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ABSTRACT Skyline query is very useful in decision-making systems, WSN and so on. As a variation
of skyline query, skyline-join query can return the results from multiple datasets. However, incomplete
datasets are a frequent phenomenon due to the widespread use of automated information extraction and
aggregation. Existing methods for dealing with incomplete data, such as probability, data padding can solve
the problem, but cannot effectively reflect the real situation and are lack of integrality. Therefore, in this
paper, in order to reflect the situation more accuracy and more user-centric, we research the problem of
skyline-join query over incomplete datasets with crowdsourcing, named CrowdSJ. The crowdsourcing-
based skyline-join query processing problem over incomplete datasets is divided into two situations. One
is the skyline-join query only involves the unknown crowdsourcing attribute and the join attribute, named
Partial Skyline-Join with Crowdsourcing (PSJCrowd). The other one is the skyline-join query involves all
the attributes, named All Skyline-Join with Crowdsourcing (ASJCrowd). For PSJCrowd, first, we filter
the known dataset. Then, we present the level-preference-tree-index, and propose the partial skyline-join
with crowdsourcing algorithm. For ASJCrowd, first, we filter the known dataset too. Second, we build a
level-preference-tree-index based on the known attributes of the incomplete dataset. Third, we propose the
skyline-join with crowdsourcing on single dataset algorithm, CrowdSJ-single, to filter the dataset containing
unknown attributes. Then, we build a global level-preference-tree-index based on the known attributes of the
incomplete dataset and the complete dataset. We propose the skyline-join with crowdsourcing on multiple
datasets algorithm, CrowdSJ-multiple. We filter the linked tuples based on the global level-preference-
tree-index and the results of each round of crowdsourcing. Numerous experiments on synthetic and real
datasets demonstrate that our algorithms are efficient and effective.

INDEX TERMS Skyline-join query, incomplete data, crowdsourcing, index structure.

I. INTRODUCTION
Skyline query is very useful in decision-making
systems [1], [2], Wireless Sensor Networks(WSN) [3]–[5],
Navigation [6], Demographic [7], geographic services [8],
and so on. Given a set of attributes of interest, a skyline query
retrieves the tuples which cannot be dominated by others in
any of the attributes. For example, to find a suitable hotel,
a user may propose a query ‘return the hotels which are both
cheap and close to the beach’.

Existing research tends to assume that the skyline query is
issued to a single dataset. That is, all the required attributes
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are from the same dataset. However, this assumption is
no longer valid for the web environment, where data from
multiple sources are required for query processing. In this
situation, a variation of skyline query that is skyline-join
query has been proposed. Skyline-join query can return the
results frommultiple datasets. The issue of skyline-join query
has been extensively studied, and the representative works
include [9], [20]–[23]. Figure 1 illustrates an example of
computing the skyline-join over two datasets. Suppose that
the database contains the relations Hotels and Restaurants
that store information about a specific city. A tourist may
be interested in discovering the best combinations of hotels
and restaurants in the same ‘Loc’, by minimizing the hotel’s
‘H-Price’ and ‘Rating’ (Supposing), and by minimizing
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the restaurant’s ‘Quality’ (Supposing) and its ‘R-Price’.
A sample SQL query that retrieves this information is as the
following:

SELECT H.HID, R.RID, H.H-Price, R.R-Price,
H.Loc, H.Rating, R.Quality

FROM Hotel H, Restaurant R
WHERE H.Loc= R.Loc
SKYLINE OF H.Price MIN, H.Rating MIN,

R.R-Price MIN, R.Quality MIN
The result dataset of the skyline-join query is depicted

in Figure 1. The use of the skyline operator allows the
retrieval of the most ‘important’ join tuples according to the
specified attributes.

FIGURE 1. Example of skyline-join.

Normally, skyline-join query consists of two phases, join-
ing the relations containing the required attributes andmaking
a skyline query in the relation after the join. In skyline-join
query in Figure 1, two datasets are first linked through the
unique link attribute ‘Loc’, and then perform skyline query
in the dataset after join. Tuple {h4, R1} is dominated by {h1,
R1}, and the remaining tuples after the join cannot be domi-
nated by other tuples, so they are all the results of skyline-join
query. It illustrates that skyline-join can return skyline results
from multiple datasets. However, these results involve many
attributes which are difficult for users to choose. At this time,
if the overall evaluation of the restaurant is obtained through
the previous users of this restaurant, named cost-effective,
it can reflect the actual situation more accurately and be more
user-centric.

However, the cost-effective of one restaurant is often
unknown. Moreover, incomplete datasets are a frequent phe-
nomenon due to the widespread use of automated information
extraction and aggregation. The existing skyline-join query
connects all relevant datasets and then applies the existing
skyline algorithms based on complete dataset. It is difficult
for the dataset with incomplete or unknown data attributes.
Although, in certain situation, we can infer some information
from the known attributes, this kind of inference often differs
from the results expected. The more extreme situation is that
a certain attribute in the dataset is completely missing, and
there are cases where the attributes are partially missing in the
actual application. Existing methods for dealing with incom-
plete data, such as probability [11], [16], data padding [12]

can solve the problem, but cannot effectively reflect the real
situation and are lack of integrality.

Recently, crowdsourcing [10], [35]–[39] has emerged
as a new computing paradigm for human computation
and has been widely used for bridging the gap between
machine-based and human-based computation. Humans can
realize considerably improved results compared to computers
when performing intelligent tasks such as answering users’
semantic search queries [29], [30], understanding topics in
microblogs [31], [32], and images tagging for subjective
topics [33], and so on. To solve the problem of skyline-join
over incomplete datasets, we use crowdsourcing to effec-
tively infer missing values on the supervisor attribute. There-
fore, in this paper, we research the problem of skyline-join
query over incomplete datasets with crowdsourcing, named
CrowdSJ.

In this paper, crowdsourcing-based skyline-join query pro-
cessing problem over incomplete datasets is divided into
two situations. One situation is that for two datasets of
skyline-join query, all the attributes of one dataset are known,
and only one attribute of the other dataset is unknown,
where the skyline-join query only involves the unknown
crowdsourcing attribute and the join attribute, named Partial
Skyline-Join with Crowdsourcing (PSJCrowd). For example,
when we arrive somewhere, we want to find a hotel with
better price and rating, and around it there are the restaurants
with better cost-effective. The cost-effective of a restaurant is
often unknown which needs to crowdsourcing. First, we filter
the data tuples in the known dataset. Second, the tuples in
the unknown dataset are filtered based on the join attribute
and compared in pairs. Currently, since the skyline-join of the
unknown dataset only involves one unknown attribute and a
join attribute, the result of crowdsourcing is optimal in each
group. Finally, a level-preference-tree-index is established
based on the attributes of the known dataset [13], and then
the tuples are filtered through the dominance of the known
data attributes in the index and the crowdsourcing results of
each round to obtain the global skyline-join results.

Another situation is that for two datasets of skyline-join
query, all the attributes of one dataset are known, and
only one attribute of the other dataset is unknown, where
the skyline-join query involves all the attributes not only
the unknown crowdsourcing attribute and the join attribute,
named All Skyline-Join with Crowdsourcing (ASJCrowd).
For example, when we arrive somewhere, we want to find
a hotel with better price and rating, and around it there are
the restaurants not only with better cost-effective, but also the
other attributes, price, rating and so on. The cost-effective of
a restaurant is often unknown which needs to crowdsourcing
too. In this case, the first step is the same as the first case.
The second step is to group meta-groups according to the
different link attributes, and to index each group based on
the known attributes in the unknown dataset. We filter the
tuples based on the dominance of the index in the unknown
dataset and the crowdsourcing results of each round in the
unknown dataset. Finally, the two datasets are joined, and a
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global level-preference-tree-index index is established based
on the attributes of the known dataset and the known attributes
in the unknown dataset. The skyline-join result is obtained
by filtering the tuples in the unknown dataset based on the
dominance of the index in all datasets and the crowdsourcing
results of each round. The main contributions of this article
are as follows:

• For Partial Skyline-Join with Crowdsourcing problem
(PSJCrowd), we first introduce the level-preference-
tree-index, and propose the partial skyline-join with
crowdsourcing algorithm. The proposed algorithm fil-
ters the tuples based on the dominance between the
tuples of a known dataset and the results of each round
of crowdsourcing.

• For All Skyline-Join with Crowdsourcing problem
(ASJCrowd), first we filter the known dataset. Then
on the incomplete dataset, we build a level-preference-
tree-index based on the known attributes of the incom-
plete dataset. The algorithmfilters the dataset containing
unknown attributes based on this index and each
round of crowdsourcing results. Globally, we build a
global level-preference-tree-index based on the known
attributes of the incomplete dataset and the complete
dataset. The algorithm we proposed filters the linked
tuples based on the global level-preference-tree-index
and the results of each round of crowdsourcing.

• Numerous experiments on synthetic and real datasets
demonstrate that our algorithms are efficient and
effective.

The organization of this paper is as follows. Section II
describes the work related of skyline queries on incomplete
datasets, crowdsourcing queries, and skyline-join queries.
Section III researches the partial skyline-join with crowd-
sourcing problem (PSJCrowd). Section IV solves the all
skyline-join with crowdsourcing problem (ASJCrowd). The
performance of the algorithms is evaluated in Section V
through experiments. Section VI summarizes the work of this
paper.

II. RELATED WORK
A. SKYLINE-JOIN QUERY PROCESSING
Akrivi Vlachou et al. [23] proposed the novel Sort-First-
Skyline-Join (SFSJ) algorithm that mixed the identification
of skyline tuples with the computation of join, and efficiently
computed the skyline set of a relational join. Nagendra M
et al. Paper [28] proposed skyline-sensitive join (S2J) and
symmetric algorithms by pruning the non-skyline-join tuples
to get the final result set. Anuradha Awasthi et al. Paper [20]
studied the k-dominant skyline-join queries (KSJQ) algo-
rithm to solve the k-dominant skyline query problem in the
multi-relationship complete library. Based on the proposed
group division approach, Zhang et al. [24] proposed an effi-
cient algorithm Skyjog, which was applicable for skyline-
join on two or even more relations. For the skyline query
problem of multiple data streams, Zhang et al. [21] proposed

the Naive Parallel SlidingWindow Join (NP-SWJ) and Incre-
mental Parallel Sliding Window Join (IP-SWJ) algorithms.
Bai et al. [9] proposed the distributed skyline-join query algo-
rithm (DSJQ) to process skyline-join queries in distributed
databases. However, none of these tasks involves incomplete
databases. Alwan et al. [22] proposed a skyline algorithm in a
non-holonomic database, but the algorithm was based on the
traditional incomplete database skyline, that was, the algo-
rithm only compared in dimensions where the data was not
missing, and the returned skyline result set did not meet the
user’s needs.

In practical applications, the data dimensions that people
care about may not exist in the database, and often relate
to multi-sets queries. Therefore, on the incomplete datasets,
this paper proposes efficient skyline-join query processing
algorithms using crowdsourcing.

B. QUERY WITH CROWDSOURCING
For Max query, Verroios et al. [25] proposed the strate-
gies for selecting the max algorithm parameters to resolve
the best match with the input. They proposed strategies
for selecting the max algorithm parameters to resolve the
best match with the input. For top-k query, Lee et al. [18]
proposed the CrowdK algorithm to solve the top-k prob-
lem, and the algorithm used two-stage parametric frame-
work with two parameters, bucket, and range to reduce the
cost of crowdsourcing by controlling the range of buckets.
Liu et al. [27] combined the student’s distribution estimation
and the Stein’s estimation with crowdsourcing to ensure the
quality of crowdsourcing. Davidson et al. [40] studied the
question of using crowd answers to evaluate max/top-k and
group queries. Assuming that the probability that the crowd
correctly answered each type or value question was greater
than 1/2, a variable error model was proposed for the wrong
answers of the crowd. For skyline, Lee et al. [10] proposed
a crowdsourcing-based CrowdSky algorithm to minimize the
cost of money, but the running time had increased.

The above researches are limited to a single relationship,
and do not support multi-relational skyline queries well. This
paper extends the skyline query based on crowdsourcing to
make it suitable for skyline queries with missing data for
multiple relationships.

C. SKYLINE QUERY OF INCOMPLETE DATASET
There are also many research results of skyline query
on incomplete data [10], [12], [14], [16], [26], [41]–[49],
[51], [52], and their applications are also very extensive.

The skyline query in the incomplete dataset was first pro-
posed by Khalefa et al. [14]. This paper gave a definition of
skyline query in an incomplete dataset, which was the domi-
nance of the two data tuples was obtained only by comparing
the attribute dimensions in which they were not missing data.
However, this would destroy the transitive relationship among
the data tuples, leading to the problem of circular domination
between tuples. Zhang et al. [42] studied queries that returned
top-k results on incomplete data, and proposed an extended
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skyband based (ESB) algorithm and an upper bound based
(UBB) algorithm to effectively reduce candidate sets.

Zhang et al. [16] proposed the concept of probability
skyline on incomplete dataset, and proposed an efficient
algorithm PISkyline to return k points with the highest
skyline probabilities. Reference [42] proposed SPISkyline,
SPCSkyline and SPASkyline algorithms to calculate proba-
bility skyline for incomplete data of independent, correlated
and anti-correlated distribution. Kou et al. [28] proposed
U-Skyline (uncertain skyline) query that searched for a set of
tuples that had the highest probability as the skyline answer.
Meeyai [12] proposed the Crowd-Enabled Skyline Queries
algorithm (CEAQ), combining the dynamic crowdsourcing
with heuristic technology. Compared with the probabilis-
tic skyline, although the algorithm’s query cost and run-
ning time had increased, the quality of the expected results
increased significantly. Miao et al. [43] proposed a Bayesian
query framework, and proposed an adaptive Davis-Putnam-
Logemann-Loveland (DPLL) algorithm on this framework.
Swidan et al. [50] proposed an approach for estimating
the missing values of the skylines by first exploiting the
available data and utilized the implicit relationships between
the attributes in order to impute the missing values of the
skylines. Lee et al. [10] proposed a crowdsourced Crowdky
algorithm to solve the skyline query problem on a single
relation.

But the above researches were mostly based on probabil-
ity, uncertainty, and the returned results tended to be biased
or were limited to a single relationship and did not sup-
port multi-relational skyline queries. This article extends the
crowdsourcing skyline query to make it suitable for skyline
queries with multiple relational datasets.

III. PARTIAL SKYLINE-JOIN WITH CROWDSOURCING
In this section, we first show some definitions of our research
problem. Second, we present the detail process and the algo-
rithm of the partial skyline-join with crowdsourcing.

A. PROBLEM DEFINITION
Definition 1 (Dominance): Given two data tuples ti and tj

with d dimensions, ti (p) is the value of ti on the p field. The
tuple ti governs tj, if and only if the following conditions are
holds:∀p(0 ≤ p ≤ d)ti(p) ≤ tj(p) ∧ ∃q(0 ≤ q ≤ d)ti(p) <

tj(p), and it is denoted as ti ≺ tj.
Definition 2 (Skyline Query): Dataset A has n tuples. The

skyline is a set of tuples that are not dominated by any other
tuples in A. We use Sky(A) to represent the skyline query
Sky(A) = {ti|∀ti, tj ∈ A, 6 ∃tj ≺ ti }.
Most of the existing research works assume that skyline

queries are limited to one dataset. However, this assumption
is no longer valid in the Internet environment. In this case,
we need to query and process data from multiple datasets,
so we introduce skyline-join query as follows.
Definition 3 (Skyline-Join Query): The attribute involves a

skyline query of multiple datasets (A1, A2, . . . , Ak), defined as
skyline-join query. Let dataset B = {A1 FG A2 FG . . . FG AK},

then skyline-join of B is skyline(B) = {t|t ∈ B,@P ∈ B,

P ≺ B}.
Definition 4 (Incomplete Dataset): Incomplete Dataset

refers the dataset which has no value or misses in some
attributes.
Definition 5 (Skyline-Join Query of Incomplete Datasets

With Crowdsourcing): On the datasets, the preference rela-
tionship between tuples in the missing dimension is returned
through crowdsourcing, and combines the preference rela-
tionship in the dimension whose attribute value is known, and
attributes with known attribute values come from a known
dataset or an incomplete dataset, and then returns the result
of the Skyline-join query of the incomplete datasets.
Definition 6 (Partial Skyline-Join With Crowdsourcing

PSJCrowd): PSJCrowd refers that for two datasets of
skyline-join query, all the attributes of one dataset are known,
and only one attribute of the other dataset is unknown, where
the skyline-join query only involves the unknown crowd-
sourcing attribute and the join attribute.

In this section, we mainly introduce the process of the
first situation of Partial Skyline-Join with Crowdsourcing
(PSJCrowd). First, the known dataset is filtered. Second,
the incomplete dataset is filtered by two-to-two crowdsourc-
ing comparison. Finally, an index is established based on the
known dataset. The overall data is filtered by our proposed
PSJCrowd algorithm to obtain the final results.

B. KNOEN DATASET FILTERING
In order to quickly respond to user query and improve query
efficiency, we first filter the tuples in the known dataset, using
the skyline query algorithm (BNL) [1] to quickly filter out the
non-skyline result tuples, and return the candidate set in the
known dataset.

The filtering process of the known dataset is as follows.
We first divide the tuples in the known dataset into different
groups according to the join attribute, and then use the BNL
algorithm to find the skyline result set in each group. Finally,
return the skyline result set of all the groups.
Example 1: Figure 2 shows an example of PSJCrowd.

Figure 2(a) is the hotel relation which is the known dataset
and has 10 tuples. Suppose the smaller the better. We can
see that the skyline results of value ‘A’ of attribute ‘Loc’ is
{h3, h8}, and the skyline results of value ‘B’ of attribute ‘Loc’
is {h5, h10}. So, the dataset after subtraction is {h1, h3, h5, h6,
h8, h9, h10}.

C. UNKNOWN DATASET FILTERING
In order to reduce the cost of crowdsourcing, we use
the method of pairwise comparison based on the tourna-
ment algorithm [26] to query crowdsourcing datasets with
unknown attribute. Pairwise comparisons are performed
between two tuples and the winner proceeds to the next
round until the best tuple is found. When crowdsourcing on
the attribute set with missing attributes, it is known through
some attributes that tuples cannot dominate each other on the
missing attribute set or through known attributes and partial
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FIGURE 2. An example of partial skyline-join with crowdsourcing (PSJCrowd).

crowdsourcing, the two tuples cannot be controlled by each
other, we can stop crowdsourcing, and there is no need to
crowd each missing attribute on the missing attribute set of
the tuple. In this way, the preference relationship of tuples
is returned in the entire missing dimension to reduce the
crowdsourcing cost.

The query process is as follows. We compare the tuples
of the same attribute in pairs, and the winner enters the next
round. Because in this case, skyline-join query only cares
about one attribute in this dataset, the skyline result is the
optimal value within each attribute.
Example 2: As shown in Figure 2(b), there are 10 tuples in

the restaurant relation. When we only care about the cost-
effective (V/M ) of a restaurant and the value of V/M is
unknown, so we need crowdsourcing to solve this prob-
lem. For example, the tuple with attribute ‘A’, as shown
in Figure 2(c), we first crowd (R3, R6). Suppose we obtain
that R6 is better than R3, then we return R6 and go to the
next round until the final results are obtained. The same
operation is performed in the attribute ‘B’, ‘C’, and ‘D’.
And the final result set {R1, R6, R4, R10} is returned. In this
step we only need 2 rounds with 6 questions to solve the
problem.

D. GLOBAL DATASETS FILTERING
We separately filter the datasets to be joined. We compare
the linked tuples in pairs, that is, we need to crowd between
the paired tuples, which would produce huge crowdsourc-
ing overhead. Therefore, we propose a level-preference-tree-
index (LPT) with early termination conditions to reduce the
cost of crowdsourcing, shorten the time delay and obtain the
final skyline-join result.

To facilitate subsequent operations, reducing the cost of
crowdsourcing, we now adopt a level-preference-tree-index
that visualizes the preferences of tuples in dataset in order
to compute skyline-join result efficiently. LPT is a kind of
tree structure index. Each node in the tree represents a tuple,
and the directed edge in the tree represents the dominance
relationship between nodes, and the priority tree supports the

transitivity of the dominant relationship between the tuples in
any two layers, that is, supports cross-layer domination. After
asking each question, LPT is iteratively updated, and is used
for identifying the dominance relationships by checking the
path between tuples. In particular, the initial virtual node is
constructed for future calculations, and after each round of
traversal, the node level is updated based on the virtual node.
The early termination condition is added to LPT, that is, only
the parent node is traversed in the previous round, and the
child node can participate in the traversal in the next round.
The lower tuples do not need to be traversed.

Figure 3 is an example of our LPT. We introduce a LPT
based on known dataset, the dominance relationship can be
represented by a directed edge between two tuples across dif-
ferent layers, named PSJCrowd-T. The skyline layers permit
the dominance relationship between tuples in any two layers,
for example, h3 → h10 and h6 → h9 in Figure 3(b). The
dominance relationship via transitivity can be inferred from
multiple edges.

Algorithm 1 provides the pseudo-code for filtering global
data using the level-preference-tree-index (PSJCrowd-T).
The tuples after the first-level tuple join in the level-
preference-tree-index must be in the skyline-join result set
(lines 1-5), and iterating from the second level of the index.
If the tuple has only one parent node, crowdsourcing of the
tuple after the parent node and the child node are joined
(lines 6-13). We determine whether a parent node with the
same join attributes dominates the same node at the same
time. If so, only one parent node is kept to its edge, and
all other edges are broken (lines 14-16). When the link
attributes between the parent nodes are different, we check
whether the tuple is dominated by two or more parent nodes,
if so, if the parent nodes have been traversed, the dominant
relationship between the parent nodes may be crowdsourced
first (lines 17-22). Before each crowdsourcing, it is neces-
sary to check whether the preference relationship of attribute
requiring crowdsourcing already exists, and obtain it through
crowdsourcing or transitivity. This node can participate in
crowdsourcing only if the parent node has been facilitated in
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FIGURE 3. An example of level-preference-tree-index.

Algorithm 1 PSJCrowd (H ′ FG R′1)

Input: H ′,R1, Index with H ′

Output: Sky (H ′ FG R′1)
1: For each (hi ∈ H ′) do
2: If (hi.falg =1) then
3: If (hi.loc = ri.loc )then
4: hi FG ri ∈ Sky (H ′ FG R′1)
5: Initialize a preference tree PSJCrowd-T in R′1
6: While (∃hi.flag > 1) do
7: If (hi.fnum = 1) then

//hj ≺ hi,hi.loc = rk.loc ,hj.loc = rz.loc
8: If ((rk ,rz) /∈PSJCrowd-T) then
9: Ask(rk ,rz) to crowds, and update PSJCrowd-T

with (rk ,rz)
10: If (rz ≺ rk ) then
11: Remove hi
12: Else hi FG rk ∈ Sky (H ′ FG R′1)
13: hi.flag=1
14: else if (∃num(hl ≺ hi ∧ hl.flag=1)≥2) then

//hj ≺ hi, hm ≺ hi,hj.loc = rz.loc,hm.loc = rn.loc
15: If (hj.loc = hm.loc) then
16: Remove edge (hm→ hi) in index
17: else if (∃num (hl ≺ hi ∧ hl.flag=1)≥2) then
18: If (6 ∃(rk ,rz)) then
19: Ask (rz, rn) to crowds, and update

PSJCrowd-TWith (rz, rn)
20: If (rz ≺ rn) then
21: Remove edge (hm→ hi) in index
22: else Remove edge (hj→ hi) in index
23: Output Sky (H ′ FG R′1)

the previous round. Repeat each round until all the tuples have
been traversed.
Example 3: Assume that the preference order among R1,

R6, R4, and R10 is R10 ≺ R1 ≺ R6 ≺ R4. We need to crowd
them in pairs to get this result. According to Algorithm 1, the
data of the first layer does not need to be traversed, and the
tuples after the join are the skyline-join set. First, we enter
the first round, because the link attributes of h3 and h8
are ‘A’, so we only crowd tuples that need to be joined to

FIGURE 4. Preference relation in restaurant after two rounds.

h3, h10, that is, {(R6, R4)} needs to be queried and checked
before crowdsourcing.Whether the preference relationship of
the lower tuples already exists in PSJCrowd-T, if it exists,
directly operate the level-preference-tree-index, and if not,
then crowd. In the attribute V/M , R6 ≺ R4, so h10 is deleted,
and a directed edge is added between h3 and h9. In addition,
h1 is dominated by h5 only, and the preference relationship
of R1 and R4 on V/M attributes is crowdsourced. Because
R1 ≺ R4 is obtained through crowdsourcing, that is, h1 FG R1
belongs to the skyline-join set, so h1 cannot be deleted, and
the first round ends, as shown in Figure 3(c). In the second
round, because the join properties of h3 and h6 are different,
we need to crowdsource {(R6, R1)}. There are no tuples to
be traversed in this round. Preference relation in Restaurant
updated to Figure 4. In the third round, h6 and h1 have a
common link attribute ‘C’, so the tuples R1 and R10 that need
to be joined to h1 and h9 are crowdsourced, and the traversal
ends, as shown in Figure 3(d). We go through three rounds of
operation and complete the filtering process with 4 questions.
The skyline-join is finally identified as {(h8 FG R6), (h3 FG
R6), (h6 FG R1), (h1 FG R1), (h9 FG R10)}.
Throughout the process, we pass 10 questions in 5

rounds, 35 fewer problems than the 45 (10 × 9/2) ques-
tions in the baseline method. We greatly reduce the cost of
crowdsourcing.

IV. ALL SKYLINE JOIN WITH CROWDSOURCING
In this section, we propose the all skyline-join with crowd-
sourcing problem. First, we give the problem definition of
ASJCrowd.
Definition 7 (All Skyline-Join With Crowdsourcing,

ASJCrowd): ASJCrowd problem refers that for two datasets
of skyline-join query, all the attributes of one dataset are
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FIGURE 5. Restaurant relation with unknown attributes.

known, and only one attribute of the other dataset is unknown,
where the skyline-join query involves all the attributes not
only the unknown crowdsourcing attribute and the join
attribute.

Then, the processing course of ASJCrowd is proposed. The
processing of the known dataset is the same as the first case,
so the description does not repeat.

A. UNKNOWN DATASET FILTERING
First, we filter the dataset containing unknown attribute.
In order to reduce the cost of crowdsourcing and reduce the
time delay, we build the index based on the LPT construction
method. That is, a ASJCrowd-single-level-preference-tree-
index (ASJCrowd-ST) is constructed based on the preference
relationship between the known attributes on the unknown
dataset. The operations are the same on tuples with different
join attributes.

Such as, the user needs to find a low-priced and good-
star hotel, and to find a restaurant close to the hotel which is
cheap and has a high quality. At the same time, the ‘Quality’
of the restaurant is the user’s evaluation of the restaurant
cost-effective and the data is missing. The Restaurant dataset
becomes as shown in Figure 5. Taking the tuple with join
attribute ‘A’ as an example, we build an index ASJCrowd-ST
based on the known attributes (‘Dis’ and ‘R-price’) of the
Restaurant dataset, as shown in Figure 6(b).

Algorithm 2 provides the pseudo-code for filtering data on
unknown datasets. The tuples after the first-level tuple join
in the level-preference-tree-index must be in the skyline-join
result set (lines 1-5) and iterate from the second level of
the index. If the tuple has only one parent node, the parent
and child nodes are crowdsourced on unknown attributes

Algorithm 2 ASLCrowd-single(c)

Input: R2, Index with k
R

Output: Sky(R2)
1: For each (ri ∈ c) do
2: If (ri.flag = 1) then
4: ri ∈ Sky(R2)
5: Initialize a preference tree ASJCrowd-ST in Rc

6: While (∃ri.flag >1) do
7: If( ri.fnum =1) then

//rj ≺ ri in Rk

8: If (6 ∃(ri,rj)) then
9: Ask (ri, rk ) to crowds, and update

ASJCrowd-ST with (ri,rj)
10: If (ri,rj) then
11: Remove ri
12: Else ri ∈ Sky(R2)
13: else if (∃ num(rj ≺ ri ∧ rj.flag =1)≥2) then
14: //rj ≺ ri in k

R, rk ≺ ri in
k
R

15: If (6 ∃(rj,rk )) then
16: Ask (rj,rk ) to crowds, and update ASJCrowd-

ST with (rj,rk )
17: If (rj ≺ rk in Rc) then
18: Remove edge (rk → ri) in index
19: else Remove edge (rj→ ri) in index
20; Output Sky(R2)

(lines 6-12). If there are multiple parent nodes, as long
as the parent node is traversed, the preference relationship
between the parent nodes on the unknown attributes can
be crowdsourced (lines 13-19). Before each crowdsourcing,
it is necessary to check whether the preference relationship
of the attribute requires crowdsourcing already exists, and
obtain it through crowdsourcing or transitivity. This node can
participate in crowdsourcing only if the parent node has been
facilitated in the previous round.
Example 4: Assume that the true preference relationship

between the missing attributes ‘Quality’ of the tuple on the
incomplete dataset is shown in Figure 6(a). According to
Algorithm 2, R4, R9, R14, and R19 are in the skyline-join can-
didate set. In the first round,R4 ≺ R3 inASJCrowd-ST and the
preference relationship between R3 and R4 on the ‘Quality’
attribute is missing, so {(R3,R4)} is crowdsourced. Because
R4 ≺ R3 also exists in the ‘Quality’ attribute, we delete
node R3 and add edges R4 → R5, and R4 → R10, and
update ASJCrowd-ST at the same time. The crowdsourcing
must update ASJCrowd-ST every time, and the latter is no
longer to repeat. In addition,R4 ≺ R8,R9 ≺ R8 inASJCrowd-
ST, so {(R4,R9)} is crowdsourced first. On the ‘Quality’
property, R9 ≺ R4, so R4→ R8 is deleted. At the same time,
we crowd {(R9, R12) and {(R14, R19)}, deleting node R12,
joining edge R9 → R13 and deleting edge R19 → R18.
The round is over. In the second round, on the ‘Quality’
property, R9 ≺ R4 can be obtained in the previous round of
crowdsourcing, so delete the edge R4 → R5. For {(R9, R5)}
crowdsourcing, the node R5 is deleted in ASJCrowd-ST.
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FIGURE 6. Level-preference-tree-index on tuples with attribute ‘A’.

In addition, crowdsourcing {(R9,R8)}, node R8 is deleted.
At the same time, crowdsourcing for {(R9,R14)}, {(R14,
R18)}, edge R14 → R13 is deleted. The round ends. At this
time, ASJCrowd-ST is updated as shown in Figure 6(c), and
the preference relationship of the tuples on the incomplete
dataset on the ‘Quality’ attribute can be updated as shown
in Figure 7. Crowdsourcing {(R9,R10)}, {(R9,R13)} is in the
third round, and the next round of crowdsourcing is {(R10,
R13)}. In the last round of crowdsourcing, {(R10, R17)} is
crowdsourced, and the related operations are updated accord-
ing to the crowdsourcing results. After updating ASJCrowd-
ST, as shown in Figure 8, we return the result after reduction
{R4, R9, R14, R19,R10,R13, R18}.

FIGURE 7. Preference relationship in restaurant relation in quality after
two rounds.

FIGURE 8. Level-preference-tree-index on tuples with attribute ‘A’.

Similarly, filter the tuples with attributes ‘B’, ‘C’ and
‘D’. On the ‘Quality’ attribute, assume R2 ≺ R11, R15 ≺
R6, R15 ≺ R7. In the tuple containing the attribute ‘B’, the
pairs of {(R6, R15)} and {(R15, R7)} are crowded by two

rounds, and the result {R6, R15} is returned. In the tuple
containing the attribute ‘C’, the traversal is completed by
one round of inquiry {(R2, R11)}, and the result {R1, R2}
is returned. That is, in this step, the operation is ended by
5 rounds of 15 questions, and the result is returned. The set is
{R4, R9, R14, R19, R10, R13, R18, R6, R15, R1, R2, R16}.

B. GLOBAL DATASET FILTERING
In the last step of this method, the tuples in the two datasets
after filtering are first joined according to the join attributes,
and then a level-preference-tree-index is established to filter
the global data. Using the previously mentioned method, then
we build a ASJCrowd-multiple-level-preference-tree-index
(ASJCrowd-MT) based on the attributes of the known dataset
and the known attribute columns of the unknown dataset, and
as shown in Figure 9.

Algorithm 3 provides the pseudo-code for filtering global
data using the level-preference-tree-index (ASJCrowd-MT),
then the tuple of the first layer in ASJCrowd-MT must be
in the skyline-join result set (lines 1-5), and iterating from
the second layer of the index. If the tuple has only one
parent node, then determines whether the join properties of
the parent and child nodes are the same. If the join properties
are the same, crowdsourcing is not required. Both the parent
and child nodes belong to the skyline-join set. If the join
attributes are not the same, crowdsourcing the parent and
child nodes on unknown attributes (lines 7-13). If the tuple
is dominated by two or more tuples, first determine whether
the join attributes between the parent nodes are consistent.
If they are consistent, then check whether the tuples on the
joined incomplete dataset are the same. If the same tuple is
joined, crowdsourcing is sufficient once. If they are not the
same, first check whether the preference relationship of the
joined tuples on the unknown attribute already exists. If it
exists, crowdsourcing is only once. If the join properties are
inconsistent, the preference relationship between the parents
nodes on the unknown properties can be crowdsourced first
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FIGURE 9. Level-preference-tree-index on all known attributes.

(lines 14-27). Before crowdsourcing, it is necessary to check
whether the tuple’s preference relationship on unknown
attributes exists. The preference relationship can be obtained
through crowdsourcing and domination transitivity. The
crowd can be crowdsourced in the next round only after the
parents’ convenience has passed. Repeat the above operation
until the convenience is completed.
Example 5: In the attribute that requires crowdsourc-

ing, it is assumed that the true preference relationship is
R9 ≺ R6,R15 ≺ R9,R16 ≺ R4, and crowdsourcing is required
to obtain it. According to Algorithm 3, the tuples after the
join of the first layer are in the skyline-join set. The first
round is traversed from the second layer. The link attributes
of h3 FG R9 and h3 FG R10, h3 FG R13 are the same, so there is
no crowdsourcing. They are all in the skyline-join result set.
In the index tree, h3 FG R9 and h8 FG R9 all dominate h10 FG
R6, h3 FG R9 and h8 FG R9 have the same attributes, and
h3 and h8 are joined to R9, so we only need to set {(R9, R6)}
crowdsourcing. Because R9 ≺ R6, we delete nodes h10 FG R6.
Similarly, in the global index tree, h3 FG R4 ≺ h9 FG R16,
h8 FG R4 ≺ h9 FG R16, so for {(R4, R16)} crowdsourcing,
because R16 ≺ R4, so h9 FG R16 also belongs to the
final skyline-join set. In the second round, in the index tree,
h3 FG R9 and h8 FG R9 both dominate h10 FG R15, h3 FG R9
and h8 FG R9 have the same join attributes. And h3 and h8 are
joined to R9, so only need to crowdsourcing on {(R9, R15)}
on properties. The traversal ends. The remaining ones do not
need crowdsourcing because of the same join properties. The
tuples after the join shown in Figure 9 except for h10 FG R6
are the results of the skyline-join query. In this step, three
questions are asked through two rounds to get the final result.

Throughout the process, we pass 18 questions in 7 rounds,
172 fewer problems than the 190 (20×19/2) questions in the

baseline method of pairwise comparison. Our algorithms can
greatly reduce the cost of crowdsourcing.

V. EXPERIMENTAL EVALUATION
In this section, we first introduce the running environment of
the experiment, and then evaluate our algorithms on synthetic
and real dataset. We demonstrate the performance of our
algorithms in terms of crowdsourcing cost and time delay
respectively.

A. EXPERIMENTAL SETUP
The experiments run under the Windows 10 environment,
equipped with Core i5-6500 3.2GHz processor, 7200PRM
hard disk and 8GB cache space. The Java compiler language
is used in JDK1.8. We repeat each experiment multiple times
and report average results.

On the synthetic dataset, it mainly focuses on the skyline-
join query problem of the two datasets R1 and R2 after the
many-to-many join operation. In this paper, R1 represents the
complete dataset and R2 represents the incomplete dataset.
In the experiment, the changes and default value in the rele-
vant datasets are given in the Table 1.

In the experiment, we observe the trend of the crowdsourc-
ing cost of the algorithms by changing the size of the synthetic
datasets in the cluster; the number of known attributes of the
known dataset; the number of the known attributes in the
unknown dataset; the number of the unknown attributes of
the unknown dataset. And we observe the trend of the time
delay of the algorithms by changing the size of the synthetic
dataset in the cluster and the number of known attributes on
the unknown dataset. At the same time, while testing one of
the attributes changing, the other attributes keep the default
value.
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Algorithm 3 ASLCrowd-multiple (H ′ FG R′2)

Input: H ′,R′2,T2, Index with H ′ and Rk

Output: Sky (H ′ FG R′2)
1: For each (hi ∈ H ′) do
2: If (hi.flag =1) then
3: If (hi.loc = rj.loc) then
4: hi FG ri ∈ Sky (H ′ FG R′2)
5: Initialize a preference tree ASJCrowd-MT in Rc

6: While (∃hi.flag >1) do
7: If (hi.fnum =1) then

//hj FG rz ≺ hi FG rk ∈ index, hi.loc = rk.loc, hj.loc =
rz.loc
8: If (6 ∃(rk , rz) in Rc)then
9: Ask (rk , rz) to crowds, and update

ASJCrowd-MT with (rk ,rz)
10: If ( rz ≺ rk ) then
11: Remove hi FG rk
12: else hi FG rk ∈ Sky(H ′ FG R′2)
13: hi.flag = 1
14: else if (∃ num(hl ≺ hi ∧ hl.flag =1)≥2)then

// (hj FG rz ≺ hi FG rk , hm FG rn ≺ hi FG rk ) ∈
index,
hi.loc = rk.loc, hj.loc = rz.loc,
hm.loc = rn.loc

15: If (hj.loc = hm.loc) then
16: If (rz = rn) then
17: Remove edge (hm FG rn ≺ hi FG rk )

in index
18: else if (6 ∃(rz = rn) in Rc) then
19: Ask (rz, rn) to crowds, and update

ASJCrowd-MT with (rz, rn)
20: If ( rz ≺ rk ) then
21: Remove edge(hm FG rn→ hi FG rk )

in index
22: else Remove edge (hj FG rz → hi FG rk ) in
index
23: else if (6 ∃(rz,rn) in Rc)then
24: Ask (rz,rn) to crowds, and update

ASJCrowd-MTWith (rz, rn)
25: If (rz ≺ rn) then
26: Remove edge(hm FG rn→ hi FG rk ) in index
27: else Remove edge (hj FG rz→ hi FG rk )

in index
28: Output Sky (H ′ FG R′2)

The crowdsourcing-based skyline-join query algorithm
proposed in this paper is called PSJCrowd algorithm and
ASJCrowd algorithm. In terms of crowdsourcing costs, for
the synthetic datasets, the comparison algorithm we chose
is based on the baseline method of pairwise comparison
and itself. In terms of time delay, the comparison algorithm
we chose is a scoring-based with unary questions baseline
method that asks only one question at a time and itself. The
experiment analyzes the changes of crowdsourcing cost and

TABLE 1. Parameter settings over synthetic datasets.

time delay when the algorithm runs from two aspects: the
change of the attribute and the change of the database size.

B. EXPERIMENTAL RESULTS
The Cost of Crowdsourcing:When paying a fixed amount

of reward for each question, the crowdsourcing cost is propor-
tional to the number of questions asked to the crowd. We use
the number of asked questions to measure crowdsourcing
costs. It is divided into three phases: P1 (filtering only on
R1 dataset), P2 (filtering only on R2 dataset), and P3 (global
filtering). The preference relationship of unknown attributes
between tuples is obtained by pairwise comparison, and it is
compared with this article as a baseline method. The filtering
operation on the known dataset does not affect the number
of crowdsourcing, so the crowdsourcing cost of the base-
line method is the same as the cost of performing only the
P1 stage.

FIGURE 10. The influence of change of cardinality.

Figure 10 depicts the number of questions as the size of the
dataset in both cases. Figure 10(a) and Figure 10(b) describe
the number of questions based on different cardinalities in
PSJCrowd and ASJCrowd. It is clear that P1+P2+P3 min-
imizes the number of problems with all parameter set-
tings. As the basic number increases, the baseline method
increases exponentially, and the effect of P1+P2+P3 is
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FIGURE 11. The influence of change of attributes of R1.

more pronounced, decreasing by two orders of magnitude.
In the case that unknown attributes are included, because
the dominance relationship between tuples is more compli-
cated, P3 reduces more problems, making the gap between
P1+P2 and P1+P2+P3 larger.

Figure 11 shows the trend of the number of problems
in two cases with the number of attributes of the known
dataset. Figure 11(a) and Figure 11(b) describe the num-
ber of problems when the numbers of attributes of the
known dataset are different in PSJCrowd and ASJCrowd.
Although the baseline shows a constant performance regard-
less of the number of attributes, our construction method
reduces the number of problems as the number of attributes
of a known dataset increases. This is because the dominat-
ing relationship between tuples decreases as the number of
attributes of known dataset increases. We find that P1 does
not affect the number of problems with crowdsourcing and
P1+P2+P3 minimizes the number of questions.

Figure 12 shows the trend of the number of problems in
two cases with the number of known attributes of unknown
dataset. Figure12(a) and Figure12(b) describe the number of
problems when the numbers of unknown attributes in the
unknown dataset are different in PSJCrowd and ASJCrowd.
It is easy to see that P1+P2+P3 is still very effective in reduc-
ing the number of problems. When the number of unknown
attributes exceeds one, we can use the looping problem to
reduce the crowdsourced problem attributes. The baseline
method obtains the attribute preferences between tuples by
asking multiple questions at one time, so as the number of
unknown attributes increases, the number of questions in the
baseline method increases multiples. While the number of
questions in P1+P2 and P1+P2+P3 increases slower, and the
optimization effect of P3 is also more and more obvious.

FIGURE 12. The influence of change of unknown attributes of R2.

FIGURE 13. Comparisons on the number of questions over varying
number of attributes in R2.

Figure 13 describes the number of questions when the
number of known attributes of the unknown dataset is dif-
ferent. Similar to the situation described in Figure 11, as the
number of known attributes of the unknown dataset increases,
our construction method reduces the number of problems.
And with the increase of attributes all the time, the effect of
P1+P2+P3 is more obvious.

To measure the latency, we use the total number of rounds
of execution of the algorithm. The baseline method is based
on a scoring system that asks only one question at a time.
Figure 14 depicts the trend of time delay as the size of
the dataset in both cases. Figure 14(a) describes the num-
ber of rounds in PSJCrowd when the dataset size changes.
Compared with the method of crowdsourcing once one prob-
lem, the number of rounds of P1+P2+P3 is reduced by two
orders of magnitude. Figure 14(b) describes the number of
rounds in ASJCrowd when the dataset size changes. Com-
paring to the baseline method and P2, the impact of P1+P2+
P3 is more pronounced.

Figure 15 describes the number of rounds when the num-
bers of known attributes in the unknown dataset are different.
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FIGURE 14. Comparisons on the number of rounds over varying
cardinality.

FIGURE 15. Comparisons on the number of rounds over varying number
of attributes in R2.

The experimental results show that as the number of known
attributes increases, the degree of parallelism is higher. When
the number known attribute is larger than two, the optimiza-
tion effect of P2+P3 is more obvious. The experimental
results show that our proposed algorithm has high accuracy
at the cost of crowdsourcing and reduces the time latency.

Figure 16 describes the impact of the ASJCrowd-single
algorithm and CrowdSky algorithm on crowdsourced latency
in incomplete data sets. Compared with the CrowdSky algo-
rithm, when there are multiple nodes dominating the same
child node, all the parent nodes need not be visited, as long
as the parent section is traversed, the ASJCrowd-single algo-
rithm can compare the preference relationship of the parent
node on the missing attributes in advance, reducing the height
of the ASJCrowd-single index, so the ASJCrowd-single algo-
rithm is more effective in reducing crowdsourcing delay.
Experimental results also show that the ASJCrowd-single
algorithm is more effective than the CrowdSky [10] algo-
rithm in reducing crowdsourcing delay, and as the data base
increases, the optimization effect of the ASJCrowd-single
algorithm is more obvious.

FIGURE 16. Comparison of the number of crowdsourcing rounds on
different data sets.

C. EXPERIMENTAL RESULTS OF REAL-LIFE DATASETS
We use two real datasets to validate our proposed PSJCrowd
and ASJCrowd algorithms. We select two places in Bei-
jing (https://bj.meituan.com/) and Shenyang (https://sy.meituan.com/),
from the website Meituan. Shenyang and Beijing are repre-
sented by S and B, respectively, and B1 and B2 represent
the crowdsourcing situation of PSJCrowd and ASJCrowd
on the Beijing dataset. Similarly, S1 and S2 represent the
crowdsourcing situation of PSJCrowd and ASJCrowd on the
Shenyang dataset. Select 500 pieces of data (10 hotels and
50 restaurants in each place). The join properties are different
areas of two places. Amazon Mechanical Turk (AMT) is a
well-known crowdsourcing platform and we set the cost of
each crowdsourcing problem at 0.02$.

FIGURE 17. Comparisons on the number of questions over varying
datasets.

Figure 17 compares the crowdsourcing cost between Base-
line and PSJCrowd and ASJCrowd. It is worth noting that the
crowdsourcing cost of PSJCrowd and ASJCrowd is 1/20 of
the baseline method. Because the base of the real dataset is
relatively small, the gap between Baseline and algorithms that
we proposed is smaller than the gap on the synthetic dataset.
The Baseline method requires more than 1,000 questions,
while PSJCrowd and ASJCrowd only require more than 50
questions.

Figure 18 compares the crowdsourcing time delay between
Baseline and PSJCrowd and ASJCrowd. The Baseline
method requires 50 rounds, while PSJCrowd and ASJCrowd
only need about ten rounds. The time delay of PSJCrowd
and ASJCrowd is 1/5 of the baseline method. In the index,
we use the preference relationship between tuples, and crowd
as many problems as possible in each round, so the number
of rounds of crowdsourcing is greatly reduced.
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FIGURE 18. Comparisons on the number of rounds over varying datasets.

FIGURE 19. Comparisons on the number of rounds over varying
algorithms.

Figure 19 describes the differences between the three algo-
rithms in rounds in incomplete dataset. Because we research
on crowdsourcing-based skyline-join query algorithms of
the incomplete dataset, we compare ASJCrowd-single
with crowdsourced-based skyline query algorithms (Crowd-
Sky [10]) on a single dataset. We do experiments on tuples
with a single attribute in 50 restaurants. We can see that
CrowdSky and ASJCrowd-single are effective in reducing
time round. Compared with the CrowdSky algorithm on a sin-
gle dataset, the ASJCrowd-single algorithm does not require
all the parent nodes of a child node to be traversed before
crowdsourcing the preference relationship of the parent node
on the missing attribute, so the ASJCrowd-single algorithm
has less rounds of crowdsourcing than CrowdSky algorithm.

VI. CONCLUSION
In this paper, we study the problem of using crowdsourcing
to compute skyline-join queries. Specifically, for different
situations of missing data, we propose three algorithms to
construct the level-preference-tree-index structure by using
the dominating relationship between tuples, and trimming
and filtering according to different strategies twice to reduce
crowdsourcing cost and time delay. Our experimental results
show that our proposed algorithm has high accuracy and
meets the expectations of the public. The query results have
practical significance in practical applications.
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