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ABSTRACT Accurate fast hand detection and gesture recognition for hand understanding are still chal-
lenging tasks that are influenced by the diversity of hands and the complexity of the scene in color images.
To address the above problem, we propose a novel SqueezeNet and fusion network-based fully convolutional
network (SF-FCNet) to accurately and quickly perform hand detection and gesture recognition in color
images. First, we introduce the first 17-layer structure in the lightweight SqueezeNet as the hand feature
extraction network to accelerate the detection and recognition speed by greatly compressing the network
parameters. Second, a precise hand prediction fusion network is designed by adding a residual structure
to the deconvolutional network to integrate high- and low-level features of hands, and hand detection and
gesture recognition are performed on a single convolutional layer at multiple scales to improve the precision
and reduce the computational costs. The verification results on the Oxford hand dataset show that SF-FCNet
can reach a precision of 84.1% and a speed of 32 FPS. The experimental results show that SF-FCNet can
substantially enhance the precision and speed of hand detection and gesture recognition on three benchmark
datasets and has a strong generalization ability on a homemade test set.

INDEX TERMS Convolutional neural network, deep learning, gesture recognition, hand detection,
SqueezeNet.

I. INTRODUCTION
Human hand detection and recognition are regarded as a
way for computers to understand human language, enabling
people to communicate with machines and interact nat-
urally without any mechanical equipment. Human hands
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and gestures have applications in many computer fields,
such as human-computer interaction (HCI) [1], rehabilitation
medicine [2], anomaly detection [3], sign language recog-
nition [4], gesture interaction [5], virtual reality [6], etc.
Hand detection is a problem that detects the locations of
all hands in an image. Gesture recognition is used to detect
both the location and category of the gesture in an image.
Hand as a special communication tool makes us have higher
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requirements for the accuracy and speed of hand detection
and gesture recognition. In recent years, the development
of deep learning has greatly improved hand detection and
gesture recognition technology. However, how to continue
to improve the accuracy and detection speed is still a major
challenge due to the diversity of hands and the clutter of
scenes.

Hand detection and gesture recognition are divided into
conventional methods and deep learning-based methods.
In some conventional methods [7]–[9], artificial features
such as skin color and image shape are extracted, and
then the hands and gestures are detected and recognized
through modeling and a support vector machines (SVMs)
classifier. However, these methods usually have great limi-
tations due to the complexity of the hand, the challenge of
modeling, and the inability to perform end-to-end training.
Compared with conventional methods, deep learning-based
methods have stronger feature expression capabilities due
to the automatic extraction of more abstract features
using a series of deep convolutional neural networks
(CNNs), and the end-to-end training method of deep learn-
ing reduces the hand detection and gesture recognition
costs. Therefore, the domain of hand detection and ges-
ture recognition has recently been dominated by deep
learning.

Encouraged through the use of deep learning net-
works [10]–[15] for classification and object detection, many
methods have been applied for hand detection and gesture
recognition, such as region-based CNNs (R-CNNs) [12],
Faster R-CNNs [13], Mask R-CNNs [14], and the RefineDet-
based method [15]. However, because the detection of hands
and gestures belongs to fine-grained detection and hands are
small, the accuracy of these object detection networks is
not very high. Subsequently, some other methods, such as
the multiple scale region-based fully convolutional network
(MS-RFCN) [16], region proposal networks (RPN) [17],
hand-CNN [18] and without generative adversarial network
(GAN) [19], were proposed. Thesemethods improve the hand
detection accuracy by improving the RPN, region-based fully
convolutional network (R-FCN) [20], Faster R-CNN [13]
and Mask R-CNN [14]. There are some approaches, such as
RetinaNet based [21] and ResNet50+highlight feature fusion
(HFF)+Auxiliary [22], that use ResNet50 [23] as the back-
bone combined with other networks for detection and recog-
nition. In [24] and [25], basic convolutional pooling layers
were used to construct new detection and recognition models
to improve the gesture recognition accuracy via end-to-end
training on datasets. In [26], a first-person perspective dataset
and a CNN-based method, which can distinguish between
one’s own hands and the hands of others, were proposed.
However, these methods still have the following problems.
First, little research has been conducted on the detection and
recognition speeds of most of these methods, or the speed
is slow. Second, the accuracy of most methods has yet to be
improved due to the complexity and variability of hands and
highocclusion.

To address the above problems, in this study, we investi-
gated hand detection and gesture recognition on the Oxford
hand dataset [7], EgoHands dataset [26], and National Uni-
versity of Singapore (NUS) hand posture dataset [8] and
proposed a new method named the SqueezeNet and fusion
network-based fully convolutional network (SF-FCNet) to
accurately and quickly perform hand detection and gesture
recognition on images. The main contributions of this study
are as follows:

• We propose a fully convolutional network for hand
detection and gesture recognition in complex and uncon-
strained environments and reduced the computational
costs.

• We construct a SqueezeNet hand feature extraction net-
work using a lightweight SqueezeNet to reduce the
weight parameters, simplify the network structure, and
improve the hand detection and gesture recognition
speed.

• We design a precise hand prediction fusion network that
fuses a deconvolution network and residual structure and
includes multiscale feature processing to improve the
hand detection and gesture recognition accuracy.

• We show the experimental data and visualization results
of SF-FCNet in terms of hand detection and gesture
recognition on public datasets and the in-house-built test
set.

The remainder of this paper is structured as follows.
Section II reviews the related work. The proposed method
is presented in Section III, and the experimental results
are shown in Section IV. Finally, we draw conclusions in
Section V.

II. RELATED WORK
According to the feature extraction method, hand detection
and gesture recognition methods are divided into conven-
tional methods and deep learning-based methods. In this
section, we review the related work on using traditional meth-
ods and deep learning-based methods to solve two problems.

A. HAND DETECTION
In the early stages of hand detection research, some con-
ventional hand detection methods were proposed to detect
hands by manually extracting features. Utsumi et al. [27]
constructed a hand tracking system that recognizes and tracks
the appearance of hands with multiple cameras using a geo-
metrical structure-based hand statistical detection method.
Xu et al. [28] proposed a dynamic hand detection algorithm,
which used self-organizing map to realize hand detection and
segmentation on the HSV color space. Some workers have
proposed skin color-based methods [29]–[31], which can first
directly perform hand detection based on skin color or extract
the hand according to skin color and then realize noncontact
human-computer interactions. Mittal et al. [7] used a two-
stage method to generate hand bounding boxes based on skin
color in the first stage, but the detection accuracy needs to be
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improved. Zhao et al. [32] proposed a histogram of oriented
gradient (HOG)–based hand detection method, which used
HOG features for hand detection. Guo et al. [33] combined
HOG features and SVM classifiers for hand detection. Con-
ventional hand detection methods rely on manual design to
extract features, and feature extraction is insufficient and is
easily affected by the environment.

In recent years, deep learning-based hand detection meth-
ods have begun to attract attention because they can auto-
matically extract features. Initially, some object detection
networks [12]–[14] were applied to realize hand detection,
but the accuracy needs to be improved. Then, some improved
networks were proposed. Dibia [34] proposed a single-shot
multibox detector (SSD) [35]-based real-time hand detection
method, and testing on the EgoHands dataset showed that the
method can achieve real-time hand detection. Chen et al. [36]
proposed a new deep learning framework that integrated
human hand detection and pose estimation and achieved
reliable human hand detection through shared convolutional
layers. Le et al. [37] proposed a cross-resolution feature
fusion method, which used two modules to obtain context
and semantic information to achieve fast hand detection.
Wang and Ye [38] proposed a multiscale Faster R-CNN
method, which uses the Faster R-CNN [13] as the basic
architecture and combines multiscale integrated features to
achieve hand detection. Gao et al. [39] proposed a deep CNN
model for hand detection, which improved the SSD [35]
by combining deep and shallow networks to achieve spa-
tial human-computer interaction. Deep learning-based hand
detection methods have better robustness because they can
dig deeply into image features, and the learning features are
not restricted by the environment.

B. GESTURE RECOGNITION
In the early days, gesture recognition was achieved by wear-
ing sensor gloves or making hand tags. Davis and Shah [40]
used hand tags to capture the location and angle information
of the hand joints of users to realize gesture recognition.
Due to the poor flexibility of sensor gloves and tags, ges-
ture recognition methods for designing artificial hand fea-
tures have been studied. Van der Bergh et al. [41] proposed
an average neighborhood margin maximization (ANMM)-
based detection system, which used Haarlet coefficients to
calculate the degree of matching between hand and sample
datasets. Pisharady et al. [8] used image shape, texture, and
color descriptors to recognize gestures through SVM and
obtained high accuracy. Dardas and Georganas [42] proposed
a real-time recognition system, which detects and tracks the
hand region by subtracting the face color from the skin
color and then uses a multiclass SVM to recognize gestures.
Yeo et al. [43] proposed a method that combined skin color
segmentation with Haarlike features, which can effectively
remove the interference of the skin color of other parts of the
body to improve the accuracy. Ikegami et al. [9] proposed a
human-computer interaction system that extracts the user’s
skin color component through face detection and performs

gesture detection according to the skin color, which has good
robustness.

Currently, deep learning-based gesture recognition meth-
ods are widely used. In [24] and [25], CNN-based methods
were proposed, and the basic CNN architecture was used
to construct deep learning networks for gesture recognition,
which can achieve good recognition accuracy.Wan et al. [44]
proposed a GAN-based model for the augmentation of
hand datasets to improve the gesture recognition accuracy.
Chevtchenko et al. [45] proposed a feature fusion-based
convolutional neural network that combined a CNN with a
traditional method and used depth cameras to perform gesture
recognition. Si et al. [46] proposed a model for detecting
raised hands that combines the R-FCN [20] with a feature
pyramid and uses an adaptive template selection algorithm
to detect raised hands in the in-house-built raised hands
dataset. Rouast and Adam [47] proposed a video-based ges-
ture recognitionmethod that used a deep learning architecture
to detect video-based gestures and collected a large amount of
video data of dining occasions. Neethu et al. [48] proposed a
CNN-based classification method that used region segmenta-
tion, finger segmentation and image normalization to process
gestures and finally detected and recognized gestures using
the CNN classifier.

In this paper, we mainly study deep learning-based hand
detection and gesture recognition methods and propose a
SqueezeNet and fusion network-based fully convolutional
network, which combines a deconvolution network, a residual
structure and multiscale feature processing.

III. METHODOLOGY
The architecture of the proposed network, including a
SqueezeNet hand feature extraction network and a precise
hand prediction fusion network, is shown in Fig. 1. The
input image is first processed by a SqueezeNet hand feature
extraction network to produce a map with rich hand features.
Then, the feature map with gradually decreasing resolution is
obtained by the precise hand prediction fusion network, and
the feature map is expanded by the convolutional layer com-
posed of the deconvolution layer and the residual structure.
Finally, hand detection and gesture recognition are performed
by fusing multiple feature maps on a single convolutional
layer. In this section, we introduce two parts of the network:
the loss function and the training algorithm of the proposed
network.

A. SQUEEZENET HAND FEATURE EXTRACTION NETWORK
To achieve both precision and speed in hand detection and
gesture recognition, the choice of the initial feature extraction
layer is critical, and it usually involves a trade-off between
speed and precision. SqueezeNet was designed to reduce
the number of model parameters and the model size by
Iandola et al. [49]. SqueezeNet can ensure recognition pre-
cision while compressing the parameters to approximately
1/50 of AlexNet [50], making the model size only 4.8 MB.
SqueezeNet utilizes the strategy of convolutional separation
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FIGURE 1. Illustration of the proposed network (SF-FCNet) architecture.

FIGURE 2. Illustration of the 3 × 3 convolution expanded to a fire module in SqueezeNet.

to convert the standard 3 × 3 convolution into a fire mod-
ule by replacing part of the 3 × 3 convolution kernel with
a 1 × 1 convolution kernel, as shown in Fig. 2. The fire
module includes a squeeze layer and an expand layer, and
eachmodule includes a rectified linear unit (ReLU) activation
function to improve the network depth. The squeeze layer
contains 1 × 1 convolution kernels, and the expand layer
contains 1 × 1 and 3 × 3 convolution kernels. The 1 × 1
convolution kernel can reduce the weight parameters, and the
3 × 3 convolution kernel can ensure the network precision.
Because SqueezeNet has the advantages of being a small
model and high precision, it is selected as the hand feature
extraction network to shorten the feature extraction time and
speed up detection and recognition.

To make the network have a certain depth, we deleted the
last convolution and average pooling layers of SqueezeNet
and retained the first 17 layers as the SqueezeNet hand feature
extraction network, as shown in Fig. 1. The input image
first passes through ‘‘Conv1’’ and ‘‘Max1’’, then passes
through ‘‘Fire2-Fire4’’ and ‘‘Max4’’, then passes through

‘‘Fire5-Fire8’’ and ‘‘Max8’’, and finally passes through
‘‘Fire9’’. The hand feature map of the image is extracted
through a series of convolutions.

The structure and parameter settings of each layer of
the SqueezeNet hand feature extraction network, including
1 convolutional layer, 8 firemodules and 3max pooling layers
with a stride of 2, are shown in Table 1. In the SqueezeNet
hand feature extraction network, each fire module has the
same structure, including a squeeze layer and an expand
layer; and the network depth is 2. On the expand layer, the
feature maps of the 1 × 1 and 3 × 3 convolutional outputs
are spliced together in the channel as the channel of this fire
module. The number of convolution kernels in the squeeze
layer and expand layer satisfy the following equation:

X < Y1 + Y2 (1)

where X is the number of 1 × 1 convolution kernels in
the squeeze layer; and Y1 and Y2 are the number of 1 × 1
convolution kernels and the number of 3 × 3 convolution
kernels in the expand layer, respectively.
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TABLE 1. The architecture parameters of the SqueezeNet hand feature
extraction network.

The input size of the SqueezeNet hand feature extraction
network is set to 300×300×3, and the size of the featuremaps
is reduced to half of the original size by a 3× 3 max pooling
layer with a stride of 2. Finally, the 19×19×512 hand feature
mapwas obtained through ‘‘Fire9’’. In [35], it was proven that
a feature map with a large size is beneficial for the detection
of small objects while a feature map with a small size is
beneficial for the detection of large objects. To enhance the
detection of large and small hands, we pass the 19×19×512
feature map through a 3 × 3 convolutional layer with 1024
channels and a step size of 2 to obtain a 10×10×1024 feature
map as the input of the precise hand e prediction fusion net-
work to ensure that the size of the subsequent feature map is
appropriate.

Table 1 shows that the number of 1 × 1 convolution
kernels in the fire module is greater than the number of
3 × 3 convolution kernels. The 1 × 1 convolution kernel
can reduce the network dimension with less information loss.
Therefore, the SqueezeNet hand feature extraction network
can keepmore hand information and improve the hand feature
extraction speed.

The superior performance of the SqueezeNet hand
feature extraction network will be demonstrated in the
experiment. It is this fast performance that allows
our architecture to be well used for hand detection
and gesture recognition that require higher real-time
performance.

FIGURE 3. The fusion fashion of the deconvolution layer and the residual
structure.

B. PRECISE HAND PREDICTION FUSION NETWORK
Inspired by [51], a precise hand prediction fusion network
was constructed, as shown in Fig. 1, to supplement the lack of
contextual information in the convolution process and obtain
better detection performance.

The precise hand prediction fusion network is constructed
using deconvolution and combines a residual structure and
multiscale detection, as shown in Fig. 1. First, the output
of the SqueezeNet hand feature extraction network is used
as the input of the fusion network to produce a series of
feature maps (‘‘Conv10’’, ‘‘Conv11’’, and ‘‘Conv12’’) with
a gradually decreasing resolution via multiple convolutional
layers. Second, the high- and low-level features of hands
are fused to obtain feature maps (‘‘Conv14’’ and ‘‘Conv16’’)
with a gradually increasing resolution via the combination of
deconvolution layers and residual structures. Finally, three
feature maps (‘‘Conv12’’, ‘‘Conv14’’, and ‘‘Conv16’’) are
provided to the detection and classification layer via multi-
scale detection for the detection and classification of hands.

In the precise hand prediction fusion network, ‘‘Conv11’’
is obtained through a set of 1× 1 convolution kernels with a
step size of 1 and 3 × 3 convolution kernels with a step size
of 2, and ‘‘Conv12’’ is obtained through a set of 1 × 1 and
3 × 3 convolution kernels with a step size of 1. The residual
structure contains a set of 1× 1, 3× 3, and 1× 1 convolution
kernels. The fusion method of the deconvolution layer and
the residual structure is shown in Fig. 3. First, the ‘‘Conv12’’
input feature maps of the residual structure are upsampled
to the size of ‘‘Conv11’’ via bilinear interpolation and then
combined with ‘‘Conv11’’ and passed through the ‘‘Res13’’
residual structure. The final output feature map ‘‘Conv14’’
is the sum of the output of the residual structure and the
upsampling of ‘‘Conv12’’. Similarly, ‘‘Conv16’’ is obtained
through the fusion of ‘‘Conv14’’ and ‘‘Res15’’. This fusion
method utilizes the feature map with rich information in the
early stage to supplement the detailed information that is
gradually missing due to the deep convolution, which ensures
that the feature map has a larger receptive field, ensures the
integrity of the context information, and effectively reduces
the missed detection.

Since hand detection and classification are realized
through convolutional layers, the entire network is a fully
convolutional network, and most of the weights are shared.
The final hand detection and classification layers are
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converted from the fully connected layer passing through
several convolution kernels with the same size as the feature
map. The three feature maps (‘‘Conv12’’, ‘‘Conv14’’, and
‘‘Conv16’’) obtained by the fusion network are provided
to the final classification layer, and the NMS algorithm is
applied to the feature maps to determine the final detection
bounding box of the hand.

The precise hand prediction fusion network usesmultiscale
prediction and adds residual structures to deconvolution lay-
ers to improve the hand detection and gesture recognition
accuracy. Multiscale prediction performs the detection and
classification of hands according to different sizes of hands to
improve the detection accuracy. The contextual information is
integrated by fusing residual structures to deconvolution lay-
ers, which can increase the detailed information of the hand
and simplify the learning process. In addition, the location
and classification of hands is performed by the convolutional
layers. This fully convolutional network can not only better
identify and detect both large and small hands but can also
reduce repeated calculations and model complexity.

Compared with object detection, the object of hand is
relatively small. Our network integrates high- and low-
level features of the large and small feature maps by the
residual structure, and utilizes multiscale feature maps with
10× 10, 5× 5 and 3× 3 to predict different sizes of hands,
which improves the utilization of feature mapping with large
size. The feature maps with large size are more conducive to
the detection of small object [35]. Therefore, our architecture
can be well worked for hand detection and gesture recogni-
tion, thus the benefits of the precise hand prediction fusion
network will be justified in the experiment.

C. LOSS FUNCTION
The locating and classification of hands is achieved by
searching bounding boxes. According to different scales and
aspect ratios [35], a series of different-sized default bounding
boxes will be produced at each pixel position of the feature
map extracted by the precise hand prediction fusion network.
When a 3×3×s convolutional kernel is applied to the feature
map with s channels, each location of the feature map pro-
duces either an output value of category score zc or an output
value of the location offset relative to the default bounding
box. The location offset contains 4 offsets relative to the
center coordinates, width and height of the default bounding
box. For each location of the feature map, we calculate the C
category scores and 4 offsets. Assuming that each location in
the feature map produces f default bounding boxes, Cf cat-
egory scores and 4f location scores can be obtained through
(C + 4) f 3× 3× s convolutional filters. The confidence that
each default bounding box matches category c of the hand is
calculated as follows:

C(zc) =
ezc∑ezc
c

(2)

where zc is the score of the hand for category c.

For each ground truth bounding box, we select some
default bounding boxes for matching and use the selected
boxes for network training. The intersection over union (IoU)
is a metric for evaluating whether the default bounding box
and ground truth bounding box match, and its formula is as
follows:

IoU =
Apre

⋂
Agt

Apre
⋃
Agt

(3)

where Apre is the area of the default bounding box of the
hand, and Agt is the area of the hand ground truth bounding
box of the hand. If IoU is higher than a certain threshold,
the default bounding box matches the ground truth bounding
box of the hand, and the default bounding box is classified as
a positive sample; otherwise, it is a negative sample. Hard-
negative mining is used to solve the imbalance between the
positive and negative samples by selecting the top-n negative
samples with the highest confidence as the negative samples
for training and ensuring that the ratio of positive and negative
samples is approximately 1:3.

The overall hand detection loss function is the average of
the hand confidence loss (handconf) and the hand localization
loss (handloc), which is shown as follows:

Losshand =
1
N

(
Losshandcoff + Losshandloc

)
(4)

where N is the number of default bounding boxes matching
ground truth bounding boxes. If N = 0, the loss function
is 0. The hand confidence loss is calculated for positive and
negative samples as follows:

Losshandcoff = −

 N∑
i∈ps

xci,jlog
(
C
(
zci
))
+

N∑
i∈ng

log
(
C
(
z0i
))
(5)

where xci,j=1 represents that the ith default bounding box
matches the jth ground truth bounding box of the hand for
category c; otherwise, x

c
i,j=0. c = 0 represents that the cat-

egory is background. ps is a positive sample, and ng is a
negative sample. C

c
i denotes the confidence that the ith default

bounding box is category c of the hand.
The hand localization loss is calculated in positive samples

as follows:

Losshandloc =
N∑
i∈ps

∑
k∈{x,y,w,h}

xqi,jsmoothL1
(
pki − ĝ

k
j

)
(6)

where p represents the predicted bounding box, and g repre-
sents the ground truth bounding box. We regress the location
offset relative to the center (x, y), width w, and height h of the
default bounding box b as follows:

ĝxj =
gxj − b

x
i

bwi
ĝyj =

gyj − b
y
i

bhi
ĝwj = log(

gwj
bwi

) ĝhj = log(
ghj
bhi

) (7)

where bi is the ith default bounding box.
In the training process of our network, the parameters of

the network model are constantly updated by minimizing the
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overall loss function to achieve better hand detection and
gesture recognition results.

D. PROPOSED HAND DETECTION AND GESTURE
RECOGNITION ALGORITHM
The details of the training processing of the proposed net-
work are described in Algorithm 1. First, the images are
input to the network in batches. Second, the default bound-
ing boxes are generated and divided into positive and neg-
ative samples. Finally, the Adam algorithm [52] is used
to optimize the loss function in the positive and negative
samples by updating the weights until the loss function
converges.

Algorithm 1 The Training Process of the Proposed Network
Input: Images.
Output:Weight parameters k of network.
Global parameters:

Ground truth bounding box g.
Number of default bounding box f.
Default bounding box b.
Positive sample ps, negative sample ng.
Weight parameters of network k.

Begin
1: Randomly load 32 images and corresponding g.
2: Produce feature maps through network.
3: Produce f default bounding boxes on the feature maps.
4: Compute whether b matches g using (3).
5: If IoU > 0.5, b is ps.
6: Otherwise, b is ng.
7: Select top-n ng, keep ps: ng = 1:3.
8: Calculate confidence loss using (2) and (5).
9: Calculate localization loss in ps using (6) and (7).

10: Calculate Losshand using (4).
11: Optimize Losshand using Adam.
12: Update k of network.
13: If convergence, exit the loop.
14: Otherwise, jump to 1.

End

The method of this paper is trained on the hand dataset
for hand detection and gesture recognition and focuses on
improving the accuracy and speed performance using a
lightweight SqueezeNet and fusion network-based fully con-
volutional network.

IV. EXPERIMENTS
We show experiments conducted on the Oxford hand
dataset [7], EgoHands dataset [26], NUS hand posture
dataset [8] and the in-house-built test set. The first part
presents the public dataset and the in-house-built test set
in detail. The second part introduces the training param-
eter settings and the metrics. The last two parts dis-
cuss the experimental results and the performance of the
network.

A. DATASETS
The Oxford hand dataset [7] is a public comprehensive
dataset that contains rich hand images from different public
image datasets collected without any restrictions. The dataset
has 13,050 hand instances with complex backgrounds. All
hands that can be clearly seen by humans are marked with
bounding rectangles. There are 4069 images for training,
813 images for testing and 444 images for validation.

The EgoHands dataset [26] includes 48 complex first-
person interactive videos, which are recorded by 4 actors
performing 4 activities in 3 real locations. The dataset has
4800 images with multiple hands and 15053 labeled hand
instances. The EgoHands dataset contains four hand cate-
gories: ‘‘own left’’, ‘‘own right’’, ‘‘other left’’, and ‘‘other
right’’. There are 3600 images for training, 795 images for
testing and 405 images for validation.

The NUS hand posture dataset [8] is shot in and near the
National University of Singapore, and the dataset contains
10 classes of gestures of different sizes and shapes with
complex backgrounds. Forty volunteers of different races
made these gestures to form 2000 different gesture images for
gesture recognition. In addition, there are 750 gesture images
with human skin color background in the dataset. In order to
increase the number of the dataset, we also added 240 images
from NUS-I [53]. There are 2990 images in total, including
15 gesture categories. There are 1575 images for training,
1184 images for testing and 231 images for validation.

In the Oxford hand dataset, only the location of the hand
that appears in the image is annotated, and the categories
of gestures are not distinguished. In the EgoHands dataset,
one’s own hand or another’s hand are also annotated except
for the location of the hand, but the gesture category is still
not labeled. In the NUS hand posture dataset, the location
and category of gestures are both annotated. The Oxford hand
dataset and EgoHands dataset are used for hand detection, and
the NUS hand posture dataset is used for gesture recognition.

Based on the requirements of the Guangxi Key Research
and Development Project and testing of the generalization
capabilities of the network, we produced two groups of
test sets in the laboratory, and some examples are shown
in Table 2. In the second group, we randomly selected
6 classes of gestures in the NUS hand posture dataset as
the gesture categories. The members of the laboratory as
volunteers showed hands and gestures without restriction and
used a high-definition (HD) camera to shoot the images.
Each group contains 72 images. The first group is used for
hand detection, and the second group is used for gesture
recognition. The hand and gesture in the in-house-built test
set are far from and near the camera. The last column of
the second group in Table 2 shows the gesture images that
are far from the camera.

B. TRAINING SETUP AND METRICS
The Adam algorithm is used to optimize the loss function
of the proposed network. The initial learning rate is set to
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TABLE 2. The different categories and some examples from the
in-house-built test set.

0.0001, the batch size is 32 images, the weight delay param-
eter is set to 0.0005, and the size of the input images is
300×300. To reduce the training time and enhance precision,
a fine-tuning strategy that loads the weights of SqueezeNet to
train other classification tasks in the network is used.

The experiment condition is the TensorFlow framework
with 32 GB memory and GTX 1080 Ti with a 3584 CUDA
core GPU. The operating system is 64-bit Ubuntu 16.04. The
metrics for evaluating hand detection and gesture recognition
are the mean average precision (mAP) and frames per second
(FPS). The mAP represents the accuracy, and the FPS is the
detection speed. The threshold of the IoU between the ground
truth bounding box and the predicted bounding box can be set
from 0.5-0.95.

C. RESULTS
1) OXFORD HAND DATASET
We conducted comparative experiments of mAP and FPS
on the Oxford hand dataset, and gave the detection results
of hands from South Asian, Africa and far away from the
camera to verify the performance of our method in hand
detection.

TABLE 3. Comparison of hand detection performance in terms of the
mean average precision (mAP) with state-of-the-art methods [15]–[18],
[21], [22], R-CNN [12], faster R-CNN [13], mask R-CNN [14] and multiple
proposals [7] On the oxford hand Dataset.

TABLE 4. Comparison of running time (s) and FPS of state-of-the-art
methods on the oxford hand Dataset and titan X GPU.

The performance of the proposed network (SF-FCNet)
is verified on the Oxford hand dataset. The comparison of
the hand detection performance in terms of the mAP and
FPS for the state-of-the-art methods [15]–[18], [21], [22],
R-CNN [12], Faster R-CNN [13], Mask R-CNN [14] and
multiple proposals [7] is shown in Table 3. Table 3 shows that
SF-FCNet trained on the Oxford hand dataset can reach an
mAP of 84.1%, which outperforms the state-of-the-art meth-
ods [15]–[18], [21], [22]. The superior performance of the
method is due to the fusion of a residual structure and a decon-
volution network, which can combine the high- and low-level
features of hands and detect hand in a multiscale fashion
to improve the detection accuracy. The results in Table 3
show the effectiveness of the precise hand prediction fusion
network in SF-FCNet in terms of its detection precision.

Tables 4 and 5 show the comparison of SF-FCNet and the
state-of-the-art methods [16], [17], [19], R-CNN [12], Faster
R-CNN [13] and multiple proposals [7] on running time and
FPS on the Oxford hand dataset. The running time is the
detection time of each image in seconds. Due to the limita-
tions of the current laboratory hardware environment, we only
have GTX 1080 Ti GPU devices. To increase the credibility
of our experiment, we use Faster-RCNN as the evaluation
medium for the detection speed between two different GPUs.

Table 4 shows the comparison of other methods on the
Titan X GPU. It can be seen from Table 4 that Faster R-CNN
has the fastest detection speed compared with the other
state-of-the-art methods on a Titan X GPU, indicating that
Faster-RCNN has the best performance. Table 5 shows the
comparison of our methods with other methods on the GTX

77668 VOLUME 9, 2021



B. Qiang et al.: SqueezeNet and Fusion Network-Based Accurate Fast Fully Convolutional Network

FIGURE 4. Hand detection results of the proposed network (SF-FCNet) for multiple hands and hands far away from the camera on the Oxford hand
dataset.

FIGURE 5. Hand detection results of the proposed network (SF-FCNet) on South Asian, African and darker skinned hands on the Oxford hand
dataset.

TABLE 5. Comparison of the running times (s) and FPS with
state-of-the-art methods [19], R-CNN [12] and faster R-CNN [13] on the
oxford hand dataset and GTX 1080 Ti GPU.

1080 Ti GPU. It can be seen from Table 5 that SF-FCNet
can achieve a detection speed of 32 FPS, which is almost
2.1 times faster than the Faster-RCNN on a GTX 1080 Ti
GPU, which indicates that our method has a fast. Combining
Tables 4 and 5 shows that SF-FCNet has the fastest detection
speed compared with the other methods. This method mainly
benefits from the reduction of the weight parameters in the
SqueezeNet hand feature extraction network, and the results
show the effectiveness of the method in improving the detec-
tion speed.

Hand detection in SF-FCNet on the Oxford hand dataset is
shown in Figs. 4 and Fig. 5. Fig. 4 shows the hand detection
results of SF-FCNet on multiple hand images and hands far
away from the camera. Fig. 5 shows the results of hand

detection on images from South Asian, Africa, and areas
with dark-skinned people. In the figures, green is the ground
truth bounding box, and yellow is the bounding box of the
hand predicted by SF-FCNet. The hand detection results in
Figs. 4 and 5 show that SF-FCNet can accurately detect the
locations of multiple hands, including hands far from the
camera and hands from South Asian, African and darker
skinned people, which shows the effectiveness of SF-FCNet.
The hand far from the camera corresponds to a smaller size in
the image, which suggest that our method has better detection
results in terms of small-sized hands.

2) EGOHANDS DATASET
We conducted comparison experiment of mAP, and drew a
test accuracy curve on the EgoHands dataset, and gave the
results of hand detection under the first-person perspective to
verify the performance of our method in hand detection.

The comparison of performance in terms of the mAP and
method [26] on the EgoHands dataset is shown in Table 6.
Table 6 shows that SF-FCNet has higher detection precision
on 4 categories of hands, including ‘‘own left’’, ‘‘own right’’,
‘‘other left’’, and ‘‘other right’’; and it can achieve 89.4%
precision on all hands, which outperforms the other methods.
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FIGURE 6. The result of hand detection of SF-FCNet under the first-person
perspective on the EgoHands dataset.

TABLE 6. Comparison with the state-of-the-art method [26] in terms of
the mAP on the EgoHands Dataset.

The SF-FCNet has a 10.8% higher mAP than [26]. The results
show that SF-FCNet has a greater advantage than other state-
of-the-art methods in terms of detection precision on the
EgoHands dataset.

The red curve in Fig. 6 shows the relationship between the
test accuracy of SF-FCNet after training on the EgoHands
dataset and steps. The total number of iterations is 45k. The
red curve in Fig. 6 shows that the test accuracy of the network
gradually converges after the number of steps reaches 10k,
which shows that SF-FCNet has a faster convergence rate.

Fig. 7 shows the result of hand detection of SF-FCNet for
hands with darker skin and hands far from the camera under
the first-person perspective on the EgoHands dataset, where
yellow represents the ground truth bounding box, orange
represents the predicted bounding box of ‘‘other right’’, cyan
represents the predicted bounding box of ‘‘other left’’, red
represents the predicted bounding box of ‘‘own left’’, and
green represents the predicted bounding box of ‘‘own right’’.
Fig. 7 contains some hands far from the camera, and the
second picture in the second row has hands with darker skin.
The detection results in Fig. 7 show that these hands have
better detection results, which indicates that SF-FCNet can
achieve accurate hand detection with darker skin and far from
the camera under the first-person perspective.

3) NUS HAND POSTURE DATASET
We conducted comparative experiments and ablation exper-
iments on the NUS hand posture dataset, and drew a test
accuracy curve, and gave the results of gesture recognition

TABLE 7. Comparison of gesture recognition performance with the
state-of-the-art methods of [24], [25] and [8] in terms of the mAP on the
NUS hand posture Dataset.

TABLE 8. mAP and FPS of SF-FCNet on the EgoHands Dataset and NUS
hand posture Dataset when the threshold of IoU is 0.5 and 0.75.

TABLE 9. The effect of multiscale features and residual structure on
performance measured on the NUS hand posture Dataset.

in a complex background to verify the performance of our
method in gesture recognition.

The comparison of SF-FCNet in terms of the mAP perfor-
mance with the state-of-the-art methods [24], [25] and [8] on
the NUS hand posture dataset is shown Table 7. Table 7 shows
that SF-FCNet can reach a mAP of 99.3%, which is higher
than those of the state-of-the-art methods [24], [25]. The
SF-FCNet attains better gesture recognition precision, which
shows the effectiveness of SF-FCNet in gesture recognition.

The blue curve in Fig. 6 shows the relationship between
the test accuracy of SF-FCNet after training on the NUS hand
posture dataset and steps. The blue curve in Fig. 6 shows that
the test accuracy of the network gradually converges after the
number of steps reaches 5k, which shows that SF-FCNet has
a faster convergence rate.

Table 8 shows the mAP and FPS of SF-FCNet on the
EgoHands dataset and NUS hand posture dataset when the
threshold of the IoU is 0.5 and 0.75. Table 8 shows that an
increase in the threshold will reduce the average precision,
while the impact on FPS is not great.

To demonstrate the effectiveness of the multiscale features
and residual structure of SF-FCNet, we establish the fol-
lowing experiment on the NUS hand posture dataset: while
keeping the original network structure unchanged, we only
use one or two of the multiscale features and residual struc-
ture or use neither. The experimental results Table 9 show
that the accuracy of SF-FCNet with multiscale features and
the residual structure is the highest, which indicates that the
multiscale and residual structure of SF-FCNet can promote
performance improvement to a certain extent.
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FIGURE 7. The test accuracy curve on the EgoHands dataset and NUS hand posture dataset.

FIGURE 8. The gesture recognition results for 10 categories of gestures with complex backgrounds on the NUS hand posture dataset.

To verify the effectiveness of the SqueezeNet hand fea-
ture extraction network, we conduct an experiment on the
NUS hand posture dataset: we replace SqueezeNet with
ResNet50 as the feature extraction network of SF-FCNet.

TABLE 10. The effect of the SqueezeNet module on performance
measured using the NUS hand posture Dataset.

The experimental results are shown in Table 10.
Table 10 shows that the accuracy of SF-FCNet with
SqueezeNet is roughly the same as that with ResNet50,
but the FPS is greatly improved compared with ResNet50.
This is mainly due to the design of the fire module in the
SqueezeNet hand feature extraction network, which retains
the depth of the network and reduces the weight parameters.
The experimental results show that the SqueezeNet hand
feature extraction network can improve the efficiency and
speed without scarifying accuracy.

Fig. 8 shows recognition results of SF-FCNet for 10 cate-
gories of gestures on the NUS hand posture dataset. In Fig. 8,
yellow is the ground truth bounding box, other colors are
the bounding boxes predicted by SF-FCNet, and a color
represents a category. The images in Fig. 8 contain complex

backgrounds such as human faces and cluttered objects. The
results show that SF-FCNet can accurately detect the location
and category of gestures for images containing a complex
background, which shows that SF-FCNet can achieve better
gesture recognition when there is interference from other skin
colors or cluttered objects.

4) IN-HOUSE-BUILT TEST SET
To evaluate the effectiveness and generalization ability of
SF-FCNet, we conducted hand detection and gesture recog-
nition tests on an in-house-built test set.

Fig. 9 shows the detection results of SF-FCNet on our
in-house-built test set. In our in-house-built test set,
the camera-hand distance range for shooting hands and ges-
tures is 0.5m-1.5m, so the range of the selected hand and
gesture is 0.5m-1.5m. The first row shows the hand detection
using SF-FCNet trained on the Oxford hand dataset. The sec-
ond row shows the gesture recognition using SF-FCNet
trained on the NUS hand posture dataset. Fig. 9 shows that
the detection results of SF-FCNet for hands and gestures with
a camera-hand distance between 0.5m-1.5m are basically
above 95%, indicating that SF-FCNet has better effectiveness
and generalization. These experiments also indicate that our
method has better detection results for small hands far away
from the camera in terms of the in-house-built test set.
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FIGURE 9. The hand detection and gesture recognition results of SF-FCNet on the homemade test set. The first row is hand detection, and
the second row is gesture recognition.

FIGURE 10. Some frames captured during real-time gesture recognition through SF-FCNet on the video.

In the Guangxi Key Research and Development Project,
SF-FCNet is used for real-time gesture recognition.
Fig. 10 shows some of the frames captured during real-time
gesture recognition by SF-FCNet on the video. The recog-
nition result on the video demonstrated the real-time perfor-
mance of SF-FCNet. All the work proves that SF-FCNet has
excellent practicability.

D. DISCUSSION
On three benchmark datasets, SF-FCNet achieves a higher
mAP than the other state-of-the-art methods. The main rea-
son is that we combine the deconvolution network and the
residual structure to increase the detailed information of hand
in the precise hand prediction fusion network of SF-FCNet
and use multiscale features to improve the accuracy on small
hands. In addition, the speed of SF-FCNet is better than those
of other state-of-the-art methods on the Oxford hand dataset.
This is mainly due to the SqueezeNet hand feature extraction
network greatly reducing the weight parameters of the entire
network via model compression.

In general, the mAP and FPS of SF-FCNet are superior
to those of other state-of-the-art methods, which show that
SF-FCNet has state-of-the-art hand detection and gesture
recognition performance. The results on the in-house-built
test set show the strong generalization ability of SF-FCNet.
The detection results of hands and gestures far away from
the camera on the four datasets reflects that our method has a

better detection effect on small object hands. In addition, from
the analysis of the experimental results of the Oxford hand
dataset and EgoHands dataset, our method is more suitable
for hand detection with a simple background.

V. CONCLUSION
In this work, we propose a new efficient network (SF-FCNet)
for hand detection and gesture recognition in images. The
SqueezeNet hand feature extraction network is built to
improve the detection speed. A deconvolution network,
a residual structure and multiscale processing are introduced
to the precise hand prediction fusion network to improve
the precision and share weights. The experimental results
show that SF-FCNet is competitive and generalizable, and
it outperforms other state-of-the-art methods on the three
benchmark datasets, which shows that SF-FCNet can achieve
accurate and fast hand detection and gesture recognition.

The successful application of SF-FCNET in actual engi-
neering shows that the method has certain validity and prac-
ticability. In addition, our work in this paper on different
datasets not only provides a new method in the field of
hand detection and gesture recognition, but also provides
new experimental data for the research in the field of detec-
tion speed. The research on the EgoHands dataset also pro-
vides a new method for research work under the first-person
perspective.
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