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ABSTRACT Diabetes is a major public health challenge affecting more than 451 million people. Phys-
iological and experimental factors influence the accuracy of non-invasive glucose monitoring, and these
need to be overcome before replacing the finger prick method. Also, the suitable employment of machine
learning techniques can significantly improve the accuracy of glucose predictions. One aim of this study
is to use light sources with multiple wavelengths to enhance the sensitivity and selectivity of glucose
detection in an aqueous solution. Multiple wavelength measurements have the potential to compensate for
errors associated with inter- and intra-individual differences in blood and tissue components. In this study,
the transmission measurements of a custom built optical sensor are examined using 18 different wavelengths
between 410 and 940 nm. Results show a high correlation value (0.98) between glucose concentration and
transmission intensity for four wavelengths (485, 645, 860 and 940 nm). Five machine learning methods
are investigated for glucose predictions. When regression methods are used, 9% of glucose predictions fall
outside the correct range (normal, hypoglycemic or hyperglycemic). The prediction accuracy is improved by
applying classification methods on sets of data arranged into 21 classes. Data within each class corresponds
to a discrete 10 mg/dL glucose range. Classification based models outperform regression, and among them,
the support vector machine is the most successful with F1-score of 99%. Additionally, Clarke error grid
shows that 99.75% of glucose readings fall within the clinically acceptable zones. This is an important step
towards critical diagnosis during an emergency patient situation.

INDEX TERMS Classification, decision tree, diabetes, k-nearest neighbor, machine learning, neural
network, non-invasive, optimization, spectroscopy, support vector machine.

I. INTRODUCTION
Diabetes mellitus is a metabolic disorder that affects the
body’s ability to process blood glucose. Diabetic patients
monitor their blood glucose levels in an effort to keep them in
the normal range (approximately 70 to 180mg/dL, depending
on food intake) by medication, exercise, proper diet, etc.
Blood glucose levels below 70 mg/dL serve as an alert for
possible life-threatening hypoglycemia, and glucose levels
higher than 180 mg/dL can indicate clinically significant
hyperglycemia [1], [2]. Frequent monitoring of blood glucose
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levels informs diabetic patients to take appropriate action to
adjust their blood glucose levels, and thus avoid risks that are
associated with hypo and hyperglycemia.

Outside of the reference method for plasma glucose mea-
surements used in clinical laboratories, the conventional
finger-prick method using glucose strips and accompany-
ing meter is the most reliable method for patient self-
monitoring. A finger prick based glucose meter has two
essential parts: a testing strip coated with enzymes (e.g. glu-
cose oxidase (GOx), glucose dehydrogenase (GDH), and hex-
okinase (HK)), and a detector composed of electronics.When
a drop of blood is applied to a testing strip, the glucose within
the blood sample reacts with the enzymes and the resulting
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electrochemical reaction produces a current signal which is
linearly proportional to the glucose concentration [3].

Calibration methods such as simple linear regression or
Deming regression are used to convert the current signal
(in order of nano amps) generated by the meter electronics
to a digitized blood glucose value. Linear regression is a
technique used to fit a straight line to two-dimensional data.
One of the variables is the current signal from the sensor
based on standard solutions of known glucose concentration
(x), and the second variable is the reference glucose concen-
tration (y). Optimal values for the regression coefficients are
determined by minimizing the sum of the squared error in the
y direction (i.e. glucose reading) [4]. The Deming regression
fits a line for two dimensional data where measurement errors
are assumed for both x and y values. Deming’s regression
coefficients are determined by minimizing the sum of the
squared errors in both the x (i.e. current signal readings) and
y directions (i.e. glucose readings) [5].

The accuracy of blood glucose meter readings are depen-
dent on the test strip material, fabrication process, operat-
ing procedures by patients, environmental conditions, and
patient medication. The technical accuracy of a glucose meter
is determined by comparing the glucose readings from the
blood samples analyzed using a glucose meter against the
blood plasma samples analyzed by laboratory methods at
the same time [3]. It is well established that the finger-prick
method is a reliable method for accurate glucose measure-
ments. However, consistent penetration of the skin is painful,
inconvenient and carries a risk of infection. Non-invasive
glucose measurement methods have the potential to ease
glucose detection and can result in greater patient comfort
and more effective treatment options.

Research groups have been trying for decades to
develop a reliable commercial non-invasive glucose device
with long-term accuracy. However, none of the current
non-invasive devices exhibit the long-term accuracy required
to replace the finger prick methods. There is room to
improve the performance of non-invasive glucose sen-
sors for public use under regular home conditions. These
non-invasive glucose measurement techniques are based on
infrared spectroscopy [6]–[8], Raman spectroscopy [9], [10],
polarimetry [11], photoacoustic spectroscopy [12], millime-
ter wave/microwave spectroscopy [13]–[15], bio-impedance
spectroscopy [16], optical coherence tomography [17], and
hybrid techniques [18], [19].

This study focuses on the custom design of an opti-
cal glucose sensor with light sources and detectors within
the visible (VIS) and near-infrared (NIR) range. The opti-
mal wavelengths of light are analyzed to accurately predict
the concentration of glucose in solution. The intensity of the
signal transmitted through the sample is dependent on the
absorption and scattering behavior of light within the sample,
which depends on the glucose concentration in solution [20].
The use of light sources in the VIS-NIR range is preferred
over light sources in the mid-infrared (MIR) range because
of the lower absorption of VIS-NIR light by tissue and water

content in the blood. The strong absorption of MIR light by
water decreases the intensity of light that is able to penetrate
the blood and tissue samples and thus decreases the corre-
sponding intensity of light that is picked up by detectors. This
means that MIR light can only penetrate the interstitial fluid
of tissue whereas VIS-NIR light can penetrate deeper into the
tissue and interact with glucose molecules within both the
interstitial fluid and the blood vessels [20]. Since it takes time
for glucose to diffuse from blood vessels into the interstitial
fluid, there is a difference in glucose levels within the blood
vs the interstitial fluid at any given time [20]. VIS-NIR light
can interact with glucose molecules within the blood in real
time, and this increases the sensitivity of the sensor device
to read real time glucose concentration changes. Thus, this
study focuses on VIS-NIR light sources.

The low concentrations of glucose in the blood makes it
challenging to detect glucose in the body by non-invasive
methods. In addition, signals associated with other species
and tissue components may obscure the already low signal
from glucose molecules. Examples of dominant interfering
species include water content in the blood, protein (albumin
and hemoglobin), fatty tissue, etc. The variation in concen-
tration of these components between individuals makes it
challenging to detect and measure fluctuations of glucose
concentrations. A possible solution to overcome this chal-
lenge is to use a glucose sensor with multiple wavelength
sources. The light attenuation coefficient is unique for each
species and is dependent on the wavelength of the incident
light interacting with each molecule.

The VIS-NIR optical sensor that is developed for this
work supports light intensity measurements at multiple wave-
lengths. Multi-wavelength analysis helps to extract more
quantitative information from light interactions with the dif-
ferent species in aqueous glucose solutions. In this study,
the intensity data measured using 485, 645 and 860 and
940 nm light sources are used collectively to achieve a higher
sensitivity to glucose concentration.

The data analysis of intensity data and associated glucose
prediction models have an effect on the accuracy of glucose
readings for any kind of measurement device. The complex-
ity of non-invasive glucose measurements necessitates the
use of more effective algorithms capable of dealing with
higher dimensional data in order to improve the accuracy of
non-invasive glucose concentration measurements. Various
machine learning techniques are used for glucose predictions,
such as multiple linear regression [21], partial least square
regression [22], [23], principal component regression [22],
feed forward neural networks [24], [25], deep neural net-
works [26], [27], support vector machines [27], [28], random
forest regression [18], etc. These techniques are used to build
regression based models that predict continuous values of
glucose concentration. The goal of regression techniques is
to train a model to minimize the error between an actual and
predicted glucose concentration value, but it is not directly
involved in reducing the error associated with the detection of
hypoglycemia and hyperglycemia. Thus, predictionsmade by

73030 VOLUME 9, 2021



M. Shokrekhodaei et al.: Non-Invasive Glucose Monitoring Using Optical Sensor and Machine Learning Techniques

regression models may be limited in their ability to accurately
predict hyperglycemia and hypoglycemia, especially in real
life applications where various factors affect the measured
signal.

In this study, machine learning classification techniques
are compared to regression models and are used to improve
the accuracy of glucose predictions. The data samples mea-
sured at the four optimal wavelengths are subdivided into
21 classes. Each class includes a series of data samples
(∼95 samples) within a discrete 10 mg/dL glucose range, and
each class belongs to one of the three ranges: hypoglycemic,
normal, or hyperglycemic ranges. Thus, with 21 classes and
∼95 samples per class, there are ∼2,000 data points in this
study. The class labels and measured intensity data are then
used as input for classification algorithms that result in a
classifier with (1) maximum accuracy in classification of
data samples into one of the 21 classes, and (2) greatest
capability in the identification of hypoglycemia, normal or
hyperglycemia conditions for each input data point.

The rest of this paper includes Sections II-VI. In Section
II, the focus is on the design and implementation of the
VIS-NIR optical glucose sensor. The selection process of 4
optimal wavelengths from 18 original wavelengths ranging
between 410 and 940 nm is described in Section III. Machine
learning techniques and how they are used to train 5 glucose
prediction models is discussed in Section IV. Measurement
results along with a comparison between each prediction
model are provided in Section V. Finally, the results of this
research are discussed in Section VI.

II. EXPERIMENTAL DESIGN AND IMPLEMENTATION
A. GLUCOSE SENSOR EXPERIMENTAL SET UP
Fig. 1 illustrates a schematic of the optical based glu-
cose sensor. The basic components consist of (1) several
VIS-NIR light sources that are soldered on a designed PCB;
(2) a Triad AS7265x Spectroscopy Sensor (SparkFun Elec-
tronics, Colorado, USA) that serves as a photo detector in
the VIS-NIR range; (3) an optical cuvette (Starna Cells Inc.,
CA, USA) to hold the glucose sample, (4) a peristaltic fluidic
pump (PE-WX14-S21-1, REET Corp., Connecticut, USA)
to control flow rates between 2.5 µL/min and 24 mL/min;
and (5) several 3D printed parts designed and printed for the
PCB holder and platform. The cuvette, light sources and the
Triad Sensor are secured on the 3D printed platform to ensure
stability and minimize measurement error due to movement.
The peristaltic pump with stepper motor and driver auto-
matically and precisely changes the concentration of glucose
in solution. This set-up eliminates measurement errors from
manual changes in the glucose concentration and results in
corresponding continuous changes in glucose concentration
measurements. The distances between (1) the light sources
and cuvette and (2) the cuvette and detectors are adjustable,
from 1 cm to 5 cm, and this facilitates the selection of the
optimal distance to ensure maximum sensitivity to glucose
changes. The Triad AS7265x spectroscopy sensor measures

FIGURE 1. VIS-NIR based optical glucose sensor set up.

light in a range between 410 nm and 940 nm with 18 individ-
ual frequency bands (each with 20 nm full width at half max-
imum (FWHM)). A SparkFun RedBoard Qwiic (SparkFun
Electronics, Colorado, USA) is used to collect data from the
Triad. The RedBoard includes an Arduino-compatible micro-
controller that is programmed using the Arduino Integrated
Development Environment (IDE) Software written in C++
code in order to read the Triad signal at 18 wavelengths.
The measurement integration time and gain can be controlled
using command-line programming.

The peristaltic fluidic pump flows distilled water into a
glucose solution in an optical glass cuvette with a volume
of 14 mL. This lowers the glucose concentration in a con-
trolled manner. The VIS-NIR light source produces light with
a range of wavelengths between 410 nm and 940 nm, and
the light transmits through the sample. When light impinges
on the sample, physiological factors within the glucose sam-
ple absorb a portion of the light, and the rest of the light
passes through the sample. Light also scatters at different
angles from the incident light. When there is no change in
the angle, transmission of light through the sample occurs.
Absorption, scattering and transmission of light through the
sample is a function of the optical properties of the sample,
and depends on the concentration of components in solution.
Triad sensors collect the light passing through the sample
and the IDE interface software displays the data on a laptop
screen. Then, the intensity data is processed using machine
learning methods to determine glucose concentration.

B. EXPERIMENTAL METHODS
Plasma is primarily made up of water (∼92%). Blood plasma
also includes proteins (7%), inorganic salts (0.5%), and glu-
cose (0.07-0.1%) [29]. The most abundant protein, by far,
is serum albumin (3.5-5.5 g/dL or ∼60% of total plasma
protein), and the second most abundant is immunoglobulin
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G (0.7-1.6 g/dL or ∼20% of total plasma protein), followed
by transferrin and fibrinogen [29], [30]. There are two forms
of glucose known as L-glucose and D-glucose (or dextrose).
L-glucose and D-glucose have the same chemical formula
(C6H12O6), but the molecular arrangement is different. The
amount of L-glucose in a complex living organism such as
human blood is very negligible (in order of nm/dL) compared
to the amount of D-glucose (in order of mg/dL) [31], and
commercially available glucose meters rely on measuring
D-glucose levels within the blood [31].

Among the components within the plasma, water acts as
the main influencer affecting the accuracy of non-invasive
glucose measurements. Water is the largest component in
plasma, absorbs a significant percentage of the incident light,
and this reduces the sensitivity of the glucose sensor to track
changes in glucose concentration. A comparable in-vitro
solution can be made by dissolving D-glucose in water to
simulate the adverse effect of the water signal coming from
blood plasma while trying to measure glucose. Although
the in-vitro testing of this type of solution is different from
in-vivo sampling, in-vitro experiments make it possible to
measure the influence of obstructive factors, and to iden-
tify methodological or theoretical approaches to improve the
accuracy of glucose measurements. We can consider in-vitro
experiments as a first and important step to examine the
feasibility and accuracy of non-invasive glucose sensor mea-
surements before applying the sensor to a body measurement
site (e.g. ear, arm, and finger).

A 250 mg/dL glucose solution is made by dissolving
250 mg of D-Glucose (Carolina Biological Supply, NC,
USA) in 100 mL of distilled water and an initial volume
of 14 mL is poured into the cuvette. A peristaltic pump is
connected to one of the two holes on top of the cuvette and is
used to transfer distilled water into the initial volume at a rate
of 7 mL/min. The flow of water into the cuvette through the
first hole causes the same volume of solution to be pushed
out through the second hole. It takes about 3.5 minutes for
the pump to add 24 mL of distilled water into the cuvette,
and this gradually lowers the glucose concentration (from
250 to 40 mg/dL) in a controlled manner. During each test,
as the glucose concentration is diluted from 250 mg/dL to
40 mg/dL, the SparkFun Triad measures the intensity of light
that passes through the sample at 18 different wavelengths
ranging from 410 nm to 940 nm. The time interval between
each reading is about 1 second, resulting in the collection of
approximately 200 readings or data points for each test for a
specific wavelength.

After measuring the light intensity transmitted through
the glucose-distilled water solution, the same experiment is
repeated for distilled water without glucose. The entire pro-
cess described here is repeated 10 times during different days,
resulting in 10 experiments for glucose within distilled water
and 10 experiments for distilled water alone. Table 1 is an
abbreviated table that illustrates the data collected for exper-
iment 1 out of 10 for the glucose in distilled water solution.
The data in Table 1 is paired with corresponding data for the

TABLE 1. Abbreviated table illustrating the data collected for the
glucose-distilled water solution in one experiment.

distilled water solution with no glucose. Since approximately
200 intensity measurements are made for each wavelength,
and each test is repeated 10 times, there are approximately
2,000 total tests per wavelength for glucose-distilled water,
and 2,000 tests for distilled water. The measured intensity
data for the glucose-distilled water solution is normalized to
the measured intensity data for distilled water alone, thus
removing the effects of any possible factors that have an
effect on the intensity measurement results for glucose. The
data processed in this manner represents a more accurate
measurement of the glucose concentration. Note that for each
experiment, the intensity measurements for the glucose solu-
tions between 40 mg/dL and 250 mg/dL is collected for 18
wavelengths. Table 1 illustrates how the data is classified into
21 classes within the glucose concentration range between
40mg/dL and 250mg/dL. Each class includes data associated
with a glucose concentration range of 10 mg/dL.

III. IDENTIFYING OPTIMAL WAVELENGTH FOR GLUCOSE
MEASUREMENTS
The optimal wavelengths suitable for glucose prediction are
identified by analyzing the intensity data measured by the
Triad Sensor for 18 wavelengths. The intensity data is con-
verted from analog to digital form using an AS7265x inte-
grated analog to digital converter. The intensity data for each
of the 10 experiments is read by programs in Arduino IDE
software and input into MATLAB for signal processing. The
data set is filtered using a finite impulse response low pass
filter with an order of 34 and a bandwidth of 100 mHz. For
each experiment and at each wavelength, each measured data
point for distilled water is divided by each data point for the
glucose-distilled water solution, resulting in normalized data,
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in the form of a matrix similar to Table 1. The logarithmic
of the normalized data is then calculated for each of the
10 experiments.

The intensity values are averaged for each class for each
wavelength. For example, all the class 1 intensity data is
averaged for each wavelength, all the class 2 intensity data is
averaged for each, until all 21 classes are averaged for each
wavelength. This results in a reduced matrix with 21 rows
(corresponding to the average values for each class) and
18 columns (corresponding to each wavelength), and this is
done for each of the 10 experiments. Finally, the average of
all 10 matrices resulting from 10 experiments is calculated,
resulting in a single matrix with 21 rows and 18 columns. The
data associated with the final matrix is plotted as the aver-
age of the normalized intensity vs wavelengths as illustrated
in Fig. 2. The data in Fig. 2 includes 21 lines, one for each
class, and illustrates the glucose detection measurements as a
function of wavelength.

FIGURE 2. Average of the normalized spectra for different glucose
concentrations.

The Pearson correlation coefficient measures the linear
relationship between the glucose concentration values and
the average values of the normalized intensity at each wave-
length. The intensity of light measured at four wavelengths
of 485, 645, 860 and 940 nm results in the highest correlation
coefficient of 0.98. These wavelengths are the optimal wave-
lengths to detect glucose concentration molecules in aqueous
solutions.

The light intensity measured by the detector is influenced
by (1) light scattering as well as (2) light absorption by the
glucose and water solution, and both properties are dependent
on the wavelength of the incident light. A positive correlation
coefficient for the 485, 645, and 940 nm wavelengths indi-
cates that an increase in the glucose concentration leads to
an increase in the absorption of light at these wavelengths,
and this causes a decrease in the intensity of light measured
by the detectors. In this case, the values associated with the
vertical axis of Fig. 2 have a positive correlation with glu-
cose concentration and thus have positive Pearson correlation
coefficients.

An increase in the glucose concentration can lead to a
decrease in the scattering coefficient of the sample depending
on the wavelength of the incident light [32]. The scattering
coefficient has an influence on the overall deviation of the
light from its original path. An increase in the glucose con-
centration can lead to a change in the direction/angle of the
scattered light so that the light intensity received by the detec-
tor increases, and this results in a negative Pearson correlation
between the glucose concentration and the normalized light
intensity (vertical access in Fig. 2). The intensity measured by
the detector is also dependent on the position of the detector
with respect to the light source, and this can vary from one
measurement set-up to another.

Another factor that may have an effect on the sign of
the Pearson correlation coefficient is the water displacement
effect. The addition of glucose to the water solution displaces
a fraction of the absorbing water molecules and reduces the
molar concentration of the water molecules (this is known as
the water displacement effect) [33]. This increase in glucose
concentration can lead to a decrease in the total absorption
of light by the solution depending on the wavelength of the
incident light, and this may result in a higher light intensity
at the detector.

IV. GLUCOSE PREDICTION MODELS USING MACHINE
LEARNING METHODS
The glucose concentration values used in this study range
between 40 and 250mg/dL and are defined by a vector y, with
one row and 2,000 columns. The four wavelengths identified
as optimal wavelengths (485, 645 and 860 and 940 nm) are
based on Pearson correlation coefficients above 0.98 between
the glucose concentration values and the average values of the
normalized intensity at each wavelength. The light intensity
data associated with the 4 optimal wavelengths is represented
as a matrix X with 4 rows and approximately 2,000 columns.
The 2,000 columns represent 200 data points per experi-
ment, and the repeat of each experiment 10 times. Each
row includes the intensity data measured using one of the
four optimal wavelengths, and each column corresponds to a
specific glucose concentration. A standardization method is
used to transform all the values in each row of matrix X into
distribution with a mean of 0 and a standard deviation of 1.
Data standardization results in similar scale for all variables,
and this can help to increase the convergence speed of the
learning algorithms and improve the model performance.

Five different machine learning models are trained using
classification and regression methods as outlined in Figure 3,
and are compared in terms of their ability to generate accu-
rate glucose predictions. The regression methods consist of
multiple linear regression (MLR) and feed forward neu-
ral network (FFNN) and the classification methods include
k-nearest neighbor (KNN), decision tree (DT) and support
vector machine (SVM).

Inmachine learning, hyperparameters need to be optimized
to improve the model performance. In this study, a finite
set of values are specified to a given hyperparameter, and
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FIGURE 3. Block diagram representing glucose prediction approaches.

a 10-fold cross validation (10-fold CV) method is used to
find the best value for the hyperparameter. Based on the
10-fold CV, the data set is randomly split up into 10 ‘‘folds,’’
where each is roughly the same size. A machine learning
model is trained using data from the first 9 folds (the training
set), and the performance of the model is evaluated on the
10th fold (the validation set). This process is repeated until
each of the ten folds has served as a validation set, while
the rest have served as a training set. The average prediction
accuracy from the 10 different validation sets is calculated
for each value of the hyperparameter. The averaged results are
then interpreted to select the best value of the hyperparameter
that results in the best fit to the data set. This process is
repeated for each of the 5 models in Figure 3.

After the performance of each model is improved by find-
ing the optimum hyperparameter, the 5 models are compared
to identify the best model. A 5-fold cross validation method is
used to evaluate the performance of each model by measuring
the average of the prediction accuracy achieved on 5 different
validation sets. The size of each validation set is 20% of the
total data points and the remaining 80% of the data is used as
a training set. The model is evaluated using a validation set
(or unseen data) in order to estimate the ability of the trained
model to generalize from a training set to previously unseen
data.

In this work, Python is used to train and optimize the
multiple linear regression and classification models using
the Scikit Learn Library, which contains efficient tools for
machine learning. The neural network regression model is
also trained and optimized in Python using the NumPy
Library, which assists with calculations in N-dimensional
arrays.

A. GLUCOSE PREDICTION MODELS USING REGRESSION
METHODS
1) MULTIPLE LINEAR REGRESSION
The multiple linear regression (MLR) method is used to
predict the value of an output target based on a linear

combination of scaled input variables. The input variables
for this work are the measured intensity at the four optimal
wavelengths (denoted by x1, x2, x3 and x4), and the output
is the glucose concentration predicted value (denoted by ŷ).
The relationship between the input and output variables is
represented using a regression equation ŷ(i) = θ0 + θ1x1(i) +
θ2x2(i) + θ3x3(i) + θ4x4(i), where ŷ(i) refers to the glucose
predicted value for the ith data sample. The objective of
the model is to find the best parameters (θ) that will mini-
mize the mean squared error (MSE) value. The error term,
or residual, is the difference between the predicted (ŷ) and the
actual (y) glucose concentration values. The most common
methods used to find the optimal values of the parameters
that will minimize the error are (1) ordinary least squares
which uses linear algebra operations to compute the model
parameters, and (2) iterative optimization, such as gradient
descent, which gradually updates the model parameters until
the prediction error is at a minimum value. The accuracy of a
trained MLR model is evaluated using the performance met-
rics such as root mean squared error (RMSE) and coefficient
of determination (R2).
The MLR model can be an appropriate model for accurate

predictions if the following requirements are met: (1) a linear
relationship between the input and output variables exists,
(2) there is little or no multicollinearity between the input
variables, (3) there is a normal distribution of the residuals,
and (4) homoscedasticity of the residuals exists [34], [35].
Otherwise, non-linear regression is an alternative. The first
requirements can be checked by (1) creating a scatter plot of
the output vs each input variable and assessing the linearity
(1st requirement), (2) computing the correlation coefficients
between any two input variables to assess multicollinearity
(2nd requirement), and (3) creating a residual histogram to
assess the normality of the distribution (3rd requirement).
The last requirement, homoscedasticity, can be checked by
creating a scatter plot of the residuals vs predicted outputs
(4th requirement). The residuals should be symmetrically and
randomly distributed around the zero line on the plot of
residuals vs predicted outputs, and a deviating trend to the
data should not exist.

FIGURE 4. MLR residuals vs glucose predictions (left side plot) to check
for homoscedasticity, and the residual histogram (right side plot) to check
for the normality of the distribution.

Further clarification of the two last requirements is illus-
trated in Fig. 4, which includes the residual plots for theMLR
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model that is trained using the training set (80% of the total
data) and is evaluated using the test set (20% of the total data).
Fig. 4 shows that the residuals have an apparent random dis-
persion around the x-axis. Although there is not a clear trend,
it appears that the residuals associated with the higher glucose
predictions have a slight tendency to spread farther away from
the x-axis. This indicates that the relationship between the
input variables and the output target is not perfectly linear.
From the right side of the plot, the histogram of the residuals
has the shape of a normal distribution with the mean close to
zero, but the R2 value is 0.91, which indicates that there is
room to improve the accuracy of the glucose model by using
non-linear regression algorithms such as neural networks.
Neural network is generally expected to give a better fit to
the data set compared to MLR, and is evaluated in the next
sub-section.

2) FEEDFORWARD NEURAL NETWORK FOR REGRESSION
Artificial neural networks is a subset of machine learning and
uses a group of algorithms to solve both linear and non-linear
problems. There are different types of neural networks, and
each has its own structure and application, such as feed
forward neural network (FFNN), recurrent neural network
(RNN), convolutional neural network (CNN), hybrid neural
network, etc. [36], [37]. In this study, FFNN is used for the
purpose of predicting glucose concentrations.

FIGURE 5. Feedforward neural network with one hidden layer.

FFNN consists of multiple processing units called neurons
which are arranged in different layers. The network generally
consists of an input layer, one or more hidden layers and an
output layer. Each layer contains neurons which are linked
together to model the data and make a prediction at the output
layer. In this study, a neural network with one hidden layer
is trained as illustrated in Fig. 5. The input layer is denoted
as matrix X (see Fig. 5a) and includes a total of ‘m’ data

samples and four variables (x1, x2, x3, and x4). The four
variables coincide with the measured intensity at each of
the four optimal wavelengths. The number of neurons in the
hidden layer is tuned using a grid search method as explained
at the end of this subsection, and is determined to be 13. The
number of neurons at the output layer is equal to 1, and is the
predicted glucose concentration, denoted by the vector ŷ.

The weight matrix for the hidden layer and the output layer
are denoted by W[1] and W[2], respectively (see Fig. 5b).
The training of the neural network model starts with a ran-
dom initialization of the weights (W[1] and W[2]) and biases
(b1 and b2). The values for W[1] and W[1] are set between
-0.5 and 0.5, and the values for b1 and b2 are both set to zero.
The input data in the form of the matrix X is multiplied by
the weights (W[1]) that are assigned to the hidden layer. The
resulting matrix from this step is added to the b1 bias and this
creates a matrix in the hidden layer that is denoted by Z[1]

(see Fig. 5c). Then, each neuron in the hidden layer takes part
in the activation function calculations. In this network, the
hyperbolic tangent (Tanh) function is used as the activation
function for the hidden layer. The Tanh function performs
a mathematical operation on Z[1] and transforms it into the
matrix A[1] which is the output of the neurons in the hidden
layer (A[1]

= Tanh (Z[1]) = (1−e−Z[1]) / (1+e−Z[1])) as
illustrated in Fig. 5d.

Similar calculations are required at the output layer. The
output of the hidden layer A[1] is multiplied by W[2] and
added to the bias b2 to create a matrix denoted by Z[2] as
illustrated in Fig. 5e. The matrix Z[2] is then plugged into
the rectifier linear unit ReLU, an activation function for the
output layer, which results in ŷ (see Fig. 5f). The ReLU
function returns 0 if Z[2] is negative and for any positive value
of Z [2] it returns that value back (ŷ = ReLU (Z[2]) = max
(0, Z[2])).

To train the network, a back-propagation training principle
is used in conjunction with an optimization method called
‘‘mini-batch gradient descent (MBGD) with momentum’’.
The back-propagation method is used to calculate the error
associated with each neuron, and to adjust the weights (W [1]
and W[2]) and the biases (b1 and b2) using MBGD optimizer
during an iterative process. There is another parameter named
‘‘learning rate’’ that is used to control the amount of changes
in the weights and biases. The weights and biases repeatedly
update until the network converges to an acceptable error. The
error is measured using an error function that is also known
as a ‘‘cost function’’ and can be computed as described in (1).

Cost =
1
2m

m∑
i=1

(ŷ(i) − y(i))
2

(1)

where ŷ(i) and y(i) are the predicted and real values of the
glucose concentration for the ith sample, respectively, and m
is the number of samples.

The mini batch gradient descent method splits up the train-
ing set into smaller sets that are called mini batches. We use
mini batches with a size of 64, and the total number of mini
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batches (denoted by n) is calculated by dividing the number
of training samples by 64. When the algorithms run through
all the mini batches, this is called one epoch, and for every
epoch, the weights and biases are updated per each mini
batch. Therefore, there will be a total of n updates for weights
and biases at each epoch. The process of updatingweights and
biases are repeated during multiple epochs. In this work, the
number of epochs is set to 5000 since after 5000 epochs there
is no significant change in the error and thus the training can
be stopped.

The MBGD optimizer exhibits benefits over other opti-
mization algorithms such as stochastic gradient descent (SGD)
and batch gradient descent (GD). SGD uses one data point to
compute gradients, and updates the weights for every single
data point, whereas (GD) uses all data points to compute
gradients and there is a single update per all data points.
MBGD falls somewhere between SGD and GD since it uses
mini-batches (a small portion of the data points) to update
weights. This makes MBGD computationally more efficient
compared to GD, and more robust in convergence (or faster
in learning) compared to SGD.

To speed up the training process for MBGD, the momen-
tum technique is also used. In MBGD with momentum,
the weights and biases are updated using the exponentially
weighted average of the gradients (denoted by Vdw and Vdb).
The momentum parameter (denoted by beta) is usually given
a value of 0.9. The process of training the neural network
using MBGD with momentum, is shown as a flowchart
in Fig. 6.

Different methodologies have been used to optimize neural
networks, and to identify the optimal set of hyperparameters
such as ‘‘learning rate’’ and ‘‘hidden unit size,’’ as reviewed
in [38], [39]. We use a 10-fold cross validation method
and a grid search method to tune the learning rate and the
hidden unit size. The grid search is a process in which a
set of values are given to each parameter and then different
models are trained for different combinations of the two
parameters. Each trained model is then evaluated using 10
different validation sets to identify the best combination of
the two parameters that results in a more accurate prediction.
Fig. 7 illustrates a 4 × 7 optimization grid in which each
cell is the average of the root mean square error (RMSE)
achieved on 10 different validation sets. For a given learning
rate, the average value of RMSE decreases with an increase
in the size of the hidden layer units. We select 13 and
7 × 10−3 as the optimal values for the hidden unit size
and the learning rate, respectively. This combination of the
two parameters results in a neural network architecture with
the smallest possible size of hidden units and a low enough
RMSE.

B. GLUCOSE PREDICTION MODELS USING
CLASSIFICATION METHODS
The measured intensity data at four optimal wavelengths is
classified into 21 classes within the glucose concentration
range from 40 mg/dL to 250 mg/dL. The first three classes

FIGURE 6. Training flowchart for feedforward neural network based on
MBGD with momentum.

(1-3) include data points with glucose concentrations less
than 70 mg/dL (hypoglycemic range), the next 11 classes
(4-14) include data points with glucose concentrations
between 70 and 180 mg/dL (normal range), and the last
7 classes include data points for glucose concentrations
greater than 180 mg/dL (hyperglycemic range). The data
points and class labels serve as input for the machine learning
classification algorithms, and the classification models are
trained to accurately predict the class labels (identification of
the glucose range) of new cases (new measured data points).
In this study, three classification techniques, the k-nearest
neighbor, decision tree and support vector machine, are inves-
tigated. The performance of each classification model is eval-
uated using the jaccard Index, which is defined as the number
of labels predicted correctly divided by the total number of
predictions.
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FIGURE 7. Tuning hyperparameters of the neural network model using
10-fold cross validation and grid search methods.

FIGURE 8. Classification of unlabeled data points using k-nearest
neighbor classifier based on two different rules: majority voting rule and
inverse distance weighting rule.

1) K-NEAREST NEIGHBOR CLASSIFIER
K-nearest neighbor (KNN) is a method that classifies unla-
beled data points based on their similarity to other data points
in close proximity. The similarity between two data points
can be measured using different distance metrics such as
Euclidean, Minkowsky, Manhattan, city-block, and Cheby-
shev [40], [41]. Fig. 8 illustrates the idea of classifying an
unlabeled data point based on the KNN method for an arbi-
trary data set with two features (denoted by x1 and x2) and
only 2 classes (depicted by star and triangle). To classify
the unlabeled data point (depicted by a circle), the distances
between the unlabeled data point and the labeled data points
are computed. According to the distances, the number of k
observations in the data set that are nearest to the unlabeled
data point are identified. Then, a voting rule is used to classify
the unlabeled data.

Two common and simple voting rules to classify the unla-
beled data points are (1) the majority voting rule and (2)
the inverse distance weighting rule. Both voting meth-
ods are illustrated in Fig. 8. In the majority voting rule,
the most popular class labels from the k nearest neighbors
(e.g. k = 3) are identified, where the distance is calculated

based on the Euclidean formula. The votes of the k nearest
neighbors are based on the class label and each vote has
equal weight. This means there exists equality in the k nearest
neighbors in the process of voting regardless of their distance
from the unlabeled data point [42] (e.g. 2 votes for star and
1 vote for triangle). When using the majority voting rule,
it is difficult to accurately classify the unlabeled data point
if the value of k is large and if the neighbors are from mul-
tiple classes. To address this, the inverse distance weighting
rule can be used to improve the prediction accuracy of the
classifier. In this case, the votes of the k nearest neighbors
are weighed according to their distance from the unlabeled
data point. This is done by calculating the inverse of the
Euclidean distance between the unlabeled data and each of
the k nearest neighbors, and then normalizing the value with
the summation of all the inverse distances. The class with the
maximum normalized value wins the vote and the associated
label is assigned to the unlabeled data point. Thus, the closest
neighbors havemuchmore decision power in determining the
classification for the unlabeled data point.

FIGURE 9. Jaccard index vs k parameter in KNN for 10 different validation
sets.

The optimal value of k is identified using the ten-fold cross
validation method. Fig. 9 illustrates the jaccard index as a
function of k for 10 different validation sets. The average
jaccard index for all ten validation sets is plotted as a solid
line for each value of k nearest neighbors.

A value of 6 is selected as an optimal value for the number
of k nearest neighbors. The range of changes in the jaccard
index is less varied for k = 6 compared to other values of k.
It means that the KNN classifier with k= 6 can perform well
on different data sets as well as result in an acceptable pre-
diction accuracy with the average value of 0.85. By selecting
k = 6, the risk of overfitting associated with a lower value of
k (1, 2, 3) is minimized, and the robustness of the classifier
against outliers within a data set is improved.

2) DECISION TREE CLASSIFIER
The decision tree (DT) model is a tree shaped diagram that
represents all possible decision paths to classify data points,
with a structure that includes decision nodes, branches and
leaf nodes. A decision node represents a condition that is
applied to an attribute, a branch corresponds to the result
of a condition on the attribute, and a leaf node (or terminal
node) represents a class label as the final prediction. Based
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on our data, there are four attributes (x1, x2, x3, and x4) that
correspond to the intensity data measured at the four optimal
wavelengths.

FIGURE 10. Decision tree classification.

The decision tree in Fig. 10 is used to illustrate the data
classification process. The top node in the decision tree repre-
sents the entire data set S1 which is partitioned to create more
nodes and leaves. The data set S1 is partitioned into S2 and
S3 based on a condition that is applied on an attribute, such
as x1>0.4, where 0.4 is an intensity value for the attribute x1.
Attribute conditions need to be evaluated to identify the best
condition. An optimal attribute condition is one that divides
a single node into two nodes that are as pure as possible. The
purity of a node can be measured by computing the entropy
of the data set S within that node [43] as defined in (2).

Entropy(S) = −
c∑
i=1

pi log2(pi) (2)

where pi is the probability of data points that belong to the
ith class and are within the subset S, and c is the total number
of classes. The purest node has an entropy equal to 0 and this
will occur if all of the data points within the node all belong
to the same class. The maximum entropy value is dependent
on the value of c, and a node with a diverse class label
distribution has the highest impurity or maximum entropy.
Entropy measures the purity of a single node, and to select
the best attribute, the purity of the entire split needs to be
computed using metrics such as Information Gain. Informa-
tion Gain is the entropy before the split minus the weighted
entropy after the split. The weighted entropy represents the
entropy for each node multiplied by a proportional factor
based on the number of data points associated with each node.
Fig. 10 includes the information gain calculations for the split
based on the attribute condition x1>0.4.

Among all possible attribute conditions, the best attribute
is the one with the highest information gain. This attribute is

associated with a split in the dataset that results in an overall
decrease in entropy.

The process of splitting a node continues until it reaches
a stopping criterion. Examples of these criteria are when
the entropy of a node is less than a pre-specified threshold,
or when the depth of a tree reaches a pre-specified level.
When this occurs, the nodes become leaves, or terminal nodes
of a tree. It is possible that leaf nodes include a subset of
data points with different class labels. When this occurs,
the predominant class label in the subset is identified and is
represented as the class label predicted by the leaf node.

The predictive performance of a DT model also depends
on the DT hyperparameter values. These include (1) the
maximum depth of a tree, denoted as max_depth, (2) the min-
imum number of samples required to split a decision node,
denoted as min_samples_split, and (3) the maximum number
of leaves in a tree, denoted as max_leaf_nodes [44]. These
hyperparameters restrict the depth and width of a tree, and
thus prevent the tree from extending beyond a certain level
of complexity. More importantly, they improve the general-
izability of the DT classifier to make an accurate prediction
based on the test data.

TABLE 2. Hyperparameter tuning for decision tree using the results of
10-fold cross validation.

The three hyperparameters for the decision tree classifier
are included in Table 2, along with a list of test values. The
decision tree classifier is built for each possible combination
of the three hyperparameter values, and is evaluated using the
10-fold CV method. The assessment of the prediction accu-
racy for each classifier is computed by averaging the values of
the jaccard index for the 10 validation sets. The Pearson corre-
lation between each possible hyperparameter and the average
jaccard index is also calculated. A max_leaf_node resulting
in the highest correlation coefficient of 0.7 has a significant
impact on the prediction accuracy of the DT classifier. Based
on the results in Table 2, a prediction accuracy of more than
75% occurs when the min_sample_split is not more than 10,
the max_depth is at least 10, and the max-leaf-node is at least
200. By zooming in on these hyperparameter critical limits,
the optimal values for the min_sample_split, max_depth, and
max_leaf_node parameters are determined to be 8, 12, and
210, respectively. These values help to ensure a DT classifier
with a relatively small prediction error for both the training
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sets and the validation sets while limiting the complexity of
the DT classifier.

3) SUPPORT VECTOR MACHINE CLASSIFIER
Support vector machine (SVM) algorithms classify data by
mapping the data into high dimensional feature space and by
finding a separating hyperplane (or decision boundary) that
partitions the samples into different classes. SVM algorithms
use a kernel function such as linear, polynomial, sigmoid, and
radial basis function (RBF) to create a decision boundary.
In this study, RBF is used as the kernel function due to its pop-
ularity as an effective kernel since it allows any shape associ-
atedwith a decision boundary tomake the distinction between
different classes [45]. The two hyperparameters associated
with the SVM classifier are (1) the kernel scale parameter
denoted by γ (with values between 10−6 and 102), and (2) the
regularization parameter denoted by C (with values between
10−2 and 106).
Increasing the value of C increases the risk for overfitting,

which means that the classifier model cannot generalize from
the training set to previously unseen data (test set). When
overfitting, the classification model fits the training set per-
fectly, but has a poor fit on the test set, and this results in
an unreliable prediction of class labels for the previously
unseen data. On the other hand, lowering the value of C
leads to more regularization which means that a more simple
decision function is applied on the training set. When the
model is highly regularized, there is a risk of underfitting.
When underfitting, the classification model is not fitting well
to the training set and performs poorly on the test set [46].

Increasing the value of γ leads to a greater curvature of
the decision boundary (or separating hyperplane) and this
increases the possibility of overfitting. Whereas, when the
decision boundary is nearly linear (low curvature and small
values of γ ), the SVM model is simplified, resulting in a
greater possibility of underfitting. Thus, when γ is large,
the prediction accuracy on a test set can be improved by
decreasing the value of C (because decreasing the value of
C minimizes the risk of overfitting). Likewise, for very small
values of γ , the prediction accuracy on the test set can be
improved by increasing the value of C (because increasing
the value of C minimizes the risk of underfitting) [46]. The
optimization of C and γ can be visualized by examining the
results in Fig. 11.

The optimal value of C and γ are identified using the
grid search and 10-fold cross validation methods from the
6 × 6 optimization grid as illustrated in Fig. 11. Each cell
represents the average of the ten jaccard indexes achieved on
the validation sets (Fig. 11 (a)) and training sets (Fig. 11 (b)).
The values of C = 100 and γ = 1 are identified as optimal
values to ensure that a decision function is appropriately fitted
on the training set and overfitting or underfitting is avoided
on the training set. This combination of C and γ results in an
accurate classification of data points within both the training
and validation sets without adding unnecessary complexity to
the SVM classifier.

FIGURE 11. Average of ten jaccard indexes achieved on the (a) validation
sets and (b) training sets for each combination of C and γ .

V. RESULTS
As described in section IV, hyperparameter tuning is neces-
sary to optimize the performance of each model and improve
the model’s ability to generalize to unseen data. The focus
of this section is to select the model that is best suited for
the prediction of glucose concentrations by evaluating the
predictive performance of each model using the 5-fold CV
method.

A. EVALUATING THE ACCURACY OF GLUCOSE
PREDICTION MODELS USING F1-SCORE AND
CONFUSION MATRIX
Figure 12(a) illustrates the evaluation of the SVM classifier
for one out of the five validation sets using the confusion
matrix. The confusion matrix represents the actual class
labels vs the predicted labels and is used to visualize the
performance of the classifier. If an element in row i and
column j of a confusion matrix is denoted by nij, then nij is the
number of data samples that belong to ith class and predicted
to be in jth class. Thus, each element on the main diagonal of
the confusion matrix counts the number of data samples that
are correctly classified.

The confusion matrix in Fig. 12(a) with 21 classes is trans-
formed into a smaller matrix and reclassified into 3 classes
as illustrated in Fig. 12 (b). Each of the three classes con-
tains data samples that fall into one of the glycemic ranges:
hypoglycemic, normal, or hyperglycemic. As illustrated
in Fig. 12(a), the data samples within the first three classes are
associated with the glucose concentrations between 40 and
70 mg/dL, and this range of glucose serves as an alert
for hypoglycemia. By merging the data samples within the
first three classes, we create a single class containing data
samples that fall in the hypoglycemic range (the yellow
cell in Fig.12 (b)). Merging the last 7 classes in Fig. 12(a)
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FIGURE 12. (a) The confusion matrix resulting from the SVM classifier
that is evaluated using one of the validation sets (b) Actual vs predicted
glucose within hypoglycemic, normal, and hyperglycemic ranges, and
(c) average of 5 matrices resulting from the 5 validation sets.

results in a single class that contains data samples asso-
ciated with high levels of glucose concentrations between
180 and 250 mg/dL which are representative of cases with
hyperglycemia (the red cell in Fig. 12 (b)). A class for the
normal glucose range between 70 and 180 mg/dL consists
of the reclassification of 11 classes into one (the green cell
in Fig. 12 (b)).

The matrix in Fig.12 (b) helps visualize the accuracy of
data classification for the hypoglycemic, normal and hyper-
glycemic ranges. Since there are 5 different validation sets,
the average of 5 matrices resulting from the 5 validation sets
is computed to create a single matrix labeled as Fig. 12(c).
The average value for each cell of this matrix is rounded
to the nearest integer. The F1-score is used to measure the
accuracy of glucose predictions for each of the three classes
(class(i), i = 1, 2, or 3), and is defined as the weighted
average of the precision and recall for each class using the
formula in (3).

Pr ecision(class(i)) = nii

/
c∑
j=1

nji

Recall(class(i)) = nii

/
c∑
j=1

nij

F1_score(class(i)) = 2×
Pr ecision× Recall
Pr ecision+ Recall

(3)

where nij is the number of samples that belong to ith class
and are predicted to be in jth class, and c is the total number
of classes. Based on Fig. 12 (c), the value of c is 3, which
is representative of the three glucose ranges (or classes):
hypoglycemic, normal, and hyperglycemic.

The other two classifiers, DT and KNN, are evaluated in a
similar fashion, resulting in a single matrix for each classifier,
similar to the one in Fig.12 (c). The classifier predicts a dis-
crete range of glucose concentrations, whereas the regression

FIGURE 13. Visualization of the accuracy of glucose predictions in the
hypoglycemic, normal, and hyperglycemic ranges when using (a) MLR,
(b) FFNN, (c) DT, (d) KNN, (e) SVM based models, and (f) a bar graph
comparing the different models based on the average of the F1-scores.

model predicts continuous values of glucose concentrations.
Thus, the comparison of the classifier models to the regres-
sion models requires that every continuous prediction value
from the regression models be converted to a discrete range
(hypoglycemic, normal, or hyperglycemic). A matrix similar
to the one in Fig. 12(c) is created for each regression model,
as shown in Fig. 13. The confusion matrices resulting for the
five different models along with an F1-score for each of the
three classes are shown in Fig. 13(a) through (e). A bar graph
in Fig. 13(f) compares the different models based on the aver-
age F1-scores. Classifiers demonstrate a higher capacity for
accuracy and the ability to identify the hypoglycemia, normal
and hyperglycemia conditions. Among the classifiers, SVM,
with an average F1-score of 0.99, yields a better performance
compared to the other prediction models. This indicates that
the SVM classifier is able to predict the hypoglycemic and
hyperglycemic ranges with the highest degree of accuracy.

B. EVALUATING THE ACCURACY OF GLUCOSE
PREDICTION MODELS USING CLARKE ERROR
GRID ANALYSIS
The clinical accuracy of the glucose predictions is usually
evaluated using Clarke error grid analysis (EGA). Clarke
EGA evaluates continuous prediction values against refer-
ence values and places them into zones for clinical treatment.

The prediction outputs from the regression models (mul-
tiple linear regression and feed forward neural network)
are a series of continuous values for glucose concentration,
whereas the prediction outputs from the classification mod-
els (k-nearest neighbor, decision tree, and support vector
machine) consist of class labels that indicate a particular
range of glucose concentrations. Thus, the class labels for the
latter must first be converted to continuous values. A glucose
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FIGURE 14. Conversion of class labels to continuous glucose
concentration values.

value must be assigned to an actual class label and to a
predicted class label for each sample in a validation set. The
conversion of class labels to continuous values is carried out
in a way that results in a maximum distance between the
actual and predicted glucose concentration values based on
the maximum and minimum concentrations associated with
each class. For example, a data point that consists of an actual
class label of 2 and a predicted class label of 1 is converted
to 60 mg/dL concentration for the actual label and 40 mg/dL
for the predicted label, respectively. This method re-classifies
each data point to a concentration value based on a worst-case
scenario.

The Clarke error grid includes 5 zones, identified as zones
A-E, depending on glucose concentration prediction accu-
racy. A glucose prediction point will fall in zone A if a
predicted value of glucose concentration is within 20% of
the actual glucose level. Thus, the recommended treatment
will be appropriate for the patient. Glucose predictions falling
in zone B differ from the glucose reference levels by more
than 20%, but the error would result in a clinically acceptable
treatment for the patient. Glucose readings that fall in zone C
are associated with a level of error that leads to unnecessary
treatment. Glucose readings that fall in zone D include a
level of error that may result in a failure in the detection and
treatment of hypoglycemia and/or hyperglycemia. The worst
case is when a prediction value falls in zone E since this level
of error leads to a treatment that is opposite to what is actually
required for the patient [1], [20]. The results of the Clarke
EGA are included in Fig. 15 and quantifies the accuracy of
each of the five prediction models.

The percentage of predictions falling in zone D (the zone
of failure to detect) is the lowest (0.25%) for the SVM and
KNN classifier models (see Fig. 15(e)). Among these two
classifiers, SVM results in the highest agreement between the
reference and predicted glucose level since 97.5% of glucose
predictions fall within zone A (clinically accurate) and 2.25%
fall within zone B (clinically acceptable).

VI. DISCUSSION
A VIS-NIR optical device is developed to measure the inten-
sity of light transmitted through aqueous glucose solutions

FIGURE 15. Clarke EGA of the glucose predictions when using (a) MLR,
(b) FFNN, (c) DT, (d) KNN, (e) SVM based model, and (e) the Zone D bar
graph representation of all 5 models.

using light sources between 410 and 940 nm. The use of
multi-wavelength measurements and analysis extracts more
quantitative information about the glucose concentration in
solution, and improves the accuracy of non-invasive predic-
tion of glucose values. In this study, four distinct wavelengths,
485, 645, 860 and 940 nm, result in a higher correla-
tion between predicted and actual glucose concentration
values.

A. GLUCOSE PREDICTION ACCURACY RESULTS FOR THE
SOLUTION OF GLUCOSE AND WATER
Glucose prediction models using regression and classifica-
tion models yield promising results. The regression models,
MLR and FFNN, predict continuous glucose concentration
values based on measured data, whereas classification mod-
els, KNN, SVM and DT, predict a class label. A class label
encompasses a discrete 10 mg/dL glucose range. Identifying
the best values of hyperparameters helps to optimize each
model until it yields the most accurate prediction score. The
performance of each model is evaluated using the 5-fold CV
method, and the accuracy results obtained from 5 validation
sets are compared in Table 3.

The FFNN regression model with an R-squared value
of 0.96 and a RMSE of 11.1 mg/dL outperforms the MLR
model. This is not surprising since the neural network model
is able to learn complex non-linear relationships between
its input and output values. Regression algorithms aim to
minimize the error between actual and predicted glucose con-
centration values, but are not directly involved in minimizing
the error in the prediction of hypo or hyperglycemia. Thus,
it is possible for a regression model to make a prediction
that erroneously identifies a value within the hypo or hyper-
glycemic ranges.
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TABLE 3. The results obtained from 5-fold cross validation method for
five glucose prediction models that are used to predict glucose within
water.

On the other hand, classification algorithms learn how
to classify data samples into the normal, hypo and hyper-
glycemic ranges. The prediction output of a classification
model (or classifier) is a discrete glucose range, in compar-
ison to the regression model that predicts continuous glu-
cose concentration values. When the classifier predicts a
correct glucose concentration range, the actual glucose con-
centration value lies somewhere within the predicted range.
The difference between the highest and lowest value is the
width of the range. The width of the range will depend
on the number of classes selected for the entire range of
data samples. In this study, data samples are grouped into
21 classes. Each class includes samples that correspond to
a discrete 10 mg/dL glucose range, and each class falls
into one of the glycemic ranges (normal, hypo or hyper-
glycemic). For example, the first class (class1) includes sam-
ples associated with a glucose concentration range between
40 and 50 mg/dL, and this range is associated with the hypo-
glycemic range. Likewise, the last class (class 21) includes
samples that are associated with a glucose concentration
range between 240 and 250 mg/dL, and this range lies within
the hyperglycemic range. The partitioning of data samples
into 21 classes enables the use of classification algorithms
that have the ability to classify a new data sample into the
correct glucose range. Thus, there is a high probability that
a glucose prediction will fall within the glycemic range that
contains the actual glucose value.

Table 3 includes a summary of the analysis of all five
models. The classification models are associated with the
highest F1-scores compared to regression models, and out-
perform the MLR model, which is the model commonly
used for glucose predictions. A higher F1-score in the case
of classifiers indicates an ability to correctly distinguish
between the three glycemic ranges: hypoglycemic, normal,
and hyperglycemic. Classifiers result in a lower percentage
of glucose reading in zone D of the Clarke error grid, and
this indicates a lower expectation of incorrectly detecting
and treating hypoglycemia or hyperglycemia. It is very cru-
cial to predict glucose values in the correct glycemic range,
so diabetes patients can take appropriate actions to prevent
life-threatening consequences.

The best glucose model is the one with (1) the lowest
RMSE and (2) the lowest error in the prediction of hypo and
hyperglycemia. The FFNN model satisfies the first require-
ment since it has the lowest RMSE value of 11.1 mg/dL,
but this model does not have the highest F1-score. The
SVM model has the highest F1 score with a value of 0.99,
it has the lowest percentage of glucose readings within zone
D of the Clarke error grid (0.25%), and an RMSE value
of 12.3 mg/dL, which is comparable to the RMSE of the
FFNN model (11.1 mg/dL). It makes sense to sacrifice the
RMSE slightly in order to achieve this level of accuracy in
the diagnosis of hypoglycemia and hyperglycemia. The KNN
classifier has the second best F1-score and it coincides with
the SVMmodel in terms of the percentage of readings that fall
in zone D of the Clarke error grid (0.25%). The DT classifier
rates higher than the FFNN model in terms of its ability to
distinguish between different glycemic ranges with an F1-
score of 0.97 vs 0.91, although the RMSE of the DT model
(15 mg/dL) is much greater than the value for the FFNN
model (11.1 mg/dL). Among all five models, the MLRmodel
has the lowest F1-score, the highest percentage of data falling
in zoneD of the Clarke error grid (6%), and the highest RMSE
(16.2%). TheMLRmodelmakes predictions based on a linear
relationship between the input parameters and the glucose
concentration, whereas the other models rely on non-linear
relationships.

B. VALIDATION OF PROPOSED METHODOLOGIES USING
GLUCOSE AND ALBUMIN PBS SOLUTION
This paper presents basic systematic methods for accurately
measuring glucose in water. All experiments in this prelimi-
nary work are applied to the measurements of glucose within
a solution that assimilates the composition of human blood
plasma. The three main components in plasma are water,
protein (consisting mostly of albumin), and salt. A plasma
sample can be mimicked by dissolving D-glucose in an
aqueous solution containing physiological amounts of albu-
min and sodium chloride. In this work, 15 salt containing
solutions are prepared with different albumin protein levels
(4, 4.5, and 5 g/dL) by adding bovine serum albumin frac-
tion V (Grainger Industrial Supply, USA) to a phosphate
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buffered saline (PBS) solution with a pH of 7.4 (Grainger
Industrial Supply, USA). A pH of 7.4 is close to the physi-
ological pH value of human blood, and the dissolved albu-
min levels are within the corresponding physiological ranges
(3.5-5.5 g/dL).

Fifteen experiments are set up to control the glucose con-
centration as it is reduced from 250 mg/dL to 40 mg/dL.
The intensity data of the transmitted light at four optimal
wavelengths (485, 645, 860, and 940 nm) are collected and
are used to analyze the glucose with albumin PBS solutions.
A SVM model is created and optimized using intensity data
measured at the 4 optimal wavelengths in order to accurately
predict the glucose concentration. The performance of the
SVM model is evaluated using a 5-fold CV method which
results in a RMSE of 12.5 mg/dL and an average F1-score
of 0.99. Based on the Clarke error grid analysis, 99.55% of
the glucose readings fall in zones A and B, and 0.45% in
zone D.

TABLE 4. The results obtained from 5-fold cross validation method for the
SVM model that is used to predict glucose within albumin PBS solutions.

A comparison of the accuracy in the glucose predictions
between the two types of solutions used in this study are
shown in Tables 3 and 4 for the glucose with water compared
to the glucose with albumin in the PBS solution, respectively.
There is a slight increase in both the RMSE value and the
percentage of readings in zone D for the predictions of glu-
cose in the PBS solutions with albumin. It is expected that
different levels of albumin in the PBS solutions can affect
measured intensity, and thus affect the accuracy of glucose
reading. Multiple wavelengths analysis using SVM helps to
minimize the error that can result from different levels of
albumin so that we see negligible changes in the accuracy
results when we compare results in Table 3 (for glucose
in water solution) and Table 4 (for glucose and albumin
PBS solution).

In-vitro experiments performed in this study can be con-
sidered as a first and important step to demonstrate the fea-
sibility of non-invasive glucose measurements of glucose in
the presence of PBS solution with albumin. The next step is
to test the sensor and methodologies on a body measurement
site (e.g. finger). In-vivo experiments will require a change
in the design of the VIS-NIR sensor so that it is miniaturized
enough to be compatible as a wearable type sensor. Especially
important in this work is to examine the relationship between
in-vitro and in-vivo glucose detection by performing clinical

studies and comparing the data from in-vivo to corresponding
in-vitro solutions.
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