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ABSTRACT Image reconstruction for industrial applications based on Electrical Capacitance Tomography
(ECT) has been broadly applied. The goal of image reconstruction based ECT is to locate the distribution
of permittivity for the dielectric substances along the cross-section based on the collected capacitance data.
In the ECT-based image reconstruction process: (1) the relationship between capacitance measurements and
permittivity distribution is nonlinear, (2) the capacitance measurements collected during image reconstruc-
tion are inadequate due to the limited number of electrodes, and (3) the reconstruction process is subject
to noise leading to an ill-posed problem. Thence, constructing an accurate algorithm for real images is
critical to overcoming such restrictions. This paper presents novel image reconstruction methods using Deep
Learning for solving the forward and inverse problems of the ECT system for generating high-quality images
of conductive materials in the Lost Foam Casting (LFC) process. Here, Long Short-TermMemory Recurrent
Neural Network (LSTM-RNN) models were implemented to predict the distribution of metal filling for the
LFC process-based ECT. The recurrent connection and the gating mechanism of the LSTM is capable of
extracting the contextual information that is repeatedly passing through the neural network while filtering
out the noise caused by adverse factors. Experimental results showed that the presented ECT-LSTM-RNN
model is highly reliable for industrial applications and can be utilized for other manufacturing processes.

INDEX TERMS Image reconstruction, long short-termmemory recurrent neural network, lost foam casting,
metal filling process.

I. INTRODUCTION
Computed tomography is a technology to image materials
distributions in closed vessels. Typically, a group of sensors is
evenly mounted around the area of interest to measure one of
the material properties, such as resistance, conductivity, and
permittivity. Therefore, the tomography technique’s selection
is based on the type of material needed to be imaged. Elec-
trical Resistive Tomography (ERT) [1], Electrical Impedance
Tomography (EIT) [2], and Electrical Capacitance Tomog-
raphy (ECT) [3] are well-known examples of the computed
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tomography. These techniques have many advantages such as
non-invasive, flexibility, fast response, low cost, and safety
compared to other tomography modalities like X-Ray [4].

ECT is a well-established technique for imaging dielectric
aswell as conductivematerials. It can induce a cross-sectional
image that represents the inner distribution of conductivity
based on outer capacitance measurements. ECT possesses
many advantages over other tomography modalities since
it is non-invasive, non-intrusive, non-radioactive, and inex-
pensive. It is also capable of providing detailed information
about the electric properties of different flow materials [5].
Further advantages include: 1) possessing a rapid imaging
speed which typically reaches 100 frames/s, 2) it does not
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suffer from any hazard radiations, 3) it can bear up high
temperature and high pressure. The ECT sensor is composed
of multiple exciting electrodes, which are evenly mounted
around the non-conductive dielectric medium of the mate-
rial inside the vessel to be imaged [6]. There is an earthed
screen positioned outside the electrodes to depress the exte-
rior interference noise to accomplish such a process. The
ECT system’s functioning depends on gauging the change
in capacitance measurement of a multi-electrode ECT sen-
sor. This process is consummated due to the variations in
the distribution and/or condensation of dielectric materials
inside the vessels. The outcome is the reconstruction of cross-
sectional images representing the distribution of the materials
obtained from the measured data [7].

The potential applications of ECT are broadly exten-
sive [6], with several practical and applicable domains such
as biomedical [8], industrial tomography and non-destructive
assessment [9]. So, there is a substantial research landscape
for the successful and practical applications of ECT in a
variety of target applications such as grounded metal obser-
vation in a casting process [5], imaging dilute in addition to
large multi-phase flows in oil purification, in powder flow
in a vertical tube for petroleum refining [10], and the food
industry and observation of chemical and pharmaceutical
processes [11].

There are two computational problems in the ECT sys-
tem, forward and inverse problems. The forward problem
is calculating the capacitance measurements corresponding
to a known material distribution. Usually, a model of the
ECT system is built using Finite Element (FE) to solve the
forward problem [12]. The FEM is used to calculate a sensi-
tivity matrix by creating a finite mesh of the imaging area,
and calculating capacitance data as a linear sum of differ-
ent perturbations composing different materials distributions.
However, applying fixed sensitivity matrix during each itera-
tion speeds up the inverse problem’s solution, the generated
images are blurred due to the linear approximation [13].
On the other hand, the inverse problem is generatingmaterial
distribution images related to known capacitance measure-
ments. Solutions of the inverse problem are called image
reconstruction algorithms [14]. Usually, the reconstruction
algorithms are ill-posed since the number of image pixels
(unknowns) is greater than the number of capacitance mea-
surements (knowns). Also, the effect of changing the material
distribution on the capacitance measurements is extremely
nonlinear; consequently, the inverse problem solution is a
challenge task [15].

Generally, non-iterative and iterative algorithms can be
used in ECT image reconstruction. However, it isn’t very easy
to obtain satisfactory results from the non-iterative recon-
struction techniques because of the nonlinear relationship
between the capacitance measurements and the materials’
distribution. As a result, the iterative methods are prevalently
used in the ECT to estimate the unknown distribution from the
capacitance data (inverse problem) and calculate the capaci-
tance data based on the estimated distribution to update the

image in the next iteration (forward problem). A satisfactory
value of the capacitance error is used to terminate the iterative
loop.

A. LITERATURE REVIEW
Traditional image reconstruction algorithms such as Iter-
ative Linear Back Projection (LBP), Landweber, iterative
Tikhonov regularization, Iterative Total Variation (iTV), and
Kalman Filter are still adopted; meanwhile, some distinguish-
ing work also has been approved [3]. Adaptive Electrical
Capacitance Volume Tomography (AECVT) is one instance
of such a distinctive work [16]. In the AECVT, a novel ECT
sensor composed of a large number of small different shapes
electrodes has been developed, and accordingly, new image
reconstruction algorithms dealing with such a new ECT sys-
tem have been proposed [17].

The Linear Back Projection (LBP) method was presented
to reconstruct an image of capacitance measurements. Ini-
tially, it fetches all electrode pairs’ sensitivity distributions
for an ECT system, and the normalized capacitances are
then linearly superimposed using the sensitivity distributions
as weighting components for obtaining images. Although
the images reconstructed using the LBP method are often
deformed, this algorithm remains the most widely used one
due to its simplicity and rapidity. Iterative algorithms such as
Landweber’s iteration method [18] and algebraic reconstruc-
tion technique [19] can create significantly better images than
can non-iterative reconstruction algorithms. Iterative image
reconstruction methods during the practicality require long
reconstruction time. So, they are only appropriate and viable
for cases where rapid reconstruction time is not essential.

Currently, machine learning techniques have thrived in
many fields, and many researchers have tried it to solve
tomography forward and inverse problems using these tech-
niques. A multilayer Feed-Forward Neural Network (FFNN)
and analog Hopfield network have been proposed in [20]
to solve both ECT problems, respectively. Boublil D. et al.
used FFNN as a fusion image reconstruction algorithm in
the computed tomography application [21]. Authors in [22]
trained an Artificial Neural Network (ANN) to estimate
parameters of a circular object present inside the imaging
area using ECT. The obtained results showed a substantial
reduction of computations time compared to the traditional
iterative reconstruction image algorithms. Deabes W. et al.
proposed Capacitance Artificial Neural Network (CANN)
system in [23] as a solver for the forward problem and Metal
Filled Fuzzy System (MFFS) to solve the inverse problem
to construct the metal distribution images. Li et al. tried to
generate ECT images using the Backpropagation (BP) and
Radial Basis Function (RBF) neural networks [24].

Fiderek P. et al. applied fuzzy inference for reconstruct-
ing images of the two-phase gas-liquid flow from ECT
measurement data as a sufficient alternative to the methods
commonly used in the ECT field [25]. Also, Deabes W. et al.
developed a fuzzy system to reconstruct themetal distribution
profiles in the Lost FoamCasting (LFC) process [26]. In [27],
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an extended sensitivity matrix consisting of some normalized
capacitance vectors corresponding to the base permittivity
elements is designed. Zhang L. et al. proposed a wavelet
transform fusion algorithm to improve the quality of the
ECT reconstructed images [28]. The algorithm is based on
obtaining the images using conjugate gradient least square
algorithm and iterative Landweber algorithm; then wavelet
transform decomposes these images.

In [20], the analog Hopfield network was used to address
the inverse problem based on NN with a multi-criteria opti-
mization image reconstruction approach. This image recon-
struction approach was evaluated on a set of independent
capacitance measurements to reconstruct the permittivity
distribution.

In recent years, Deep Learning (DL) has flourished as
a robust and efficient technique in the machine learning
area [29]. DL has lately been introduced to the electrical
tomography field since it has a remarkable ability to map
complicated nonlinear functions. Zheng J. et al. presented
an autoencoder neural network to construct images of the
ECT system [30]. Lei J. et al. proposed a deep learning-
based inversion method to ease the reconstruction accuracy
of the reconstructed ECT images [31]. Convolutions Neural
Networks (CNNs) have been implemented for the EIT [32],
and ERT [29]. Xiao J. et al. proposed two deep learning image
reconstruction algorithms for electromagnetic tomography
(EMT) [33]. Applying deep learning techniques to enhance
and accelerate the inverse problem’s solution has become
crucial in ECT research. One of the novels and efficient deep
learning techniques is Long Short-Term Memory Recurrent
Neural Network(LSTM-RNN) [34]. LSTM-RNN can effec-
tively generate images with detailed features depending on
the provided information. Researchers in the image process-
ing field has paid great attention to the LSTM-RNN due to its
advantages [35]–[40].

Compared with convolutional and fully-connected layers,
the recurrent connection and the gating mechanism of the
LSTM is capable of extracting the contextual information
that is repeatedly passing through the neural network while
filtering out the noise caused by adverse factors. In theory,
LSTMarchitecture can be defined to perform regression tasks
by placing one output neuron without a modifying function,
and that will represent a continuous output.

B. RESEARCH OBJECTIVES
This paper presents novel image reconstruction methods
using DL for solving the ECT problems for generating high-
quality images of conductive materials in the Lost Foam
Casting (LFC) process. The main objective guiding the pre-
sented approach is to solve the reconstruction problem with
a fair compromise between the goodness of the reconstructed
image, robustness, and computational complexity. A bet-
ter understanding of the characteristics of the molten metal
inside the foam pattern is needed to reduce the fill related
defects and to improve the final casting [26]. This research
has two folds:

FIGURE 1. Proposed LSTM_RNN system for forward problem.

FIGURE 2. Proposed LSTM_RNN system for inverse problem.

• A nonlinear forward solver called ECT-LSTM-RNN,
shown in Fig. 1, has been developed to solve the forward
problem nonlinearly with high speed and accuracy. It is
based on the deep neural network (LSTM-RNN). The
forward solver takes a set of known metal distributions
as inputs and generates their corresponding capacitance
measurements. The training data are generated based
on different models developed to describe the molten
metal’s behavior during the casting process [41]. They
are stimulated by a finite elementmethod to calculate the
capacitance measurements related to all different distri-
butions. Some random metal distributions are generated
and calculating their corresponding measurements, then
used them to train the network with high accuracy.

• This work also presents a novel approach to designing
a fast and accurate image reconstruction algorithm for
multi-phase flow imaging during the LFC process using
the LSTM-RNN [34]. The proposed ECT-LSTM-RNN
inverse problem solver can create significantly high
quality images than those produced by the traditional
algorithms, with a lower reconstruction cost. The main
objective guiding the presented approach is to solve the
reconstruction problem with a fair compromise between
the goodness of the reconstructed image, robustness,
and computational complexity. Fig. 2 shows the pro-
posed ECT inverse solver. Initially, the capacitance
measurements CN are pre-processed by filtering and
normalization. Afterwards, the LSTM-RNN takes the
measurements as inputs to produce the final recon-
structed image G, which represents the metal’s distribu-
tion inside the imaging area.

C. OUTLINES
This paper is organized as follows: Section II-B II presents
the recent ECT system for conductive materials in the LFC
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FIGURE 3. Lost Foam Casting (LFC) process.

FIGURE 4. Engine foam pattern and its final casting [42].

process. A brief look at the most common deep learning
models is presented in Section III. Section IV discusses
the proposed ECT-LSTM-RNN solvers for the forward and
inverse problems in the ECT. Section V mainly focuses on a
discussion of the simulated benchmark data sets conducted in
the experiments and an explanation of the validation criteria
utilized to evaluate the performance of the developed models
and the results of both the forward problem and the inverse
problem solvers. Finally, we present a conclusion with a
broader outlook of the research direction in Section VI.

II. ECT SYSTEM FOR CONDUCTIVE MATERIALS
In the automotive industry, Lost Foam Casting (LFC) is an
evaporative-pattern casting process for engine blocks [42].
LFC is a simple and inexpensive technique for casting del-
icately detailed, as well as complex geometries. The process
goes through three steps, as shown in Fig. 3. The process
starts by building a foam pattern, then supporting it inside
a flask using compacted sand, and the last step is pouring the
molten metal to cast the final product [43]. Fig. 4 shows an
engine foam pattern and its final casting.

Monitoring how the molten metal fills the foam pattern is
crucial to eliminate all related process faults and to improve
the final product [44]. Typically, inferred cameras and X-Ray
technology are applied to monitor the molten metal flow
during the casting [45]. The X-Ray tomography suffers from
hazard radiations, big size, fixed, and high cost compared
to electrical tomography techniques. Therefore, many cur-
rent methods have been implemented to image the industrial
process [46].

The ECT is a novel feasible technology for imaging dielec-
tric and conductive materials [47], [48]. It has high potentials,

which attract manufacturers to implement it for imaging the
flow of the molten metal in the LFC process. Typically,
the ECT system consists of three parts, an array of electrodes,
a data acquisition unit, and a computing device [49]. For
an array of n = 12 electrodes, shown in Fig. 5a, each pair
of the electrodes makes a capacitive sensor. It is essential to
optimize the ECT sensor to improve the signal-to-noise ratio,
which significantly improves the quality of the developed
reconstruction algorithm [50]–[52]. An ECT sensor with
12 electrodes is selected since It is known that the number of
electrodes has a direct relationship with the signal-to-noise
ratio.

The flask is earthed to eradicate external noises and
stray capacitance effects [53]. Grounded guards are uni-
formly placed between the electrodes to increase the sensors’
dynamic range and keep the electrical field uniform. For a cer-
tain metal distribution, the corresponding mutual capacitance
measurements are sequentially collected by activating one
electrode at a time as a transmitter, while all other electrodes
are grounded to work as receivers. Therefore, the number of
independent capacitance measurements M for one distribu-
tion is computed as in the following Eq.1:

M =
n(n− 1)

2
(1)

A. ECT MODEL
The ECT model consists of forward and inverse problems.
The solution of the forward problem requires building a
FEM to determine the capacitancemeasurements for a certain
metal distribution. Fig. 5b shows the FEM of the ECT system.
The area of the foam pattern, where the metal will exist,
is divided into 16 × 16 = 256 elements. The number of all
other elements equals 4364. The change of the metal distribu-
tion has a nonlinear effect on the capacitance measurements
as described in the following Laplace Eq.2

1 · (ε1u) = 0 (2)

where ε is the permittivity of the materials distribution, and u
is the electrical potential. Since thematerial distribution in the
LFC application is grounded metal, the boundary condition
for solving Eq.2 are given as follow [26]:

ωi =

{
Vc (x, y) ⊆ 0i (i = 1, 2, · · · 12)
0 (x, y) ⊆ 0k + 0s + 0g + 0e

(3)

where Vc is the excitation voltage, 0i is the surface of the
transmitting electrode i = 1, 2, · · · 12, 0k is the surface of
the receiving electrodes k = 1, 2, · · · 12, 0s and 0g are
the surfaces of the grounded flask and the guards between
electrodes, respectively, and 0e represents the surface of the
elements where the groundedmetal will exist inside the imag-
ing area.

Equation 2 can be numerically solved based on the devel-
oped FEM in Fig. 5b. Therefore, the linear forward solution
of the ECT is described as:

CM×1 = SM×N · GN×1 (4)
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FIGURE 5. ECT system with 12 electrodes.

where C is the measurements vector, G is the image of the
metal distribution, N the number of images’ pixels, and S
is the sensitivity matrix calculated for each element k as
follows:

Si,j(k) =
Ci,j(k)− C l

i,j

Ch
i,j − C

l
i,j

(5)

whereCh
i,j are capacitancewhen the imaging region is entirely

foam and C l
i,j are capacitance when the foam completely

replaced by metal.
The ECT is an ill-posed problem, since N � M . There-

fore, the reconstructed image’s error can significantly affect
any small change in the measurements [54]. There are two
types of image reconstruction algorithms, non-iterative and
iterative. The non-iterative algorithms, such as Linear Back
Projection (LBP) Eq.6, are simple but generate low-quality
images.

G = STC (6)

While applying the Landweber iterative algorithm, Eq.7
significantly improves the image quality but applies high
computations.

Gk+1 = Gk − λST (SGk − C) (7)

where λ is the relaxation parameter, SGk is the forward
problem solution, and k is the iteration number [54].

B. COMPUTATIONAL PROBLEMS OF THE ECT SYSTEM
FOR LFC PROCESS
In the wider context, many key problems present a serious
challenge to the implementation of the ECT system [55].
The main reasons that are presented to an implementation
of the ECT system are Soft fields, Ill-posed, Nonlinearity.
Beside, practically imaging conductive materials by plac-
ing a grounded conductor in the imaging area dramatically
affects the linear sensitivity matrix [47]. Therefore, solving
the inverse problem using the traditional ECT algorithms,
such as LBP, Landweber, or iterative Tikhonov, produces

poor images. Improving the reconstructed images using these
traditional algorithms requires updating the sensitivity matrix
each iterations which consumes much time and makes these
algorithms are not feasible in dynamic applications such as
the LFC process. For illustrating, the linear sensitivity is com-
puted when the imaging area is empty, while the actual sensi-
tivity is computed when a piece of grounded metal is placed
inside the imaging area. Fig 6 shows how much the grounded
metal inside the imaging area deforms the values of the linear
sensitivity matrix. The sensitivity between electrodes (2-8)
are shown in Fig. 6b, and in Fig. 6c between electrodes (2-7).
Fig. 6 proves that applying the linear sensitivity matrix in
the ECT system for imaging grounded conductive materi-
als generates poor images. Besides, computing the actual
sensitivities during iterations is time-consuming. Therefore,
building novel reconstruction algorithms that do not use the
sensitivity matrix is crucial.

To address these challenges, multivariate, complex, and
unforeseeable operating conditions demand better modeling,
description, understanding, and interpretation by monitor-
ing and controlling industrial systems’ dynamic behavior.
In addition to the techniques mentioned above to develop
image reconstruction algorithms, a new technology that has
newly gained a significant momentum is Deep Learning
(DL) [56]. This new technique forms a category of machine
learning computational area, which is analogous to ANN.
As deep neural networks have shown a very astonishing
success, often further than human capacities, in solving chal-
lenging problems with remarkable accuracy in many con-
temporary studies and various domains such as medical [57],
and industry [58]. These profound findings of DL triggered
us a broad interest in using these techniques to address both
the forward and inverse problems of the ECT system for an
industrial process.

III. DEEP LEARNING
Deep learning is a spectacular division of Artificial Intelli-
gence (AI) and, in particular, Machine Learning (ML), which
has achieved great success in past and present periods in
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FIGURE 6. Linear and actual sensitivity matrices for electrode pairs (2-8) (b & c), (2-7) (d & e) for a single piece of
metal (a).

varied fields of science and applications such as in medical
applications [59], agriculture applications [60], business [61],
industry [62] and government [63]. Deep Neural Network
(DNN), Convolutional Neural Network (CNN), and Recur-
rent Neural Network (RNN) are examples of the DL models.

RNNs are neural networks with recurrent links between
the hidden nodes of the hidden layers. These cyclical con-
nections provide RNNs the capacity to encode memory, and
as that these RNNs, if prosperously trained, are proper for
sequence learning applications. Long Short Term Memory
(LSTM)-RNN [64] is a novel RNN network design. The
LSTM is a customary RNN where the monotonic nonlinear-
ity, such as the sigmoid or tanh, is commuted with a memory
module that can expeditiously save continuous values and
transfer information long temporal range. Every memory
module in the LSTMof RNN has a property of constant linear
dynamics with a feedback loop with a weight of one unit.
As an upshot, the error signal does not decay or explode as
it propagates over the memory module. The memory’s cell
content is adjusted by several gates that confer the LSTM unit
the power to hoard and restore the pertinent series informa-
tion. However, withmore various gates be added to the LSTM
architecture, the network’s complexity will be increased.

Due to our desire for the low complexity of RNN models
and the promising results arrived at by the LSTM-RNNs
networks in several domains, we thence directed our attention
to the LSTM-RNNs to explore its importance in the ECT from
a dynamical manufacturing system perspective.

IV. ECT-LSTM-RNN: FORWARD AND INVERSE
PROBLEMS SOLVER
This work’s contribution is the evolution of an image recon-
struction model for the distribution of metal filling for the

LFC process based on ECT using advanced deep learning
methods. The distinction between convolutional layers is
made by their capability to retrieve useful knowledge and
learn the internal representation of time-series data. At the
same time, LSTM networks are efficient in identifying short-
term and long-term dependencies. The proposed model’s
basic idea in this research is to incorporate these deep learning
techniques’ merits effectively. In this respect, the proposed
model, called LSTM-RNN, comprises of two main compo-
nents, as shown in Fig. 7: The first component composes of
convolutional and pooling layers in which complex mathe-
matical calculations are conducted to incubate the features of
the input data. The second component exploits the features
created by the LSTM and dense layers. After that, we provide
a brief description of the convolutional, pooling, and LSTM
layers that form the proposed model’s heart.

A. CONVOLUTIONAL AND POOLING LAYERS
Convolutional and pooling layers [65] are principally
designed pre-processing data layers that have the job of fil-
tering the input data and extracting useful information that
would typically be used as input a fully connected network
layer, as shown in Fig. 7. More characteristically, the convo-
lutional layers use convolution operation between raw input
data and convolution kernels to yield new values for the fea-
tures. The input data should contain a structured matrix form
since this technique was primarily purposed to extract fea-
tures from image data sets [66]. The convolution kernel (i.e.,
the filter) can be thought of as a tiny window (compared to the
input matrix) which has coefficient values into a matrix form.
This window slides throughout the input matrix and applies
convolution operation on each sub-region (i.e., patch) that this
specific window meets across the input matrix. The outcome
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FIGURE 7. Architecture of a long short-term memory (LSTM).

of all these operations is a convolved matrix representing the
value of a feature defined by the coefficient values and the
dimension size of the used filter. By applying different con-
volution kernels on the input data, many convolved features
can be created, which are customarily more beneficial than
the original initial features of the input data, thus improving
the performance of the model. Typically, the convolutional
layers are followed by a non-linear activation function, such
as a rectified linear unit, and then a pooling layer. A pooling
layer is a sub-sampling method that extracts specific values
from the convolved features and generates a matrix with
lower dimensions. By an analogous procedure, as with the
operations performed on the convolutional layer, the pooling
layer uses a small sliding window that uses the values of each
patch of the convolved features as input and produces one new
value as an output that is determined by an operation that the
pooling layer is defined to perform. The maximum pooling
and average pooling compute the maximum and average
value of the values of each patch. As an outcome, the pooling
layer leads up to newmatrices. These matrices can be deemed
as short versions of the convolved features produced by the
convolutional layer. The pooling process can help the system
be more potent because tiny input changes will not alter the
pooled values of the output.

B. LSTM LAYERS
LSTM neural networks [64] are a particular kind of Recur-
rent Neural Networks (RNNs), which can learn long-term

dependencies out of the use of feedback connections. Classi-
cal RNNs seek to find a solution for feedforward NNs, called
‘‘lack of memory,’’ which is accountable for showing a low
level of performance on sequences and time-series datasets.
These models use periodic interrelatedness on their hidden
layer to get short-term memory and capture information from
sequences and time-series datasets. However, RNNs suffer
from the common vanishing gradient problem that shack-
les the model for learning long-range dependencies. LSTM
addresses this problem by stowing practical information on
memory cells and fading away needless information, thus
realizing, generally, a better overall performance than a tradi-
tional RNN.

Each LSTM consists of a memory cell in addition to three
main gates: i-input, f-reset (forget), g-cell candidate, and
o-output. Through this architecture, the LSTM was able to
generate a controlled information flow by defining which
information should be ‘‘forgotten’’ and which should be
‘‘remembered,’’ thus managing the learning of long-term
dependencies. In further detail, the input gate, it , alongside
the second gate gt , manages the new extracted information
that is cached into the memory state gt at time t . The for-
get gate, or called ft , controls the previous information that
should either disappear or should be preserved in the memory
cell at time t−1. The output gate ot manages the information
that could be used for the memory cell’s output. In summary,
Equations 9 - 13 briefly characterize the operations imple-
mented by the LSTM unit.
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Weights W , the recurrent weights R, and biases b can be
described by Formula 8.

W =


Wi
Wf
Wg
Wo

 , R =


Ri
Rf
Rg
Ro

 , b =


bi
bf
bg
bo

 (8)

where i, f , o, and g denote the input, forget, output gates, and
cell candidate, respectively.

it = σ (Wixt + Riht−1 + bi), (9)

ft = σ (Wf xt + Rf ht−1 + bf ), (10)

ot = σ (Woxt + Roht−1 + bo), (11)

gt = tanh(Wgxt + Rght−1 + bg), (12)

ct = gt � ct−1 + it � gt , (13)

where � stands for component-wise multiplication operator,
xt stands for the input gate, and σ is a sigmoid function, which
can be expressed by σ (x) = (1 + e−x)−1. The ht represents
the hidden state that comprises the memory cell’s output that
can be computed by:

ht = ot � tanh(ct ) (14)

Note that if multiple LSTM layers are stacked together,
the hidden state, called ht , and the memory state, called ct ,
of each LSTM layer is forwarded as inputs following the
LSTM layer.

C. ECT-LSTM-RNN MODEL
The LSTM most works with time sequences, however
LSTMs are just a part of the deep architecture, whose top
layer can do anything, including simply compute a nonlinear
function of its features, whose squared error is minimized
vs a continuous target variable. LSTMs do not always need
to predict the next step in a sequence, instead we can feed
whatever output we expect. In the implementation developed
in this work, the proposed ECT-LSTM-RNNmodel consisted
of 2 convolutional layers of 64 and 128 filters, respectively,
where each layer’s size is 2. These layers are then followed
in sequence by a max-pooling layer with a maximum 2,
an LSTM layer, a dense layer containing 32 neurons, and an
output layer consisting of a single neuron. Fig. 7 presents the
architecture of the proposed ECT-LSTM-RNN model.

V. EXPERIMENT SETUP AND RESULTS
A. ECT-LSTM-RNNs SOLVER FOR THE
FORWARD PROBLEM
In this work, a deep learning solution to the forward problem
is presented. Deep knowledge of the ECT system, as well
as the LFC process, is crucial. In the ECT system, the for-
ward problem solution computes the capacitance data, Cuv,
between electrodes u and v for certain material’s distribution,
ε(x, y).

The capacitance is calculated for each pixel between all
the electrodes after filling that pixel by metal and keeping the
rest empty. The filled pixels are represented by one, while the

empty are zeros. The produced normalized capacitance are
saved in the sensitivity matrix (S). The capacitance can be
linearized, where the metal distribution domain is split into
k × k pixels, as presented in Eq. 15.

C =
k∑

u=1

k∑
v=1

SuvGuv. (15)

In Equation 15, it is presumed that the distribution of
the electric field does not alter the various material distri-
bution function, where the pixels linearly influence capaci-
tance measurements. The linearized solution of the Eq. 15 is
reached by a linear superposition of the varied elements of
the S weighted by G.

Firstly, ANSYS Finite Element (FE) software is applied to
build the ECT forward model. This model takes predefined
metal distribution as input and calculates its corresponding
capacitance measurements as output [43].

B. DATA SETS GENERATION
In the LFC process, the molten metal decomposes a foam
pattern and produces the final cast. The position of the metal
during the casting simulates the training data generation.
There are three physical mechanisms of the foam decom-
position which differ based on different factors. Two main
factors are the foam beads type and the gate’s location where
the metal enters the pattern [69]. There are three modes of
the foam decomposition, Contact, Gap, and Collapsed [41].
We have used these modes to simulate the metal’s charac-
teristics during the casting process, and created the required
training and testing date sets.

1) Contact mode (Fig. 8(a)), the molten metal gradually
flows and pushes against the foam,

2) Gap mode (Fig. 8(b)), polymer vapor causes an air gap
between the metal and the foam,

3) Collapse mode (Fig. 8(c)), the liquid metal takes ran-
dom directions, like fingers, because of the foam join-
ing inter-bead.

Imaging conductive materials using ECT technique
entirely differs than the typical ECT for non-conductivemate-
rials. The grounded metal decomposes the foam and works as
a shield between the transmitters and receivers. In the three
decomposition modes, there is no such effect on the mea-
surements by dielectric constant of the decomposed foam.
We have built an FEM model to simulate the movement of
the grounded metal and the decomposition modes. Typically,
the capacitance measurements are computed and normalized
as given in Eq.16.

CN =
CE
i − Ci

CE
i − C

M
i

(16)

where CE
i and CM

i are measurements when the imaging
area is empty and filled by the metal, respectively, Ci is the
measurement vector corresponding to a known metal distri-
bution. Fig. 9 illustrates the contact decomposition mode, and
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FIGURE 8. Different types of foam decomposition.

FIGURE 9. Metal distributions simulating the contact mode.

FIGURE 10. Normalized capacitance measurements of (a) Second metal
distribution (b) Last metal distribution in Fig. 9.

normalized measurements of the second and last distributions
are shown in Fig. 10.
The ANSYS mimics cylindrical vessel contains a metal

cub surrounded by a dialectical material (sand). The ves-
sel is surrounded by twelve plates, measuring 66 readings,
as shown in Fig. 5a. The simulation models different posi-
tions and sizes of the metal cube. The cross-sectional image
appears as a metal square. The data consists of 996 examples,
with 784 for training and 212 for evaluation according to the

original experiment [23], unlike other datasets that contain
millions of images such as image net. The data set contains
only hundreds of examples, but it is sufficient enough to
conduct the experiment where the problem at hand is much
more constrained, it has specific physical laws, and it has
much less variability than, for example, image recognition.

C. VALIDATION CRITERION
A nominal validation criterion is presented to estimate the
distribution of metal fill in Eq. 17.

IE =
||G− Ĝ||
||G||

(17)

where IE refers to an image normalized error, Ĝ represents
the predicted grounded metal distribution from the image
reconstruction process based DL models, and G represents
the original grounded metal distribution.

D. RESULTS OF THE FORWARD PROBLEM
Figs. 11 and 12 show respectively the training and prediction
capacitance measurement results with the ECT-LSTM-RNN
in the forward problem for a metal filling distribution of an
LFC process using 66 measurements. It is observed from
Figs. 11 and 12 that there is a high degree of response for
the ECT-LSTM-RNN for a metal filling distribution of an
LFC process. The convergence curve, of the performance of
the proposed model, for the forward problem in the ECT
problem for a metal filling distribution of an LFC process,
are presented for up to 1800 iterations in Fig. 13. The conver-
gence curve shows that ECT-LSTM-RNN provides a stable
estimate of the 66 measurements. The normalized errors in
both training and testing cases of ECT-LSTM-RNN forward
problem solver are drawn in Fig. 14 and Fig. 15, respectively.

Figs. 14 and 15 are considered to assess the efficiency
of LSTM-RNN by showing the normalized errors for the
66 measurements of metal filling distribution. The converged
train and test normalized errors in the forward problem are
respectively reported as 0.0380 and 0.0571. These low error
rates support that the approach of ECT-LSTM-RNN for metal
filling distribution achieved small error rates. Table 1 shows
the normalized error for the three different foam decomposi-
tion modes of the testing patterns. The normalized error for
the collapsed mode is higher than the other two modes.
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FIGURE 11. Forward Problem: Original and Predicted Capacitance
Measurements in Training Case.

FIGURE 12. Forward Problem: Original and Predicted Capacitance
Measurements in Testing Case.

TABLE 1. Normalized error of testing patterns for forward problem.

E. ECT-LSTM-RNNs SOLVER FOR THE INVERSE PROBLEM
The inverse problem is defined as the process of locating an
inverse relationship, in which the capacitance data is used
to compute the distribution of the material, and as a con-
sequence, a visual image is generated by a reconstruction
method. Equation 18 is given to represent such an inverse
relationship.

G(x, y) = F−1(C12, . . . ,Cuv, . . . ,CK−1,K ) (18)

F. EXPERIMENTAL SETUP
Real experiments of the LFC requires working in a very harsh
environment inside a foundry with very hot molten metal.

FIGURE 13. Forward Problem: Training Convergence Curves.

FIGURE 14. Forward Problem: Normalized Error in training cases.

FIGURE 15. Forward Problem: Normalized Error in testing cases.

Earlier, we developed the real foundry environment and pub-
lished our results in [50], [51]. For testing purposes, an ECT
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FIGURE 16. Images of the actual ECT model show the wireless sensors in
(a) and the distribution of the sensors around 4 pieces of metal in (b).

FIGURE 17. Inverse Problem: Original and Predicted Images in Training
Case.

tomography system was developed for simulating the casting
process in the lab. Fig. 16a shows the ECT system consisting
of a cylindrical tube (flask) with 12 electrodes mounted on
its circumference. There are four metal pieces placed in the
four corners of the imaging area, where the foam pattern
should exist. The capacitance are measured between these
electrodes in a sequence by connecting one electrode in a time
to the source signal and the others to the earth. Fig. 16b illus-
trates the electronic measuring circuits connected to Motes
wireless transmitters which send the measured data to a base
station where the proposed image reconstruction algorithm is
implemented.

The measuring circuits are controlled by a LabVIEW pro-
gram implemented on the base station. The program collects
the measurements, and processes it to be appropriate for the
reconstruction algorithm. The distance between the metal and
the sensors changes the range of capacitance measurements.
For instance, the normalized capacitance values from one
sensor will be very high when the metal is placed very close
to it. Meanwhile, the readings from the adjacent sensors will
be almost half, and the others from far sensors will be small.

Figs. 17 and 18 illustrate the potential capability of the
ECT-LSTM-RNN in the inverse problem in training and test-
ing, respectively for a metal filling distributions. One piece
of metal represents either Contact or Gap modes where there
is a continuity of the metal’s flow, and two pieces or more
characterizes the Collapsed mode where the metal scattered
in the filling area.

The performance of the proposed system for the inverse
problem for a metal filling distribution of an LFC process
problem is shown, for up to 1800 epochs, in Fig. 19.

FIGURE 18. Inverse Problem: Original and Predicted Images in Testing
Case.

FIGURE 19. Inverse Problem: Training Convergence Curve.

FIGURE 20. Inverse Problem: Normalized Error in training cases.

In Fig. 19, the search based ECT-LSTM-RNN in the inverse
problem converges rapidly and reliably. The normalized
errors in both training and testing phases in the inverse prob-
lem metal filling distribution are shown in Figs. 20 and 21.

The train and test normalized errors in the ECT prob-
lem’s inverse problem are reported as 0.025 and 0.0929,
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FIGURE 21. Inverse Problem: Normalized Error in testing cases.

TABLE 2. Normalized error of testing patterns for inverse problem.

respectively. These lowest normalized error rates illustrate
that the ECT-LSTM-RNN achieved a high-performance level
for a metal filling distribution in the inverse problem. Table 2
shows the normalized error for the three different foam
decomposition modes. The normalized error for the collapsed
mode is higher than the other two modes.

G. COMPARISON WITH REGULAR IMAGE
RECONSTRUCTION ALGORITHMS
A comparison between the proposed ECT-LSTM-RNN algo-
rithm and other well defined ECT image reconstruction
algorithms is carried out to compare the performance and the
quality of the reconstructed images. A variety of distribution
patterns were set up to test the generalization ability of the
proposed model. The results are shown in Fig. 22, where the
first column represents the distribution of the real material,
and the rest columns containing the reconstructed images
from the LBP, iterative Tikhonov, and ECT-LSTM-RNN
algorithms, respectively. The Tikhonov iteration number is
1000 iterations. The results of the ECT-LSTM-RNN algo-
rithm have high quality and accuracy with sharp objects’
boundaries compared with the reconstructed images from the
LBP, and iterative Tikhonov algorithms. Visually, it is clear
from the results in Fig. 22 that the object edges are clear since
there is no transition zone between the reconstructed objects
by the proposed algorithm compared with the other algo-
rithms. Also, the results of the IE measure stated in Table 3
prove that the performance of the ECT-LSTM-RNN algo-
rithm is better than other reconstruction algorithms.

Typically, imaging speed is a vital evaluation measure for
reconstruction algorithms. For the experimental capacitance

TABLE 3. Results of the IE of different ECT image reconstruction
algorithms.

TABLE 4. Reconstruction time in sec.

data, the imaging costs of different algorithms are stated
in Table 4. The calculations are carried out using a PC with
an i9 CPU (3.6 GHz) and 32 GB memory. The imaging cost
of our method is 0.152 seconds, which is much smaller than
6.53 seconds with iterative Tikhonov method. Our method is
faster and construct more accurate images compared to the
other iterative methods. Although the LBP is faster than our
proposed method, the image qualities are much lower than
our method.

H. RESULTS OF NOISY DATA
The robustness and generalization of the proposed
ECT-LSTM-RNN inverse solver is tested by using artificial
noisy data during the training and testing phases. The dataset
is randomly divided into a training set with ratio 70% and the
rest 30% as testing set. Afterwards, artificial Gaussian noise
with Signal to Noise Ratio (SNR) equals 30dB is added to
the capacitance input vectors of training and testing datasets.
The ECT-LSTM-RNN inverse solver is separately trained
and tested with original noise-free and noisy training and
testing dataset, respectively. Table 5 shows the comparing
results of the minimum, maximum and average of normal-
ized image error for different types of data. The statistics
values in Table 5 show that the trained ECT-LSTM-RNN
model with noise-free training dataset performs with better
average normalized image error on the noise-free testing
dataset compared with the other testing data with noise. In the
meantime, the performance measures of the trained network
with noisy data are little bit worse than those of training
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FIGURE 22. Reconstructed images of different commonly used image
reconstruction algorithms.

data without noise, but still substantial. Statistics in Table 5
show that image reconstruction results are not much different
indeed, and results of training and testing data with noise may
not be worse than that of training and testing data without

TABLE 5. Results of noise-free and noisy training and testing data.

noise in terms of certain specific image reconstruction
examples.

VI. CONCLUSION
Electrical Capacitance Tomography (ECT) is a flexible and
low-cost method as well that could be adapted simply too
old/new systems such as oil or gas pipelines. However, poor
image quality limited their usage. This paper investigates a
deep neural network model; herein we used the Long Short-
Term Memory Recurrent Neural Network (LSTM-RNN)
models to solve the main forward and inverse problems
for ECT technology in the lost foam casting process. The
proposed two models have achieved high accuracy results.
It is well known that neural nets impute data/information but
training crucial to obtain accurate results. It is challenging
to interpret how a neural network employs all the imputed
information, but the physical nature of the problem makes
it much more possible to deduce an accurate mapping that
converts surface measures into vessel internal image.
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