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ABSTRACT Thermal design for electronic devices approached through the solution analysis of the Inverse
Heat Transfer Problem (IHTP) has not been extensively explored. This article proposes an alternative
strategy and a contrasting approach for the optimal inverse parameters’ estimation of heat transfer systems,
particularly in designing heat sinks. A framework to tackle a RectangularMicrochannel Heat Sink (RMCHS)
design modeled by the Entropy Generation Minimization (EGM) criterion is developed. This framework
comprises two strategies to be compared. The serial proposal works sequentially depending on the param-
eters’ sensitivity into the RMCHS model, backpropagating estimated parameters to all processes. The
parallel strategy processes all parameters simultaneously. Instead of focusing efforts on a typical optimization
process, a sequential procedure takes advantage of the most influential parameters in the heat sink model
and the excellent exploration-exploitation rate of Metaheuristic Optimization Algorithms (MOAs). The most
sensitive design variables are prioritized in the serial strategy. The implemented estimation-optimization
strategies are addressed through an IHTP’s inverse analysis. Thereby, global MOAs are implemented to
solve the specific application and become an alternative to the gradient-based methods when their efficiency
and effectiveness are at stake. MOAs show overall relative errors related to minimal entropy generation
rate inferior to 0.07% for data with 30 dB of SNR and less than 7.63% of error for data with 10 dB of
SNR compared with the Levenberg-Marquardt method. Numerical results show that serial strategy provided
a stable and reliable design solution even with contaminated data, obtaining better performances than the
multiparametric strategy. Additionally, parametric and nonparametric statistical tests were used to validate
the appropriate optimization algorithm and the most reliable strategy. The statistical tests confirmed the
optimal-inverse problem estimation and optimization improvement by combining the serial strategy and
analyzed MOAs to design the RMCHS based on the EGM criterion.

INDEX TERMS Inverse heat transfer problem, Levenberg-Marquardt, metaheuristics, optimization algo-
rithms, Rectangular Microchannel Heat Sink.

I. INTRODUCTION
The optimal thermal management for electronic devices
is still a relevant topic for the scientific and engineering

The associate editor coordinating the review of this manuscript and
approving it for publication was Shunfeng Cheng.

communities since Integrated Circuits appeared and their
scale of integration regularly increases [1]. In this context,
the RectangularMicrochannel Heat Sink (RMCHS) proposed
by Tuckerman and Pease [2] is a common and suitable solu-
tion to address this problem when high power dissipation is
involved [3]–[7]. Sometimes the selection of this mechanical

71328 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-0885-4476
https://orcid.org/0000-0003-4494-7864
https://orcid.org/0000-0003-1730-3748
https://orcid.org/0000-0003-4317-0248
https://orcid.org/0000-0002-6507-1809


D. Matajira-Rueda et al.: Optimization-Based Strategies for Optimal Inverse Parameters Estimation

component is made arbitrarily by practitioners; other times,
the RMCHS is designed for a particular device. In any case,
a complimentary design stage is included for revising and
refining the overall implementation, but it is mostly limited
to the system thermal behavior. So, there is not guarantee
that the optimal performance, according to the Second Law
of thermodynamics, is achieved. Recall that, in simple terms,
this law indicates how far our system is from its ideal behav-
ior. In scientific literature about thermal design techniques,
alternatives exist based on well-known and essential stages
such as modeling, simulation, components selecting, and
optimization processes. However, the thermodynamic design
addressed through inverse analysis has not been widely
explored.

On the one hand, IHTP inverse analysis is a pow-
erful tool when classical property estimation techniques
are unsuitable or inaccurate to cope with ill-conditioned
models [3]–[5], [8]. When solving an IHTP, the Direct Prob-
lem (DP) solution determines the effects derived directly from
the external causes. For instance, this could find temperature
profiles from the thermal model, including the heat transfer
conduction, convection, and radiation mechanisms. However,
in the Inverse Problem (IP) solution, themajor causes are esti-
mated from information related to known effects under partic-
ular conditions and using the related physical foundations [9],
[10]. Formally, the inverse analysis obeys the Hadamard con-
ditions, where a solution must exist, be unique, and stable
to minor disturbances [9]. Here, the problem is considered
ill-posed if the solution can become unstable due to accu-
mulated errors, disturbances, or noisy input data. Thereby,
regularization techniques use IP as a DP reformulation to
lead convergence and stabilizing results [11]–[13]. Especially
in the IHTP solution, temperature measurements are used to
estimate the intrinsic system features, such as heated body
geometric characteristics, thermal sources, initial conditions,
thermophysical properties, and boundary conditions [10].
In such regard, IHTP inverse analysis and fully-developed
numerical tools can improve thermal-management perfor-
mance in microchannel heat sinks design, refining the geom-
etry profile, even its building material, and working fluid for
specific purposes [14]–[16].

On the other hand, the current literature reveals that the
most common and discriminant variables concerning the
designing of RMCHS are the number of channels, channel
aspect ratio, and width ratio of the channel to pitch [3]–[5].
Notwithstanding, recent publications have considered other
characteristics such as the effects, nature, and physical prop-
erties of the heat sink body material and cooling fluids [4],
[17], [18]. Theoretically, classical approaches for design-
ing heat sinks are generally based on the thermodynam-
ics second law [19]. Recently, Khan et al. [20] proposed a
design model based on the Entropy Generation Minimiza-
tion (EGM) criterion from the Second Law of thermodynam-
ics. It quantifies the thermodynamic irreversibilities of the
active working system due to heat transfer and fluid flow
processes [7], [21]. Furthermore, there is an exponentially

increasing trend of new proposals and applications solved by
MOAs [9], [22]–[24].

In this study, the inverse analysis includes five phases
supported by the MOAs: DP and IP descriptions, iterative
procedure, stopping criteria, and computational algorithm.
MOAs aim to obtain similar and precise results sans requiring
analytical derivatives and a close-convergent starting point.
These characteristics are highly needed to implement the
Levenberg-Marquardt (LM) algorithm. Indeed, there were
implemented five MOAs as alternatives to LM for minimiz-
ing the Ordinary Least Squares Norm as the cost function
in the inverse analysis. These are metaheuristics that include
the Electromagnetic Field Optimization (EFO) [25], Unified
Particle Swarm Optimization (UPSO) [26], Differential Evo-
lution (DE) [27], Spiral Optimization (SO) [28], and Sim-
ulated Annealing (SA) [29]. Such algorithms were chosen
because they are well-known for their relative simplicity for
programming using a reduced number of tuning parameters,
a fast converging rate, and an excellent balance between
exploitation and exploration behaviors. In addition, two dif-
ferent strategies (serial and parallel) to implement the MOAs
and address the IHTP were considered for this study. As a
practical problem, the inverse analysis was selected to find
the optimal design parameters (say, those related to geometry,
building material, and working fluid) on the RMCHS mod-
eled by the EGM criterion. To do so, the experimental data
were simulated from the temperature profile measurements
(multiple sensors at regular intervals) with different noise
levels. Plus, the results were compared from the MOA-based
implementations against those from LM using the parametric
(based on mean and standard deviations) and nonparametric
(Wilcoxon-Mann-Whitney, Friedman, and Kruskal-Wallis)
tests. Withal, it was proven that metaheuristic algorithms
improve the IHTP inverse analysis focused on optimally
designing the RMCHS, involving the processing of complex
and intricate nonlinear IP and DP. Extensive experimentation
was developed to verify the reliability and stability of the
overall proposed method, as it is discussed below.

II. MATERIALS AND METHODS
A. RECTANGULAR MICROCHANNEL HEAT SINK
Fig. 1 shows the outline of the analyzed system, including the
RMCHS (Part I), the input and output for the fluid flow (Parts
II and III), and the thermal interface (Part IV) coupling the
electronic device (Part V). RMCHS dimensions are defined
as HD × LD × WD, where HD = hc + tu + tl , hc [m] is the
channel height, tu [m], and tl [m] are the upper and lower
thicknesses of the parallel plates enclosing the fins array.

1) CONTROL VOLUME DIMENSIONS OF THE RMCHS
Fig. 2 shows the rectangular microchannel dimensions
defined by 2wc × hc × LD, with the same length as RMCHS.
Furthermore, the wall plate width is defined by 2wp, and the
number of microchannels Nc is obtained as

Nc =
WD/2− wp
wc + wp

, (1)
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FIGURE 1. Outline of the rectangular micro-channel heat sink system. The
component dimensions are over-scaled for illustrative purposes. Part I:
heat sink; Parts II and III: input and output for the fluid flow; Part IV:
thermal interface; and Part V: electronic device.

FIGURE 2. Microchannel geometric characteristics.

where wc [m] is the channel width, and wp[m] is the wall
width.

This model includes several practical considerations and
multiphase working fluid analysis, as discussed in [17]. So,
the total entropy generation rate (Ṡgen [W/K]) of an RMCHS
is described by

Ṡgen(αc, β) =
Q̇2
d

Ta

Req(αc, β)
Ti(αc, β)

+
Gd
Ta
1P(αc, β), (2)

where Q̇d [W] is the total heat power dissipated by the
device, and Req [K/W] is the equivalent thermal resistance.
Moreover, Ta [K] and Ti [K] are the surrounding and interface
temperatures.Gd [m3/s] is the volume flow rate, and1P [Pa]
is the total pressure drop. Since Ti is calculated as

Ti(αc, β) = Ta + Q̇dReq(αc, β), (3)

the geometrical parameters αc and β are then defined as

αc =
2wc
hc

and β =
wc
wp
. (4)

2) HEAT TRANSFER ASSUMPTIONS OF THE RMCHS MODEL
The heat transfer contribution is described by the first term of
the model in (2), considering the next operative assumptions:
(a) RMCHS manages the transfer of the thermal energy

from the electronic device to the fluid flow in the

microchannels through a steady heat flux, entered from
the bottom plate up to the top.

(b) Radiation heat transfer vanishes in the top plate.
(c) Thermal contraction and dispersion due to different heat

exchange areas are neglected.

3) MASS TRANSFER ASSUMPTIONS OF THE RMCHS MODEL
The second term in (2) describes the mass flow transfer
contribution with the following assumptions:

(a) Steady thermophysical properties of the fluid flow are
used in the RMCHS.

(b) Steady fluid flow and hydrodynamic are completely
developed.

(c) Fluid flow is in the laminar regime. The transition and
turbulent regimes are dismissed.

Remainder assumptions are related to the material and
geometry being used in the RMCHS manufacture. These
assumptions allowed finding the heat sink and thermal inter-
face characteristics, which are considered macroscopically
isotropic and excellent thermal conductors. Besides, they
specify the relations among the heat sink, thermal inter-
face, and electronic device areas. Therefore, the minimal
area of the heat sink base (Ahs = WD × LD) must be
larger than or equal to the electronic device area (Aed ).
Otherwise, the thermal interface area must be equal to the
electronic device area (Ati = Aed ). For further details,
an in-deep analysis of the RMCHS model is addressed by
Cruz-Duarte et al. in [17], [30].

B. OPTIMIZATION ALGORITHMS
This section presents fundamental concepts about the applied
optimization algorithms (LM and MOAs). At first, three
general definitions are given to support the used optimization
algorithms.
Definition 1: Let Xn

= {Exn1 , Ex
n
2 , . . . , Ex

n
M } be a finite set

of candidate solutions for an optimization problem in RD

with an objective function given by f : RD
→ R. D is

the dimensionality of the problem, and M is the number
of candidate solutions. Thus, Exnm = (xnm,1, x

n
m,2, . . . , x

n
m,D)

ᵀ

represents the m-th candidate in RD at the time n under a
maximum number of iterations N .
Definition 2: Let Exn∗ ∈ Xn be the best solution found at the

n-th iteration,

Exn∗ = arginf
Xn∪Ex∗

(
f (Xn) ∪ f (Exn−1∗ )

)
, (5)

where f (Xn) = {f (Exn1 ), f (Ex
n
2 ), . . . , f (Ex

n
M )}.

Definition 3: Let Xn+1 represent a finite set of new candi-
date solutions. Each new candidate Exn+1m is obtained through
an iterative procedure, namely, the optimization algorithm.

1) ELECTROMAGNETIC FIELD OPTIMIZATION
Electromagnetic Field Optimization (EFO) is a global
optimization algorithm proposed by Abedinpourshotor-
ban et al. [25]. It is a method inspired by the electromagnets
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Algorithm 1 Electromagnetic Field Optimization (EFO)

Input: f : RD
→ R, M > 2, {Pr ,Pp} ∈ (0.1, 0.4), Mp ∈

(0.05, 0.1), Mn ∈ (0.4, 0.5), N � 1, and other stopping
criteria

Output: Exn∗
1: Initialize X0, find Ex0∗ using Definition 2, and n← 0.
2: repeat
3: Update Xn+1 using (6). F Attraction/Repulsion
4: Find Exn+1∗ using Definition 2 and n← n+ 1.
5: until (n < N ) & (Stopping criteria are not reached)

interaction, considering the magnets polarity in the search
space. The electromagnets are classified through three inter-
action fields (positive, negative, and neutral), where attraction
and repulsion forces lead the particles to the target.
Definition 4: Let Pn

pos = {Exnpos,1, Ex
n
pos,2, . . . , Ex

n
pos,Mp

},
Pn
neg = {Exnneg,1, Ex

n
neg,2, . . . , Ex

n
neg,Mn

}, and Pn
neu =

{Exnneu,1, Ex
n
neu,2, . . . , Ex

n
neu,M−(Mp+Mn)

} be the positive (pos),
negative (neg), and neutral (neu) subpopulation fields.
According to the fitness, these fields are classified, sorting
the population Xn from best (positives) to worst (negatives).
Where {Pn

pos,P
n
neu,P

n
neg} ⊆ Xn.Mp andMn are the subpop-

ulations sizes of electromagnets in the positive and negative
fields, respectively. Besides, Exn+1m is obtained from (6), by the
linear combination of Exnpos,m ∈ Pn

pos, Ex
n
neg,m ∈ Pn

neg, and
Exnneu,m ∈ Pn

neu vectors.
The interactions among the electromagnets generate new
positions according to

Exn+1m = Exnneu,m + ϕrf (Ex
n
pos,m − Ex

n
neu,m)

− rf (Exnneg,m − Ex
n
neu,m), (6)

where Exn+1m is the new electromagnet position for the design
variable. Likewise, rf is a random variable with a uniform
distribution U(0, 1), and ϕ is the ratio of the attraction and
repulsion forces, using the golden ratio ϕ = (1 +

√
5)/2.

EFO algorithm includes complementary parameters as the
probability of selecting electromagnets from the positive field
Pp without being modified. Besides, Pr is the probability of
changing one electromagnet by another randomly generated.
EFO method is synthesized in Algorithm 1.

2) UNIFIED PARTICLE SWARM OPTIMIZATION
Unified Particle Swarm Optimization (UPSO), proposed by
Parsopoulos and Vrahatis in 2004 [26], enhances the popular
Particle Swarm Optimization (PSO) algorithm [31]. It is a
swarm intelligence-based technique widely used in engineer-
ing design applications [32]–[34]. All swarm particles have
two essential components: position (Exnm ∈ Xn) and velocity
(Evnm ∈ Vn), described through the following definitions.
Definition 5: Let Qn

m ⊆ Xn be the neighborhood of the
m-th candidate solution Exnm, at the time n, and disposing of a
given topology, e.g., Qn

m = {Ex
n
m−1, Ex

n
m, Ex

n
m+1}.

Algorithm 2 Unified Particle Swarm Optimization (UPSO)

Input: f : RD
→ R, M > 2, {u, χ} ∈ (0, 1), φ1 + φ2 > 4,

N � 1, topology for Q, and other stopping criteria
Output: Exn∗
1: Initialize X0 and V0, find Ex0∗ (Definition 2), and n← 0.
2: repeat
3: Find Exn∗ using Definition 2.
4: Find Exnm,l∗ using Definition 6.
5: Find Exnm,∗ using Definition 7.
6: Determine Xn+1 with (9) and (10), F Swarm

Dynamic
7: n← n+ 1.
8: until (n < N ) & (Stopping criteria are not reached)

Definition 6: Let Exnm,l∗ ∈ Qn
m be the best candidate solu-

tion in the neighborhood Qn
m, defined by

Exnm,l∗ = arginf
(
f (Qn

m) ∪ {f (Ex
n−1
m,l∗)}

)
. (7)

Definition 7: Let Exnm,∗ be the best solution, where the m-th
particle has been found until the time n, i.e.,

Exnm,∗ = arginf
(
f (Exnm,∗), f (Ex

n−1
m,∗ )

)
. (8)

Therefore, the new position for each particle Exn+1m is obtained
by

Exn+1m = Exnm + Ev
n+1
m , (9)

since the total velocity (Evn+1m ) is calculated as a weighted sum
between the global (EGn+1m ) and local (ELn+1m ) velocities

Evn+1m = (1− u)� ELn+1m + u� EGn+1m , (10)

where u ∈ [0, 1] is the unification factor to balance the
global and local displacement contributions. The velocity
components are then obtained as

EGn+1m =χ [Ev
n
m+φ1Er1�(Ex

n
m,∗−Ex

n
m)+φ2Er2�(Ex

n
∗−Ex

n
m)], (11)

ELn+1m =χ [Ev
n
m+φ1Er3�(Ex

n
m,∗−Ex

n
m)+φ2Er4�(Ex

n
m,l∗−Ex

n
m)], (12)

where χ ∈ (0, 1] is the constriction factor,� is the Hadamard
product (i.e., element-wise multiplication), Evnm and Exnm are the
current velocity and position for the m-th particle, φ1 and φ2
are the self and swarm confidence coefficients. Besides, Er1,
Er2, Er3, and Er4 are vectors of identically independent distributed
(i.i.d.) random variables with a uniform distribution U(0, 1);
Exnm,∗, Ex

n
m,l∗, and Ex

n
∗ are the best position of each particle

(Definition 7), at each neighborhood (Definition 6), and in
the entire swarm (Definition 2), respectively. Algorithm 2
summarizes the UPSO method.

3) DIFFERENTIAL EVOLUTION
Differential Evolution (DE), developed by Storn and Price
in 1996 [27], is a stochastic population-based optimiza-
tion algorithm. Three primary stages, known as a mutation,
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Algorithm 3 Differential Evolution (DE)

Input: f : RD
→ R, M > 3, Cp ∈ (0, 1), Dw ∈ (0, 2),

N � 1, and other stopping criteria
Output: Exn∗
1: Initialize X0, find Ex0∗ using Definition 2, and n← 0.
2: repeat
3: Determine Evn+1m using (13). FMutation
4: Determine Eun+1m using (14). F Crossover
5: Determine Xn+1 using Definition 15.
6: Find Exn+1∗ using Definition 2, n← n+ 1. F

Selection
7: until (n < N ) & (Stopping criteria are not reached)

crossover, and selection, develop the optimization process for
real-valued functions. Therefore, it uses three vectors, named
mutated, target, and trial vector, respectively. Each mutated
vector Evn+1m is obtained by a linear combination

Evn+1m = Exnz1 + Dw(Ex
n
z2 − Ex

n
z3 ), (13)

where z1, z2, and z3 are random and mutually different inte-
gers U(1,M ), even with the index m. The population size
M must be larger than three. Dw ∈ [0, 2] represents the
differential weight, being real and constant during the opti-
mization process. In this study, a binomial crossover-type
was used. Therefore, the trial vectors Eun+1m are generated by
taking elements randomly either from mutated or from the
current element in the population

Eun+1m =

{
Evn+1m,l if Ru ≤ Cp ∨ l = Iu(m)
Exnm,l if Ru > Cp ∨ l 6= Iu(m),

(14)

where l = 1, 2, . . . ,D, being D the dimensionality, Ru is
generated with the uniform distribution U(0, 1), and Iu ∼
UI (1,D) is an integer randomly selected from l.Cp ∈ [0, 1] is
the crossover factor. In the selection stage, the trial and target
vectors are compared to keep the best actual solutions. The
selection stage of Exn+1m is defined by

Exn+1m =

{
Eun+1m , if f (Eun+1m ) ≤ f (Exnm)
Exnm, otherwise.

(15)

Algorithm 3 summarizes the overall DE method.

4) SPIRAL OPTIMIZATION
Spiral Optimization (SO) is a direct-solving metaheuristic
procedure based on the logarithmic spiral dynamic [35], [36].
This numerical process rotates a set of points around a refer-
ence center point, following a logarithmic spiral trajectory.
The reference is iteratively updated using a fitness criterion,
i.e., a location (Exn∗) given by an objective function f (Ex), Ex ∈
RD. Such an idea is formulated using Definitions 1 to 3, such
as

Exn+1m = rRD(θ )Exnm − (rRD(θ )− ID)Exn∗ , (16)

where ID ∈ RD×D is the identity matrix, r ∈ (0, 1),
and θ ∈ (0, 2π ) are the control parameters of the spiral

Algorithm 4 Spiral Optimization (SO)

Input: f : RD
→ R,M > 2, θ ∈ (0, 2π ), r ∈ (0, 1),N � 1,

and other stopping criteria
Output: Exn∗
1: Determine RD(θ ) using (17).
2: Initialize X0, find Ex0∗ using Definition 2, n← 0.
3: repeat
4: Update Xn+1 using (16). F Spiral Dynamic
5: Find Exn+1∗ using Definition 2, n← n+ 1.
6: until (n < N ) & (Stopping criteria are not reached)

dynamics, representing the convergence rate and the rotation
angle between an m-th point (Exnm) and the center point (Exn∗).
Likewise, RD(θ ) ∈ RD×D is the rotation matrix defined by
the product of all combinations of 2D rotation matrices

RD(θ ) =
K∏
k=1

R(θk ) =
K∏
k=1

eθLk ∈ RD×D, (17)

where Lk = û⊗ v̂− v̂⊗ û is the skew-symmetric matrix gen-
erator that follows the Euler-Rodrigues rotation formula [37].
Since the k-th plane, k ∈ {1, 2, . . . ,K }, is formed by a
vector pair {û, v̂} from the canonical basis of RD, {û, v̂} ∈
{ê1, ê2, . . . , êD}, ⊗ is the outer product or the tensor product
of two column vectors represented by the multiplication û v̂ᵀ,
and

(D
2

)
is the number of planes. The SO is summarized in

Algorithm 4.

5) SIMULATED ANNEALING
Simulated Annealing (SA), presented by Kirkpatrick et al.
in 1983 [29], is a multivariate and combinatorial optimization
algorithm based on statistical mechanics and thermal equilib-
rium searching.
Definition 8: Let 1f (Exnm) be the difference between m-th

energetic status of candidate solutions, f (Exn+1m ) and f (Exnm),
at the time n.
From the energetic status f (Exnm) of Exnm, the next candidate
solution Exn+1m is selected by the Metropolis criterion [38]

P
{
f (Exn+1m )

}
= arginf

{
1, exp

(
1f (Exnm)
KBT0

)}
, (18)

where kB is the Boltzmann constant and T0 is the temper-
ature control variable. Other control variables include the
number of complete cycles pc, temperature decreasing factor
c ∈ (0, 1), and the number of states 9. SA is presented in
Algorithm 5.

6) LEVENBERG-MARQUARDT ALGORITHM IN THE IHTP
SOLUTION PROCESS
Levenberg-Marquardt (LM) is the most common gradient-
based algorithm used to solve the IHTP and is usually com-
bined with the Ordinary Least Square Norm (OLSN) as the
cost function. The IHTP solved by the LM also uses the
framework previously mentioned [9]. At the beginning of
the DP phase, the physical model must be clearly analyzed
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Algorithm 5 Simulated Annealing (SA)

Input: f : RD
→ R, M > 1, Ntem � 1, T0 > 1000, pc ∈

(1, 10), c ∈ (0, 1), N � 1, and other stopping criteria
Output: Exn∗
1: Initialize X0, find Ex0∗ using Definition 2, and n← 0.
2: repeat
3: Determine Xn+1 using Definition 8 and (18) F

Annealing Process
4: Update p← p+ 1 and T0← cT0
5: Find Exn+1∗ using Definition 2 and n← n+ 1.
6: until (n < N ) & (Stopping criteria are not reached)

as a cause-and-effect problem. In heat transfer, the causes
are usually the thermal sources, and the effects can be the
output temperature profiles T (x, t) from the model equations.
Next, the IP statement describes how the causes can be esti-
mated knowing the corresponding effects in a physical model.
Usually, diversified data is required, as temperature measure-
ments several positions from single or multiple sensors at
various periods. The cost function is given by the OLSN, such
as

S(EP) = [EY − ÊY (EP)]ᵀ[EY − ÊY (EP)], (19)

where EP ∈ RD is the vector of unknown parameters to
be estimated, Y and Ŷ (EP) are measured and estimated data,
respectively. Therefore, the DP and IP require of efficient
optimization algorithm to support a dependable IHTP solu-
tion. In particular, the iterative LM method requires comput-
ing the gradient of the S(EP),∇S(EP), which tends to zero while
finding the minima (or maxima)

∇S(EP)=−2
∂ ÊYᵀ(EP)

∂ EP
[EY − ÊY (EP)]= −2EJᵀ(EP)[EY − ÊY (EP)],

(20)

where EJ (EP) ∈ RL×D is the Jacobian matrix. In the lin-
ear cases, the Jacobian matrix is independent of unknown
parameters, and a closed solution can be found by EP =
(EJᵀJ )−1EJᵀ EY . But, in the nonlinear and general cases, ÊY (EP)
is linearized through the first-order Taylor series

ÊY (EP) = ÊY (EPn)+ EJn(EP− EPn), (21)

expanded around EPn to define the iterative LM rule

EPn+1 = EPn + [(EJn)ᵀEJn]−1(EJn)ᵀ[EY − ÊY (EPn)]. (22)

Usually, the IHTPs are ill-posed because of |EJᵀEJ | ≈ 0.
However, these method instabilities can be avoided using
a regularization damping term 8 and the definite positive
matrix �. The LM formula is finally stated as

EPn+1= EPn + [(EJn)ᵀEJn +8n�n]−1(EJn)ᵀ[EY− ÊY (EPn)]. (23)

It is important to remark that 8 and � may vary during
the iterative process, and their initial values are essential

Algorithm 6 Levenberg-Marquardt (LM)

Input: f : RD
→ R, EP0, 80

� 0, c1 ∈ (0, 1), c2 ∈ (1, 10),
N � 1, and other stopping criteria

Output: Exn∗
1: Initialize X0, find Ex0∗ using Definition 2, and n← 0.
2: repeat
3: Determine Xn+1 using (23) F LM Rule
4: Update 8n using (24)
5: Find Exn+1∗ using Definition 2 and n← n+ 1.
6: until (n < N ) & (Stopping criteria are not reached)

for LM convergence. In this study, to improve LM perfor-
mance, the �n matrix is computed from the diagonal matrix
of [(EJn)ᵀEJn], and the initial 80 value is chosen between
[103, 106]. The 8n value is iteratively updated by

8n+1
=

{
c18n, if f (Exn+1m ) ≤ f (Exnm)
c28n, otherwise. ,

(24)

where the constants c1 ∈ (0, 1) and c2 ∈ (1, 10) dynamically
help to increase or decrease the 8n value, respectively.
The typical stopping criterion used with the IHTP analysis

and LM, estimates the precision of the parameters between
two consecutive iterations by ‖EPn+1 − EPn‖2 < ε, where ε is
user-defined. Due to premature convergence issues in using
this last criterion, a robust stopping criterion is proposed
in our implementation, presented in Section III-D. Finally,
an optimal solution is achieved when the procedure con-
verges, fulfilling the stopping criteria. Algorithm 6 summa-
rizes the LM method.

III. METHODOLOGY
All experiments were run on an Acer Aspire VX15 model
VX5-591G, with an Intel R© CoreTM i7-7700HQ CPU at
2.8GHz, 16GB RAM, and Windows 10 OS. The configura-
tion parameters and their corresponding intervals are different
for traditional or nontraditional algorithms, depending on
their nature and mathematical support. Table 4 shows the ref-
erenced intervals and selected parameters for all implemented
MOAs in the numerical analysis.

A benchmarking routine over the LM and the MOAs
was applied before solving the IHTP application. This
benchmarking was based on testing parameter combinations
exhaustively. The processing times, the optimal and minimal
least squared errors for all standard functions are computed
to determine the most suitable parameters combination for
each algorithm. The benchmarking used tenwell-known stan-
dard functions, which are shown in Table 1. These allow
parametrizing and characterizing each algorithm configura-
tion even through convergence rate and error values (e.g.,
relative, absolute, or root mean square error). The benchmark
functions were selected based on their mathematical similar-
ity with the RMCHS model. Estimated MOAs performance
needed to repeat each study case 100 times with a maximum
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TABLE 1. Selected standard benchmark functions [39].

of 1000 iterations, guaranteeing a robust and statistically
reliable evaluation test.

For all standard functions, the evaluations were per-
formed in 2-D, varying the population sizes M ∈

{10, 25, 50, 75, 100}. Additionally, the Ackley, Plateau, and
Rosenbrock standard functions were evaluated for 5 and
10 dimensions.

However, the randomness nature of all optimization
metaheuristic methods rends a fair evaluation a challenge.
For this reason, parametric and nonparametric statisti-
cal tests were used to diversify the evaluation to obtain
the tuning parameters for the most suitable algorithm
in the application. Hence, the nonparametric Wilcoxon-
Mann-Whitney test was applied, ranking the parameters set
previously determined by the benchmarking and complet-
ing the selection of the appropriate parameters. Comple-
mentarily, the evaluation task required applying the same
operative conditions (i.e., search space, stopping criteria,
and constraints) to guarantee a fair comparison between the
algorithms.

The MOAs are straightforwardly integrated into the pro-
cess, evaluating the two solution strategies. A multipara-
metric strategy processes eight parameters (design variables)
simultaneously, i.e., estimation-optimization is performed in
parallel (see Table 2). Moreover, a serial strategy deals with
the sequence order to estimate and optimize parameters, start-
ing with the most sensitive in the RMCHS model. For a more
comprehensive analysis, three design tests related to param-
eters class are performed (i.e., geometry, building material,
and working fluid parameters test). Table 2 summarizes the
parameters used in the proposed design tests: the geometrical
parameters 10−3 ≤ αc ≤ 10−2 and 1 ≤ β ≤ 5 [17]
given by (4), the material parameters with the conductiv-
ity (km [W/m2

·K]) and density (ρm [kg/m3]), and the fluid
parameters considering the conductivity (kf [W/m2

·K]), den-
sity (ρf [kg/m3]), kinematic viscosity (ν [m2/s]), and specific
heat (cp [J/kg·K]). For simulation purposes, Aluminum (Al)
was the material studied to build the RMCHS body, and the
working fluid air (Air) was used as the active substance [40].
Their thermophysical properties are given in Table 3. A
minimum allowed SNR was identified to find a reliable and
stable estimation in measurements. Fig. 3 presents three syn-
thetic noisy temperature profiles, where three power levels
(10, 20, and 30 dB of SNR) of Additive White Gaussian

TABLE 2. Design variables vectors (θI ) for each tested strategy and
sequential order (sensitivity influence) of estimation and optimization in
serial and parallel strategies.

TABLE 3. Average thermophysical properties of the material and fluid
used in the RMCHS model.

FIGURE 3. Profile Ti (Interface Temperature) against Gd (Volume Flow
Rate) with three distinct levels of SNR (in decibels).

Noise (AWGN) were added to the original signal (continuous
plot). It is noteworthy that the noisiest profile is the signal
with 10 dB of SNR. Subsequently, the IHTP inverse analy-
sis development was based on five operative phases: Direct
Problem, Inverse Problem, Iterative Procedure, Stopping Cri-
teria, and Computational Algorithm. Fig. 4 shows a detailed
flowchart of these phases, which are described next.

A. DIRECT PROBLEM
It assumes that all model parameters are known with suffi-
cient accuracy to find the minimal entropy generation rate
for an RMCHS model. It is represented by

min
(EθD)
{Ṡgen(EθD)} = argmin

{
Q̇2
d
Req(EθD)

TaTi(EθD)
+
Gd
Ta
1P(EθD)

}

subject to

{
g1(EθD) = αc − 1 ≤ 0
g2(EθD) = 1− β ≤ 0,

(25)

where EθD = (αc, β)ᵀ. This phase includes three main blocks
(red dashed box in Fig. 4) the RMCHS mathematical model,
tested optimization methods, and optimal results.
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FIGURE 4. Proposed five-phases IHTP inverse analysis applied into the
Rectangular Microchannel Heat Sink (RMCHS) design. The Metaheuristic
Optimization Algorithm (MOA) is the fundamental block for the direct and
inverse problems phases. The cost function is based on the Ordinary
Least Square Norm (OLSN), guided by the saturation and statistical
stopping criteria.

B. INVERSE PROBLEM
It considers that all remainder model parameters are known
with sufficient accuracy to estimate any RMCHS model
parameter. This estimation is conducted by minimizing the
sum of squared residuals S(EθI )

min
(EθI )
{S(EθI )} = arginf

{
L∑
i=1

[
Ti(Gd )−T̂i(EθI ,Gd )

]2}
, (26)

where EθI is given in Table 2 and subject to identical con-
straints in (25). T̂i was calculated using (3) and linked to the
Ṡgen by Req. Fig. 3 shows the temperature profiles Ti (sensor
measurements) as a function of the volume flow rateGd , data
required to solve the IP. Fig. 4 (blue dashed boxes) presents
the functions associated with the IP estimation process: the
RMCHS mathematical model and the OLSN.

C. ITERATIVE PROCEDURE
The recurrent minimization of the OLSN was used to achieve
an acceptable solution, leading to computing the sum of
squared residuals

S(EθI ) =
L∑
i=1

[
Ti(Gd )− T̂i(EθI ,Gd )

]2
, (27)

where Ti(Gd ) is the observed response (variable measure-
ments), T̂i(EθI ,Gd ) is the estimated temperature profile (fitted
response or variable estimation) through the model using the
same values of Gd in Ti for each i. D and L, represent the
number of unknown parameters (dimensionality) and mea-
surements (data length), respectively. For this study, L ≥ D
guarantees an adequate estimation. Experimentally, D = 8
(maximal) and L = 100 were selected. Finally, the inverse
problem is solved using the LM algorithm and proposed
MOAs, see Fig. 4 (green dashed box).

D. STOPPING CRITERIA
Selected stopping criteria allow reaching stable solutions
about nonsystematic errors (due to noise or disturbances)
produced during the data acquisition. The first criterion was
focused on the stagnation state, msat ≤ N . The iterative
process is stopped until it reaches a maximum number of
iterations regardless of the current accuracy improvement.
Next, the number of iterationsmsat is defined as the saturation
condition. The stagnation criterion serves for fair compar-
isons because it also represents a fixed cost performance [41].
The second criterion is based on the statistical treatment of
solutions at each iteration,

|f (EθI )n − µfn| 6 σfn , (28)

where µfn and σfn are the mean and standard deviation of
historical fitness values at step n. This other useful criterion
is a fixed target measure [41].

Fig. 4 (purple dashed box) includes both primary and
secondary criteria.

E. COMPUTATIONAL ALGORITHM
A computational algorithm assembles the previous phases
of the inverse analysis to obtain the general solution to
the RMCHS design. Fig. 4 shows a flowchart with the
IHTP solution phases as dashed boxes, coded as subrou-
tines. Serial and parallel strategies are the main routines,
where some SNR levels of noise were added in every pro-
posed design test related to geometry, material, and fluid
to verify method robustness. Each subroutine has associated
one or more functional blocks, e.g., RMCHS mathematical
model, MOA code, cost function, and reference tuning val-
ues. Specifications and constraints for the model design are
global and common for all subroutines implemented in the
IHTP solution framework. Selected tuning parameters for
MOAs are shown in Table 4, which were considered the
initial values for each MOA during the estimation and opti-
mization in the overall computational algorithm. The final
used population size M also resulted from the benchmark-
ing process over the preliminary metaheuristic algorithm
analysis. Plus, note that the space dimensionality denoted
by D depends on the number of design variables in the
application.

F. NONPARAMETRIC EVALUATION TESTS
Three nonparametric tests of null hypothesis were used
to obtain a robust method evaluation. They include the
Wilcoxon-Mann-Whitney (Rank-sum) [42], [43], the Fried-
man [42], [44], and the Kruskal-Wallis [42] tests. The
selected tests are counterparts of the ANOVA test family [42].
The nonparametric statistical tests are applied when the dis-
tribution data information is not available and cannot be
assumed accurately. These tests require ranking the data cal-
culations, ordinal samples (i.e., sorted and ranked). Besides,
the data samples must be independent, sometimes assuming
the homoscedasticity with a corresponding correction fac-
tor. Such nonparametric tests are briefly described next and
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TABLE 4. Configuration parameters for optimization algorithms. ∗Coded
algorithms are publicly available at https://github.com/batdraco/OAs.

discussed in Section IV to determine the suitable solution
strategy and optimization algorithm. The Wilcoxon–Mann–
Whitney rank-sum is a test used to compare two performance
results or samples, using a null hypothesis [42], [43]. The null
hypothesis (H0) is tested for verifying if data samples proceed
from the identical distributions with equal medians or not.H0
is a logical value that accepts (H0 = 0) or rejects (H0 = 1)
the null hypothesis statement with a significance level of
αs and a probability of p-value. Succinctly, it analyzes and
compares two distributions and their medians to determine
if they are statistically and significantly similar or different
from each other. Contrarily, the Friedman is a test used to
compare multiple outcomes at once [42], [44]. Just as the
Wilcoxon–Mann–Whitney test, the null hypothesis is based
on all samples belonging to the same distribution with their
medians equal, and the samples are mutually independent.
In the Friedman test, a p-value about 1.0 indicates that the
null hypothesis is accepted (i.e., all algorithms’ results are
comparatively similar; otherwise, they are significantly dif-
ferent). Alike, the Kruskal-Wallis is another test used to com-
pare multiple samples [42]. This last test behaves operatively
similar to the Wilcoxon–Mann–Whitney test, but including
more than two samples. It is noteworthy that the three non-
parametric tests involve the p-value, αs, and the rank-sum to
analyze the distributions. Besides, this method can also rank
the results using the statistic µ-rank as the Friedman test.
Therefore, these nonparametric tests were selected because
their results are entirely compatible, confirming the same
hypothesis. Such tests were efficiently used to rank strate-
gies and qualitatively compare the proposed optimization
algorithms.

TABLE 5. Optimal reference values of the RMCHS model.

FIGURE 5. Entropy generation rate (Ṡgen) and interface temperature (Ti )
profile as a Flow Volume Rate (Gd ) function (normalized axes).

IV. NUMERICAL RESULTS
The solution of the stated optimization problem (i.e., DP) is
obtained by computing the optimal geometrical parameters
αc and β (consequently, Nc), both functions of Gd minimiz-
ing Ṡgen, (25). Table 5 gives the optimization results of the
RMCHSmodeling, considering the references for the follow-
ing analyses. Such data allow determining both behaviors,
the Ti (red color and square marker) and Ṡgen (blue color
and triangle marker) as functions of Gd , as shown in Fig. 5.
The minimal value of Ṡgen is found between 5× 10−3 and
6×10−3 [m3/s] of Gd , confirming the obtained values with
the optimization process graphically, see Table 5. More-
over, the referencing curve Ti-Gd in Fig. 5 permits verifying
the accuracy of each estimated parameter and performance
test.

A. COMPARATIVE SERIAL STRATEGY - PARALLEL
STRATEGY
The entropy generation rate (Ṡgen) profile was plotted for the
original data (without noise) and noise-contaminated signal at
several SNR levels (10, 20, and 30 dB) to compare the serial
and parallel strategies. Fig. 6 shows the estimated profile Ṡgen
using the strategies serial and parallel without addingAWGN,
i.e., these data match the references shown in Fig. 5. The pre-
vious result reveals an intrinsic offset during the estimation
process while applying eachMOAs. The differences between
the results given by strategies serial and parallel are manifest.
Most MOAs adjust the data with minimal errors using the
serial strategy.

Nevertheless, UPSO, DE, and SO gave minor errors in
the adjusting process; the most accurate were DE and UPSO
using the parallel strategy. Fig. 7 shows orders of magnitude
between 10−2 and 10−1 to find the required OLSN mini-
mal value (i.e., Ṡgen minimal) employing the serial strategy.
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FIGURE 6. Entropy generation rate (Ṡgen) profile estimation without SNR
of AWGN by using the (a) serial strategy and (b) parallel strategy
(normalized axes).

Likewise, orders of magnitude between and 102

were obtained during the OLSN minimization using the
parallel strategy. It is noteworthy that serial strategy
has lower variations than the parallel for every tested
SNR level. Furthermore, Tables 8 and 9 provide pre-
cise data to numerically determine that the serial strat-
egy is more accurate than the parallel strategy, analyzing
the reduced errors between the reference and estimated
values.

1) STRATEGIES NONPARAMETRIC PERFORMANCE
EVALUATION
In the Wilcoxon-Mann-Whitney test, the outcomes (for all
SNR levels) from the strategies serial and parallel are used
to compute the rank-sum for a certain significance level in
order to compare the estimation and optimization strategies.
If the p-value is more significant than αs, and H0 = 0,
the null hypothesis is accepted; otherwise, it is rejected.
The hypothesis H0 in these evaluations was stated as: the
serial strategy results represent an improvement instead
of the parallel strategy, as shown in Table 6. In addition,
the samples’ differences can be ranked according to the mean
between them, following the Friedman and Kruskal-Wallis
tests, being the lowest difference, the least similar. Table 7

FIGURE 7. Relative errors for geometrical parameters (αc and β), Volume
Flow Rate (Gd ), and Entropy Generation Rate (Ṡgen) for 30 dB of AWGN
using the (a) serial and (b) parallel strategy.

TABLE 6. Wilcoxon–Mann–Whitney test results for serial and parallel
strategies comparison with a significance level of αs = 0.01.

TABLE 7. Friedman and Kruskal-Wallis test results in ranking the serial
and parallel strategies with a significance level of αs = 0.01.

shows th results under the Friedman and Kruskal-Wallis
criteria to detect the recommended strategy. Consequently,
Tables 6 and 7 showed that improved estimation and opti-
mization processes are obtained using the serial strategy
compared to the parallel one, verifying the results from
the statistical and parametric tests. Considering the p-value
and H0 computed from the Wilcoxon–Mann–Whitney test
evaluation, the null hypothesis must is accepted. Similarly,
Friedman and Kruskal-Wallis, with probability values of
0.9553 and 0.9028, respectively, ranked the serial strategy
firstly.
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FIGURE 8. Entropy generation rate (Ṡgen) profile estimation with 30 dB of
AWGN by using the (a) serial and (b) parallel strategy (normalized axes).

2) RESULTS WITH LEVENBERG-MARQUARDT ALGORITHM
Being LM, a well-known optimization algorithm for solving
the IHTP, it was incorporated in the previously described
schemes, and its results were compared with those proposed
MOAs. Fig. 7 presents the relative errors between the optimal
and minimal values in the geometrical test using LM algo-
rithm. Notice that errors using the LMwere bigger than those
obtained from other MOAs. For instance, the Ṡgen relative
error order was around 103 with both strategies, serial and
parallel, by using LM. Statistical results (mean (µ) and stan-
dard deviation (σ )) using the LM method in estimating Ṡgen
using the serial and parallel strategies are shown in Tables 8
and 9. Numerical data shown in both last tables were far
separated from the reference values given in Table 5 for all
SNR levels.

B. SERIAL STRATEGY
The multiparametric strategy has been widely studied and
applied in literature [4], [5]; a more profound analysis is
devoted to the serial strategy. The serial strategy includes
three successive tests based on geometry, build material, and
working fluid (see Table 2). Besides, the estimation order
was predefined, considering the parameters sensitivity of the
proposed model and working on tuples as shown in Table 2.
Otherwise, the relative error of the estimation process would

FIGURE 9. Relative errors for geometry, material, and fluid parameters
using the serial and parallel strategies.

be increased. The estimation process was accomplished by
reconstructing the eight estimated output parameters to feed
the RMCHS mathematical model. Despite errors from each
parameter estimation, the complete estimation reached less
than 0.07% of relative error for 30 dB, the typical SNR of
real instrumentation schemes. Similarly, despite obtaining
less than 7.63% and 7.78% of relative errors in all tested
MOAs using data with 10 dB and 20 dB of SNR, respectively,
the results can be acceptable under specific applications,
considering the strong noise influence. Moreover, consider-
able error propagation in the serial strategy was observed
due to tests highly depending on the immediate previous
results.

1) RESULTS WITH METAHEURISTICS OPTIMIZATION
ALGORITHMS
TheMOAs performances were also evaluated, computing the
relative errors and processing times. Table 10 presents the
numerical results derived from such a study. Fig. 9 shows
the resulting curves from the above-described experiments.
Furthermore, the accuracy performances seem similar for
all MOAs with serial strategy, but considerable variations
using the parallel scheme were detected. In such conditions,
the processing time is a remarkable feature. EFO and DE
were the fastest algorithms, according to Table 10. Likewise,
DE achieved the lowest processing time for the parameter
estimation process with an acceptable error per parameter
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TABLE 8. Statistical results for the selected optimization algorithms for each SNR level in geometry test and serial strategy.

TABLE 9. Statistical results for the selected optimization algorithms for each SNR level in geometry test and parallel strategy.

and, consequently, for the Ṡgen profile and minimal value
result.

Further, from Table 10, EFO and DE showed to be approxi-
matively eight and twenty times faster than LM, respectively,

with minimal relative errors in the Ṡgen profile and mini-
mal value estimation. The overall procedure estimated the
RMCHS channel dimensions shown in Table 11 for the vol-
ume LD ×WD ×HD = 75 µm3. This experiment considered
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TABLE 10. Entropy generation rate (Ṡgen) relative error and processing
time (t) for selected optimization algorithms in geometry, material, and
fluid tests, and serial strategy.

TABLE 11. Optimal dimensions computed for the RMCHS design using
aluminum and air working fluid.

LD = 50 mm, WD = 50 mm, HD = 30 mm, as well as the
equations (1)-(4) and the optimal values in Table 5.

2) OPTIMIZATION ALGORITHMS NONPARAMETRIC
PERFORMANCE EVALUATION
According to the non-free-lunch theorem [45], in a great
diversity of applied problems, most optimization algorithms
behave on average similarly in a great diversity of applied
problems. The particular conditions of the application may
strongly influence the performance of the algorithms, and
consequently, selecting the most suitable algorithm. In this
case, for comparing the process of estimation and optimiza-
tion performances for each used algorithm, the outputs (for
all SNR levels) from each algorithm, LM and MOAs (EFO,
UPSO, DE, SO, and SA) are used to compute the rank-sum
with a specific significance level. The H0 was stated as:
the results from every tested MOA express an improvement
regarding the LM outcomes.

a: EVALUATION BY WILCOXON–MANN–WHITNEY TEST
According to Table 12 and regardless of the used strategy,
all MOAs represent an improvement in estimating and opti-
mizing process; there is enough evidence (p-values and H0)

TABLE 12. Wilcoxon–Mann–Whitney test results with a significance level
of αs = 0.01 for comparison between LM and MOAs in serial and parallel
strategies.

TABLE 13. Friedman test results and ranking of algorithms with a
significance level of αs = 0.01 for comparison between LM and MOAs in
serial and parallel strategies. (Best algorithms are ranked from left to
right).

TABLE 14. Kruskal-Wallis test results and ranking of algorithms with a
significance level of αs = 0.01 for comparison between LM and MOAs in
serial and parallel strategies. (Best algorithms are ranked from left to
right).

to accept the null hypothesis. In serial strategy, the high-
est p-value belongs to SO with 0.9907 and a rank-sum of
325. Simultaneously, the best p-value (0.9924) with 327 of
rank-sum occurs with SA in the parallel strategy.

b: EVALUATION BY FRIEDMAN
According to the Friedman test, Table 13 shows the rank-
ing of algorithms (traditional and nontraditional) to esti-
mate and optimize RMCHS model parameters. There were
coincidences about the worst performance algorithm (LM)
in both strategies because of obtaining the highest µ-rank.
Conversely, SO and SAwere the best in the serial and parallel
strategies, respectively.

c: EVALUATION BY KRUSKAL-WALLIS
Table 14 presents the algorithms ranking following the
Kruskal-Wallis test; there were differences between the serial
and parallel strategies results in the first and fourth positions,
where the SO and SA algorithms exchanged ranked positions
each other precisely. Once again, the SO achieved the best
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performance for serial, the same with SA for parallel one.
For both the Friedman and Kruskal-Wallis tests, the smallest
means were achieved by the parallel strategy.

C. CONTRIBUTIONS
The main contribution of this work is to propose reliable
methodologies to overcome the practical disadvantages of the
strategies using the traditional algorithms to solve the IHTPs,
analyzing, in this case, the design of the RMCHSs. First,
the RMCHS model is achieved through the EGM criterion
instead of the classical thermodynamics laws-basedmodeling
process. Details and advantages about using this criterion
were previously studied by Cruz-Duarte et al. [17], [30]. Sec-
ond, the serial strategy changes the optimization paradigm,
improving the results considering the active influence of the
model parameters, prioritizing the most influential parame-
ters grouping them in n-tuples according to the case, as shown
in Table 2. Once the parameters are grouped and organized,
they are sequentially estimated by MOAs. Note that by esti-
mating a single group of parameters at a time, the optimiza-
tion process is accelerated, increasing the precision because
the uncertainty is reduced by using fewer variables. Once a
tuple is optimized, the results are propagated into the model,
and the next tuple is then processed. This rule continues into a
loop until fulfilling the stopping criteria. Finally, the explored
MOAs helped to surmount the LM issues associated with pro-
cessing nonlinear models (e.g., model discontinuities, Jaco-
bian matrix instability, proper selection of 8, � coefficients,
or the starting point). Once tuned, the MOAs can be seen as
unsupervised optimizers. Finding optimal solutions over the
search space depends highly on the exploration-exploitation
rate related to the algorithm nature.

V. ANALYSIS AND DISCUSSION
This study proposed an alternate strategy for solving the IHTP
in the optimal parameters estimation sense of an RMCHS
design (modeled via the EGM criterion). The proposed serial
strategy includes integrating nontraditional searching algo-
rithms for solving the associated estimation and optimization
problems following a sequential process based on a sensitiv-
ity analysis of the studied parameters allowing an improve-
ment in the overall performance. According to sensitivity
analysis, such a modification was efficient in terms of accu-
racy and processing time, i.e., the proposed method required
less (or similar) time than the LMmethod but achieving better
numerical results. In this study, the entropy generation rate
criterion was used on all numerical tests. The sensitivity anal-
ysis approach helped to decide the estimation-optimization
order. In this study, the geometrical variables were the most
influential in the process. There was no difference between
choosing material and fluid variables or vice versa. The
solution development was addressed to tackling the IHTP
method by using MOAs, considering the problem as a black
box, i.e., it is not required comprehensive knowledge about
the objective function and its differential or linear properties.
Hence, five metaheuristics (EFO, UPSO, DE, SO, and SA)

and the LM method were assessed. The results were quanti-
fied in relative errors, which were lower than 0.07%, 7.63%,
and 7.78%, with contaminated data of 30, 10, and 20 dB,
respectively, using the proposed serial strategy. UPSO, DE,
and SO achieved lower values than the reference one (see
Fig. 6).

Numerical results showed that the parallel strategy is more
sensitive to the low SNR levels than the serial strategy.
Data with high dispersion (low SNR value, e.g., , 10 and
20 dB) generated disproportionate results, resulting in a dis-
advantage of this strategy. This is a consequence of using a
least-squares fitting by OLSN, expecting new proposals of
solution.

It is noteworthy that the proposed scheme allowed all
optimization algorithms to reach optimal solutions. Finally,
the parametric statistical tests based on mean and standard
deviation were shown. Moreover, three nonparametric sta-
tistical tests were implemented to formally determine the
most appropriate optimization algorithm and the most rec-
ommended solution strategy. Such formal evaluation met-
rics included the Wilcoxon–Mann–Whitney, Friedman, and
Kruskal-Wallis evaluation tests. The parametric and nonpara-
metric tests confirmed the obtained improvement of using the
serial strategy over the parallel one, as well as on using of
MOAs over the LM method.

VI. CONCLUSION
This work proposed an alternate optimal parameter estima-
tion strategy, solving an IHTP related to thermal energy man-
agement in electronic devices. These parameters dealt with an
RMCHS model design to obtain the optimal characteristics
such as the geometry, building materials, and working fluids.
The modeling was obtained under the EGM criterion sense.
Furthermore, an inverse analysis was applied to solve an
IHTP using five global population-based MOAs replacing
the traditional LM algorithm and two systematical strate-
gies, i.e., serial and parallel. Specifically, the serial strat-
egy obtained more significant accuracy and higher reliability
than the parallel one (commonly used) in the estimation and
optimization processes. The five MOAs (i.e., EFO, UPSO,
DE, SO, and SA) were implemented and analyzed. Their
performances and solutions were contrasted against the deter-
ministic LM method.

To summarize, a serial scheme powered with either MOAs
(depending on the computing platform capabilities and ear-
lier sensitivity analysis) represents an excellent strategy for
solving the IHTP associated with the RMCHS design in
thermal energy management. Therefore, the serial strategy
can be considered a thoughtful alternate for the parameter
estimation when complex and highly nonlinear models are
studied despite observing an accumulation of error propa-
gation due to tests depending on previous results (sequen-
tial process). It is noticed that this approach is suitable for
microelectronics applications, even for contaminated signals
of 10 dB or 20 dB of SNR as measured data. The serial
strategy is recommended for designing RMCHSs using the
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inverse heat transfer problem, as shown in this work, formally
validated by three nonparametric tests (Wilcoxon–Mann–
Whitney, Friedman, and Kruskal-Wallis) during comparisons
of strategies and optimization algorithms. UsingMOAs in the
estimation-optimization processes avoids finding the main
drawbacks of the LM algorithm (instability, gradient dis-
continuities, or nonlinearities issues). These MOAs achieve
behave as unsupervised optimizers, and proper tuning of their
parameters can be increased the exploration-exploitation rate
to improve all the processes.
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