map flash commands.
Priority is given to the flash read and program command from the read request, and among these commands,
the flash command originating from the read request, which has a shorter processing time, is executed
first. Consequently, the waiting time of the flash command is reduced, thereby improving the read latency.
Experiments conducted with real workloads show that the proposed scheduling scheme reduces the average
read latency by up to 51% compared with the existing scheduling scheme and demonstrates an effective
performance improvement in a small map cache.

INDEX TERMS Command scheduling, map cache, address translation, flash translation layer, NAND flash
storage, NAND flash memory.

I. INTRODUCTION
An input/output (I/O) request sent from the host system to
the storage system is translated into flash commands to be
processed in the NAND flash storage system. The I/O request
usually accesses user data of the storage using logical block
addressing, but the storage data is stored in flash memories.
Therefore, it is necessary to know the physical address of the
flash memory corresponding to the logical address. The flash
translation layer (FTL), which is a software layer in the flash
storage, has an address translation function [1], [2]. It obtains
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a physical address from a logical address and generates a flash
command to read or program a flash page from the physical
address.

Research has been conducted to improve the I/O per-
formance of flash storage systems through flash command
scheduling. Because an I/O request is completed when all
translated flash commands are processed, the I/O perfor-
mance depends on which flash command is prioritized.
In particular, the host requires synchronous read requests
to be processed before asynchronous write requests [3];
therefore, a command scheduling that prioritizes flash read
commands has been performed in many studies [4]–[6].
In addition, because the average latency can be reduced if an
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I/O request with a smaller size is processed first [7], the flash
read commands should have different priorities according
to the size of the read request from which each command
originates. Consequently, in addition to prioritizing the flash
read command, a scheme has been proposed to schedule the
flash commands based on the original request size of each
flash command [4].

The FTL generates not only direct flash commands to
access user data requested by the host, but also indirect flash
commands through internal tasks that improve the I/O per-
formance and operation efficiency of the flash storage. The
buffer management scheme temporarily stores I/O request
data in a memory device with a shorter access time than the
flash memory. Because the buffered write request data must
eventually be issued to the flash memory, indirect flash com-
mands may occur when processing an I/O request. Garbage
collection (GC) and wear leveling (WL) make flash com-
mands clean flash blocks that have a combination of valid
and obsolete data. The flash commands by GC and WL can
indirectly affect the processing time of requests because they
can appear not only during storage idle time but also when
processing I/O requests. However, in an embedded flash stor-
age, the flash commands because of the map cache signifi-
cantly influence the latency of I/O requests. To quickly find
the address of the flash memory where user data are stored,
a mapping table in RAM containing the entire mapping infor-
mation is usually used. Embedded flash storage has a limited
amount of RAM; therefore, it uses a map cache scheme that
places only a part of the mapping table in RAM [8]–[11].
When mapping information for an address not existing in the
map cache is required, a flash command is issued to fetch
the information. Because the address translation procedure is
essential for processing I/O requests, the flash command gen-
erated by the map cache should be considered in command
scheduling.

When an I/O request arrives, the FTL searches the map
cache before generating a flash command to access the user
data. If there is no mapping information of the requested
address, a map page containing the mapping information is
read, and multiple mapping entries are added to the cache line
of the map cache. When there is no space to add a new cache
line, the existing cache line is evicted. In particular, a map
page is programmed to update the mapping information of
the dirty cache line in the flash memory. However, there is a
case where the desired mapping entry is in the cache line but
is not ready. If the map page read command generated by the
previous I/O request has not been executed yet, the mapping
entry is referenced only after the corresponding command is
completed. In addition, the map page is composed of multiple
cache lines; therefore, the mapping information of multiple
cache lines can be updated together to reduce the number of
flash commands generated by the dirty line eviction. To bring
the mapping entries to the clean cache line to be secured at
this time, the map page program command from the previous
I/O request must be completed. In summary, to complete an
I/O request, all flash command sets consisting of the flash

commands for mapping information and the flash commands
for user data must be executed. In particular, the map flash
command is developed while the cache line is managed,
so it can be shared among multiple I/O requests. Therefore,
the existing scheme of scheduling flash commands based on
their request size without considering the flash commands
related to the I/O requests has a limitation in reducing the
average latency.

We propose a command scheduling to improve the read
performance of embedded flash storage systems based on the
fact that the processing time of the I/O request is determined
by the flash command sets. First, a priority is given to flash
read and program commands from the read requests instead
of any flash read commands so that the read requests are
processed first according to the demand of the host. Second,
to reduce the waiting time of the flash command, a flash
command originating from an I/O request with a shorter
processing time is prioritized. A command scheduling using
both schemes reduces the average read latency by allowing
shorter read requests to be processed first. In addition, among
multiple I/O requests that share the flash command by the
map cache, read requests with the least processing time are
scheduled to be prioritized, further reducing the read latency.

The proposed command scheduling was evaluated using a
trace-driven simulator to model the map cache flash storage.
Experimental results show that the proposed scheme reduces
the average read latency by up to 51% compared with the
existing scheduling. In addition, the significant effect of com-
mand scheduling in the small map cache was demonstrated.

The remainder of this paper is organized as follows.
Section II presents the background of map cache flash stor-
age for understanding this study, and related studies are
briefly introduced in Section III. Section IV provides the
motives behind the proposed command scheduling scheme.
In Section V, a method for performing the scheduling scheme
to reduce the read latency is described. Section VI details
the experimental environment and results of the proposed
scheme. We conclude this study in Section VII.

II. BACKGROUND
A. ADDRESS TRANSLATION IN FLASH STORAGE WITH
MAP CACHE
In a NAND flash storage with a map cache, the entire map-
ping table is managed in the NAND flash memory. Flash
blocks consist of map blocks containing a mapping table
and data blocks containing user data. Some of the mapping
tables are cached in the RAM for faster address transla-
tion. DFTL, the first map cache management scheme pro-
posed, caches mapping information in RAM in a mapping
entry unit [8]. Because this method is not efficient when
addresses are requested sequentially, a scheme for fetching
mapping information into multiple mapping entries simulta-
neously has been devised. The dual granularity cache man-
agement scheme reads amap page and addsmultiplemapping
entries to the cache line of the cached line table (CLT) [11].
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The location information of the map page required for the
caching requires a small memory space; therefore, a global
translation directory (GTD) containing the entire location
information exists in RAM.

Fig. 1 presents how the requested logical page number
(LPN) 11, which is a cache miss in the map cache with four
mapping entries per map page, is processed (1). As the CLT
is full and the victim line is dirty, the map page to which
the entries of the line belong must be updated. The map
page corresponding to victim’s starting LPN (SLPN) 4 is
virtual page number (VPN) 1, and therefore, physical page
number (PPN) 14 is read by referring to GTD (2). After the
mapping information is updated, it is programmed in a new
map page to be reflected in the flash again (3). In the map
page containing the mapping entry of the originally requested
address, two entries, which is the size of the cache line, are
fetched into the CLT (4). The data block is accessed with
information that LPN 11 is mapped to PPN 7 (5).

FIGURE 1. Architecture of the map cache fetching mapping entries into a
cache line.

Fig. 2 depicts the flash commands generated in the afore-
mentioned process in a chronological order. When reading
or writing a requested logical page, the data page is read
or programmed after having time to access the map pages
in common. This series of flash commands is called a flash
command set. An I/O request consists of one or more logical
pages according to its size, resulting in one or more flash
command sets. However, herein, in some cases an I/O request
is assumed to be a single page-sized request for simplicity;
Fig. 2 is such a case.

B. I/O REQUEST PROCESSING FLOW
The host using a NAND flash memory as a secondary stor-
age device makes I/O requests for user data. I/O requests
are usually divided into read I/O requests (R) and write

FIGURE 2. There are flash commands that must be processed prior to
data access when the largest cost of cache miss occurs during the
address translation.

I/O requests (W). The requests are sent to the flash stor-
age device according to the host interface specification and
queued at the I/O request queue. The order in which requests
at the queue are processed depends on the I/O scheduling
policy. Fig. 3 illustrates the processing of I/O requests in a
flash storage device.

FIGURE 3. Processing I/O requests sent by the host in the flash storage
device. RCQ: read command queue, PCQ: program command queue.

To process the R or W in the I/O request queue, access to
the flash memory is required. The target that an I/O request
reads or writes is a logical address, and the flash memory
corresponds to a physical address; therefore, an appropriate
address translation must be performed. The FTL translates
I/O requests into flash commands. If there is a map cache,
a flash command directed to the map block or data block
is generated. Flash storage is usually composed of multiple
flash chips in a multi-channel and multi-way architecture;
thus, a flash command queue exists for each chip. The gener-
ated command is inserted into the appropriate flash command
queue according to its physical address.

Aflash command queue is generally divided into read com-
mand queue (RCQ) and program command queue (PCQ). In a
storage without a map cache, the read command is prioritized
to prevent the R from being blocked by the W. Thus, the read
performance is improved by a command scheduling that gives
priority to RCQ over PCQ until the RCQ is empty. However,
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if there is a map cache, the pattern of flash commands gen-
erated from the I/O request changes, thereby necessitating
different command scheduling methods.

III. RELATED WORK
A. ADDRESS TRANSLATION SCHEMES FOR RAM-LIMITED
FLASH STORAGE
In a NAND flash storage, page-level mapping is a naive and
intuitive address translation scheme designed for a flash oper-
ation unit, a page. However, in an environment with limited
RAM, its application is limited because of the excessive size
of the mapping table. Therefore, block-level mapping and
hybrid mapping that can be applied even in smaller RAMs
have emerged [12]–[15], but their performance is insufficient
compared with that of page-level mapping. To overcome this,
DFTL, a map cache based on page-level mapping, has been
proposed [8]. DFTL, which manages mapping information
in a mapping entry unit, is a design that exploits the temporal
locality of theworkload. Frequently accessed entries continue
to reside in the map cache owing to the least recently used
replacement algorithm, saving the cost of fetching mapping
entries from the flash. However, because it is a design that
cannot exploit the spatial locality of the workload, algorithms
have been proposed to compensate for this [9], [10]. They
manage the map cache in a map page unit; thus, in the
case of consecutively accessed addresses, only one flash read
operation needs to be performed without having to fetch the
mapping entries one by one. However, some of the fetched
mapping entries may not be referenced until they are evicted
from the map cache, which is also known as cache pollution.
Dual granularity (DG) manages a map cache in a cache line
unit to reduce cache pollution [11]. The cache line consists of
a plurality of mapping entries and is set to a smaller size than
the map page.

B. IMPROVING PERFORMANCE OF FLASH STORAGE
WITH MAP CACHE
Studies have been conducted to optimize the performance
of flash storage away from the perspective of managing the
map cache. MAP+ [16] employs an I/O scheduling scheme
that distinguishes the map cache hit/miss of I/O requests
and prioritizes hit requests. Missing requests are grouped
together with related addresses to be processed as a batch, and
the batches are scheduled to further reduce the I/O latency.
Parallel-DFTL [17] improves DFTL so that NAND flash par-
allelism can also be utilized in address translation operations.
Because data access and address translation operations are
coupled in the existing method, different queues are intro-
duced to separate them. Consequently, both operations can
simultaneously access the flash.

One of the bottlenecks caused by the introduction of the
map cache is that address translation involves flash opera-
tions. To substantially reduce the translation time, research
has been conducted to use resources other than RAM in a
flash storage device. HPB [18] uses a part of the host system

memory as a map cache to improve random read performance
in a mobile environment with only SRAM. In [19], the host
memory buffer, which is one of the characteristics of NVMe,
is utilized to improve the performance of the DRAM-less
SSD, and a map cache is concluded as an optimal usage
among several other methods. HAT [20] stores the entire
mapping table in a phase-change memory (PCM) to eliminate
the time required to access the flash for fetching mapping
information. However, the access speed of PCM is lower
than that of RAM; therefore, frequently referenced mapping
information is managed in the existing RAM.

C. I/O SCHEDULING POLICIES FOR FLASH STORAGE
I/O requests created by a host system to access data go
through several queues while they are issued to and pro-
cessed by the flash storage system. Because scheduling in
the queue greatly affects I/O performance, studies on I/O
scheduling have been conducted on the host and storage
sides. Host applications typically issue read requests in a
synchronous manner; therefore, Individual Read Bundled
Write FIFO with Read Preference (IRBW-FIFO-RP) gives
read requests a higher priority over write requests, and write
requests are collected in bundles of appropriate size to be
processed [3]. Similarly, algorithms have been developed to
prioritize read requests and perform I/O scheduling consid-
ering the size of the requests and the GC state of the flash
chips [7]. Storage-side I/O scheduling exploits the internal
structure of a storage device. A scheduling algorithm for
native command queuing has been proposed based on the fact
that I/O service times vary according to the state of the data
buffer [21]. A host interface I/O scheduler (HIOS) performs
I/O scheduling to reduce the number of I/O requests that
cannot meet the deadline owing to channel resource conflicts
and GC overheads [22]. To exploit NAND flash parallelism,
studies have been conducted to group flash commands gen-
erated from I/O requests and execute them out of order [4],
[23]. Slacker has been proposed as a scheduler to reduce
slack time between sub-requests of I/O requests [5]. These
scheduling approaches have been proposed for general flash
storage. In storage with a map cache, new flash commands to
access mapping information are created; therefore, research
focusing on this application is needed.

IV. MOTIVATION
The flash command scheduling method should depend on the
presence of the map cache in a flash storage. In a full-map
storage without a map cache, only flash commands to access
data exist, whereas in a storage with a map cache, commands
to access the map as well as data exist. Fig. 4(a) depicts the
scheduling in the flash command queue of the map cache
storage. The command in the queue is the first command in
the flash command set generated from the I/O request, and
the remaining blurry commands are sequentially generated
and processed. In other words, the flash command is a part of
the flash command set, and therefore, command scheduling
should be based on the set instead of the command.

VOLUME 9, 2021 71641



G. Lee et al.: Internal Task-Aware Command Scheduling to Improve Read Performance

FIGURE 4. Read performance varies according to the flash command scheduling method. (a) Existing command
scheduling for full-map flash storage. It manages the flash command queue by dividing it into RCQ and PCQ.
(b) Command processing order in the existing command scheduling. (c) Command processing order in command
scheduling proposed for map cache flash storage.

The existing command-based scheduling for a full-map
storage divides the flash command queue into RCQ and PCQ
to distinguish between flash read and program commands.
In a full-map storage, flash read commands are generated
only from read requests. The result of a scheduling that
prioritizes the read commands to process read requests first
is illustrated in Fig. 4(b). The first queued command is pri-
oritized among the commands in the RCQ or PCQ; however,
the commands in RCQ are always preferred to PCQ. There-
fore, at T=t2, MP of Req. 2 loses its turn to the MR, which
follows MP in the flash command set of Req. 1. Although
the read request is not completed, the command of the write
request is processed. In addition, the flash command set of a
request is not completed, but commands of other requests are
alternately processed, resulting in unnecessary queue waiting
time.

Fig. 4(c) depicts a scheduling based on the flash command
set so that the read request is processed first and unnecessary
queue waiting time is avoided. To reduce the average latency
of a read request, based on the shortest-job-first schedul-
ing [24], the flash command belonging to the set of read
requests with a shorter processing time is prioritized. There-
fore, the commands of Reqs. 2 and 3, which are read requests,
are processed with priority over Req. 1, which is a write
request, and the commands of Req. 3, which have a shorter set
than Req. 2, are processed first. Consequently, the period for
which the flash command waits in the queue is reduced, thus
improving the read latency. Therefore, scheduling based on
the flash command set is effective for the map cache storage.

V. EFFECTIVE COMMAND SCHEDULING FOR MAP CACHE
STORAGE
In this section, we present a method of identifying flash
commands related to read requests and reordering the flash
commands so that requests with a shorter processing time are
completed first to improve the read performance of the map
cache flash storage. A flash command set is the basic unit
for accessing a logical page. Because an I/O request reads or
writes one or more logical pages, the command scheduling
described in the following subsections is based on the flash
command set.

A. READ REQUEST FIRST SCHEDULING
The flash storage usually schedules flash commands so that
read requests can be processed first. Host applications gen-
erally make synchronous read requests to the storage [25].
The application is blocked until the data are received by the
read request. In contrast, most write requests occur asyn-
chronously [24]. In this case, the application performs its own
workwithout waiting for the write request sent by itself to fin-
ish. Therefore, if read requests are processed quickly through
command scheduling, the host’s responsiveness increases.

We divide the flash command queue into a read request
queue (RRQ), a write request queue (WRQ), and GC queues
to propose a read request first (RRF) scheduling. An I/O
request is translated into flash command sets in the FTL.
Because both flash read commands and flash program
commands can exist in the flash command set, it is difficult
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FIGURE 5. Flash command queue is divided into a read request queue
(RRQ), a write request queue (WRQ), and GC command queues so that
read requests are processed first.

to process read requests first if the flash command is queued
based on its opcode. In Fig. 5, the flash read and pro-
gram commands are queued together in the RRQ or WRQ.
Of course, the data read command (DR) exists only in the
RRQ, and the data program command (DP) only exists in
the WRQ. To achieve RRF scheduling, the flash command
in the RRQ is first processed until the RRQ is empty. WRQ
starvation caused by priority scheduling is prevented by set-
ting a deadline. The expiration time of the flash command in
the WRQ is set to 5 seconds, which is the value for the write
request in the deadline I/O scheduler, and the command is
prioritized after this period.

Flash commands generated to process I/O requests, includ-
ing the map access commands, are prioritized over flash
commands issued to perform GC. When GC is triggered,
flash read and program commands are generated to migrate a
valid page of a victim block to a new block, and a flash erase
command is generated after all migrations are completed.
Moreover, when a data block is selected as a victim block,
flash commands for updating the changed mapping informa-
tion are also issued. Because responsiveness is not required
for the GC operation, GC flash commands are queued into
GC-RCQ or GC-PCQ based on their opcodes, and the erase
commands are inserted into the GC-RCQ. Because the time
required for the flash read operation is shorter than that of
other operations, the flash read commands are prioritized [6].
When GC is triggered because of insufficient free blocks,
the GC commands take precedence over the flash commands
from I/O requests as an exception.

B. COMMAND SCHEDULING WITH FLASH COMMAND
SET
Flash commands in the RRQ or WRQ can be further sched-
uled based on their I/O requests. I/O requests are translated
to flash command sets in the FTL, and flash commands
become the scheduling target while the set is being sequen-
tially processed. Because all translated flash commands must
be processed to complete an I/O request, command schedul-
ing considering the request can improve I/O performance.
If command scheduling is performed based on the size of
the I/O request, the average latency of the request can be

reduced [4]; however, even the flash command set must be
considered for effective scheduling in the map cache storage.
Therefore, it is necessary to examine the flash command set
that must be processed to complete the I/O request.

1) IMPACT OF MAP CACHE OPTIMIZATION ON FLASH
COMMAND SET
Owing to the map cache optimization, the flash command
set of an I/O request can be composed of its own flash
commands and the flash commands of the previous request.
DFTL performs a batch update to reduce the number of flash
programs that can occur when replacing mapping entries [8].
When a cache space to be secured by batch update is allocated
to an I/O request in which a cache miss occurs, a flash
command to fetch a mapping entry is created. However, this
command can only be processed when the cache space is
ready, so the command should wait for the dirty victim evic-
tion procedure to complete. Therefore, the flash command set
of the I/O request consists of original flash commands, which
are flash commands created directly to process the request,
and delaying flash commands, which are flash commands of
the previous request that delay the execution of the original
flash commands.K-entry caching, which compensates for the
shortcomings of DFTL [11] is another case where original
flash commands are delayed. If an I/O request is a cache
hit to the cache line in which fetching the mapping entries
is in progress, only a flash command to access user data is
generated. Similarly, this command can be processed only
after the cache line fetch process of the previous request is
completed. The batch update can also be applied to the cache
lines, causing the original commands that are delayed during
the dirty line eviction process to still appear.

Fig. 6 presents the flash command sets of I/O requests that
occur when the batch update is performed in the map cache
to which a 2-entry caching is applied. The map page has eight
mapping entries, and each request assumes that a cache miss
occurs for the map cache in its initial state. The four requests
are processed in order as follows. When the CLT is full,
the dirty victim line is evicted for Req. 1, accompanied by the
batch update. Consequently, SLPNs 8 and 10 belonging to the
same map page are programmed together. Req. 2 is assigned
a clean line, and the caching is enabled without any delay.
In contrast, Req. 3 is assigned a clean line to be secured after
the batch update; therefore, it must wait until the dirty line
eviction of Req. 1 is finished. As the mapping entry required
by Req. 4 is included in the cache line of Req. 1, Req. 4 can
be processed after being delayed until the completion of the
cache line fetch. Because the flash command set of Req. 1 is
created by evicting the victim, it consists of only the original
flash commands, and the flash command sets of the rest of
requests include delaying flash commands because of the
Req. 1 commands.

2) FLASH OPERATION TIME-BASED SCHEDULING
Flash operation time (FOT), as the actual size of an I/O
request, is defined as the sum of the time periods spent
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FIGURE 6. Scenario in which a delaying flash command occurs in a map cache with a 2-entry caching. (a) Situation where Reqs.
1–4 are processed sequentially when there are two dirty lines, including the victim in CLT. (b) Flash command set for Reqs.
3–4 can be executed after the delaying flash command originating from Req. 1 is completed.

FIGURE 7. Owing to a characteristic of the map cache, I/O requests are
completed only when all directly or indirectly related flash commands are
processed.

processing all commands in the translated flash command
sets. An I/O request is translated into one or more flash
command sets depending on the number of logical pages
accessed in the FTL. These command sets represent the
characteristics of the request because they are the minimum
commands that must be processed to complete it. In con-
trast, although GC flash commands can affect the latencies
of requests, they are excluded from the definition of FOT
because they are dedicated to overall storage management.
The FOT is determined according to the number of flash
command sets and the length of each set. Fig. 7 depicts an
example of a read and write request accessing two logical
pages, translated in the FTL. Between flash command sets
caused by the cache hit, the number of flash commands to
be processed is different when the mapping information can
be referenced immediately (the top set of read request) or
not (the bottom set of write request). Therefore, the FOT is
defined as the sum of the processing times of the original flash
commands and the delaying flash commands.

The FOT-based scheduling prioritizes the flash command
originating from I/O requests with a shorter FOT.When com-
mand scheduling is performed based on the size of the request
in the map cache storage, there is a limit to reducing the
average latency because the map cache factor is not consid-
ered. Therefore, the average latency can be further reduced by
scheduling the command based on the FOT calculated from
the request size and the flash command set together. The FOT
is determined based on the flash command sets generated
when the I/O request is translated, and the value is stored in

FIGURE 8. Representation of the delay relationship between the requests
in the scenario of Fig. 6. MR, which is the original command for Req. 1,
becomes the delaying command for Reqs. 3 and 4. Because the MR is
included in each flash command set of delayed requests as well as in
Req. 1, FOT-based scheduling should be performed using Req. 3, which
has the smallest FOT value as a read request among all requests (though
there is only one candidate).

the flash command. Once generated, the command set occu-
pies the allocated cache space until the mapping information
fetch process is completed, so the determined FOT cannot be
changed by a subsequent request. In addition, when there is a
desired mapping entry in the cache, a data access command is
created immediately by referencing the entry; therefore, even
if a subsequent request replaces its mapping entry, the FOT is
not affected. Command scheduling is performed based on the
stored FOT value. Section V-D provides a detailed descrip-
tion of scheduling operations. Because FOT-based scheduling
occurs in addition to RRF scheduling, the expiration time of
the flash command in the RRQ is set to 500 ms, which is
the value for the read request in the deadline I/O scheduler,
to prevent starvation from the RRQ.

C. DELAYED REQUEST SCANNING
When the delaying flash command is executed, not only the
request that creates the delaying command but also other
requests are processed at the same time. Fig. 8 presents the
delay relationship between the flash commands in Fig. 6, and
Reqs. 3 and 4 are the delayed requests to the MR, the original
flash command of Req. 1. Specifically, Req. 3 is a DLE-
delayed request that is handled after the completion of the
dirty line eviction (DLE) process, and Req. 4 is a CLF-
delayed request that is handled after the completion of the
cache line fetch (CLF) process. The flash commands of the
DLE are delaying commands that affect all delayed requests,
but theMR for the CLF of Req. 1 only affects Req. 4. After the
DLE process is completed, Req. 3 is no longer influenced by

71644 VOLUME 9, 2021



G. Lee et al.: Internal Task-Aware Command Scheduling to Improve Read Performance

the delaying command, and only the handling of the original
commands remains.

Delayed request scanning (DRS) searches all I/O requests
related to the delaying command and includes them in the
target of FOT-based scheduling. In Fig. 8, if the scheduling
is performed using only Req. 1, which is a write request,
the MR is processed with a low priority according to the RRF
scheduling. In contrast, when delayed requests are consid-
ered in the scheduling, we have Req. 3, which is the read
request; therefore, the MR is prioritized to further reduce
the read latency. Therefore, if there is at least one read
request among the requests affected by the flash command
in DRS, the command is inserted into the RRQ, otherwise,
it is inserted into the WRQ. In Fig. 8, the MR and MP of
the DLE are inserted into the RRQ, but MR for the CLF
of Req. 1 is inserted into WRQ because only write requests
are affected by the MR. The priority of a RRQ (or WRQ)
flash command is determined according to the FOT-based
scheduling performedwith the request, which has a minimum
FOT value as a read (or write) request among the command’s
original request and the delayed requests.

D. IMPLEMENTATION OF DRS
To implement the proposed command scheduling, attributes
of the flash command are added, andRRQ andWRQareman-
aged as a queue sorted by priority based on these attributes.
Because DRS is an FOT-based scheduling scheme that con-
siders delayed requests on top of RRF scheduling, other
scheduling schemes are not described separately.

1) ATTRIBUTES OF FLASH COMMAND
Request information (reqInfo) is added to the attributes of
the flash command because it is necessary to know the I/O
requests associated with a command when scheduling the
commands. Request information is structured as an array
because it needs to contain the information of the original
request and delayed request of the command. As members
of the structure, it has a type to distinguish between read and
write requests, and a flash operation time (fot) for priority
scheduling in the queue. In the case of FOT-based scheduling,
information on delayed requests is not managed, and thus the
request information is implemented without being in an array
form.

The request information is an array of three sizes. Three
request information (reqInfo[3]) are needed to express the
original request, CLF-delayed requests, and DLE-delayed
requests. ReqInfo[0] contains original request information.
ReqInfo[1] contains a smaller value between the minimum
FOT among CLF-delayed request FOTs and reqInfo[0].fot
and type at that time. Finally, reqInfo[2] contains a smaller
value between the minimum FOT among DLE-delayed
request FOTs and reqInfo[1].fot and type at that time. In other
words, the following equation holds for the fot:

reqInfo[n].fot = min(min(FOTreq_n1 ,FOTreq_n2 ,

· · · ), reqInfo[n− 1].fot) (1)

for n = 1, 2. req_1 and req_2 denote CLF-delayed requests
and DLE-delayed requests, respectively. However, when a
read request is comparedwith a write request, the read request
takes precedence and is stored in the request information,
regardless of the FOT value.

2) DRS ALGORITHM
Algorithm 1 presents the process of inserting a flash com-
mand into the RRQ or WRQ. Because reqInfo[2] stores the
information of the request with the minimum FOT among the
original request and all delayed requests, the queue in which
the flash command is to be inserted is based on the request
type (lines 1–5). Of course, if there is any read request among
the requests affected by the flash command, the type will be
the Read, so the queue is set as RRQ. Because RRQ or WRQ
is a sorted queue, the queue is traversed to insert the input
command at the appropriate location (line 6). The queue is
sorted in an ascending order based on the FOT value; there-
fore, the input command is inserted before the flash command
with a larger FOT value than the input command (lines 7–10).
If no such command is in the queue, the input command is
inserted as the last element of the queue (lines 11–14). When
inserting the commands into the sorted queue, a binary search
is possible; however, it is expressed as a sequential search to
focus on the comparison of the commands’ FOT values.

Algorithm 1 RRQ/WRQ Management
Input: Flash command to be queued at RRQ/WRQ
Output: Sorted RRQ/WRQ according to priority
1: if inCommand.reqInfo[2].type = Read then
2: queue← RRQ;
3: else
4: queue←WRQ;
5: end if
6: for command in queue do
7: if inCommand.reqInfo[2].fot <
8: command .reqInfo[2].fot then
9: insert inCommand before command ;
10: return queue;
11: else
12: if command = queue[last] then
13: insert inCommand after command ;
14: end if
15: end if
16: end for
17: return queue;

Algorithm 2 presents the process of updating the request
information for the next flash command in the flash command
set after a flash command is completed. If the completed com-
mand is MP, it means the DLE process is over, and therefore,
the flash command set becomes irrelevant for DLE-delayed
requests. Therefore, reqInfo[2] is updated with reqInfo[1],
which contains the information of requests still related to the
flash command set (lines 1–2). When the MR of the CLF
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Algorithm 2 Request Information Update
Input: Completed flash command
Output: Updated request information for next flash command
in the flash command set
1: if command is MP then
2: command.reqInfo[2]← command.reqInfo[1];
3: else
4: if command is MR of Cache Line Fetch then
5: command.reqInfo[2]← command.reqInfo[0];
6: end if
7: end if
8: return command.reqInfo;

process is completed, the flash command set no longer affects
the delayed requests; therefore, the information of the original
request is assigned to reqInfo[2] (lines 3–6). As reqInfo[2]
is continuously updated in this manner, it can be used for a
comparison of queue managements in Algorithm 1.

3) OVERHEAD OF DRS
Because DRS maintains sorted queues based on the reqInfo
for the command scheduling, the overhead of managing the
reqInfo and sorted queues becomes DRS overhead. First,
the sorted queue also exists in other priority scheduling; there-
fore, if a priority of the flash command can be obtained in a
constant time, additional overhead is not incurred. Second,
because the reqInfo is a fixed-sized array with two member
variables, the additional RAM requirement is constant. The
overhead of initializing the reqInfo appears to beO(n) accord-
ing to (1), but this is an expression of all the comparisons to
find the final minimum value at once. In practice, a compari-
son is performed whenever there is a delay relationship with
the previous flash command while processing an I/O request,
so the initialization overhead can be regarded as a constant
time. Because the time to access the reqInfo to which the
value is assigned is constant, the additional time complexity
of DRS as a priority scheduling method is O(1).

VI. EXPERIMENT
A. EVALUATION SETUP
To model the I/O request queue and flash command queue,
and to check the effect of command scheduling, an in-house
simulator was implemented based on FlashSim [26]. Based
on DFTL supported by FlashSim, a map cache managed in a
cache line unit was implemented. In addition, a batch update
policy was applied to the map cache. Through trace-driven
simulations, we conducted command scheduling experiments
with several workloads.

Some of the embedded flash storage, such as UFS and
flash cards, are configured as a single channel owing to
cost limitations [27], [28]. In addition, the chip capacity has
increased owing to an increase in bits per flash cell [29],
and thus, the storage capacity can be fulfilled using a sin-
gle way. We configured the storage with a single-channel

and single-way architecture to evaluate the performance of
low-end devices. The default capacity of the map cache was
set to 1 kB, and the page size of the flash memory was set to
4 kB. The times required for flash read operation and program
operation were 60 µs and 700 µs, respectively [30]. The
default flash command queue depth was set to 256. The simu-
lation was performed without pre-conditioning to experiment
in an environment with minimal effect of GC. Moreover,
because on-demand GC, which triggers GC whenever a free
block is needed, was applied, GC flash commands are simply
processed with the highest priority during the GC procedure.
Therefore, a scheduling method for the purpose of optimizing
GC is not considered in the proposed scheme.

We measured the latency of I/O requests to evaluate
five types of command scheduling. Two existing scheduling
schemes that do not consider the flash command set generated
by the map cache and the three proposed scheduling schemes
are compared.

1) RCF is a command scheduling to which a read com-
mand first (RCF) scheduling algorithm is applied. The
flash read command, which has the lowest cost among
the flash commands, is prioritized.

2) Size is a command scheduling that also considers the
size of the I/O request in RCF. The read commands
from smaller-sized requests are processed first.

3) RRF prioritizes flash commands from read I/O requests
described in Section V-A. The command translated
from the read request is inserted into the RRQ, and the
command translated from the write request is inserted
into the WRQ.

4) FOT is a command scheduling to which the FOT-based
scheduling algorithm is applied. In the RRQ and WRQ
of the RRF, the flash command with a smaller FOT
value is processed first.

5) DRS is an enhanced version of FOT. The FOT value is
obtained by considering both the original and delayed
requests affected by the flash command. This schedul-
ing is also based on the preference of read requests.

Because a meaningful timestamp is needed to measure the
latency of I/O requests, we experimentedwith real workloads.
Nexus5 workloads collected from an embedded flash storage
were used [31]. Table 1 presents the characteristics of each
workload. From Movie to Radio, workloads are collected
when individual applications are running. The other work-
loads are gathered when Radio and Message/WebBrowsing
are running simultaneously.

B. STORAGE PERFORMANCE
Among all command scheduling schemes, DRS shows the
most improved average latency of read I/O requests. Fig. 9
presents the average latency of each scheduling scheme as a
value normalized to the RCF. In the case of write latency and
I/O latency, DRS has the shortest latency in most workloads.
Because DRS prioritizes read requests over write requests,
the performance improvement in write latency does not dif-
fer significantly from that of Size. Rather, Booting has the
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TABLE 1. Characteristics of workloads used in the experiment.

FIGURE 9. Comparison of average latency of I/O requests by command
scheduling. (a) Read latency. (b) Write latency. (c) I/O latency.

shortest write latency in Size. Because Size does not classify
the flash command by request type and schedules based on
the size of the request, the write request may be processed
first. In addition, Booting is a read-dominant workload, and
the average write size is much smaller than that of read, which
makes the result possible. Nevertheless, DRS significantly
reduces the read latency, which also improves the I/O latency
to a meaningful level.

The read latency of RRF showed a better performance than
that of RCF on an average. This is a predictable result because
the flash read command does not come only from read I/O
requests. However, RCF processes read commands from dif-
ferent flash command sets in a round-robin manner, and

therefore, read requests with smaller sizes may be partially
prioritized. This prioritization is pronounced in YouTube.
Because the workload is write-dominant and the average read
size is relatively small, the read latency of RRF is higher than
that of RCF. In Radio/Msg, which has similar characteristics
to YouTube, read requests are more affected by program
commands, and therefore, the read latency of RCF that does
not prioritize program commands is higher than that of RRF.

It can be seen that the latency is further reduced by schedul-
ing the command based on the characteristics of the I/O
request. The size scheme additionally considers the size of
the request in the RCF, and the FOT scheme additionally
considers the FOT of the request in RRF, which reduces the
latency. Of course, Size does not consider the flash command
set generated by the map cache, and therefore, the read per-
formance is lower than that of the FOT. The read latency of
the FOT was the lowest in the mixed workload of Booting,
Facebook, and Radio/WB. DRS further reduces the latency
by considering the delayed requests in FOT. The Radio series
shows that the read latency reduction effect of DRS is remark-
able in combination with workloads.

C. QUEUE WAITING TIME
To check the performance improvement factor of the pro-
posed command scheduling, we observed the change in queue
waiting time. The I/O request is completed when flash oper-
ations are performed after going through the I/O request
queue and flash command queue. Therefore, by breaking
down the latency into the queue waiting time (QWT) and the
flash operation time, we can see what causes the latency to
decrease. Here, QWT was measured by dividing it into I/O
request QWT and flash command QWT.

DRS significantly reduces the flash commandQWT,which
shortens the average I/O latency. Fig. 10 depicts the I/O
latency breakdown based on the workload. DRS is compared
with the baseline RCF, and their latencies are expressed from
I/O request QWT to the flash operation time. The flash oper-
ation time does not change because of a command scheduling
characteristic that only reorders the flash commands, and the
flash command QWT decreases the most. This means the
command processing speed increases, resulting in a slight
decrease in I/O request QWT in some workloads that have
bottlenecks in the request queue. Eventually, the proposed
scheduling scheme improves I/O latency by reducing the total
QWT.
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FIGURE 10. Queue waiting time is shortened, reducing the I/O latency.

FIGURE 11. Average read latency varying (a) map cache size and (b) flash
command queue depth.

D. PARAMETER STUDIES
Because DRS is a proposed command scheduling scheme
for map cache flash storage, we verified how the map cache
size and flash command queue depth affect performance
through experiments. Fig. 11(a) shows the read latency of
the average workload according to the cache size. Because
DRS is a scheduling scheme that considers flash commands
caused by cache misses, its performance is the best with
the smallest cache size. In contrast, Size does not consider
the map cache characteristics, and therefore, it is difficult to
find a decreasing trend in performance with an increase in
cache size. This result indicates that the proposed command
scheduling is effective for embedded flash storage using a
small amount of RAM.

Fig. 11(b) presents the result of measuring the average
read latency by changing the queue depth from 1 to 512 in
DRS. As the queue depth increases, the number of candi-
dates for scheduling increases, thus improving the perfor-
mance. Of course, the point at which performance is saturated
depends on the workload. The larger the size and arrival rate

of the I/O request in the workload, the more requests that
can be queued, resulting in the saturation of performance
at a larger queue depth. The performance saturation points
of some workloads are not illustrated in the chart, such as
Booting. Other workloads are rapidly saturated at a small
queue depth, such as Radio.

VII. CONCLUSION
This paper presents a flash command scheduling scheme that
exploits the characteristics of a map cache. The proposed
scheme obtains the FOT of the I/O request from different
flash command sets caused by cache hit/miss and reduces
the average read latency by prioritizing the flash command
generated from the read request with a shorter FOT. The
FOT value of the flash command is recalculated considering
not only the original request but also the delayed requests
sharing the command, thereby further enhancing the effect
of FOT-based scheduling. Experimental results demonstrate
that the proposed scheduling scheme primarily reduces the
flash command queue waiting time and improves the average
latency. A trace-driven simulation shows that the average read
latency of the proposed scheduling is reduced by up to 51%
compared with the existing scheme, and the performance
improvement is effective in a small map cache.
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