
Received April 20, 2021, accepted May 3, 2021, date of publication May 11, 2021, date of current version May 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3079271

Experience With Managing Technical Debt in
Scientific Software Development Using the
EXA2PRO Framework
NIKOLAOS NIKOLAIDIS 1, DIMITRIOS ZISIS1, APOSTOLOS AMPATZOGLOU 1,
ALEXANDER CHATZIGEORGIOU 1, AND DIMITRIOS SOUDRIS 2, (Member, IEEE)
1Department of Applied Informatics, University of Macedonia, 546 36 Thessaloniki, Greece
2School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece

Corresponding author: Nikolaos Nikolaidis (it14189@uom.edu.gr)

This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant 801015-EXA2PRO.

ABSTRACT Technical Debt (TD) is a software engineering metaphor that resembles the production of poor-
quality code to going into debt. In particular, a development team that ‘‘saves’’ effort while developing by
not removing inefficiencies, has to ‘‘pay-back’’ with interest, in the form of additional maintenance costs
(i.e., fixing bugs, adding features, etc.) due to the poor maintainability of the developed code. Although
maintainability assurance is an established practice in traditional software development (lately known as TD
management), it has still not attracted the attention of scientific software developers; i.e., researchers writing
code and developing tools for purely research purposes. Nevertheless, based on the literature and practice,
maintainability seems to be ranked as an important key-driver for the development of such applications; since
the effort needed to update the code before the experimentation (e.g., executing a simulation) is common
and should not receive low priority. In this paper, we present the outcome of a 3-year research project on
Technical Debt Management (TDM) for scientific software development. The outcome of the project is a
framework (termed: EXA2PRO TDM framework) and an accompanying platform for assisting scientific
software developers in managing the TD of their applications. The framework is a collection of methods
tailored for the mainstream programming languages of scientific software development, which have been
empirically validated through five pilot applications. The majority of the EXA2PRO framework suggestions
have been applied by scientific software developers and eased future maintenance activities.

INDEX TERMS Code quality, refactoring, scientific software development, and technical debt.

I. INTRODUCTION
Scientific software development refers to the process of
developing software applications for research purposes (e.g.,
simulations, large-scale data analytics, etc.) [1]. The execu-
tion of such applications is so time-consuming that they are
usually executed on High-Performance Computing (HPC)
infrastructures [2]. The long execution time of scientific soft-
ware applications can lead to substantial ‘‘loss of resources’’
if execution of the software fails; rendering maintenance
activities (such as bug-fixing, updating an algorithm, etc.)
of paramount importance both in terms of correctness and
efficiency. We note that maintainability has been highlighted
as comparably important to performance and scalability in the

The associate editor coordinating the review of this manuscript and

approving it for publication was Mahmoud Elish .

field of software engineering for scientific computing, based
on a recent secondary study [3].

To assure the maintainability of software systems, in ‘‘tra-
ditional’’ software engineering, the concept of Technical
Debt Management (TDM) has been adopted along the last
decade [4] as a means of highlighting, in monetary terms,
the maintainability problems that should be fixed as well as
the associated effort for fixing them. Technical Debt resem-
bles the deterioration of maintainability to going into debt:
the effort that a company saves (termed as principal) while
developing a software in a suboptimal maintainability state
is paying interest, in the form of additional effort needed to
maintain the software (compared to the effort that would be
required if the software was of optimal maintainability) [5].
To bridge the two communities (the scientific software devel-
opment and the TD community), the EXA2PRO research

72524 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-7958-9393
https://orcid.org/0000-0002-5764-7302
https://orcid.org/0000-0002-5381-8418
https://orcid.org/0000-0002-6930-6847
https://orcid.org/0000-0002-2767-0501


N. Nikolaidis et al.: Experience With Managing TD in Scientific Software Development Using EXA2PRO Framework

project (exa2pro.eu), among other goals, attempts to bring
knowledge and best practices from the software engineering
community (which is more knowledgeable in developing
software) to scientific software development (which urges for
applying those practices). To achieve this goal, the project
delivers the EXA2PRO TDM framework, which tailors TDM
methods and tools to fit the scientific software development
domain, e.g., given programming languages and the imposed
run-time constraints—need for high levels of performance (in
terms of time), interoperability, hardware heterogeneity, etc.

In Figure 1, we present the high-level view of the
EXA2PRO TDM framework. In particular, the goal of the
project is to cultivate a culture of TD Prevention, i.e., that
new TD is not introduced into the system. However, this is
not fully feasible in practice [6]. Therefore, if technical debt
prevention does not pay off, some technical debt items will
eventually creep into the system, or they might exist in legacy
code (the code that pre-existed the adoption of the EXA2PRO
TDM framework). By analyzing the code, the framework
will provide developers a list of items (files, procedures, etc.)
that suffer from TD (TD Identification). Since the number of
these items is expected to be quite high, a TD Prioritization
approach that ranks them in terms of urgency to resolve is
required. For EXA2PRO TDM framework, the prioritization
relies on the outcome of two systematic activities, namely TD
Quantification (that assesses the current values of Principal
and Interest) and TD Forecasting (that predicts the future
values of these TD aspects). Next, being supported by the
prioritization process, the software engineers must decide
which TD items (files, procedures, etc.) they should focus
on, and apply targeted refactorings (TD Repayment), gaining
maintainability.

In this paper, we focus on TD identification, quantification,
and repayment. From all the TD identification approaches
in the literature (e.g., static-code analysis, self-admitted
TD, etc.), the one used by EXA2PRO framework relies
on a metric-based approach that flags files and procedures
(ormodules in FORTRAN)with extrememetric scores for the
complexity, coupling, and cohesion quality properties. These
files / procedures urge for refactoring, since they are expected
to hinder future maintenance. In addition to that, we assess
the time that would be needed for the manual resolution of
each type of problem, approximating Principal, based on the
type of problem (TD quantification). In terms of refactor-
ing these problems (TD repayment), we have updated an
existing approach for the decomposition of Long Procedures
(SEMI [7]), so that it scales for extremely long artifacts and
adapted the Agglomerative Clustering Technique, proposed
by Fokaefs et al. [8] to decompose Large Files / Modules
into more coherent ones. The proposed refactorings are the
Extract Procedure and the Extract File / Module that are able
to improve multiple code qualities: namely, decrease size,
complexity, coupling and increase cohesion. To validate the
EXA2PRO TDM framework, we have assessed the useful-
ness of the proposed methods and tools on five (5) real-
world scientific software applications, from the pilot case

providers of EXA2PRO project (i.e., CERTH,1 Julich2 and
CNRS3). In terms of programming languages, we focus on
FORTRAN and C, since these languages are heavily used in
HPC software [3].

The rest of the paper is organized as follows: in Section II
we present background information and related work in terms
of technical debt management and scientific software devel-
opment. In Section III, we present in detail the novel approach
for TD identification and quantification; in Section IV we
present an overview of how we adapted the refactoring
approaches; and in Section V we illustrate the provided tool.
In Section VI we provide the empirical results on the usage
of the EXA2PRO TDM framework. Finally, we conclude the
paper and present threats to validity in Section VII.

II. BACKGROUND INFORMATION
A. TECHNICAL DEBT MANAGEMENT
The technical debt (TD) metaphor was introduced in 1992 by
Ward Cunningham [9]. Cunningham used this analogy to
emphasize the consequences of shipping ‘‘not-quite right’’
code (codewith inefficiencies) for the first time. The presence
of these inefficiencies hinders future software maintenance
acting as interest that needs to be paid [9]. In the next decades,
this metaphor gained a lot of ground and is currently con-
sidered as an established terminology in both academia and
industry. The primary benefit of the TD metaphor is that it
serves as a channel of communication between technical and
non-technical stakeholders [10].

1) TECHNICAL DEBT CONCEPTS
While applying the metaphor, the software engineering com-
munity has borrowed the concepts of principal and interest
from economics. In the context of TD, Principal is the effort
required from the developers to remove code and design
inefficiencies; thereby, bringing the software closer to an
optimal quality. Although, we acknowledge that the notion of
optimal quality might be utopic for software, for the sake of
applying the metaphor, the community considers as optimal
a hypothetical version of the software system under consid-
eration, with improved maintainability. On the other hand,
Interest is the extra effort required to maintain the software,
in comparison to the effort that would be needed if the system
was in the optimal state [5].

For the calculation of the TD Principal several automated
tools have been developed, but SonarQube is one of the
most widely used [11]. SonarQube calculates TD Principal by
identifying fragments of code that violate certain predefined
rules and associates these violations (TD issues) with the
time required to resolve them. We note that, since SonarQube
principal calculation relies on micro level coding violation
and does not considers more prolific issues (such as the
violations of design principles, etc.), in this paper we do

1 https://www.cperi.certh.gr/en/
2 https://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html
3https://www.cnrs.fr/

VOLUME 9, 2021 72525



N. Nikolaidis et al.: Experience With Managing TD in Scientific Software Development Using EXA2PRO Framework

FIGURE 1. EXA2PRO TDM framework: bird’s eye view.

not rely on SonarQube for the calculation of principal, but
describe a novel approach—see Section III.

While principal can be calculated in a straightforward
manner when referring to code TD (using static analyz-
ers), the calculation of TD Interest is far more challeng-
ing, as it assumes the knowledge of an ‘optimal’ system as
well as the difference of the actual system to that optimal.
Conejero et al. [12] found that maintainability is one of the
main contributors of TD Interest and Seaman and Guo [13]
established a similar relationship. These studies paved the
way for the usage of proxies for the estimation of TD Inter-
est. In EXA2PRO, the calculation of interest relies on the
FITTED framework (Framework for Managing Interest in
Technical Debt) introduced by Ampatzoglou et al. [14]. The
calculation of the TD interest relies on: (a) identifying com-
parable software artifacts so as to judge optimality among
structurally similar artifacts, (b) constructing a hypothetical
optimal artifact as a collection of maintainability scores of
all similar artifacts; (c) calculating the distance of the arti-
fact under consideration from the hypothetical optimal; and
(d) monetizing the effort required to perform a future change,
based on the distance and past maintenance effort on the
specific artifact—more details are provided in [15].

2) TECHNICAL DEBT MANAGEMENT
According to Li et al. [4] the management of TD con-
sists of eight activities: repayment (i.e., reducing the accu-
mulated TD), identification (i.e., finding artifacts with
excessive TD values), measurement (i.e., quantifying TD),
monitoring (i.e., recording and valuation of TD evolution),
prioritization (i.e., find items that needs to be repaid first),
communication (i.e., explain TD to stakeholders), prevention
(i.e., keep away of additional TD), representation / documen-
tation (i.e., record metrics, actions about TD).

According to Eisenberg [6], the complete repayment of
TD is not a realistic goal. In particular, the current literature
supports that it might be profitable to prioritize the repayment
of TD in parts of the code, which are rarely the subject of
maintenance activities [13]. Based on the above, continuous

management of TD is required, so as to consider not only
software quality, but also the effort required to make changes,
and the cost of investment on software improvement 10].

B. SCIENTIFIC SOFTWARE DEVELOPEMENT
A literature review by Heaton and Carver [16] shed light on
how the scientific software development community is using
software engineering practices (we note that the vast majority
of scientific applications are executed in HPC infrastruc-
tures). They found that ‘‘Issue Tracking’’ and ‘‘Version Con-
trol Systems’’ are the most adopted practices, but there is still
room for improvement. Another study found similar results
with validation and testing being the least adopted ones [17].
Moreover, the literature review of Sletholt et al. [18] focused
on the effect of the agile practices being used in HPC. The
results of this study showed that agile practices achieve better
testing and requirement results. Based on these studies, there
is evidence that HPC developers care about software technol-
ogy practices, as they seem to have a positive impact on the
development of software.

To empirically assess the EXA2PRO TDM framework,
in this study, we used five HPC software applications, pro-
vided by three pilot providers of the EXA2PRO project.
CERTH provided two versions of the CO2 Capture appli-
cation, which is a simulator of the design and control of
chemical processes and materials in CO2 capture. CNRS
contributed through the MetalWalls application, which accu-
rately simulates the behavior of supercapacitors. Finally,
JULICH provided the LQCD and KKRnano applications,
which implement the functionality of the Grid LQCD library
and the core operation of the density functional theory.

III. EXA2PRO TD IDENTIFICATION/QUANTIFICATION
In this section, we present our approach for identifying arti-
facts that suffer from technical debt and quantify their TD
Principal at the design level. Design Debt is calculated as
the amount of money corresponding to the effort required
to resolve design inefficiencies [4]. To quantify Design Debt

72526 VOLUME 9, 2021



N. Nikolaidis et al.: Experience With Managing TD in Scientific Software Development Using EXA2PRO Framework

Principal, in the EXA2PRO TDM framework, we have fol-
lowed a 4-step approach:

1. define a list of design problems to be identified
2. identify items (i.e., files, modules, or procedures) that

suffer from these design problems
3. estimate the time required to fix each design problem
4. sum the time required to fix all identified design prob-

lems, in all items

Each one of the aforementioned steps is detailed in
the upcoming sub-sections. We note that Design Debt
Interest calculation follows without any deviation the
FITTED framework [14]; therefore, we exclude it from this
paper.

A. DEFINITION OF DESIGN PROBLEMS
As a starting point for identifying tentative design problems,
to be captured by the EXA2PRO TDM framework, we used
the seminal book on refactorings by Fowler et al. [19].
After examining the design problems presented in the
book, and by considering the fact that in scientific soft-
ware applications, the use of object-orientation is sparse,
we decided to focus on four design problems that can
also fit in the imperative and procedural programming
paradigms:

• Complex Artifacts: the body of some procedures
presents excessive levels of complexity, in terms of deci-
sion or iteration nodes. Such code chunks (and files
containing them) are difficult to understand and main-
tain [20].

• over-Coupled Artifacts: some files or modules depend
on an excessive number of external files, since they need
their information to compile. Such files are prone to
ripple effects, i.e., they need retesting every time that a
dependent file changes and are also hard to reuse. This
leads to additional maintenance effort [21].

• large Artifacts: some artifacts (modules, files, or pro-
cedures) are of large size (usually in terms of lines of
code). These artifacts (procedures) have more reasons
to change (i.e., due to their additional responsibilities).
These artifacts violate [22] the Single Responsibility
Principle (SRP) [23]; thus, are more probable to undergo
maintenance and produce TD Interest.

We note that the above list is by no means comprehensive;
thus, the captured Design Debt Principal will be a frac-
tion of the actual one. However, we consider this list as
appropriate, at least as a starting point, since: (a) it cap-
tures the most important (non-object-oriented) properties of
software maintainability [24] and (b) it would not be fea-
sible to capture all types of design problems in the course
of the project. Summarizing the above, and by consider-
ing that artifacts in non-object-oriented languages are usu-
ally files and procedures, the following design problems
need to be treated: (a) Complex Procedures, (b) Over Cou-
pled Files/Modules; (c) Large Files/Modules; and (d) Long
Procedures.

B. IDENTIFICATION OF DESIGN PROBLEMS
To identify design problems in large code-bases a scalable
approach that can be automated is required. To this end,
we have opted for a metric-based approach for identifying
problems [25], i.e., to calculate the values of suitable metrics
for each type of problem, sort the artifacts (for the case
of EXA2PRO framework: files and procedures) in terms of
each metric, and mark the worse ones, as problematic. The
approach of using metric thresholds as indicators of problem-
atic artifacts is well-cited in the literature [26]. In the next
subsection, we present the metrics’ selection process, as well
as details on their calculation; while after that, we present the
approach for extracting the metric thresholds and the actual
values that we have retrieved.

C. METRICS SELECTION AND CALCULATION
As a first step towards the application of the proposed
methodology, we need to select the metrics that we will use
for the identification of design problems. This strategy (i.e.,
using metrics to identify design problems) is well-established
in the software engineering literature [25]. Based on the
problems that we have defined in Section III.A and the quality
properties considered for applying a ‘‘good design’’ paradigm
(i.e., low coupling, high cohesion, and low complexity) [25],
the EXA2PRO TDM framework calculates five metrics:

• cyclomatic complexity (CC) [20]—for identifyingCom-
plex Procedures;

• coupling between files (CBF)—for identifying Over
Coupled Files/Modules;

• lines of code (LOC) [27]—for identifying Large
Files/Modules;

• lack of cohesion of lines (LCOL) [7]—for identifying
Long Procedure; and

• lack of cohesion of procedures (LCOP)—for identifying
Large Files/Modules.

From the above list, three metrics (namely: CC, LOC, and
LCOL) are reused, as they have been proposed in the litera-
ture; whereas the other two are introduced (CBF and LCOP)
as part of this paper. Nevertheless, we need to note that CBF
and LCOP are not developed from scratch, since they rely
on Coupling between Objects (CBO) and Lack of Cohe-
sion of Methods (LCOM) [22]. In particular: (a) CBF refers
to the number of external dependencies of files/modules;
whereas (b) LCOP refers to the number of disjoint pro-
cedures in terms of variables’ usage. To be able to calcu-
late the aforementioned metrics, we need to differentiate
between FORTRAN and C, in the sense that they have a
completely different approach for managing the scope of
variables, which directly affects how coupling and cohesion
is perceived/defined in the two languages. The differences in
the calculation of these metrics between the two languages
(e.g., treating global variables) are presented in detail in
Appendix A and Appendix B, respectively.

To summarize the above, in Table 1, we provide an
overview of calculated metrics per design problem. For cases

VOLUME 9, 2021 72527



N. Nikolaidis et al.: Experience With Managing TD in Scientific Software Development Using EXA2PRO Framework

TABLE 1. Metrics selection overview.

TABLE 2. Project-specific thresholds.

in which more than one metrics are used for identifying the
existence of a specific design problem (i.e., Large Files /
Modules), a union of the artifacts identified by the metrics,
is performed. Finally, we note that modules are applicable
only to FORTRAN 90 and the LCOP metric is not applicable
to FORTRAN 77.

D. THRESHOLDS IDENTIFICATION
Given the fact that the projects of the used code-bases are
highly divergent in terms of size, required complexity, etc.,
we have preferred to set project-specific thresholds, rather
than global ones, noted as more appropriate in the study
of Mori et al. [28]. This decision relies on the fact that
regardless of how ‘good’ or ‘bad’ the quality of a code-base
is, the refactoring budget is limited, and cannot spread to a
large (or the complete) number of artifacts. The thresholds
for each one of the pilot cases (identified at the 10% of worst
artifacts, per metric) are presented in Table 2. Similar cut-
off percentiles have been used in other studies aiming at the
derivation of metric thresholds [29]. We note that both ver-
sions of CO2 Capture are evaluated using the same threshold
values.

E. VALUATION OF SOLVING DESIGN PROBLEMS
As a solution to the problems defined in Section III.A,
we propose the application of two well-known refactorings:
Extract Procedure and the Extract File/Module. In particu-
lar, Extract Procedure targets the Long Procedure and the
Complex Procedure design problems by moving a code frag-
ment to a new method / function and replacing the old
code with a call to the new method. The Extract Procedure
(Method) refactoring is the most common type of refactor-
ing according to a study of 16,566 identified refactorings
in the version history of 23 projects [30]. On the other hand,
the Extract File/Module refactoring is expected to resolve
the Large File/Module and the Over-Coupled File/Module
design problems by creating a new File / Module and place
the fields and methods for the relevant functionality in it.
The Extract File / Module refactoring (class) in object-
oriented systems is considered as one of the more global
ones [31].

TABLE 3. TD principal analysis for system.F90.

To this end, the goal of this subsection is to estimate the
time needed to perform these refactorings, without any tool
support; so as to assess the time that is needed to elimi-
nate one occurrence of the design problem. To achieve this
goal, we worked on the code-bases of two pilot applications:
Metalwalls (developed in C) and CO2 Capture (developed in
FORTRAN). To systemize the process of refactoring effort
valuation, we applied the following process:
• retrieve artifacts that suffer from design problems
• design a solution for solving the problem—record men-
tal process effort (in minutes)

• apply the solution in the code-base (including
re-testing)—record the actual implementation effort (in
minutes).

• multiply the sum of the two calculated effort values, with
the average salary of the developer (per minute)

We note that (a) the procedures of the 2nd and 3rd steps
have already been performed and only for extreme precision
purposes they should be tailored to the companies’ specifi-
cations, and (b) the 4th step is performed based on a global
average of developers’ hourly rate, but it can be tailored to
map any salary cost of specific companies or countries.
Valuation of Extract Procedure Refactoring:Regarding the

Extract Procedure refactoring, we have manually identified
84 opportunities in the code-base of Metalwalls and 47 on
the code-base of CO2 Capture. To explore the time to apply
the extract refactoring procedure, we focus on a single file,
namely the System.F90 file, which includes 21 extract proce-
dure opportunities. In Table 3, we present the effort required
to fix each instance of the long procedures.

An example of such a code transformation is presented
in Figure 2: on the top side of the figure, we present the

72528 VOLUME 9, 2021



N. Nikolaidis et al.: Experience With Managing TD in Scientific Software Development Using EXA2PRO Framework

FIGURE 2. Example application of extract procedure refactoring.

FIGURE 3. TD principal for extract procedure.

code before the application of the refactoring, whereas on the
bottom side the source code after. Since this particular piece
of code (on the top) was performing a specific procedure
(reading a data file from the system,) we decided to perform
an Extract Procedure refactoring, by creating a procedure
that reads a data file from the system. Later, we generalized
the use of this procedure to read a file from the system
(either config, or data file) and we transferred it to the file-
unit.F90 source file.

Next, we replicated the aforementioned process in the
47 opportunities of the CO2 Capture project. The statistical
analysis (on the complete dataset) for the valuation of TD
Principal for refactoring Long Procedures suggests that on
average, each instance requires 9.89 minutes to be refactored.
The minimum value is 1 minute, the maximum value is
48, whereas the standard deviation is 8.63. The descriptive
analysis is visualized in the boxplot of Figure 3. The analysis
for rest instances is presented in Appendices C-E.
Valuation of Extract File/Module Refactoring: Regarding

the Extract File / Module refactoring, we have manually
identified 5 opportunities in the code-base of Metalwalls
and 6 on the code-base of CO2 Capture. The statistical
analysis on the valuation of TD Principal for refactoring
Large Files / Modules suggests that on average, each instance
requires 19.20 minutes to be refactored. The minimum value

FIGURE 4. TD principal for extract file/module.

is 14 minutes, the maximum value is 28, whereas the standard
deviation is 5.54, see Figure 4.

F. FINAL ASSESSMENT OF DESIGN DEBT PRINCIPAL
The final step of this process is straightforward in the sense
that it corresponds to the calculation of a weighted sum of
the occurrences of each design problem multiplied by the
cost to resolve each problem. To synthesize the results of
the two projects in a common formula, we first examine if
there is a statistically significant difference in the mean time
required to fix each design problem in the two projects. For
both cases (as it is also visually inspected by contrasting the
boxplots—in pairs), the differences in the two projects are
not statistically significant. Therefore, as a remediation time
for each design problem resolution, we use the average value
of the joined dataset from the two projects (9.98 minutes for
the Extract Procedure refactoring and 19.20 for the Extract
File / Module refactoring). To transform the effort required in
minutes to currency (i.e., euros) we use the average monthly
rate of the three pilot case providers (i.e., 39.44 euros per
hour). Thus, Technical Debt Design (TDD) principal can
be calculated as follows (in euros), taking into account that
the cost for applying the Extract Procedure refactoring is
6.56 euros, whereas the cost for applying the Extract File /
Module refactoring is 12.62 euros:

TDDPrincipal =
(
#longprocedure + #complexprocedure

)
∗costextractprocedure +

(
#largefile/module

+ #overcouplefile/module
)
∗ costextractfile/module

=
(
#longprocedure + #complexproceduce

)
∗ 6.56+

(
#largefile/module

+ #overcouplefile/module
)
∗ 12.62

IV. EXA2PRO TD REPAYMENT
In this section we present the employed approaches for the
automated identification ofExtract Procedure and theExtract
File/Module refactoring opportunities. The two approaches
are tailored versions of the approaches originally presented

VOLUME 9, 2021 72529



N. Nikolaidis et al.: Experience With Managing TD in Scientific Software Development Using EXA2PRO Framework

FIGURE 5. Flow chart of extract procedure opportunities.

by Charalampidou et al. [7] and Fokaefs et al. [8]; thus, they
are presented in brief.
Applying the Single Responsibility Principle for Extract-

ing Procedures: The approach that we use for splitting a
long procedure relies on the Single Responsibility Principle
(SRP) [23], which was inspired by the functional module
decomposition, introduced by De Marco [32]. In particu-
lar, we relied on the way that the SRP has been applied
by Charalampidou et al. [7], for proposing the SRP-based
Extract Method Identification (SEMI) approach. The
approach utilized the relation between fragments of code
that collaborate to complete a functionality, by assessing the
cohesion among them (i.e., using same variable or calling
the same method). Based on the above, SEMI identifies all
possible coherent sets of successive statements, by following
the process shown in Figure 5.
Decomposing Files Using an Agglomerative Clustering

Technique: The clustering algorithm that we use for the file /
module decomposition is the agglomerative algorithm, a type
of Hierarchical Clustering. In general, Hierarchical Clus-
tering seeks to build a hierarchy of clusters and is based
on the core idea of placing entities being more related to
nearby entities than to entities farther away. As such, these
algorithms connect entities to form clusters based on their
distance. A cluster can be described largely by the maximum
distance needed to connect parts of the cluster. TheAgglomer-
ative Clustering algorithm can be outlined as follows: At the
initialization step, it assigns each entity to a single cluster.
In each iteration, it merges the two clusters with the mini-
mum distance. The algorithm terminates when all entities are
contained in a single cluster. To be able to decide the actual
clusters, we must select a threshold value for the minimum
distance as a cut-off value. The hierarchy of the clusters is
usually represented by a dendro-gram. The leaves of the tree
represent the entities, the root is the final cluster and the
intermediate nodes are the actual clusters. The height of the
tree represents the different levels of the distance threshold in
which two clusters were merged.

There are plenty of methods to select the closest clusters.
We chose the Average Linkagemethod, in which the distance
between one cluster and another one is considered to be equal

FIGURE 6. The extra toolbar icons and menu options.

to the average distance from any member of one cluster to
any member of the other cluster. As for the threshold (cut-
off) value for the minimum distance, we do not define a fixed
one, but we apply the agglomerative clustering algorithm
for a range of threshold values (from 0.1 to 1.0) and we
present the results. We have observed that higher thresholds
(ranging from 0.85 to 1.0) generally produce better results
than lower ones. The distance metric we chose to use is the
Jaccard Distance, which produces decent results in software
re-modularization. To define the Jaccard Distance between
two procedures, we use the notion of entity sets. According
to this notion, the entity set of a procedure contains all
procedures (subroutines & functions) that are invoked by
the procedure, all attributes that are accessed by it and the
procedure itself. Thus, having defined the notion of entity
sets, we calculate the Jaccard Distance between two entity
sets A and B.

V. TOOL SUPPORT
The EXA2PRO TDM toolbox is released both as an Eclipse
plugin4 and as a standalone5 application. The main function-
alities of the EXA2PRO TDM toolbox (plugin version) are
presented below.
New-Load-Delete Analysis: The user of the plugin is able

to start a new analysis, load the last analysis, and delete the
analysis of a project. These options are available from the
corresponding toolbar icons and the project popup menu.
Metrics View: TheMetrics view is a table where all the cal-

culated metrics (Fan-Out, Cohesion, Cyclomatic Complexity,
and Lines of Code) are presented. In this view, there are
two options to show the file metrics or the method/function
metrics. The user can change the option through the menu
of this view or by using the icons in the toolbar, for file and
method/function metrics respectively.

4 https://github.com/nikosnikolaidis/Exa2Pro-Plugin
5https://github.com/nikosnikolaidis/Exa2Pro

72530 VOLUME 9, 2021



N. Nikolaidis et al.: Experience With Managing TD in Scientific Software Development Using EXA2PRO Framework

FIGURE 7. The metrics view.

FIGURE 8. The refactorings view.

Refactorings View: In the Refactorings view, all files
and methods/functions in need of some kind of refactoring
because of an excessive metric value are displayed. In this
view, there are four different options, one for each met-
ric. Moreover, the user can start the TD repayment process
from here, one can select a procedure or file / module in
order to start the process of finding specific opportunities for
refactorings.
Opportunities View: Once a procedure or file / module

from the refactoring view has been selected and the analysis
process is finished, the Opportunity view is populated with all
the possible refactorings. These refactorings are opportunities
for extracting methods from the designated lines yielding the
shown benefit in terms of method cohesion. For convenience,
if an opportunity is chosen by the user the specific file opens
with the corresponding lines already selected.

In addition to the above, the plugin offers a chart view
to visualise the evolution of metrics, a markers’ view to
see the suggestions as warnings / errors in the Eclipse IDE,
preferences, and help.

VI. EMPIRICAL RESULTS
In this section, we present the results of using the proposed
framework for TDM on the pilot applications of EXA2PRO.
We note that projects CO2Capture-1 and CO2Capture-2 are
different versions of the same project; however, they differ
substantially as the 2nd version adopted several performance
optimizations. For each project we record the following:

FIGURE 9. The opportunity view.

TABLE 4. Projects’ TD Identification.

• number of identified design problems, TD Principal, and
TD Interest;

• Applied refactoring opportunities;
• assessment of refactoring opportunities in two ways:
conceptual assessment (fitness of refactoring) and TD
assessment (design TD and TD Interest)

The results are organized into three subsections, based on the
steps followed to locate and mitigate inefficiencies.

A. MEASUREMENT AND IDENTIFICATION
The first step for each of the cases refers to the measurement
and identification process as described in Section III. Table 4
depicts the number of DesignDebt issues that have been iden-
tified in each case, along with the design-level TD Principal
and TD Interest in monetary terms (euros).

B. APPLIED REFACTORING OPPORTUNITIES
Upon identification, the developer is aware of the arti-
facts that suffer from excessive metric scores and consti-
tute candidates for refactorings application. For each project,
we applied the Extract Procedure and Extract File / Module
refactorings, prioritized based on the metric scores. We note
that due to limitation of resourceswe have chosen not to fix all
identified issues. In Table 5 we present the number of applied
refactorings for each project. We should note that the LQCD
project exhibits fewer opportunities as it is much smaller in
size than the rest.

C. ASSESSMENT OF APPLIED REFACTORINGS
After the application of the selected refactorings, we con-
ducted short interviews with the developers of the projects
(along with a questionnaire) for assessing the changes. Based
on collected data, we were able to assess the conceptual
and structural fitness of our refactorings (i.e., the extent to
which they made sense to the developers). Finally, we quan-
titatively analysed the effect of the changes on TD Interest.
Acknowledging that performance is a non-negotiable priority

VOLUME 9, 2021 72531



N. Nikolaidis et al.: Experience With Managing TD in Scientific Software Development Using EXA2PRO Framework

TABLE 5. Projects’ applied refactoring.

TABLE 6. Impact of refactoring on performance.

TABLE 7. Projects’ adopted refactorings.

in scientific software applications, before proceeding with the
presentation of TD results, we note that the proposed changes
have not drastically affected the performance. The aggregate
impact of all applied refactorings on the performance (per-
centage change in execution time) of each project is visible
in Table 6. The changes to the execution timewere considered
acceptable by the developers.

From the total number of refactoring opportunities identi-
fied in the projects (224), only 9 of them were noted as being
not conceptually correct. For the rest of the unaccepted refac-
torings, the developers would prefer the code in its original
form or in an alternative format, without however stating that
the refactoring was flawed. The total accepted refactorings
rate, for adoption in the final source code, is presented for
each project in Table 7.

In Table 8, for each project, we present the change of TD
Interest as a percentage. A negative percentage accounts to
a reduction in the metric score (i.e., improvement of quality
for all metrics), while a positive percentage refers to an
increase of the metric score (i.e., a deterioration of quality).
Next, we present a qualitative assessment of the refactoring
procedure through quotes captured during the interviews with
developers.
CO2Capture: First of all, we should note that during

the interview the developers explicitly mentioned that ‘‘This
is a general code base that we use for multiple projects,
so these refactorings are very beneficial’’, implying an even
greater impact on the maintainability of the affected systems.

TABLE 8. Percentage of change in metrics and TD interest due to applied
refactorings.

The application of the refactorings led to a reduction in metric
values. The change is more striking for the LCOL metric,
but it is also significant for the CC metric as well as the TD
Interest. The lines of code were slightly increased, as a result
of extracting code to separate procedures, which is reasonable
for this type of refactoring. During the 2nd meeting with the
developers (2nd round of the refactoring process), it became
evident that they were quite interested in the potential of the
applied refactorings, but caution should be exercised so as to
not hurt the performance. As it can be observed in Table 7,
all of the system metrics along with the TD Interest expe-
rienced a significant improvement (decrease). The decrease
was higher in this project since we had the opportunity of
applying more refactorings of both types (Extract File / Mod-
ule and Extract Procedure).
MetalWalls: During the interview with the developers

of this application, regarding the refactorings that were
accepted, it was brought up that ‘‘These kinds of contri-
butions make perfect sense and it can be even pushed to
the production code on the spot’’. On the other hand, for
the refactorings that were not adopted the developers noted
that ‘‘Some Extract File/Modules make less sense because
it is more practical to change only one file (in the future),
rather than searching in multiple ones, but this is more like
a habit in the HPC community’’. For this project, we can
see a similar improvement, again due to the large number of
the applied refactorings. A deterioration was observed only
for the CBF metric (by 2%) which is due to Extract Files
/ Modules refactorings introducing additional dependencies
between files/modules.

For the LQCD and KKRnano project, the developers
have not accepted the majority of the proposed refactorings
because of their programming style, as they observed that
‘‘We wouldn’t apply these changes as they don’t fit the pro-
gramming style of the specific domains’’. The LQCD appli-
cation is quite small (compared to the rest cases) and we were
able to apply only one refactoring. At a first glance, for the
corresponding developer, the recommended refactoring has
not been very appealing, due to the separation of comments
in the code. Regarding the changes to the metrics, all of
them have been improved, apart from LOC which increased
because of the extra lines required to call and initialize the
new procedure. Finally, for KKRnano, almost all metrics have
been improved or remained stable (apart from the value of
CBF, which increased as a result of the introduction of new

72532 VOLUME 9, 2021



N. Nikolaidis et al.: Experience With Managing TD in Scientific Software Development Using EXA2PRO Framework

files/modules). It is worth mentioning that the TD Interest
presented a non-negligible improvement as well.

VII. CONCLUSION
In this paper we presented a Technical Debt Manage-
ment (TDM) framework that supports the quality assurance
of scientific software applications. The paper details:
• a TD quantification at the design level: In particular,
long and non-cohesive files and procedures which are
in need of refactoring are identified through excessive
metric values. Furthermore, the TD principal associated
with each type of design problem has been estimated.

• two refactoring techniques for addressing the afore-
mentioned design problems: In particular, we updated
the SEMI approach for the decomposition of Long Pro-
cedures and we adapted the Agglomerative Clustering
Technique to decompose Large Files / Modules into
more coherent ones.

• a developed tool: (implemented both as a standalone tool
and in the form of an eclipse plugin)

• empirical evidence: on the TD Interest benefits that are
obtained by applying TD Repayment.

The exploratory application of the proposed design-level TD
refactorings on five HPC software projects revealed that
maintainability can be substantially improved in scientific
software applications. For example, the refactorings applied
on the studied applications have reduced TD interest by
21.9%, 31.5% and 4.8%, respectively. At the same time, the
application of these refactorings on the performance of the
corresponding applications was rather minimal, ranging from
a 0.4% improvement to a 0.5% deterioration in the execution
time, depending on the refactorings that have been applied.
Thus, there is sufficient evidence to support the claim that
design and code level improvements on the code-base of sci-
entific software applications can increase their level of main-
tainability without harming their performance. Furthermore,
we need to acknowledge that despite the expected difficulties
from the scientific software developers to understand all the
details of the EXA2PRO framework (i.e. the notion of the
TD principal and interest, design problems, andmetrics selec-
tion), the simplified version offered through the tool will ease
the adoption of the proposed approach. Moreover, as inter-
esting future work directions we highlight the exploitation of
other TD identification methods, such as the presence of self-
admitted technical debt (SADT), or analysis of other types
of artifacts (e.g., architectural TD). Finally, we believe that
an additional interesting future work direction will be the
fine-grained assessment of the effect of the aforementioned
refactorings on performance.

REFERENCES
[1] C. K. Birdsall and A. B. Langdon, ‘‘Plasma physics via computer simula-

tion,’’ in The AdamHilger Series on Plasma Physics. NewYork, NY, USA:
Adam Hilger, 1991.

[2] M. Schmidberger and B. Brugge, ‘‘Need of software engineering methods
for high performance computing applications,’’ in Proc. 11th Int. Symp.
Parallel Distrib. Comput., Munich, Germany, Jun. 2012, pp. 25–29.

[3] E.-M. Arvanitou, A. Ampatzoglou, N. Nikolaidis, A.-A. Tzintzira,
A. Ampatzoglou, and A. Chatzigeorgiou, ‘‘Investigating trade-offs
between portability, performance and maintainability in exascale
systems,’’ in Proc. 46th Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA),
Aug. 2020, pp. 59–63.

[4] Z. Li, P. Avgeriou, and P. Liang, ‘‘A systematic mapping study on tech-
nical debt and its management,’’ J. Syst. Softw., vol. 101, pp. 193–220,
Mar. 2015.

[5] A. Chatzigeorgiou, A. Ampatzoglou, A. Ampatzoglou, and T. Amanatidis,
‘‘Estimating the breaking point for technical debt,’’ in Proc. IEEE 7th
Int. Workshop Manag. Tech. Debt (MTD), Bremen, Germany, Oct. 2015,
pp. 53–56, doi: 10.1109/MTD.2015.7332625.

[6] R. J. Eisenberg, ‘‘A threshold based approach to technical debt,’’ ACM
SIGSOFT Softw. Eng. Notes, vol. 37, no. 2, pp. 1–6, Apr. 2012.

[7] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, A. Gkortzis, and
P. Avgeriou, ‘‘Identifying extract method refactoring opportunities based
on functional relevance,’’ IEEE Trans. Softw. Eng., vol. 43, no. 10,
pp. 954–974, Oct. 2017.

[8] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander, ‘‘Decom-
posing object-oriented class modules using an agglomerative clustering
technique,’’ in Proc. IEEE Int. Conf. Softw. Maintenance, Sep. 2009,
pp. 93–101.

[9] W. Cunningham, ‘‘The WyCash portfolio management system,’’ in Proc.
AddendumObject-Oriented Program. Syst., Lang., Appl., 1992, pp. 29–30.

[10] P. Kruchten, R. L. Nord, and I. Ozkaya, ‘‘Technical debt: From metaphor
to theory and practice,’’ IEEE Softw., vol. 29, no. 6, pp. 18–21, Nov. 2012,
doi: 10.1109/MS.2012.167.

[11] J. Yli-Huumo, A. Maglyas, and K. Smolander, ‘‘How do software develop-
ment teams manage technical debt?—An empirical study,’’ J. Syst. Softw.,
vol. 120, pp. 195–218, Oct. 2016.

[12] J. M. Conejero, R. Rodríguez-Echeverría, J. Hernández, P. J. Clemente,
C. Ortiz-Caraballo, E. Jurado, and F. Sánchez-Figueroa, ‘‘Early evaluation
of technical debt impact on maintainability,’’ J. Syst. Softw., vol. 142,
pp. 92–114, Aug. 2018.

[13] C. Seaman and Y. Guo, ‘‘Measuring and monitoring technical debt,’’ Adv.
Comput., vol. 82, pp. 25–46, Jan. 2011.

[14] Ar. Ampatzoglou, A. Ampatzoglou, P. Avgeriou, and A. Chatzigeorgiou,
‘‘A financial approach for managing interest in technical debt,’’ in Proc.
Int. Symp. Bus. Model. Softw. Design (BMSD), Milan, Italy, Jul. 2015,
pp. 117–133.

[15] Ar. Ampatzoglou, N. Mittas, A. A. Tsintzira, A. Ampatzoglou,
E. M. Arvanitou, A. Chatzigeorgiou, P. Avgeriou, and L. Angelis,
‘‘Exploring the relation between technical debt principal and interest:
An empirical approach,’’ Inf. Softw. Technol., vol. 128, Dec. 2020,
Art. no. 106391.

[16] D. Heaton and J. C. Carver, ‘‘Claims about the use of software engineering
practices in science: A systematic literature review,’’ Inf. Softw. Technol.,
vol. 67, pp. 207–219, Nov. 2015.

[17] R. Farhoodi, V. Garousi, D. Pfahl, and J. Sillito, ‘‘Development of scien-
tific software: A systematic mapping, a bibliometrics study, and a paper
repository,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 23, no. 4, pp. 463–506,
May 2013.

[18] M. T. Sletholt, J. Hannay, D. Pfahl, H. C. Benestad, and H. P. Langtangen,
‘‘A literature review of agile practices and their effects in scientific software
development,’’ in Proc. 4th Int. workshop Softw. Eng. Comput. Sci. Eng.
(SECSE), 2011, pp. 1–9.

[19] M. Fowler, K. Beck, J. Brant, W. Opdyk, and D. Roberts, Refactoring:
Improving the Design of Existing Code (Addison Wesley Object Technol-
ogy Series). Reading, MA, USA: Addison-Wesley, 1999.

[20] T. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng., vol. 2,
no. 4, pp. 308–320, Dec. 1976.

[21] E.-M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
‘‘A method for assessing class change proneness,’’ in Proc. 21st Int. Conf.
Eval. Assessment Softw. Eng., Jun. 2017, pp. 186–195.

[22] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object oriented
design,’’ IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994.

[23] R. C. Martin, Agile Software Development: Principles, Patterns and Prac-
tices. Upper Saddle River, NJ, USA: Prentice-Hall, 2003.

[24] M. Riaz, E. Mendes, and E. Tempero, ‘‘A systematic review of software
maintainability prediction and metrics,’’ in Proc. 3rd Int. Symp. Empirical
Softw. Eng. Meas., Oct. 2009, pp. 367–377.

[25] R. Marinescu, ‘‘Detection strategies: Metrics-based rules for detect-
ing design flaws,’’ in Proc. 20th IEEE Int. Conf. Softw. Maintenance,
Sep. 2004, pp. 350–359, doi: 10.1109/ICSM.2004.1357820.

VOLUME 9, 2021 72533

http://dx.doi.org/10.1109/MTD.2015.7332625
http://dx.doi.org/10.1109/MS.2012.167
http://dx.doi.org/10.1109/ICSM.2004.1357820


N. Nikolaidis et al.: Experience With Managing TD in Scientific Software Development Using EXA2PRO Framework

[26] K. A. M. Ferreira, M. A. S. Bigonha, R. S. Bigonha, L. F. O. Mendes,
and H. C. Almeida, ‘‘Identifying thresholds for object-oriented software
metrics,’’ J. Syst. Softw., vol. 85, no. 2, pp. 244–257, Feb. 2012.

[27] W. Li and S. Henry, ‘‘Object-oriented metrics that predict maintainability,’’
J. Syst. Softw., vol. 23, no. 2, pp. 111–122, Nov. 1993.

[28] A. Mori, G. Vale, M. Viggiato, J. Oliveira, E. Figueiredo, E. Cirilo,
P. Jamshidi, and C. Kastner, ‘‘Evaluating domain-specific metric thresh-
olds: An empirical study,’’ in Proc. Int. Conf. Tech. Debt, New York, NY,
USA, May 2018, pp. 41–50.

[29] G. Vale, E. Fernandes, and E. Figueiredo, ‘‘On the proposal and evalua-
tion of a benchmark-based threshold derivation method,’’ Softw. Qual. J.,
vol. 27, no. 1, pp. 275–306, Mar. 2019.

[30] D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa, R. de Mello,
B. Fonseca, M. Ribeiro, and A. Chávez, ‘‘Understanding the impact of
refactoring on smells: A longitudinal study of 23 software projects,’’
in Proc. 11th Joint Meeting Found. Softw. Eng., New York, NY, USA,
Aug. 2017, pp. 465–475.

[31] E. Murphy-Hill, C. Parnin, and A. P. Black, ‘‘How we refactor, and how
we know it,’’ in Proc. 31st Int. Conf. Softw. Eng., New York, NY, USA,
May 2009, pp. 287–297.

[32] T. DeMarco, Structured Analysis and System Specification (Yourdon Press
Computing Series). New York, NY, USA, 1979.

NIKOLAOS NIKOLAIDIS received the B.Sc.
degree in applied informatics from the Univer-
sity of Macedonia, Greece, in 2018, where he
is currently pursuing the Ph.D. degree with the
Department of Applied Informatics. He is cur-
rently employed as a Research Associate with
the Software Engineering Group, University of
Macedonia, working onmultiple research projects.
His research interests include technical debt
management, mining software repositories, high-

performance computing, and software quality assurance.

DIMITRIOS ZISIS received the B.Sc. degree in
applied informatics from the University of Mace-
donia, Greece, in 2020, where he is currently
pursuing the M.Sc. degree with the Department
of Applied Informatics. He is currently employed
as a Research Associate with the Software Engi-
neering Group, University of Macedonia, work-
ing on multiple research projects. His research
interests include software quality assurance,
technical debt management, scientific software

development, and software design.

APOSTOLOS AMPATZOGLOU received the
B.Sc. degree in information systems, in 2003,
the M.Sc. degree in computer systems, in 2005,
and the Ph.D. degree in software engineering
from the Aristotle University of Thessaloniki,
in 2012. He is currently an Assistant Professor
with the Department of Applied Informatics, Uni-
versity of Macedonia, Greece, where he carries
out research and teaching in the area of soft-
ware engineering. Before joining the University of

Macedonia, he was an Assistant Professor with the University of Groningen,
The Netherlands. He has published more than 100 articles in international
journals and conferences, and is/was involved in more than 15 research
and development ICT projects, with funding from national and interna-
tional organizations. His current research interests include technical debt
management, software maintainability, reverse engineering software quality
management, open-source software, and software design.

ALEXANDER CHATZIGEORGIOU received the
Diploma degree in electrical engineering and the
Ph.D. degree in computer science from the Aristo-
tle University of Thessaloniki, Greece, in 1996 and
2000, respectively. From 1997 to 1999, he was a
Software Designer with Intracom S. A., Greece.
He is currently a Professor of software engineering
with the Department of Applied Informatics and
the Dean of the School of Information Sciences,
University of Macedonia, Thessaloniki, Greece.

He has published more than 150 articles in international journals and con-
ferences and participated in a number of European and national research
programs. His research interests include object-oriented design, software
maintenance, technical debt, and evolution analysis. He is a Senior Associate
Editor of the Journal of Systems and Software.

DIMITRIOS SOUDRIS (Member, IEEE) received
the Diploma and Ph.D. degrees in electrical engi-
neering from the University of Patras, Patras,
Greece, in 1987 and 1992, respectively. Since
1995, he has been a Professor with the Depart-
ment of Electrical and Computer Engineering,
Democritus University of Thrace, Xanthi, Greece.
He is currently a Professor with the School of
Electrical and Computer Engineering, National
Technical University of Athens, Athens, Greece.

He has authored or coauthored more than 500 articles in international jour-
nals/conferences. He has coauthored/coedited seven Kluwer/Springer books.
He is the Leader and a Principal Investigator in research projects funded
by the Greek Government and Industry, European Commission, ENIAC-JU,
and European Space Agency. His current research interests include high-
performance computing, embedded systems, reconfigurable architectures,
reliability, and low-power VLSI design. He was a recipient of the Award
from INTEL and IBM for the EU Project LPGD 25256 and the ASP-DAC
05 and VLSI 05 Awards for EU AMDREL IST-2001-34379, as well as
several HiPEAC awards. He has served as the general/program chair for
several conferences.

72534 VOLUME 9, 2021


