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ABSTRACT Code clone detection is important for effective software maintenance. The task is more
challenging when clones are semantically similar (Type-IV) in nature, having no structural resemblance
to each other. Most existing methods use sequence similarity and/or graph isomorphism between either
Abstract Syntax Trees (AST) or Program Dependency Graphs (PDG) to detect Type-I, II and III clones.
However, they are mostly unsuccessful in detecting semantic or Type-IV clones. In this work, we propose a
novel detection framework using machine learning for automated detection of all four type of clones. The
features extracted from a pair of code blocks are combined for possible detection of a clone with respect to
a reference block. We use AST and PDG features of both code blocks to prepare labelled training samples
after fusing the two feature vectors using three different alternatives. We use six state-of-the-art classification
models including Deep Convolutional Neural Network to assess the prediction performance of our scheme.
To access the effectiveness of our framework we use seven datasets and compare its performance with five
state-of-the-art clone detectors. We also compare a large number of algorithms for code clone detection.
Comparing the performance of a large number of machine learning techniques, ANN and non-ANN, using
such features, and establishing that fusing of AST and PDG features gives competitive results using deep
learning as well as boosted tree algorithms, we find that boosted tree algorithms like XGBoost are quite
competitive in clone detection. Experimental results demonstrate that our approach outperforms existing
clone detection methods in terms of prediction accuracy.

INDEX TERMS Machine learning, code clones, semantic clones, AST, PDG, features, deep learning,
classification.

I. INTRODUCTION
In the software engineering life cycle, maintenance is the
most expensive and time-consuming phase. The task of main-
tenance is arduous usually because of inherent complexity
and poor programming practices. In a large software system,
it has been observed that often pairs of segments occurring
in different locations are functionally identical or similar.
Sloppy or even good programmers find it easy to make minor
modifications to an existing code segment to serve the cur-
rent purpose in some other part of a program or a project.
Very often programmers find sets of useful statements, called
code blocks, and copy-paste them as necessary, modifying as
per requirement to make the software development process
faster. Duplicated code blocks are popularly known as code
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clones (CC). Research has reported that 7%-23% of large
software projects are code clones [1], [2]. Many studies show
that a software system with frequent occurrence of code
clones is difficult to maintain [3]. One of the problems with
code cloning occurs when an original code block, which is
cloned, contains a bug, causing ripple effects to all cloned
blocks distributed all over the program or project. Detecting
code clones is an important and challenging task. Automatic
detection of clones not only improves the software mainte-
nance task, but also may be useful in identifying software pla-
giarism [4] and code obfuscation [5], detection of malicious
software [6], discovery of context-based inconsistencies [7],
and opportunities for code refactoring [8].

Automatic clone detection is an active area of research.
A number of efforts to detect clones effectively have
been published. Existing clone detection methods com-
monly use similarity metrics to compare fragments of codes.
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All published methods have difficulty in detecting seman-
tic clones, the most challenging types of clones. Semantic
clones are syntactically different, but functionally they pro-
duce similar outcomes. Traditional approaches are ineffective
because their similarity metrics do not capture semantics well
[9], [10]. As a result, performance of the methods becomes
fairly low in terms of assessment metrics. Machine learning
has been recently used successfully in several approaches for
automatic detection of code clones, although the amount of
work is limited. Moreover, although there are a few attempts
at using machine learning, the efforts have been limited in
addressing the issue of semantic clones for detection of code
clones.

The contributions of this paper are following.

• We present a simple formal model of the code clone
problem and its types to better understand the issues
involved.

• We explore a new way of using features from
Abstract Syntax Trees (ASTs) and ProgramDependency
Graphs (PDGs) to detect Java code clones, including
semantic clones. We believe that this attempt is the first
of its kind to use features from both ASTs and PDGs
to detect semantic code clones using machine learning.
We use the full path traversal algorithm for extracting
AST and PDG features and represent these features as
vectors.

• We propose a generalized machine learning framework
for clone detection of all four types. Special emphasis
is on detecting semantic clones, which is the most chal-
lenging type of clones to detect.

• We use state-of-the-art classification models to evaluate
the effectiveness of our proposed idea. We also compare
the performance of a large number of machine learning
techniques, ANN and non-ANN, using such features,
and establish that fusing of AST and PDG features
gives competitive results using deep learning as well as
boosted tree algorithms.

We organize the paper as follows. Section II introduces the
code clone detection problem. Prior research in the area is
highlighted in Section III. In Section IV, we propose a new
machine learning framework for detection of semantic code
clones. We evaluate and compare our proposed method and
report results in Section V. Finally, we conclude our work in
Section VI.

II. DETECTION OF CODE CLONES
Code clone detection may be performed within a single pro-
gram or project, or across programs or projects. A modular
program usually consists of a set of sub-programs ormethods.
A method is a set of executable program statements with
precisely defined starting and ending points, performing a
cohesive task. In this paper, we term it a method block.
A method block may be divided into sub-blocks, e.g., loops,
conditional statements, etc. In our work, we use the terms
method block and code block interchangeably.

Definition 1 (Block): A block B is a sequence of state-
ments, Si, i = 1, . . . ,M , comprising of programming lan-
guage specific executable statements such as loops, logical
statements and arithmetic expressions:

B =< S1, . . . SM > .

Definition 2 (Code Clones): Two code blocks Bi and Bj
constitute a code clone pair if they are similar based on some
metric:

clone(Bi,Bj) =

{
1, if sim(Bi,Bj) > θ

0, otherwise.
(1)

We measure similarity considering a set of characteristics
or features we use to describe a block. We can describe a
block simply in terms of the statements contained in it, or in
terms of other characteristics extracted from the statements
in the code, as we will see later. Bi and Bj are clones, if they
score higher than a specific threshold using a pre-specified
similarity criterion (sim).

The code clone detection problem can be defined as fol-
lows.
Definition 3 (Code Clone Detection): Given a pair of

blocks Bi and Bj, code clone detection is a boolean mapping
function f : Bi × Bj → N ∈ [1, 0], where f is an
implementation of represents the similarity function given in
Equation 1.

To detect if a pair of blocks are clones of each other, two
kinds of similarities may be considered. Blocks Bi and Bj
may be textually similar, or may functionally perform similar
tasks or the same task without being textually similar. The
first kind of clones is simple in nature, usually resulting
from the practice of copying and direct pasting. However,
the second type of similarity is difficult to define precisely.
Bellon et al. [11] identified three type of clones based on
textual similarity of the programs.
Definition 4 (Type-I: Exact Clones): Two blocks are the

exact clones of each other if they are exactly the same except
whitespaces, blanks and comments.

Let Bi and Bj be two blocks. Let Bi = < Si1, . . . , SiNi >,
and Bj = < Sj1, . . . , SjNj >. Let B

t
i = trim(Bi) where trim(.)

be a function that removeswhitespaces, blanks and comments
from the block and its statements. Thus, whitespaces that
cover an entire line are removed, as well as whitespaces
within statements. Bi and Bj are exact clones of each other if
i) |Bti | = |B

t
j |, i.e., they are both of the same length after trim-

ming, and ii) ∀k, k = 1, . . . , |Bti | S
t
ik ≡ S tjk where ≡ means

that the two statements are exactly the same, considered as
strings. The superscript t means after trimming.
Definition 5 (Type-II: Renamed Clones): Two blocks are

the renamed clones of each other if the blocks are similar
except for names of variables, identifiers, types, literals, lay-
outs, whitespaces, blanks and comments.

Let Bni and Bnj be two trimmed and normalized blocks:
Bni = norm(trim(Bi)) and Bnj = norm(trim(Bj)) where
norm(.) is a literal normalization function. Normalization
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replaces all the variables from Bi and Bj with generic variable
names, among other operations.

Formally, Bi and Bj are renamed clones if i) |Bti | = |B
t
j |,

i.e., they are both of the same length after trimming and
normalizing, and ii) ∀k, k = 1, . . . , |Bti | S

n
ik ≡ Snjk .

Definition 6 (Type-III: Gapped clones): Two copied blocks
are gapped clones if they are similar, but with modifica-
tions such as added or removed statements, and the use
of different identifiers, literals, types, whitespace, layouts
and comments. The new flexibility introduced is the addition
or removal of statements. Assume we are given two blocks
Bi and Bj, and let Bni and Bnj be their trimmed versions,
as described earlier. Two gapped sequences can be aligned
using various techniques that generate an alignment score
(ascore) for each alignment [12], [13]. The value of ascore
is obtained by considering the costs of gaps, and the costs
of character mismatches and replacements between the two
strings.
We say Bi and Bj are gapped clones of each other if

ascore(Bni ,B
n
j ) > θ for a user-defined threshold θ .

The fourth type of clones is semantic clones. Semantic
clones are the most challenging type of clones. Instead of
comparing program texts which is relatively easy to do,
semantic clones are difficult to identify as they deal with the
meaning or purpose of the blocks, without regards to textual
similarity. A real life example of semantic clones is a pair
of obfuscated blocks or programs [14], where syntax-wise
the blocks are by and large different from each other, but the
overall meanings of both are the same.
Definition 7 (Type-IV: Semantic clones): Two blocks are

semantic clones, if they are semantically similar without
being syntactically similar. In other words, two blocks Bi and
Bj are semantic clones if

semsim(Bi,Bj) = semsim(Bni ,B
n
j ) > θ, (2)

where semsim(., .) is a semantic similarity function.
The idea of semantic similarity is not easy to grasp because

it requires some level of understanding the meanings of
programs, whether formal or otherwise. The formal seman-
tics of a program or a block can be described in several
ways, the predominant ones being denotational semantics,
axiomatic semantics and operational semantics [15], [16].
Denotational semantics composes the meaning of a program
or a block by composing it from the meaning (or denotation,
a mathematical expression or function) of its components
in a bottom-up fashion. Axiomatic semantics defines the
meaning of a program or block by first defining the mean-
ings of individual commands by describing their effects on
assertions about variables that represent program states, and
then writing logical statements with them. Operational or
concrete semantics does not attach mathematical meanings
to components within a program or block, but describes how
the individual steps of a block or program take place in a
computer-based system on some abstract machine. No matter
which approach is used for describing formal semantics,
the meaning of a block or program is obtained from the

FIGURE 1. Simple example of different types of clones.

meanings ascribed to the individual components. To obtain
the semantics of a block or a program, it is initially parsed
into syntactic or structural components, and for each syntac-
tic component, its corresponding meaning is obtained, and
finally the meaning of the block is put together from these
components, following appropriate rules. Thus, we could say
two blocks Bi and Bj are semantic clones if

semsim(Bni ,B
n
j ) = semsim(JBni K, JB

n
j K), (3)

where JBK represents the semantics of a block B, obtained
using one of the means for formal semantics. In practice,
we should note that the ‘‘semantics’’ of a block may be
computed without resorting to formal semantics.

Different types of clones are illustrated with the help of a
few simple programs in Figure 1. The original code block,
in the center of the figure, swaps values of two integer vari-
ables using a temporary variable. The Type-I clone is an exact
replica of the original code block or program. In case of
Type-II, only a few of the literals are changed. The gapped
clone block is a replica of the original except that a line
has been deleted. The Type-IV clone block (top right) shows
another approach to swap two numeric variables without
using a third variable. Structurally, the code blocks are dis-
similar; however, because the purpose of both code blocks is
the same, semantically they are similar. On the other hand,
the Type-I through III clone blocks are structurally similar
although what they do are different.

III. PRIOR RESEARCH
Several methods have been proposed to detect clones of
Type-I, II and III. Interestingly, very few attempts have been
made to detect Type-IV or semantic clones. They can be
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classified as machine learning and non-machine learning
approaches. Non-machine learning methods primarily use
syntactical features of a target code pair, and compute a
similarity score to declare a piece of code as clone if the score
is above a certain threshold.

A. CLASSICAL APPROACHES
CCFinder [17] applied a rule-based transformation on the
input source text and compared token-by-token to detect
code clones. It used a suffix tree-matching algorithm, and
it was not effective in detecting Type-III or IV. NiCad [18]
was a text-based hybrid clone detection technique, which
could detect up to Type-III clones. NiCad used identification
and normalization of potential clones using longest common
subsequence matching. Yuan and Guo [4] used a count matrix
to detect code clones. The matrix is created by counting
the occurrence frequencies of every variable. The technique
could detect many hard-to-detect code clones. It constructed
and compared two bipartite graphs derived from two code
blocks. The method was limited to detecting only Type-I, II,
and III clones. Komondoor and Horwitz [19] used for the first
time the idea of Program Dependency Graphs (PDG) in clone
detection. They used a slicing technique to find isomorphic
PDG subgraphs to detect semantic as well as synthetic code
clones. Scorpio [20] was another PDG-based approach that
used incremental two-way slicing for detecting code clones,
limited to only Type-I to III. Sheneamer and Kalita [21]
proposed a hybrid clone detection technique that first used
a coarse-grained technique to improve precision and then a
fine-grained technique to improve recall. It could detect only
syntactic clones (Type-I through Type-III). SourcererCC [22]
was a token-based syntactic and semantic clone detection
method that used an optimized partial index of tokens and
filtering heuristics to achieve large-scale detection.

B. MACHINE LEARNING IN CLONE DETECTION
The methods mentioned above use a pairwise similarity
measure with respect to certain tree representations of the
programs or code blocks. However, for a large program with
multiple blocks, it is difficult to match trees pairwise. Two
similar program blocks may have similar patterns within
them; in other words similar feature signatures. Instead
of developing custom algorithms for similarity matching,
a machine learning algorithm may be used to learn pat-
terns that differentiate clones and non-clones and also among
clones of various types.We present amachine learning frame-
work to automatically detect clones in software, to detect
Types-I-III and the most complicated kind of clones, Type-IV
clones.

Previously used traditional features are often weak in
detecting semantic clones. The novel aspects of our approach
are the extraction of features from abstract syntax trees (AST)
and program dependency graphs (PDG), representation of a
pair of code fragments as a single vector, fusion of features
of individual blocks to obtain features of a pair of blocks and
the use of classification algorithms. The key benefit of this

approach is that our tool can find both syntactic and semantic
clones extremely well. Our evaluation indicates that using our
new AST and PDG features is a viable methodology, since
they improve detecting clones on a very large dataset like
IJaDataset2.0. Inmachine learning terms, a feature is simply a
pattern at a certain level–low to high–that a machine learning
algorithm extracts in the data. A deep learning method is able
to capture features at various levels in the various layers.

Deckard was a tree-based technique [23], which computed
characteristic vectors from the AST and clustered these vec-
tors using unsupervised machine learning. Wang et al. [24]
proposed a syntactic clone detectionmethod using a Bayesian
Network framework with features based on developmental
history of the code, the actual current text of the code and the
destination where the code is pasted. Yang et al. [25] used
an approach based on generalized suffix trees to detect an
initial set of clones. Since a clone detector produces many
irrelevant clones, they used an iterative process where users
marked up clones as relevant, and used this information with
TF-IDF representation to find clones that are highly relevant
to specific users. Sæbjornsen et al. [26] used a disassembler
to recover assembly code; broke up a code block into small
regions and represented small regions of normalized code as
vectors using features such as op code types, operand types,
and n-grams of various kinds; obtained locality sensitive
hashes of the small regions and produced vector represen-
tations of a code block with a sequence of hashes for the
regions; and finally computed l1-distance between pairs of
code blocks to find clones. Cesare et al. [27] detected clones
of packages, using more than 30 features such as number
of files, number of common or similar file names, sizes of
packages and package dependencies. They used a variety of
machine learning algorithms such as Naive Bayes, Multilayer
Perceptrons, Decision Trees and Random Forests.

Li et al. [28] extracted tokens from known method-level
code clones and non-clones to train a 6-layerd perceptron,
and then used the classifier to detect syntactic clones. Shalev
and Partush [29] detected similarities between code blocks by
breaking them up into smaller regions of a few lines of assem-
bly code; normalizing these code regions; obtaining small
sized MD5 hashes of the regions; creating a fixed size hash
for a code block; and then training a 4-layered perceptron
to detect if two code blocks are clones. Wei and Ming [30]
developed an end-to-end approach to detect Type IV clones,
using Long Short Term Memory (LSTMs), a special type
of RNNs. They trained their network using pairs of code
blocks labeled as clones or non-clones to learn to compute
hash codes. During testing, code blocks are compared directly
using the trained network.Wei and Li [31] used anAST-based
modified LSTM architecture that operated on trees to encode
code blocks, and then used adversarial training to learn to
detect clones. In adversarial training, vectors corresponding
to real pairs of examples are perturbed so that learning is
more robust. Saini et al. [32] used a so-called Siamese twin
neural network architecture, whose inputs are obtained by
computing features of code blocks. Examples of features
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TABLE 1. Brief summary of clone detection methods.

used are the numbers of variables declared and referenced,
maximum nesting depth, number of loops, and number of
exceptions thrown.

White el al. [33] usedRecursiveNeural Networks (RvNNs)
to obtain vector embeddings of lexical items, and used Recur-
rent Neural Networks (RNNs) with modified AST-trees to
encode code segments. Encodings of pairs of segments were
compared to determine if two blocks are clones. Given a
block of code, Tufano et al. [34] obtained four different
embeddings: identifier-, AST-, bytecode- and CFG-based.
To learn embeddings for individual terms, they used an
RNN; and for learning encodings for the entire block, they
used RvNN-based autoencoders. For CFG-based encoding,
they used a graph embedding technique. They computed
Euclidean distance among respective embeddings to classify
clones. They used Random Forests to combine the individual
classifiers’ results. A brief summary of some the approaches
is reported in Table 1.

We note that the classical algorithms reviewed earlier
in this section, mostly do not try to find Type IV clones.
However, many of the machine learning based approaches,
discussed later in the section, do. The most recent approaches
use neural networks of various kinds to classify code clones,
with various degrees of success. Some of the approaches use
basic feed-forward neural networks. A few approaches use

modified LSTMs (Long Short Term Memory), which them-
selves are a variation of RNNs (Recurrent Neural Networks),
with or without the use of RvNNs (Recursive Neural Net-
works). Others use a variety of other machine learning algo-
rithms, including Naïve Bayes, Decision Trees and Random
Forests. Some of the approaches perform end-to-end feature
extraction and classification, i.e., they do not need the fea-
tures to be decided by the designer, and do so automatically.
There is usually a trade-off between approaches that use neu-
ral networks, such as many layered feed-forward, recurrent
or recursive neural networks, compared to non-neural net-
work approaches such as Decision Trees, Random Forests or
boosted tree algorithms. Non-ANN algorithms usually need
pre-determined features, whereas ANNs can extract features
on their own. On the other hand, ANNs are likely to be slower,
taking sometimes hours or days for training. Although the
recent trend is to use specialized ANN architectures such as
RNNs or RvNNs to solve many problems, in this paper, we do
not approach with any pre-conceived notions. We compare
a large number of algorithms for code clone detection and
find that boosted tree algorithms like XGBoost are quite com-
petitive in clone detection. In particular, we extract features
from ASTs and PDG and combine the same set of features
from both original and copied codes. This fusion of AST and
PDG features works extremely well in detecting code clones
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of Type-IV in addition to all other types of clones discussed
above. The novelty of our work is in comparing the perfor-
mance of a large number of machine learning techniques,
ANN and non-ANN, using such features, and establishing
that fusing ofAST and PDG features gives competitive results
using deep learning as well as boosted tree algorithms.

Next, we discuss in details our machine learning model for
effective clone detection.

IV. A MACHINE LEARNING MODEL FOR PAIRWISE
CLONE DETECTION
A straightforward approach to determine if two code blocks
are semantically similar without necessarily being syntacti-
cally similar may proceed as follows: Trim and normalize the
two blocks as discussed earlier, obtain the formal semantics of
the two blocks using a method alluded to earlier; and, com-
pare the formal semantic representations using Equation 3.
However, tools to obtain formal semantics are not readily
available. In addition, formal semantic representations are
strings themselves, requiring additional string comparisons.
It is also unclear that formal semantic representations will add
substantially to efficient and effective code clone detection.

Code clone detection has been treated as a pairwise sim-
ilarity analysis problem, where two blocks are clones if a
given block is similar to the given reference block. However,
machine learning usually considers individual samples for
training and predicts class labels. In any common detection
problem, samples used for training and testing have either
negative or positive labels. However, in performing clone
detection, it is not enough to look at features of one code block
to decide whether it is a cloned or not cloned block of code.
We need to compare a candidate with another block, usually
called a reference block to know if the candidate is a copy of
the reference. That is why we consider a <candidate block,
reference block> pair as an individual example and assign
a label to each such pair. It is always necessary to have a
reference based on which one may decide whether a block
is cloned. Therefore, it is necessary to consider features of
both blocks. We extract relevant characteristics of the blocks
by looking at selected portions of them or other associated
structures like ASTs and PDGs; these are usually called
features in the machine learning literature. To apply machine
learning to pairwise clone detection, we use features of both
the reference and target blocks.
Definition 8 (Pairwise Learning):Given a set of N pairs of

training samples, each sample (a pair of blocks) labeled with
a clone type depending on their mutual similarity, a classi-
fication model can act as a mapping function f : X → Y ,
where X is an unknown pair of code blocks and Y is the
possible clone type predicted by the model. Training samples
are represented as feature vectors, features(< Bi,Bj >) =<
f1, f2, . . . , fM ,Ck > of size M, created by combining the
features of two different blocks (Bi,Bj) and a clone type, Ck
associated with< Bi,Bj >, forming a training sample matrix
of size N × (M + 1).

When a block is represented as a set of features, the seman-
tics of a block Bni is described as given below:

JBni K ≈< fi1, . . . fik >, (4)

where ≈ means an approximation. Thus, a block’s semantics
can be simply represented as a list of features; of course this is
not a precise representation of semantic meaning. Equation 2
can now be restated as:

semsim(Bni ,B
n
j )

= semsim(< fi1, . . . fik >,< fj1, . . . fjk >) > θ. (5)

That is, similarity between two blocks is measured by
computing similarity between the two feature based repre-
sentations.

Thus, instead of using one of the approaches to describe
the formal semantics of a program block, we use features
of PDGs for semantic representation. We use other features
obtained from ASTs as well. In our work, we additionally
combine a few so-called traditional features, as discussed
later. Next, we discuss our scheme for feature generations.

A. AST AND PDG-BASED NOVEL FEATURES FOR CLONE
DETECTION
We pre-process the blocks by trimming and normalizing as
discussed earlier. We extract basic characteristics, which we
term Traditional Features, like Lines of Code (LOC); and
numbers of keywords, variables, assignments, conditional
statements and iteration statements [35] used in a given piece
of source code. Traditional features alone are inadequate
in capturing the syntactic and semantic characteristics of a
block.

Syntactic similarity between two blocks of code is also
likely to impact upon the similarity in meanings of the blocks,
and hence we also parse the blocks into their structural com-
ponents in terms of Abstract Syntax Tree (AST). Each node
of the tree represents a construct occurring in the given source
code. Leaf nodes of the tree contain variables used in the code.
Unlike majority of published clone detection methods that
compare the two syntactic trees directly, we compute certain
characteristics or features extracted from the ASTs, which
we call syntactic features. Figure 2 shows an example AST
created by the AST Generator software we use. We traverse
the AST in post-order manner and extract only non-leaf
nodes containing programming constructs such as Variable
Declaration Statements (VDS), While Statements (WS), Cast
Expressions, Class Instances, and Method Invocations. Next,
we represent frequencies of these programming constructs as
AST features in a vector.

The PDG features can be called semantic or meaning
features. PDGsmake explicit both the data and control depen-
dencies for each operation in a program. Data dependencies
represent the relevant data flow relationships of a program.
Control dependencies represent the essential control flow
relationships. A sample PDG derived from a code block is
illustrated in Figure 3. Edges represent the order of execution
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FIGURE 2. Example of AST derived from code block [37]. MD:
MethodDeclaration IFS: IfStatement, WS: WhileStatement, CE:
ConditionalExperssion, ST: Statement.

FIGURE 3. Program dependency graph showing control and data
dependency among the statements.

of program nodes. The edge of a control flow graph can be
used to detect consecutive program nodes as code clones even
if they have no data or control dependency. Nodes represent
the lines where the corresponding elements are located in
the program. Horwitz et al. [36] show that PDGs can be
used as ‘‘adequate’’ representations of programs and prove
that if the PDGs of two graphs are isomorphic, they are
strongly equivalent, i.e., they are ‘‘programs with the same
behavior.’’ We parse the AST, created by an AST generator
(GenerateAST) further to create an implicit PDG structure
and extract features. In other words, we do not construct an
explicit PDG but extract the features we could have extracted
from an explicit PDG.We use the same post-order traversal of
the AST and find the frequencies of various dependency rela-
tionships between different constructs. We consider a total
of 12 constructs and compute 43 relationships among them
up to level three and use them as our PDG or semantic fea-
tures. For example, the feature Expr_Assign_Decl, captures
the number of times an Expression occurs, followed by an
Assignment, and then followed by a Declaration statements
in the given code.

Algorithm 1 describes the feature extraction scheme. LAST
and LPDG are the lists of pre-specified AST attributes and
PDG attributes (please refer to Supplementary material for
details). We traverse the non-leaf nodes in the post-order
sequence using PostOrderTokens and store them in
V . We avoid leaf tokens as leaf nodes in AST contain
only variables. Frequencies of AST and PDG attributes
are stored as features in a vector F . In case the AST
attribute MatchToken matches each pre-specified AST

attribute, we increase the count of that attribute. The method
DependencyFreq checks for the occurrence of the PDG
attribute LPDGi in vector V and returns the frequency of such
relationship in V . Please refer to Supplementary materials for
the details about the features extracted during the process.

Algorithm 1 AST & PDG Feature Extraction
1: INPUT : B // Target method block
2: OUTPUT : F = {fAST1 , . . . , fASTN , fPDG1 , . . . , fPDGM } //

Set of N AST andM PDG features
3: Steps :
4: T ← φ // AST root node
5: LAST = {A1 . . .AN } // List of N AST attributes
6: LPDG = {P1 . . .PM } // List ofM PDG attributes
7: T ← GenerateAST(B) //Invoking AST generator on
B

8: V ← PostOrderTokens(T ) //Store post order
sequence of non-leaf nodes in vector V

//Counting frequency of AST features
9: for i = 1 . . . |LAST | do

10: for j = 1 . . . |V| do
11: if MatchToken(Ai,Vj) then
12: fASTi = fASTi + 1
13: end if
14: end for
15: F = F ∪ fASTi
16: end for

//Counting frequency of PDG features
17: for Pi = 1 . . . |LPDG| do
18: fPDGi ← DependencyFreq(Pi,V)
19: F = F ∪ fPDGi
20: end for
21: return F

The features of PDGwe extract include dependencey infor-
mation among parts of the code. We extract data dependency
features that count the occurrence of declaration, expres-
sion, and assignment, in hierarchical ordering, as observed
in the PDG. We also extract control dependency features
that count the occurrence of the data dependency features.
Examples of such features are the number of Assignments
that come after Declarations, obtained by counting the occur-
rence of the assignments which are dependent on declara-
tions; the number of Declarations coming after Control (e.g.
i < count, for,while, if , switch, etc.), obtained by counting
the occurrence of the declarations which are dependent on
control statements; the number of times a nested iteration
occurs; the number of times a nested selection occurs; and
so on.

We combine features of ASTs and PDGs for finding syn-
tactic and semantic clones effectively since alone they may
not be sufficient. Considering the three types of features we
have discussed in this section, we now represent a block in
terms of these three types of features. Although it is not
strictly semantics any more, we say the ‘‘semantics’’ of a
trimmed and normalized code block Bni is described as given
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FIGURE 4. Share of different categories of features used.

below:

JBni K ≈< f ti1, . . . f
t
ikt | f

s
i1, . . . f

s
iks | f

m
i1 , . . . f

m
ikm > . (6)

In this equation, we denote the three sets of features
with different superscripts: t for traditional features, s for
syntactic features, and m for semantic or meaning features,
which are actually PDG based features, and separate the three
groups with vertical lines, for clear separation. In our work,
we generated a total of 100 features, combining the three
different types. The distribution of feature categories is shown
in Figure 4.

B. FUSION OF BLOCK FEATURES
The fusion of a pair of feature vectors is important to combine
the features of the candidate and refernce code blocks and
making them a single vector followed by annotation with
appropriate class labels. The concept of feature fusion is not
new and has been applied successfully in other related prob-
lem domains. The fusion of block features has been used in
various areas such as text similarity, source code plagiarism,
image processing, face detection, and entity resolution and
symmetry and object information.

Bilenko and Mooney [38] presented learnable text dis-
tance function and vector-space based measure that employs
a Support Vector Machine (SVM) for training in duplicate
records detection. They used linear combination of features
for text similarity. Oyama et al. [39] proposed a kernel based
method that used combinations of features for matching
authors and citations to determine which domain a paper
belongs to. Yasaswi et al. [40] presented an approach to
detect plagiarism in source-code using deep learning fea-
tures and character-level Recurrent Neural Network (char-
RNN). However, their approach only detects copy, partial
copy and non-copy. They constructed pairwise features by
taking the element-wise difference between individual pro-
gram feature representations for source code plagiarism.
Fu et al. [41] proposed a multiple feature fusion in a gen-
eralized subspace learning framework. It is to find a general
linear subspace in which the cumulative pairwise canonical
correlation between every pair of feature sets is maximized
after dimension normalization and subspace projection They
used multiple feature fusion using subspace learning for face

recognition. Atarashi et al. [42] used conjunction of features
for pairwise classifiers across instances. They then applied
the method using support vector machine and simple DNN.
They used linear, multiplicative, and distance combinations
for entity resolution and symmetry and object information.
Lu et at. [43] proposed a method that uses feature fusion
to represent images for face detection after feature extrac-
tion by deep convolutional neural network (DCNN) with
SVM classifier. Wang et al. [44] proposed a feature fusion
algorithm of deep learning and traditional features in image
classificationwhich fused the shallow-layer network features,
large pre-trained convolutional neural network features and
traditional image features together by using a genetic algo-
rithm. Chen et al. [45] constructed a novel CNN architecture
which contains two independent modules called ‘‘convfu-
sion’’ module and asymmetric shortcut connection block,
then fine-tuned the hyper parameters in the deep CNN in
the second stage and finally applied them to address the
problem of Automatic Target Recognition (ATR) using Syn-
thetic Aperture Radar (SAR) images. The combination of
a variety of convolution layers and pooling layers plays an
influential role in learning robust feature representations.
A summary of various techniques that uses feature fusion is
shown in Table 2.
To the best of our knowledge, there is no prior use of

feature fusion in code clone detection so far. In our work,
we combine feature vectors (Equation 6) extracted from a
pair of target and reference code blocks to create the training
dataset. We fuse the sequences of features from the two
different blocks. Although there are three types of features in
the description of a block, to simplify the notation, we rewrite
Equation 6, without distinguishing among the feature types,
as

JBni K ≈ features(Bi) =< fi1, . . . fik >, (7)

where k = kt + ks + km. Similarly,

JBnj K ≈ features(Bj) =< fj1, . . . fjk > . (8)

Given two blocks Bi and Bj, and their clone label Cl ,
the combined feature vector, features(< Bi,Bj >) can now be
represented as a fused feature vector. We fuse the two vectors
in three different ways as discussed below.

1) LINEAR COMBINATION
Weconcatenate the two feature vectors. Simple concatenation
gives rise to a fused feature vector of size 2k . Linear combi-
nation looks like follows:

features(< Bi,Bj >) =< fi1, . . . , fik , fj1 . . . , fjk > . (9)

A linear combination results in double the number of fea-
tures. Linear combination simply lists the features of both
candidate clones, giving the machine learning algorithm full
freedom to combine the features any way it wants, to com-
pute similarity. Depending on the machine learning algo-
rithm, it may from linear or non-linear combinations of these
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TABLE 2. Summary of different methods that uses feature fusion technique.

features. Since linear combination gives rise to a vector of
size 2k , to reduce the size, we experiment with alternative
approaches of multiplicative and distance fusion.

2) MULTIPLICATIVE COMBINATION
Here we combine two different feature sequences by multi-
plying the corresponding feature values:

features(< Bi,Bj >) =< fi1 ∗ fj1, . . . , fik ∗ fjk > . (10)

Multiplicative combination simplymultiplies the same fea-
ture values from the two blocks. If fik in Bi is 0 (means
particular feature not present) and fjk in Bj is 1 (present),
multiplication makes the feature value 0 for the combined
vector. Hence, in this case, it ignores the importance of fik and
fjk when considering if the block pair belongs to a particular
type of clone relationship. Similarly, if the feature values in
both the blocks are 0.5, we reduce the combined value of
the features further by making it 0.25. When features for two
vectors are multiplied component-wise and all these products
are added, and the final sum normalized, we get the cosine
distance between the two vectors. In this case, our vectors
are feature vectors of the two candidate clones. Although
we are not performing cosine distance computation directly,
we believe a machine learning algorithm may perform the
computation of a generalized version of cosine distance in
this case or something similar.

3) DISTANCE COMBINATION
Nearness, the opposite of distance, is the most obvious way
to calculate the similarity between two block features. We use
the absolute difference between two feature values to fuse the
features of a pair of blocks.

features(< Bi,Bj >)=< |fi1−fj1|, . . . , |fik−fjk | > . (11)

When pairwise absolute difference of feature values is
provided, the machine learning algorithm combines these
differences any way as it finds fit to classify the clone pairs.
In this case, the machine learning algorithm does not have
access to the original feature values, possibly making it less
flexible.

C. CLONE DETECTION FRAMEWORK
Our scheme is similar to a traditional machine learning frame-
work. We have two phases, training and testing. In train-
ing, we use labelled pairs of cloned blocks from a given
hand-curated code clone corpus. All method blocks are

detected from the given corpus using lexical and syntac-
tic analysis. We extract method blocks and perform pre-
processing, including trimming and normalization. Next,
we generate ASTs and PDGs of the blocks and extract fea-
tures from them [46]. Following Equation 6, we create a com-
plete feature vector for each block by combining traditional,
AST and PDG features.We fuse feature vectors of two blocks
by using one of the Equations 9, 10 or 11. All the above
steps are iterated for all possible pairs of blocks for creating
a training dataset for the classification model. For identifying
the possible clone type of unlabeled code blocks, we perform
the same sequence of steps to create a fused feature vector
of the two given blocks and pass it through the classifier for
prediction of the possible clone type. Figure 5 demonstrates
the work-flow of our approach.

V. EXPERIMENTAL EVALUATION
In this section, we evaluate and compare different machine
learning techniques in a unified framework to find which
technique works the best to detect all types of clones in large
datasets. In our experiments, we use only methods extracted
from Java source code as a corpus for training and testing.
However, this model is general in nature and can be extended
easily to any other high level programming language. Our
primary goal is to improve clone detection accuracy for all
types of clones with a special emphasis on semantic clone
detection. We use a number of existing classification algo-
rithms and compare the effectiveness of the proposed frame-
work with state-of-the-art detection methods based on their
reported results.

A. DATASETS
We use IJaDataset 2.0 [47], a large inter-project Java
repository containing source code from 25,000 open-source
projects, with 3 million source files, 250 million lines of
code, from SourceForge and Google Code. This benchmark
was built by mining IJaDataset for functions. The published
version of the benchmark considers 44 functions [48].

For this experiment, we consider all types of clones in
IJaDataset 2.0 that are 6 lines or 50 tokens or longer, which
is the standard minimum clone size for benchmarking [11],
[22]. There is no agreement on when a clone is no longer
syntactically similar, and many authors claim that it is also
hard to separate the Type-III and Type-IV clones in the IJa-
Dataset [47]. As a result, some prior researchers have divided
Type-III and Type-IV clones into four classes based on their
syntactic similarity [22] as follows: Very Strongly Type-III
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FIGURE 5. Workflow of the proposed clone detection framework.

TABLE 3. Brief description of our java code clone corpora.

(VST3) clones are ones that have a syntactic similarity in
the range [90% 100%), Strongly Type-III (ST3) in [70%
- 90%), Moderately Type-III in [50% - 70%) and Weakly
Type-III/Type-IV (WT3/4) in (0%-50%], where ( means
exclusive and ] means inclusive range.

A majority of existing clone datasets used in prior papers
are incomplete in nature. They usually avoid labeling seman-
tic code clones. Some of the publicly available datasets are
eclipse-ant, eclipse-jdtcore, netbeans-javadoc and j2sdk14.0-
javax-swing. Moreover, the original datasets contain small
numbers of instances of specific types, making them dif-
ficult to use for machine learning. To overcome this situ-
ation, we extract additional method blocks from the orig-
inal source codes and label them using a semi-supervised
labelling method [49]. The details of the datasets are given
in Table 3. In the table, the second column indicates how
many paired-blocks we extracted to expand the existing
datasets. ‘‘Agreement’’ refers to the probability of reliabil-
ity between observers or raters. We compute Kappa statis-
tic [50] agreement between every two observers’ decisions
using Equation 12 and take the average probability of agree-
ment between all the raters and report the same in the
Table 3:

κ =
po − pe
1− pe

, (12)

where, po is the relative observed agreement among raters and
pe is the hypothetical probability of chance agreement.

We also report, in the table, the number of labeled samples
of a particular type of clone (I, II, III or IV) present in the
dataset.

B. CLASSIFICATION MODELS
We train and test our proposed framework using fifteen clas-
sification models, starting from the popularly used Naïve
Bayes [51] model to a recently published gradient boost-
ing tree model, XGBoost (eXtreme Gradient Boosting) [52].
While selecting the various classification models, we try
to keep a balance among different learning models includ-
ing probabilistic and non-probabilistic, generative and dis-
criminative, linear and non-linear, regression, decision trees
and distance based models. We also try both traditional
and modern approaches, as well as individual and ensemble
approaches.

Naïve Bayes [51] is a simple probabilistic classifier based
on Bayes’ rule. Linear Discriminant Analysis (LDA) [53] is
commonly used as a dimensionality reduction technique in
pre-processing for pattern-classification and machine learn-
ing applications and can be used as a classifier also. Support
Vector Machine (SVM) [54] is a maximum margin classi-
fication model. LogitBoost [55] is a boosting classification
algorithm. LogitBoost and AdaBoost are close to each other
in that both perform additive logistic regression. Instance
Based Learner (IBK) [56] is similar to a k-Nearest Neighbor
algorithm. In addition, we use several tree ensemble models
including Extra Trees [57], Rotation Forest [58] coupled with
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TABLE 4. Different classification techniques used.

Principal Components Analysis (PCA), Random Forest [59]
and Random Committee [60]. Bagging [61] is an ensemble
meta-estimator that fits base classifiers each on random sub-
sets of the original dataset and then aggregates their individ-
ual predictions. We also use decision tree algorithms such
as J48 [62] and Random tree [63] for our experimentations.
Random Subspace [64] selects random subsets of the avail-
able features to be used in training the individual classifiers
in an ensemble. XGBoost [52] is a fast and accurate boosting
tree model proposed recently. At this time, any classification
task is incomplete without the use of deep learning based
classification. Deep learning models with varying configu-
rations have been successfully applied in different applica-
tion domains [65] [66]. A very commonly used model is
Convolutional Neural Network (CNN). With CNNs, it is
necessary to try many different configurations to see what
works best for the problem at hand. In Computer Vision,
where CNNs shine [66], the models are fed a 2-D array of
pixels and the neural networks perform end-to-end process-
ing. The CNN extracts progressively higher levels of features
on its own through the use of several convolution layers. The
problem of clone detection, the focus of this paper, is more
akin to problems faced in natural language processing (NLP)
because both deal with string-based entities. In NLP, CNNs
and other deep learning methods work well when the words
are first converted to embedding using a method such as
word2vec [67]. In this paper, we do not obtain embeddings for
programming language constructs and keywords; we work
with the 100 features we described earlier.

We use WekaDeeplearning4j1 to implement CNN.
It allows arbitrary-depth multi-layer network with certain
degree of flexibility in selecting types of weight initialization,
loss function, gradient descent algorithm, etc. We experi-
mented with several different architectures and we briefly
describe the one that works best. It is a simple model with
three convolutional layers stacked on top of each other. Each

1https://github.com/Waikato/wekaDeeplearning4j

FIGURE 6. Convolutional neural networks architecture for code clone
classification.

convolutional layer is followed by a max pooling layer. The
last pooling layer is followed by a fully connected layer with
ReLU activation and then a softmax layer. We arrange our
input data as a 100× 1× 1 tensor and feed into convolution
layer→ max pooling layer, and so on.

Our input is a vector of 100 features. We reshape
our input from 1-D to 3-D using the reshape function
in wekaDeeplearning4j package itself. The convolution is
applied on the input data using a convolution filter to pro-
duce a feature map. We use 10 × 1 filters. The convolution
operation is performed by sliding this filter over the input.
We move the convolution filter by 1 stride at each step. After
the convolution operation, pooling is performed to reduce the
dimensionality. Pooling is performedwith 2×2windowswith
stride 2. In the fully connected layer, the data is flattened (one
dimension) and the next layer is the output layer, which con-
sists of 4 nodes corresponding to 4 classes. The architecture
of our CNN implementation is shown in Figure 6.

The classificationmodels used in our work are summarized
in Table 4.
We represent a pair instance as a vector as explained in

section IV-B. Clones of different types are detected using one
of the classification algorithms. We compare the outcomes of
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FIGURE 7. Performance of all the candidate classifiers with different feature fusions on IJaDataset.

FIGURE 8. Performance of random forest, rotation forest, XGBoost, and CNN in six different datasets.

all the classifiers discussed above, as our main emphasis has
been on effective feature generation. Classifiers are trained
and tested using cross-validation with 10 folds. We ensure
balance between match and non-match classes in each fold
and the same as in the overall dataset.

C. EVALUATION
We generate extensive results to assess the robustness of our
proposed model in detecting semantic clones along with all
other type of clones. We experiment with a varying number
of features and with different data to show that our features
are able to achieve high detection accuracy. Due to space
limitations, we report only best performing classifiers for
most of the experiments and compare them with state-of-
the-art clone detection methods. However, for more results,

one can refer to the Supplementary materials. To generate
AST from a given block in order to extract features, we use
Eclipse Java Development Tools (JDT).

1) PERFORMANCE OF DIFFERENT CLASSIFIERS
We randomly select 20K pair instances from the IJaDataset.
To compare the three feature fusion methods and the perfor-
mance of classifiers, we run all the classifiers three times.
All the candidate models are trained and tested using 10 fold
cross-validation, where we ensure that the ratio between
match and non-match classes is the same in each fold and
the same as in the overall dataset. Figure 7 shows the com-
parison of all fifteen classifiers using linear, multiplicative,
and distance combinations respectively on IJaDataset. Exper-
imental results show that the tree ensemble methods such
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FIGURE 9. Performance of three best classifiers with syntactic and semantic features on IJaDataset dataset.

as Rotation Forest, Random Forest and XGBoost achieve
better outcomes among all the classifiers. This is because
tree ensemble approaches create many trees with samples
and random attributes. XGBoost has high performance as it
has a regularization component in the loss function to reduce
overfitting. Due to heavy computational time requirements by
CNN, we do not apply CNN on the IJaDataset.

However, we apply CNN on six different clone cor-
pora which are relatively small in size and compare the
results with the tree based ensemble methods (see Fig-
ure 8), which appears to be best performer in the large of
dataset, IJaDataset. Our observation is that Random Forests
and XGBoost are highly competitive with CNNs. Remark-
ably, the performance of CNN is relatively poor in this
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context, though we report best results produced by CNN
after considerable parameter tuning. The possible reason
of low performance may be due to relatively low dimen-
sion of the dataset used, though we use 100 features for
our experiments. Once again, the deep learning model usu-
ally extracts features automatically. In our case, we have
performed feature extraction on our own. This may be a
cause for lower performance as well. However, the per-
formance of XGBoost is vastly superior in all six small
datasets.

2) VARYING DATA SIZE AND FEATURE TYPES
We assess the importance of combining traditional, AST
and PDG features in different combinations and report the
results on IJaDataset in Figure 9. We create four subsets
of IJaDataset using 5K, 10K, 15K and 20K instances from
each class. Results produced by three best performing clas-
sifiers reported above with varying data sizes, show that
the performance of the classifiers improves substantially as
we combine both syntactic and semantic features to detect
clones. Interestingly, the performance of the classifiers using
semantic features is consistent irrespective of data sizes and
fusion methods. We also observe that a linear combination
produces better results than distance and multiplicative com-
binations for all sizes of data. Linear combination works
better in comparison to other two methods, because linear
combination keeps the original feature values unchanged,
which the other two methods do not. Multiplicative and
distance combination may hamper the classifiers because
they may find such combinations unsuitable to work with
effectively.

3) EXPERIMENTING WITH VARYING FEATURE SIZES
We perform two different kinds of experiments with varying
numbers of features, selecting equal numbers of features from
each feature type (Traditional, AST and PDG) and using
feature selection methods (Figure 11). The intention behind
such experiments is to show the significance of our proposed
features in achieving better accuracy, and that it is not by
chance. The growing learning curve (Figure 10) clearly indi-
cates that the detection accuracy improveswith the increase in
the numbers of features. We also notice that XGBoost using
multiplicative combination achieves higher performance than
others. Feature selection or extraction [68], [69] is a predomi-
nant preprocessing step in many traditional machine learning
based pattern recognition tasks, although deep learning mod-
els are end-to-end, performing automatic feature selection.
We use two feature selectionmethods namely Gain Ratio [70]
and Information Gain [71]. For each experiment, we use dif-
ferent sizes of the feature sets ranked by the feature selection
algorithms. Similar to the learning curve based on randomly
selected feature sets, judiciously selected feature sets also
show a growing trend in performance. This further establishes
the fact that our features are crucial in deriving high accuracy
detection results.

FIGURE 10. Learning Curve: performance of random and rotation forest
with varying features on IJaDataset dataset.

FIGURE 11. Performance of random forest and rotation forest with
varying features using gain ratio and InfoGain feature selection
algorithms on IJaDataset dataset.

4) PERFORMANCE COMPARISON
We compare the performance of our method with contempo-
rary clone detection methods, using their reported results on
IJaDataset. Different papers have reported a range of Preci-
sion, Recall and F-score values for different clone detection
methods. We show the maximum value of the reported range
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FIGURE 12. Performance comparison of different detection methods with
respect to different assessment metrics on IJaDataset dataset.

when we report their results. Interestingly, a majority of the
detection methods are incapable of detecting semantic clones
or Type-IV clones. Figure 12 shows comparison of our results
with the state-of-the-art detectors based on recall and F-score.
From the results, it is evident that NiCad performs better with
respect to all other methods in detecting Type-I/II, VST3,
and ST3 clones based on the F-measure metric. We report
only results of XGBoost and Random Forest with various
fusion types. Results clearly show that our method is effective
in detecting Type-IV clones along with other clone types in
comparison to the other methods.

VI. THREATS TO VALIDITY
Since we consider only granularity of method level clones,
we may miss overlapping clones in Java classes. However,
most clones in Java code fragments are represented at a
method level. To generate AST and PDG from a given block
in order to extract features, we use Eclipse Java Develop-
ment Tools (JDT). The datasets are restricted to Java-based
clones. We plan to involve other programming languages in
the future.

VII. CONCLUSION
Semantic code clone detection is a challenging task and needs
automatization, especially, because the amount and sizes
of complex software written are increasing. We propose a
machine learning framework for automatic detection of large
numbers of code clones. We use, for the first time, a com-
bination of traditional, AST and PDG features in machine
learning instead of using them for computing graph isomor-
phism. We captured the syntax of program codes using AST
program features, and the semantics of program codes using
PDG features. We use fifteen classification models to obtain
their relative performance using our features. We performed

an extensive set of experiments to show that our machine
learning framework is able to identify the technique that can
detect clones the best. Experimental results clearly indicate
that our proposed features are highly valuable in achieving
high detection accuracy.

As a part of our future endeavor, we would like to extend
our work to achieve further improvements, for example,
by using features of Java byte and assembly codes obtained
by compiling Java programs. We also intend to create token
embeddings from the datasets to use them in deep learning.
We also plan to explore various deep learning architectures
such as CNNs and RNNs.
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