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ABSTRACT Point cloud processing plays an increasingly essential role in three-dimensional (3D) computer
vision target, scene parsing, environmental perception, etc. Compared with using aligned point cloud data
for classification and segmentation, the strictly rotation-invariant representations show enough robustness.
Inspired by the great success of deep learning, we propose a novel neural network called Multi-head
Attentional Point Cloud Classification and Segmentation Using Strictly Rotation-invariant Representations.
Our research focuses on processing the point cloud rotated in any direction effectively and precisely. First of
all, the strictly rotation-invariant point cloud representations are obtained through point projection. Then we
apply a multi-head attentional convolution layer (MACL) using attention coding to develop the performance
of point cloud feature extraction. Finally, our network assigns different responses and recognizes the overall
geometry well through a key point descriptor, adding to the global feature. Our method can explore more
in-depth information for accuracy enhancement with attention pooling and multi-layer perceptron (MLP)
based on an advanced DenseNet. Our network enjoys 90.63% and 87.50% classification accuracy testing on
ModelNet10 and ModelNet40, and 75.15% intersection over union metric (mIoU) evaluating on ShapeNet
Part dataset, remaining under any rotation. Rotating experimental results indicate that our framework realizes
better point cloud classification and segmentation performance than most state-of-the-art methods.

INDEX TERMS Point cloud, deep learning, strictly rotation-invariant representations, attention coding,
classification and segmentation.

I. INTRODUCTION
Point cloud processing plays an increasingly important role
in 3D object recognition technologies. Three-dimensional
data representations, like point clouds, can be received con-
veniently due to recent sensor technology development. Point
cloud has sufficient geometric information, widely applying
for numerous fields, such as robotics, remote controlling, and
self-driving.

According to the great success of deep learning and con-
volutional neural networks (CNN) [1] in the research of
computer vision and graphics with their powerful data pro-
cessing capabilities. AlexNet [1] first applied CNN in the
field of image classification successfully, proving the great
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potential of CNN in the large-scale data processing. Part
of the research has designed residual blocks [2] and dense
blocks [3] to optimize the CNN and improve its data process-
ing capabilities. For further study and application, researchers
contributed to the analysis of neural networks in various
ways. For example, Wang et al. [4] utilized graph theory and
event-triggered control mechanism and analyzed multiple
memristive neural networks (MMNNs), useful for nonlinear
systems. A neural network is considered as a typical nonlinear
system [5]. As shown in [6], some numerical examples were
introduced, then two methods of continuous sampling and
discrete sampling were adopted for analysis. They are the
mathematical methods to explore neural networkmodels with
more complete functions and superior performance theoret-
ically. A norm-based threshold function and signal func-
tion controller were proposed for parameter mismatch and
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theoretical error in nonlinear systems in [7]. Furthermore,
deep learning-based models performed unexpectedly in var-
ious computer vision tasks, such as hyperspectral image [8],
[9] and space remote sensing data processing [10].

More researchers applied and analyzed the neural net-
works for 3D data processing, As for point cloud preprocess-
ing, the irregular format is a dominant problem. Generally,
raw point cloud data is transferred to other regular collec-
tions for classification, segmentation, and other tasks. As
Qi et al. [11] firstly proposed a deep learning framework
called PointNet to consume raw point clouds directly, without
any transformation, more researchers have explored remark-
able achievements, such as DGCNN [12], KPConv [13],
Point2sequence [14], and PointConv [15]. Whereas, they can
only address the original point cloud coordinates straight-
way from specific normative directions. When we make
some rotation transformation to point clouds, the recognition
performance will be sharply decreased. From the aspect of
practical applications, intelligent robots [16] and self-driving
cars [17] need to recognize general three-dimensional objects
with arbitrary rotation accurately. Eliminating the interfer-
ence of rotation transformation is an essential guarantee for
their reliability.

To enhance the robustness of point cloud rotation, partial
works [18], [19] [20] applied spherical voxel convolution
(SVC) [21] to address point clouds. The discretized sphere
had global directions, which could not promise extreme
symmetry, or even the rotation-invariant point information.
For this reason, RIConv [22] was designed as a convolution
operator, which succeeded in rotation-invariant feature learn-
ing and robustness improvement. REQNN [23] proposed a
rotation equivariant quaternion framework according to the
rotation equivariance properties. However, they were exposed
to lower accuracy, which prompted the research development.
RMGNet [24] constructed a multi-scale graph convolutional
neural network for segmentation through the handcrafted
rotation-invariant features. In addition, ClusterNet [25] and
SRINet [26] were designed for strictly rotation-invariant rep-
resentations through point projection. Both of them failed to
capture detailed point cloud features. The former approach
cannot perceive point clouds’ overall geometric structure, and
the other was not stabilized enough.

Thus, following the previously published samples, there
remains a requirement for novel methodologies to fully dis-
cover the features of point clouds and global geometric infor-
mation. Rotated point feature studies make sense for the
accuracy enhancement and application for computer sensing
in the real world. Here, we propose a novel model called
Multi-head Attentional Point Cloud Classification and Seg-
mentation Using Strictly Rotation-invariant Representations.

Compared with state of the art, our method has achieved
strictly rotation-invariant classification and segmentation on
point sets with high accuracy and robustness. The main con-
tributions of our work are summarized as follows:
• We obtain the strictly rotation-invariant point cloud rep-
resentations through the coordinate transformation of

point projection. For the input points, the key point
descriptor is also utilized to deliver different responses,
recognize the overall geometry well, and help build a
global feature.

• Robustness is essential to consider in 3D point cloud
classification algorithms. For this purpose, we design
and propose a novel neural network based on the
multi-head attentional convolution layer (MACL) for
point clouds, strengthening network robustness and
developing feature extraction performance.

• Furthermore, we modify the structure of the origi-
nal DenseNet and combine it with multi-layer percep-
tron (MLP) [11], achieving deep information and high
accuracy. Besides, the attention mechanism is applied
to the pooling layer for local 3D point cloud feature
acquisition.

The remaining parts of this paper are structured as fol-
lows. Section II displays the related works of deep learning
on the point cloud and its rotation-invariant representations.
Section III shows the methodology of our model proposed
in this paper. Next, rotating experimental results, ablation
discussions, and remarks on our proposed method are shown
in Section IV. Finally, we have drawn some conclusions and
given possible feature studies in Section V.

II. RELATED WORK
A. DEEP LEARNING ON 3D POINT CLOUD
With the rapid development of CNN, more and more studies
have designed effective neural networks to deal with 3D point
clouds. In the beginning, we could not directly input the
disordered point sets to CNN. Some previous works adopted
voxels [27], [28] or multi-view forms [29], [30] for spe-
cific tasks. However, a multi-view point cloud may cause
the generated data lack of shape information and loss of all
the original geomatical details. Voxels account for excessive
memories and increasing time complexity, which causes dra-
matic damage to computational efficiency. To break through
this limit, PointNet [11] has shown the potential of neu-
ral networks to process the raw point cloud directly. Point-
Net aggregated the global feature by symmetric functions
and achieved permutation invariance. Based on PointNet,
PointNet++ [31] developed multi-scale hierarchical local
feature learning through the farthest point sampling (FPS)
algorithm. These methods concentrated on the point infor-
mation, rather than relations between neighbors. Besides,
some papers enhanced accuracy through local neighbor rela-
tions between neighbor and center nodes. For example,
DGCNN [12] designed edge convolution to merge graph
features from neighbors. GAPNet [32] is a branch structure
consisting of MLP for point information and edge convolu-
tion for the global feature.

Point cloud models are so irregular that general con-
volution cannot perform well, leading to information loss.
Then, some people defined convolution in Non-euclidean
domain, such as, SO-Net [33], PointCNN [34], and SPLAT-
Net [35]. SO-Net modeled point cloud space distributions
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through Self-Organization Mapping (SOM) Network. Also,
there are flexible specifications of the lattice structure in
SPLATNet [35], enabling hierarchical and spatially-aware
feature learning and joint 2D-3D reasoning. PointCNN [34]
utilized X-conv to make sure permutation invariance. Others
designed novel convolution operators to advance the perfor-
mance and updated weights through geometric distributions,
defined convolution kernel in sequential space. In particular,
PointConv [15] defined convolution as relative important
sampling sequential 3D convolution Monte Carlo method.
ShellConv [36] proposed permutation invariant convolu-
tion (Shellconv) based on concentric spherical shell structure.
KPConv [13] adopted the rigid and deformable kernel point
convolution operators using a set of learnable kernel points.
Although these works have made significant progress in this
field, they utilized the raw coordinates as the input, which has
low robustness to the rotation translation.

B. ROTATION-INVARIANT REPRESENTATIONS FOR POINT
CLOUDS
In terms of indefinite directions in the real scenario, general
point cloud classification networks cannot realize rotation
invariance, limiting the application development. Some prior
studies applied spherical voxel convolution (SVC) [21] to
learn about point clouds, aiming to enhance the robustness
of transformation. For example, Poulenard [19] employed
volume function for point representation and spherical har-
monics based kernels to improve the convolution computing
process. PRIN [18] employed the Density-aware adaptive
sampling (DAAS) to convert sparse signals to voxels and
SVC to extract approximate rotation-invariant features at
point levels instead of global ones. Rao et al. [20] made
an adaptive projection on the discretized sphere and cap-
tured patterns through a hierarchical feature learning model.
The discretized sphere had global directions, which failed
to reach extreme symmetry, or even rotation-invariant point
information.

For this reason, some researchers proposed novel operators
to learn rotation-invariant features. Zhang et al. [22] designed
the rotation-invariant operator IRConv to learn the underlying
rotation-invariant geometric features, such as distance and
angles. Moreover, several researchers utilized point projec-
tion to learn rotation-invariant point cloud representations.
Zhang et al. [23] applied rotation equivariance to the input
point cloud and exhibited higher rotation robustness. The
specific rotation transformation they used could cause the
same rotation transformation to all intermediate-layer quater-
nion features. Furuya et al. [24] published a rotation-invariant
multi-scale framework for anymanual 3D graph features with
rotation invariance, based on the relations between 3D points
and their normal vectors. Chen et al. [25] designed ClusterNet
[37] for strictly point-wise rotation-invariant representation
by rigorously rotation invariant (RRI). ClusterNet adopted
graph CNN for feature extraction and unsupervised hier-
archical clustering method based on supervised connection
standard. It applied EdgeConv [12] for feature acquisition

but failed to perceive the overall geometric structure of
point sets. In 2019, Sun et al. [26] came up with SRINet,
which used point projection to represent the rotation-invariant
point cloud and PointNet’s backbone for global features.
SRINet also included graph clustering for local details.
Inspired by rotation-invariant, we propose this model to parse
geometric information and perform better in 3D point classi-
fication and segmentation tasks.

III. METHODOLOGY
This section shows point cloud representations from point
projection, multi-head attentional coding method, attention
pooling layer construction, and key point detection. The over-
all framework is demonstrated in Fig. 5.

A. POINT PROJECTION
Point clouds represent the set of measured points [38]. Sup-
pose we place it in a conventional coordinate system, along
with rotation transformation, the relative position relations
between the axes and points will change significantly.

Generally, deep learning structures work on coordinates.
Rotation transformation will affect the recognition and fea-
ture extraction performance by neural networks. Our work
adopts point projection [26] on the axis, eliminates rotation
influence, and achieves the strictly rotation-invariant repre-
sentations, shown in Figure 1.

FIGURE 1. We present the abstract mathematical representations (left) of
the selected coordinates (right) in point sets. The origin is located at the
center of mass. The coordinates are redefined by axes (s1, s2, s3).

In learning algorithms,most testing datasets are in the fixed
directions.We need to augment the testing data for robustness
testing, in which rotation transformation is a general method.
According to Euler’s rotation theorem [39], any rotation can
be represented by an Euler axis and a rotation angle [25]. The
three-dimensional unit vector rotation angle is a scalar. We
can use the following formula to solve the rotation matrix R
corresponding to the Euler axis s and the rotation angle θ ,
and I3 represents the input vector.

R = I3cosθ + (1− cosθ )ssT + [s]xsinθ,

[s]x ,

 0 −s3 s2
s3 0 −s1
−s2 s1 0

 (1)

According to the above, we sample the points as Euler axis,
and then uniformly sample the rotation angle in the space
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of [0, 2π ]. We choose this method to generate Euler axis
and rotation angle, and then solve the rotation matrix by
the Equation (1). From this, we can get the points after the
rotation transformation for testing.

Algorithm 1 Point Projection Principle
Input: Point vector n : N × 3;
Output: Point projection vector f : N × 4 ;
1: With the given (i = 1, 2, 3), calculte the 2-norm of every

input point xi,as shown in Equation (2);
2: Within those norm values, choose the input vector n with

maximum one as n1, and that with the minimum as n2
(usually these two chosen norms are inverse);

3: Normalize the n1, n2, then achieve two axes: s1 =
n1
|n1|

and s2 =
n2
|n2|

;
4: Calculate the cross product of s1 × s2 and take its unit

vector as s3 =
s1×s2
|s1×s2|

;
5: With the given (i = 1, 2, 3), take the norm of the input

vector n as |x|, you can get projection cos(si, x) = si ×
n/x;

6: Combine the projection cos(si, x) with n as a novel vec-
tor, f = (cos(s1, x), cos(s2, x), cos(s3, x), |x|);

Assume the input point cloud is a random point set
{X = xi ⊆ R3}, then we redefine three linear independent
axes and point representatives. The origin is located at the
mass point, and each point xi refers to a vector n. As is shown
in [26], choosing the vector of maximum norm as Axis s1, and
minimum norm as Axis s2. The multiplication cross product
of s1 and s2 is referred as s3, with unit norm scaled. The norm
is calculated by:

ni = (
∑
k

n2k )
1
2 (2)

where nk represents the elements of vector n, and ni is the vec-
tor norm. The angle (s1, s2, s3) between vectors by norm ni
are not calculated further because they will not collide with
each other in four-dimensional projection feature space [26].
In this novel coordinate system, no matter how the point
cloud data rotates, the relative positions between axes and
points will keep consistent. Through the process of point
projection, the point cloud is invariant to rotations. As shown
in Algorithm 1, we project points on the axes, and construct
four-dimensional (4D) projection features (f (s, xi)) for each
point, combining with the length of vector xi, provided by
Equation (3):

f (s, xi) = (cos(s1, xi), cos(s2, xi), cos(s3, xi), |xi|) (3)

where cos(si, xi) represents the point projection feature on
axes, and |xi| refers to the length of vector xi. Then we encode
original point sets as a collection (F) of point projection
features, as Equation (4):

F = {f (s, x1), f (s, x2), . . . , f (s, xn) ∈ RN×4} (4)

where s denotes three axes - (s1, s2, s3), f represents point
projection mapping, and RN×4 stands for 4D projection

space. The proof procedure of rotation-invariant the point
projection feature is as followed:

The first step is to assume point x and three axes, labeling
partial components of 4D features as:

(xn, s1) = f1, (xn, s2) = f2, (xn, s3) = f3 (5)

where xn = x
|x| . Simply, we define mij = (si, sj), mij = mji,

because the constant relative relation of si and sj. Next, sup-
pose C = (xn, s) and matrixM as:

xTn
sT1
sT2
sT3

[xn s1 s2 s3] =

1 f1 f2 f3
f1 1 m12 m13
f2 m21 1 m23
f3 m31 m32 1

 , M (6)

Once M is determined, we could find out vector C through
Singular Value Decomposition, where M = USV T . Then
C = US1/ 2V T . The value of mij depends on axes, then
elements mij will remain with the consistent axes. Here we
transform the rotation matrix to homogeneous coordinates
([1,X ,Y ,Z ]T ) in 4D space for rotation-invariance verifica-
tion, as

R4×4 =
[
1 0
0T R

]
(7)

When using orthogonal rotation matrix R4×4 in 4D space
to rotate projected point cloud features, the result matrix M
is unchanged, given by:

(RC)T (RC) = CTRTRC = CTC = M (8)

In conclusion, projected point presentations are rotation-
invariant.

B. MULTI-HEAD ATTENTIONAL ENCODER
This paper combines the attention mechanism [40] and
multi-head structure [32] with the convolutional layer to con-
struct a better encoder for 3D point sets. An ideal 3D object
recognition model could capture context information in the
global space and capture fine-grained local information. First,
these two kinds of information balance each other, so we
design an attentional convolution layer (ACL). We combine
the fine-grained attention features from ACL and the local
neighbor information, as in Fig. 2.

To obtain global features based on neighborhood,
we project the input point cloud xi and get the rotation-
invariant representation fi. There is an auto-encoder for each
rotation-invariant point, according to the local field choosing
mechanism. That means we adoptMLPwithF ′ convolutional
kernels to map them to high-dimensional feature space.
Equation (9) presents feature u′i with N × F

′ dimensions.

u′i = X (B(CF ′×1(fi, θ))) (9)

where X denotes parameterized non-linear activation func-
tion Relu, θ is a set of learning parameters. B represents
normalization. C refers to convolutional computation, with
the convolutional kernel of F ′ × 1 on the subscript.
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FIGURE 2. Here is the framework of the attentional convolution layer
(ACL). We use N on behalf of point number, and MLP{ } for multi-layer
perceptron, where the content in brace represents the number of
convolution kernels. C represents concatenation and X for matrix
multiplication calculation.

Furthermore, to develop the ability of local feature expres-
sion, our network searches for the nearest k points using KNN
(K-nearest neighbor) algorithm [41]. These points will form
a k-neighborhood structure, make a projection, then output
local rotation-invariant representation fij. We applyMLPwith
F ′ convolution kernels to get N × K × F ′ dimensional fea-
ture v′ij, processing as Equation (10):

v′ij = X (B(CF ′×1(fij, θ))) (10)

where,

fij = xi − xij (11)

here, xij is the point near to xi. Conducting single-layer
covolutional computation on u′i and v′ij can output two
1-dimentional vectors, assigning as the self and neighbor
attention coefficients. Subsequently, they are combined in the
same feature level without weights to obtain the neighbor-
hood selection coefficient from description xi to its K-nearest
points, given by Equation (12):

bij = LR(X (B(C1×1(u′i, θ)))+ X (B(C1×1(v′ij, θ)))) (12)

where LR() refers to non-linear activation function -
LeakyRelu. Meanwhile, the Softmax function is employed
for normalization and increasing convergence rate, as in
Equation (13):

aij =
exp(bij)∑k
j=1 exp(bij)

(13)

Next, we multiplied the normalized neighborhood selec-
tion coefficient aij with K neighbor features v′ij, resulting
in fine-grained local characteristics with the dimension of
N × F ′, as following:

x ′i = f (
∑
j∈Ni

aijv′ij) (14)

where f denotes the non-linear activation function, ELU.
Different wights will be allocated to neighbor features by
the feature selector aij. Non-meaning neighbor features have
lower weights than discriminative ones, which makes efforts
to detect fine-grained. For the stable architecture and enriched

FIGURE 3. Here we present the MACL structure. We input the results of
point projection and KNN, then output the multi-local and neighborhood
features.

FIGURE 4. Visualization point cloud processed by key point detection.

feature details, we combine the multi-head structure with
ACL, called MACL. Independent ACL layers are concate-
nated together, generating the multi-channel attentional fea-
ture x̂i

′, with the size of M × F ′. Here is the mathematical
principle:

x̂i
′
=

M
||
m
x̂i
(m) (15)

In Equation (15), m is the total number of heads, setting to

four.
M
||
m
denotes concatenations in feature channels. As shown

in Fig. 3, MACL outputs multi-attention neighbor and local
features.

C. ATTENTION POOLING
As for local features, we also apply the attention mechanism
[40] to pooling calculations and present attention pooling
layer (APL) [32] for point cloud processing. Based on max
pooling, APL could recognize the essential local features and
compensate for the global, provided by Equation (16):

yi =
M
||
m
max v

′(m)
ij (16)

where max is the maximum calculation, and m equals four
(the head numbers), defined in MACL. v′ij denotes local fea-

tures, and
M
||
m
denotes concatenations.

D. KEY POINT DETECTION
In terms of geometric perception, each point’s roles from
different point cloud datasets are unequal. Moreover, corners
and edges are more sensitive to geometric perception than flat
areas; and automatic emphasis on these key points is critical
for improving the quality of features acquired, as shown
in Fig. 4.
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FIGURE 5. Proposed approach architecture for strictly rotation-invariant point cloud classification and segmentation.

In order to find out the corner regions of the point cloud,
point normals [26] are chosen in this paper to reflect the shape
characteristics. Since the shape information at the corner and
edge varies greatly, the normal line has changed. A response
can be specified for each point through the normal line trans-
action of the neighborhood, given by Equation (17):

Dr = sumi∈N (r)sin(xi, xr ) (17)

where xi denotes the general points, xr denotes the points
of the neighborhood, and Dr represents response points. We
could utilize this method to detect the key points because the
high response points Dr are in the margins, especially the
corner areas, with an apparent change of the normal vectors.
Along with this key point detection process, the calculated
response will be integrated into the global representation of
point clouds.

E. MODEL
The overall framework of Multi-head Attentional Point
Cloud Classification and Segmentation Using Strictly
Rotation-invariant Representations is presented in Fig. 5.
Generally, we input the point cloud of N × F and divide
them into two branches. On the one hand, we capture
rotation-invariant representation and transfer them and neigh-
borhoods to N × K × 4 dimensions through KNN and point
projection. By applying MACL {4, 16} to point clouds, atten-
tional characteristics are detected from local and neighbors.
Then, we construct the attention pooling layer and Advanced-
Dense-MLP to mine features, which are concatenated as the
global feature. On the other hand, the key point descriptor
module is used to find out features of crucial points, forming
the final global feature by an addition operation. Finally, fully
connected (FC) layers with shared wights classify the point
clouds into 40 categories.

In the part segmentation task, the MACL layer obtains
the specific local category of each point’s semantic label.
The attention pooling layers are used for local tag gen-
eration and composed the global feature by connecting to

intermediate layers. In addition, FC {512, 256,C} and FC
{256, 256, 128, S} denotes the fully-connected layers, includ-
ing 512, 256, 128, C , S for the number of neurons. C and S
equal to 40 and 16, respectively. MACL {4, 16} represents
the attentional coding layer with four heads and sixteen
channels. For the dense blocks [3] adding to MLP, we have
made improvements to avoid unnecessarily detailed feature
information. As presented in Fig. 6, each dense block applied
2D convolution with 1 × 1 kernels, using ’concat’ operation
to concatenate multiple-channel features. We eliminate the
connection ofN×68 input data and the last block, decreasing
the information reduction and large-scale parameters.

FIGURE 6. Advanced densely connected blocks without the connection
between the fourth layer and the beginning.

IV. EXPERIMENTS AND DISCUSSIONS
A. DATASETS AND PARAMETERS
For the classification task, we have conducted several
experiments on the opening dataset ModelNet40 and Mod-
elnet10 [27] for three-dimensional pattern recognition,
provided by Princeton University. ModelNet40 contains
12311 CAD models from 40 categories, of which 9843 mod-
els are used for training and 2468 for testing. Whereas, Mod-
elNet10 consists of 10 classes, 4900 CAD models divided
into two parts: 3991 for training our model, and the others
for testing.

Part segmentation experiments are based on ShapeNet
Part [42] dataset, composed of 16881 point cloudmodels with
16 categories. Objects are segmented into 50 parts without
overlapping in different categories. Every point in the model
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has one specific semantic tag, contains no more than five
parts. ShapeNet Part is split into two parts: 14006 mod-
els for training, 2875 for testing. The experiments sample
2048 points from eachmodel and utilize mIoU for evaluation.

To be specific, our rotated testing datasets come from
the multiplication of the Rotation matrix and the original
testing points concerning arbitrary rotation angles shown in
Section III. All the experiments are conducted in a deep
learning environment based on the Ubuntu operating system
and Cuda 8.0.61. Table 1 indicates the learning framework,
corresponding environments, and partial parameters during
training.

TABLE 1. Experiment configurations.

B. CLASSIFICATION RESULTS
To verify our work’s performance, we have conducted some
comparison experiments with other state-of-the-art models,
under the same conditions, which are shown in Table 2. It can
prove that the study in this paper significantly outperforms
other methods in the case of random rotation testing. All
experiments are applied on ModelNet40 [27], regarding 3D
model recognition accuracy as evaluation criterion. We train
the model using the original data set with a fixed direction.
The test process is divided into two groups: one group uses
the original data set with a fixed direction, and the other
group tests the data set after arbitrary rotation transforma-
tion. NR/NR means we input unrotated point clouds for
training and testing. NR/AR represents no rotation reinforce-
ment training but random rotation testing. Besides, drop by
indicates the decay rate of rotation experiments. Except for
the precision shown in Table 2, our classification training
experiment costs 8.65 hours and 8.39 Gbmemory to compute
and save a 2.2 MB model.

The experimental comparison covers the traditional point
cloud classification methods, spherical harmonic convolu-
tion, and other strict rotation-invariance methods. The accu-
racy of the traditional methods have a great drop in the
arbitrary rotation test, showing poor robustness to point
cloud rotation, such as PointNet [11], PointNet++ [31],
and DGCNN [12]. Networks based on spherical convolu-
tions have good robustness to rotation, with the accuracy
dropped by less than 10%, such as PRIN [18], Spherical
CNN [44], SFCNN [20], SPHNet [19], and RICNN [22].
However, the discretized sphere cannot guarantee complete
symmetry or rotation-invariance due to global directionality.

TABLE 2. Result Comparison on ModelNet40 [27].

TABLE 3. Result comparison on ModelNet10 [27].

Similar to us, REQNN [23], SRINet [26] and Cluster-
Net [25] can realize strictly rotation-invariant classification,
with 0 drop rate. However, the accuracy of our method has
surpassed them by 4.48%, 0.49%, and 0.40%, respectively.
The point projection module can reconstruct the points’ coor-
dinates and obtain the strictly rotation-invariant representa-
tions for various tasks. Our method can effectively discover
the local and global features through the proposed multi-head
attentional convolution structure. In addition, a key point
detection is added to extract the key feature points of the
point cloud, which makes up for the perception of the overall
geometric structure.

To prove our excellent classification performance, we ana-
lyze all the recognition accuracy in every category with
SRINet [26], and RICNN [22], as demonstrated by Fig. 7.
Here, we arrange 40 different classes on the horizontal axis
and each class’s accuracy on the vertical axis. In general,
we enhance the accuracy rate of every class compared with
SRINet [26], and RICNN [22], especially the categories
where the global geometric structure are similar to each other,
but the difference in detailed local information, such as a
tent, stairs, flowerpot, etc. We have employed the attention
coding method and emphasized the key points to enhance the
recognition of vital local features. Therefore, our framework
can distinguish the classification information of confusing 3D
models effectively.

Based on the above experiments, more comparative tests
on ModelNet 10 are conducted to verify the reliability. In
Table 3, our research approach is proved higher classification
accuracy at 90.63% on rotated testing datasets than other
frameworks.
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FIGURE 7. The classification performance of each category on ModelNet40.

TABLE 4. Part segmentation NR/NR testing results on ShapeNet Part [42] dataset.

TABLE 5. Part segmentation NR/AR testing results on the ShapeNet Part [42] dataset.

C. SEGMENTATION PERFORMANCE
Like the classification task, we conduct unrotated training
and testing (NR/NR) and normal training but rotated test-
ing (NR/AR) experiments, shown in Table 4 and Table 5.
By training the network with original data and two sets
of non-rotated and rotated datasets for testing, it is proved
that the network proposed in this paper has excellent part
segmentation ability and robustness to the arbitrary rotation.

The segmentation task (with the model size of 4.3 MB) costs
16.28 hours, 8.36 Gb memory in the training process.

From Table 4 we present, the existing methodologies
can achieve high accuracy in conventional segmentation
testing, such as PointNet [11], PointNet++ [31], and
DGCNN [12]. However, as shown in Table 5, their perfor-
mances sharply decline when processing rotated point sets.
Although PRIN [18] is robust to rotation, it cannot achieve
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FIGURE 8. Part segmentation NR/AR testing result visualization for 16 categories in the ShapeNet Part [42] dataset.

strict rotation invariance, and the segmentation accuracy is
low, indicating that spherical convolution will be disturbed
by rotation transformation. In the experiment of segment-
ing the rotating point cloud, this method achieves strict
rotation invariance and obtains a good segmentation result.
SRINet [26] and RICNN [22] are also rotation-invariant net-
works. In the comparison between our method and them,
6 types of point clouds achieve the best accuracy, and our
mIoU value is the largest.

We visualize the segmentation results in Fig. 8 to verify the
superiority of our work. In PointNet results, partial rotated
point cloud could not be recognized and segmented because
of its low robustness to rotation transformation. PRIN [18]
shows a little robustness to rotation but low segmentation
precision and non-rotation invariance, indicating that spheri-
cal convolution will be disturbed by rotation transformation.
Part of the segmentation disorder indicates that it has a poor
perception of the overall structure of the point sets. Our
proposedmethod achieves effective segmentation for rotation

tests, showing a good perception of the geometric structure of
the point cloud.

D. ABLATION STUDY
Inspired by [45], dynamical behavior, especially stability,
plays an essential role in learning algorithms. We have con-
ducted ablation experiments to prove each module’s avail-
ability and compare different parameter combinations in our
proposed neural network.

1) OPTIMIZATION OF MLP
To enhance scientificity and reasonability, first, we test differ-
ent combinations of the advanced MLP with MACL, as pre-
sented in Table 6. From the mathematical point of view,
[47] proposed an optimization methodology through parallel
computing and swarm intelligence. Regrading to the numer-
ical optimization method proposed in [48], we analyze the
optimization performance toMLP. From the results, we could
find the enhanced dense connected convolutional blocks
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TABLE 6. Analysis of different optimizations to MLP.

perform better than other combinations. Because adding con-
nected blocks can decrease the possibility of over-fitting
and gradient vanishing and reinforce feature propagation.
Our combination with dense blocks has another advan-
tage of low information redundancy and learning efficiency
enhancement.

2) INFLUENCE OF MULTI-HEAD CHANNELS
Referring to [45], robust performance analysis from various
parameters is essential to neural networks. Especially for the
multi-head structure in this paper, we explore some exper-
iments to detect the effect of different head numbers and
encoding channels on the recognition performance. Fig. 9
indicates the results, where the horizontal axis denotes the
number of channels, the vertical axis for the accuracy rate,
and 1, 2, 3, 4 for the head of numbers. It can be found that
proper increasing of head numbers and channels cause a pos-
itive effect on accuracy. We utilize more heads and channels
to detect enough features for classification. According to the
chart, there is an optimal portfolio of four heads and sixteen
channels. Not adding more is always better than previous;
redundant information and high complicity will reduce the
property.

FIGURE 9. Analysis of different channels and head numbers.

3) ANALYSIS OF K VALUES
We preprocess the KNN sampling method before point
projection, where K represents the receptive field in local
regions. The proper size of receptive fields is beneficial
to local feature detection. We present other experiments to
prove the influence of different local sampling point numbers

TABLE 7. Performance on different K values.

(the value of K ), shown in Table 7. The number of K will
cause an effect on local feature extraction, detailed informa-
tion correct detection, then affect the overall performance.
Although we cannot test all the possibilities, the results indi-
cate that K = 25 enjoys the best local receptive field and
accuracy, decreasing when K is greater.

4) EVALUATION OF ATTENTION CODING AND KEY POINT
DETECTION
This section is aiming to verify the effects of the atten-
tion encoder and key point detection. They are related to
extracting geometric features and structures. Just as its name
implies, the attention encoder mines the attentional point
cloud features, deeper than general. The key point detection
method gives the response to the features of crucial points we
selected. These responses will be combined with the global
feature to the final information. We enhance information
effectiveness through this kind of selection and attention
extraction, verified in Table 8. Without them, the overall
accuracy equals 84.31%, which could be increased by 3.19%
when adding them to the model.

TABLE 8. Influence of using key point detection method and attention
coding.

E. REMARKS ON OUR PROPOSED METHOD
1) ADVANTAGES
Our framework can effectively classify and segment the point
cloud without being disturbed by the rotation transformation,
potentially applying in the unseen direction objects of the real
world. From the experimental results, our work can perceive
the point clouds’ overall geometric structure and achieve
better accuracy than most state-of-the-art methods. From the
ablation study, the multi-head structure we employed con-
tributes to model robustness. The rotation-invariant features
through point projection enjoy simple structure, easy trans-
formation, and strong embeddedness.

2) LIMITATIONS
This method has not been applied to large-scale engineer-
ing problems. Except for the rotated 3D point cloud study,
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high-dimensional problemswould be an interesting extension
to this work. We can combine other dimension reduction
method with our work to cope with this kind of complicated
scenarios. However, the complicity and high-dimensional
point structure should be taken into consideration. In future
studies, more practical, accurate, and less-complicity deep
learning models will be explored for 3D point processing and
computer perception.

V. CONCLUSION AND FUTURE WORK
1) The neural network proposed in this paper realizes

effective recognition of the rotated point clouds. First
of all, we reconstruct the point cloud coordinators from
the origin and get the strictly rotation-invariant repre-
sentations through point projection. Next, our proposed
MACL module comprises the attentional convolution
layer (ACL) and a multi-head structure, which can
detect in-depth features of the point sets. The overall
framework includes the model of attention pooling
and Advanced-Dense-MLP to enhance local informa-
tion relations. At last, we distribute different responses
to every point according to the key point descrip-
tor, emphasizing the geometric structure. From the
classification experiment results on ModelNet10 and
ModelNet40, the accuracy of our work is better than
most mainstream algorithms, with strong robustness.

2) From the rotation testing on the ShapeNet Part
dataset, our algorithm can also achieve strictly
rotation-invariant partial segmentation, better precision
than the state-of-the-art. Future studies will focus on
improving 3D point cloud classification, segmentation,
and other complicated tasks in real scenarios, such as
reconstruction and complement. Making an application
of our work and strictly rotation-invariant features to
other data types or fields is a meaningful topic.
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