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ABSTRACT In this paper, we propose a novel energy efficiency maximization scheme for social-
aware device-to-device (D2D) communications based on a genetic algorithm (GA). The proposed scheme
incorporates both social and physical parameters of users to model the energy efficiency maximization
problem. The formulated problem considers the spectral reuse, spectral efficiency, and the transmit power
constraints of both cellular and D2D users to satisfy their quality of service requirements. Moreover,
an algorithm based on the self-adaptive penalty function is applied to convert the constrained problem into
an unconstrained problem. Next, GA is utilized to maximize the unconstrained problem. The feasibility of
the proposed scheme is shown by computing its time complexity in terms of big-O notation. Moreover,
the convergence of the proposed scheme is analyzed by comparing the maximum and average values of
the overall energy efficiencies for different iterations. Likewise, the performance is evaluated in terms of
overall energy efficiency and system throughput for various D2D communications scenarios. To demonstrate
the efficiency of the proposed scheme, the results are compared with those for a static penalty-based GA
algorithm. Furthermore, to demonstrate the significance of combining the two types of parameters (i.e.,
social and physical), the performance of the proposed scheme is compared with schemes based on only
social or physical parameters.

INDEX TERMS Social-aware, energy efficiency, genetic algorithm, self-adaptive penalty function.

I. INTRODUCTION
The enormous growth in demand for multimedia and other
social networking services and applications has significantly
increased the network load on the current cellular commu-
nication system [1], [2]. Since the number of interconnected
devices is expected to exceed three times the global popula-
tion by the year 2023, this trend will continue [3]. Despite
advancements in networking and radio access technologies,
the current cellular communications system is struggling to
fulfill its rapidly increasing requirements [4]. This has moti-
vated the need to offload cellular traffic in the 5G system.
Device-to-device (D2D) communications have emerged as a
promising offloading solution as it enables the direct sharing
of data between neighboring cellular devices with little assis-
tance from the base station (BS) [5], [6]. This significantly
alleviates the burden on the BS by offloading the traffic from
proximity applications to direct communications.

The associate editor coordinating the review of this manuscript and
approving it for publication was Li Zhang.

The social network assisted D2D communications have
gained a significant research attention in the recent times [7].
Because the profiles of humans on social networking applica-
tions reflect their real-life behavior, this information may be
exploited for the improvement of D2D communications [8].
Therefore, most recent studies have exploited the social
network information of users alongwith their physical param-
eters to enable D2D communications between users who have
social friendships or similar interests [9]. This significantly
improves the willingness of users to share data of common
interest within their social circle.

Amajor concern that arises in social-awareD2D communi-
cations is the increasing energy consumption of devices [10].
As the cellular devices used for D2D communications have
limited battery power, D2D communications may drain the
battery rather quickly [11]. Moreover, advancements in the
battery technology have not kept pace with the high power
requirements of such devices [12]. Hence, D2D communi-
cations require energy efficient schemes for peer discovery,
relay selection, cluster formation, medium access control,
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and transmission power allocation to realize the future 5G
communication systems [13]. This can be achieved by design-
ing protocols that incorporate the energy efficiency optimiza-
tion at the mentioned dimensions while ensuring the quality
of service (QoS) requirements [1]. Therefore, studying the
energy efficiency optimization problem in social-aware D2D
networks and addressing the aforementioned challenges and
issues are vital.

A. RELATED WORKS
The studies on the energy efficiency of social-aware D2D
communications can be divided into different categories
based on their goals, including peer discovery, relay selection,
cluster formation, medium access control, and transmit power
allocation. Prasad et al. presented a social-application based
peer discovery method to improve the energy efficiency of
social-aware D2D communications [14]. Their method intro-
duced a cloud-based region that enabled users of the same
interest to probe peer discovery when they are in proximity.
This cloud-based approach enabled the offloading of the
discovery process from D2D networks as well as LTE core
networks. Moreover, their method reduced the frequency of
peer discovery, which significantly improved energy effi-
ciency. Similarly, Zhang et al. proposed a neighbor discovery
algorithm for social-aware D2D communications by dividing
neighboring users into groups based on their community
and centrality attributes [15]. Their method improved the
performance in terms of peer discovery, energy efficiency,
and data transmission by selecting the optimal beacon probe
rate. In addition, Wang et al. proposed a social-aware D2D
neighbor discoverymethod based on the overlapping commu-
nities in social networks [16]. The proposedmethod exploited
the connection status between D2D users to determine the
overlapping communities. The overlapping nodes played
the role of communication bridges to enhance data shar-
ing between different communities. Moreover, the dynamic
selection of beacon detection rates improved the neighbor dis-
covery, power consumption, and energy efficiency. Although
thesemethods significantly improved the energy efficiency of
social-aware D2D communications, obtaining optimal bea-
con probe and detection rates in these methods remains a
challenging task.

Social-aware relay selection is another domain for improv-
ing the energy efficiency of D2D communications. Address-
ing this issue, Li et al. proposed a social-aware relay selection
scheme based on the social and physical parameters of D2D
users in [17]. They aimed to select trustworthy D2D users
to act as relays and forward data to their friends in a social
circle. Moreover, they proposed a dynamic transmit power
adjustment algorithm to improve the energy efficiency of
the system. A similar D2D relay selection algorithm based
on distance between source and destination and social trust
was also proposed in [18], wherein the QoS and the power
consumption parameters of D2D users were considered when
performing relay selection. These relay selection based stud-
ies demonstrated a significant improvement in the energy

efficiency of social-aware D2D communications, but they
may not be suitable for scenarios with less number of friend
users in proximity.

The energy efficiency of social-aware D2D communi-
cations can be significantly improved by clustering D2D
users and assigning resources to the cluster head supervis-
ing the D2D transmissions of its cluster members. In this
regard, Wang et al. proposed a cluster formation algorithm
for social-aware D2D communications in [19]. The prob-
lem was formulated as a multi-objective problem based on
the Chinese restaurant process (CRP) and enhanced CRP.
The method allowed new nodes to join a cluster to improve
its link data-rate. The results revealed an improvement of
the proposed algorithm in terms of energy efficiency in
comparison to existing algorithms. A similar social-aware
D2D clustering and resource algorithm was proposed in [1].
The algorithm divided the D2D users into various multicast
groups and selected a cluster head to assist the multicast
group. Moreover, the study proposed an energy-efficient
power control and resource allocation scheme by consider-
ing the QoS requirements. However, the cluster head selec-
tion in a distributed manner based on social and physical
parameters can lead to a privacy concern in social-aware
D2D communications. Zhang et al. proposed a clustering and
resource allocation scheme for social-aware D2D communi-
cations to improve the energy and spectral efficiencies in [20].
They exploited the redundancy in user demand to form D2D
clusters and perform multicast transmission inside the clus-
ters. They also proposed half- and full-duplex transmission
strategies tomanage channel sharing between cellular devices
and D2D links. However, the performance of the proposed
scheme degraded in dense D2D scenarios.

In contrast to the work proposed in [19], [1] and [20],
the work in [11] and [21] addressed the social-aware D2D
energy efficiency in terms of the medium access control
(MAC) protocol. In particular, the work in [11] focused on
designing a socially cooperative D2D (SCD2D) MAC pro-
tocol to improve the D2D energy efficiency. This method
reduced power consumption by enabling cooperation among
sociable D2D nodes without hampering the completion time
of content exchange. However, interference mitigation was
not considered in the design of the SCD2D MAC protocol.
In [21], virtualization was introduced with social-awareness
for designing an energy efficient virtual MAC protocol for
D2D communications. The protocol allowed multiple net-
work operators to share resources by performing resource
optimization for both cellular and D2D users. Moreover,
the network energy efficiency was formulated as a multi-
objective problem, which was solved to improve the energy
efficiency. Although these previous studies provide adequate
guidelines toward designing an energy efficient coopera-
tive MAC protocol for social-aware D2D communications,
the domain requires further research to resolve practical
concerns related to the exploitation of virtualization and
social-awareness while designing a MAC protocol for D2D
communications.

VOLUME 9, 2021 71921



A. Nadeem, H.-S. Cho: GA-Based Energy Efficiency Maximization for Social-Aware D2D Communications

An efficient way to improve the energy efficiency of social-
awareD2D communications is to optimize the transmit power
allocation of D2D nodes [22], [8]. For this purpose, in [22],
the authors focused on maximizing the energy efficiency of
D2D users by optimizing the transmit power and sub-channel
allocation. The method jointly allocated the transmit powers
and sub-channels to the D2D users using penalty function
and dual-decomposition methods, respectively, while guaran-
teeing the QoS for cellular users. The results demonstrated
performance improvement in terms of energy efficiency.
However, this method did not incorporate the social param-
eters of users. The authors in [8] aimed to solve the prob-
lem of energy efficiency maximization by considering both
social and physical parameters of users. They used a genetic
algorithm (GA) with a static penalty-based constraint han-
dling method to maximize the energy efficiency of cellular
and D2D users. The algorithm improved the overall energy
efficiency and system throughput while fulfilling the QoS
of both types of users. However, the static penalty func-
tion method involved careful tuning of the penalty coef-
ficients, which either requires the prior knowledge of the
problem or a large number of iterations to obtain the optimal
results.

B. CONTRIBUTIONS
In this study, we aim to maximize the energy efficiency
of cellular and D2D users using a self-adaptive penalty-
based GA. Differing from the studies discussed in the previ-
ous subsection, we propose a social-aware energy efficiency
scheme based on GA with a self-adaptive penalty function
algorithm for constraint handling. The proposed algorithm is
easy to implement and does not require prior knowledge of
the problem or tuning of the penalty coefficients (as needed
in the static penalty functionmethod). Moreover, it efficiently
adapts the penalty values according to the number of fea-
sible and infeasible individuals in the population. To the
best of our knowledge, no similar work has been presented
in literature. The major contributions of this paper are as
follows.

1) In our previous study related to social-aware D2D
peer selection, we computed the ‘‘cumulative close-
ness coefficient’’ (i.e., 1), which combines the social
and physical parameters of D2D users [4]. Herein,
we use the computed 1 to derive the signal-to-noise
plus interference ratio (SINR) and data rate for D2D
users [23]. Moreover, we utilize the ‘‘social closeness
coefficient’’ (i.e., δsoc) proposed in [4] to calculate the
power consumption coefficient of cellular (i.e., ρCm )
and D2D (i.e., ρDDp ) users [24]. We use these param-
eters to derive the energy efficiencies for cellular and
D2D users. We compute the overall energy efficiency
of the system by adding the energy efficiency of cellular
and D2D users.

2) We formulate the objective function (function to be
maximized) as a constrained maximization problem of

the overall energy efficiency with constraints for the
spectral reuse, spectral efficiency, and transmit powers
for cellular and D2D users.

3) To solve the problem using GA, we convert the con-
strained problem to an unconstrained problem using
a self-adaptive penalty function algorithm. We derive
a final objective function for the overall energy effi-
ciency. Then, we utilize the GA tomaximize the overall
energy efficiency.

4) We perform extensive simulations of the proposed
scheme. The feasibility of the proposed scheme is
shown in terms of convergence between the maxi-
mum and average values of the objective function.
Moreover, the performance is compared with the static
penalty-based GA in terms of overall energy effi-
ciency and system throughput for various scenarios [8].
Finally, the importance of combining social and phys-
ical parameters is shown in terms of overall energy
efficiency and system throughput with respect to the
distance between D2D users.

C. PAPER ORGANIZATION
The remainder of the paper is organized as follows: the
system model is described in Section II, the algorithm
description and formulation is presented in Section III, and
the numerical results followed by the conclusions and future
work are given in Sections IV and V, respectively.

II. SYSTEM MODEL
In this section, we describe the systemmodel for the proposed
scheme, which consists of the system architecture, and the
network model.

A. SYSTEM ARCHITECTURE
We consider two types of parameters, i.e., social parameters
and physical parameters in our proposed scheme. Accord-
ingly, we divide the systemmodel into two layers, i.e., a social
proximity layer (SPL) and a physical proximity layer (PPL)
(Fig. 1). The SPL describes the social parameters of the users
based on their profile on the social network database. The
human users have different levels of interaction with each
other via social networks. These social network interactions
significantly affect the willingness of the users to perform
D2D communications. The social parameters utilized in our
proposed scheme include Social Friendship Index, Social
Closeness Index, and Interest Similarity Index.We follow the
definitions of these parameters done in [4].

Likewise, the PPL characterizes the physical and net-
work parameters of the users, ensuring physical proximity of
users, which is a basic requirement for D2D communications.
We exploit the physical parameters defined in [4], which
include Encounter Duration, Distance between D2D Users,
and Number of D2D Users. We assume that the BS can
obtain the social parameters of users from the social network
database while it can estimate their physical parameters [4].
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FIGURE 1. Proposed two-layer D2D architecture with social proximity
layer and physical proximity layer.

B. NETWORK MODEL
We consider a single-cell network composed of cellular
and D2D users. The system works in a centralized manner,
wherein the proposed algorithm runs at the BS. We assume
a set of cellular users as �C = {C1, C2,. . . , CM}, such
that an arbitrary cellular user is denoted by Cmε�C (where
m = 1, 2,. . .M ). Likewise, the set of D2D users is defined
as �D = {D1, D2. . . , DN}, such that an arbitrary D2D user
is denoted by Dnε�D (where n = 1, 2,. . . , N ). Because
D2D communications occur between pairs of D2D users,
we assume a set of D2D pairs as �DD = {DD1, DD2,. . . ,
DDP}, where P =

(N
2

)
. Hence, DDp is an arbitrary D2D pair

with Di as the D2D transmitter and Dj as the D2D receiver,
such that 1 ≤ i,j ≤ N (where i 6= j). The cellular users
perform communications using the BS, whereas D2D users
are capable of performing communications with or without
the assistance of the BS. Both the cellular and D2D users use
LTE-A air interface for their communications. We model the
channels in our proposed system using the Rayleigh fading
model.

The cellular users communicate using orthogonal sub-
channels, whereas the D2D pairs reuse the same sub-channels
allocated to the cellular users. Therefore, the cellular users do
not interfere with each other. Furthermore, the BS mitigates
interference among D2D users by ensuring the reuse of the
cellular resource by only one D2D pair in a slot. Neverthe-
less, there is a potential for interference among cellular and
D2D users as they share the same spectrum resource. Hence,
we consider the interference between cellular users and D2D
pairs.

When a D2D user wants to perform D2D communications,
it sends a request to the BS. The BS selects a D2D peer among
the available D2D users based on both social and physical
parameters using the method proposed in [4]. It assigns the
uplink spectrum channel to the D2D pair (DDp) and com-
putes the allowable transmit power and other QoS parameters
according to the constraints of the D2D transmitter (i.e., Di).

III. ALGORITHM DESCRIPTION AND FORMULATION
This section first presents the motivation and overview of
the GA used for the energy efficiency maximization in our

proposed scheme. Moreover, we define various GA-related
terms used in the upcoming sections.We then briefly describe
the self-adaptive penalty function algorithm used for han-
dling the constraints in our proposed scheme. Furthermore,
we define a few terms related to the self-adaptive penalty
algorithm and describe the problem formulation for the pro-
posed scheme.

A. GA MOTIVATION AND OVERVIEW
GA is a widely used nature-inspired algorithm based on
biological evolutionary steps, such as natural selection,
crossover, andmutation. It is a powerful but easy tool for solv-
ing various continuous, discrete, and nonlinear optimization
and search problems [25]. It provides an implicit parallelism
that enables it to efficiently solve problems with a wide range
of search space and obtain optimal solutions [26]. Although
the proposed energy efficiency maximization problem for
social-aware D2D communications can be solved using the
traditional Lagrangian method, it may lead to high com-
putational complexity [27]. Hence, we used GA to solve
the proposed problem. The algorithm starts by generating
a set of initial solutions, which is termed the population.
Each solution in the population is called an individual. These
individuals undergo the process of selection, crossover, and
mutation to generate a new set of individuals. The individuals
are compared based on their fitness values. The individuals
with better (maximum or minimum) fitness are selected to
produce subsequent generations of the population while those
with lower fitness values are discarded from the population.

B. SELF-ADAPTIVE PENALTY FUNCTION ALGORITHM
Since our proposed model comprises inequality constraints
related to the spectral reuse, spectral efficiency, and trans-
mit power of cellular and D2D users, we cannot directly
use GA as it will lead to infeasible solutions. Therefore,
we use a self-adaptive penalty function algorithm to con-
vert the constrained problem into an unconstrained problem.
This method overcomes the problem of tuning the penalty
coefficients, which is found with the static penalty function
method. Moreover, it utilizes the information from infeasible
individuals (i.e., the individuals that fail to satisfy one or more
constraints) to obtain the optimal solution.

As the proposed method is based on the principle of
the penalty algorithm, it penalizes the infeasible individuals
according to their violation of constraints (i.e., not satisfying
the constraints). For this purpose, it computes the penalty
factor (i.e., Pε) as a part of the final objective function.
Furthermore, the algorithm computes the distance parameter
(i.e., dε) for each individual in the population to achieve two
goals. First, it guides the algorithm to find feasible individuals
when all the individuals in the current population are infeasi-
ble. Second, if the current population has feasible individuals,
it directs the algorithm to search for the optimal individuals.
The distance parameter and penalty factor are added to obtain
the final (unconstrained) objective function. Then, GA is
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applied to the computed final objective function to maximize
the energy efficiency of cellular and D2D users.

C. PROBLEM FORMULATION
We divide the formulation of the proposed algorithm into the
following steps.

1) OVERALL ENERGY EFFICIENCY AND SYSTEM
THROUGHPUT DERIVATION
Energy efficiency is defined as the number of bits transmitted
per unit power [28]. The underlying goal of our study is to
improve the overall energy efficiency of cellular and D2D
communications while satisfying their transmission power
and spectral efficiency constraints. For this purpose, we first
compute the data rates for cellular and D2D users using
Shannon’s theorem. The data rate between Cm and BS (i.e.,
RCm−BS ) is given by

RCm−BS = WCm−BS log2(1+ γCm−BS ), (1)

where WCm−BS is the cellular bandwidth and γCm−BS is the
SINR between Cm and BS, which is computed as

γ Cm−BS =
PCm

∣∣hCm−BS ∣∣2 D−βCm−BS
ICm + σ 2 . (2)

Here, PCm is the transmit power of Cm,
∣∣hCm−BS ∣∣2 is the

Rayleigh fading coefficient for cellular channel, DCm−BS is
the distance betweenCm andBS, β is the path loss coefficient,
σ 2 is additive white Gaussian noise power, and ICm is the
interference at Cm calculated as

ICm =
∑P

p=1
φCm−DDpPDDp

∣∣hDDp ∣∣2 D−βDDp . (3)

Here, φCm−DDp is the spectrum reuse coefficient between
Cm and the D2D pairDDp [29]. It reflects the reuse of the cel-
lular spectrum by the D2D pair and satisfies φCm−DDpε{0,1}.
We assume that φCm−DDp = 1 whenDDp reuses the spectrum
resource of Cm, otherwise φCm−DDp = 0. Hence, interference
occurs between Cm and DDp when φCm−DDp = 1. Moreover,

PDDp is the transmit power of DDp (i.e., Di),
∣∣hDDp ∣∣2 is the

Rayleigh fading coefficient for the D2D channel, and DDDp
is the distance between Di and Dj.
Likewise, the data rate for DDp is computed as

RDDp = WDDp log2(1+ γDDp ), (4)

where WDDp is the D2D bandwidth and γDDp is the SINR
received at Dj from Di, which is computed as

γDDp =

PDDp
∣∣hDDp ∣∣2 D−βDDp1DDp

IDDp + σ 2 , (5)

It has been reported that combining the social parame-
ters of D2D users with the physical parameters significantly
improves the performance of D2D communications [7], [9].
There are various methods to integrate the social and physical
parameters of D2D users [4], [8], [23]. One method to do

this is to compute a joint social-physical metric and utilize
it to determine the SINR for D2D communications [4], [23].
We follow the mentioned method in our scheme and compute
a joint social-physical metric called ‘‘Cumulative closeness
coefficient’’ (denoted by 1DDp ) for each D2D pair DDp [4].
The1DDp is utilized in (5) to compute the SINR forDDp [23].
The computed SINR is utilized to calculate the data rate for
D2D communications in (4). The calculated data rate is used
in (8) when computing the energy efficiency of DDp and
in (11) when calculating the throughput.

The parameter IDDp in (5) is the interference at the D2D
receiver Dj due to Cm and is calculated as

IDDp =
∑M

m=1
φCm−DDpPCm

∣∣hCm−DDp ∣∣2D−βCm−Dj. (6)

We use the1DDp parameter while computing γDDp [23] in
(5), which is the ‘‘cumulative closeness coefficient’’ between
two D2D users (i.e., Di and Dj) of pair DDp. It is obtained by
adding the social closeness coefficient δsoc and the physical
closeness coefficient δphy, as proposed in [4]. The parameter
δsoc between the two users reflects their closeness based
on the social parameters obtained from the social network
database. Likewise, the parameter δphy shows their closeness
based on the physical parameters. Both δsoc and δphy are com-
puted using the ‘‘technique for order preference by similarity
to ideal solution’’ (TOPSIS) [30]. The social and physical
parameters used to compute the social and physical closeness
coefficients, respectively, are defined in [4].

We derive the energy efficiency expression for Cm (i.e.,
εCm) and DDp (i.e., εDDp ) as

εCm =
RCm−BS

PCm + P
Ckt
Cm

− ρCmε
init
Cm , (7)

εDDp =
RDDp

PDDp + P
Ckt
DDp

− ρDDpε
init
DDp , (8)

where PCktCm and PCktDDp are the powers dissipated in cellular
and D2D circuits, respectively. Because energy efficiency
is based on the power consumption of the device, which
comprises the transmit power as well as the power dissi-
pated in the circuit of the device, we incorporate PCktCm and
PCktDDp when computing εCm and εDDp , respectively. Moreover,
εinitCm and εinitDDp are the initial energy efficiencies of Cm and
DDp, respectively, as introduced in [8]; their values are given
in Table 2. The parameters ρCm and ρDDp are the power
consumption coefficients for Cm and DDp, respectively, and
are modeled as an exponential decay function [23]:

ρCm = ρDDp = δe
−ηδsocCm−DDp , (9)

where η is the influence factor of the social closeness coef-
ficient, which influences the exponential decay function, as
defined in [23]; its value is given in Table 2. Moreover,
δsocCm−DDp is the social closeness coefficient between Cm
and DDp, as defined in [4]. The stronger the social friend-
ship between the two users is (i.e., the higher the value of
δsocCm−DDp ), the lower are the values of ρCm and ρDDp .
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Hence, their multiplication with εinitCm and εinitDDp in (7) and
(8), respectively, will further decrease the subtraction terms,
resulting in higher values of εCm and εDDp . The overall energy
efficiency denoted by ε incorporates the energy efficiencies
of all the cellular users in �C and D2D pairs in �DD, and it
is computed as given in [8]:

ε =
∑M

m=1

(
εCm +

∑P

p=1
φCm−DDpεDDp

)
. (10)

Next, we calculate the system throughput for the cellular
users in both �C and D2D pairs in �DD, as given by [8]:

τ =
∑M

m=1

(
RCm−BS +

∑P

p=1
φCm−DDpRDDp

)
. (11)

2) INITIAL MAXIMIZATION PROBLEM FORMULATION
We assume the ε problem in (10) as the initial objective
function, which can be formulated as amaximization problem
given by

max
{φCm−DDp ,PCm ,PDDp }

ε, (12)

C1 :
∑M

m=1 φCm−DDpε{0, 1},
C2 : SECm ≥ µCm ,
C3 : SEDDp ≥ µDDp ,
C4 : 0 ≤ PCm ≤ P

max
Cm ,

C5 : 0 ≤ PDDp ≤ P
max
DDp .

(13)

Here, SECm and SEDDp are the spectral efficiencies of Cm
and DDp, respectively, defined as the number of bits trans-
mitted successfully per unit time per Hz [31]. In addition,
µCm and µDDp denote the minimum data rates for cellular
andD2D communications, respectively, whilePmaxCm andPmaxDDp
denote the maximum allowed transmit powers of Cm and
DDp, respectively. The constraint C1 ensures that at most
one D2D pair must reuse the spectrum of a cellular user to
avoid interference between D2D pairs. Because the energy
and spectral efficiencies conflict with each other [32], we take
the spectral efficiency constraints in C2 and C3 to guar-
antee the spectral efficiency of Cm and DDp, respectively,
while fulfilling their QoS requirements. Moreover, C4 and
C5 regulate the transmit powers of Cm and DDp to satisfy
their communication requirements and control interference
between cellular users and D2D pairs.

3) FORMULATION OF CONSTRAINT-FREE
OBJECTIVE FUNCTION
The problem formulated in (12) has constraints, as given in
(13). Therefore, it cannot be directly solved using GA as GA
cannot handle the constraints [8]. Therefore, we employ the
self-adaptive penalty function method for constraint handling
in the formulated problem [33], [34]. For this, we first need
to compute εmin and εmax from (10):

εmin = min (ε) , (14)

εmax = max (ε) . (15)

Algorithm 1 Pseudocode to compute dεj

Input: Population size N , εj, εmin, εmax , 1
K

∑K
k=1

Vk
Vmax

,
rf ∀j, j = 1, 2, . . . ,N

Output: dεj∀j, j = 1, 2, . . . ,N
Begin

1. If rf = 0 then
2. For j = 1 to N
3. dεj ←

1
K

∑K
k=1

Vk
Vmax

4. End For
5. Else
6. For j = 1 to N
7. ‖εj‖ ←

εj−εmin
εmax−εmin

8. dεj ← Sqrt((
∥∥εj∥∥)2 + ( 1K

∑K
k=1

Vk
Vmax

)
2

9. End For
10. End If
11. End

Using εmin and εmax from (14) and (15), respectively, we nor-
malize the ε problem in (10) to scale its values between
0 and 1:

‖ε‖ =
ε − εmin

εmax − εmin
. (16)

Following the approach of the self-adaptive penalty func-
tion method in [34], we calculate the distance parameter (i.e.,
dε) for each individual in the population from the optimal
point based on their normalized values and constraint viola-
tion. The calculation method of dε differs based on the num-
ber of feasible individuals (population members that satisfy
all the constraints) in the population, as given by (17), as
shown at the bottom of the next page, where k = 1, 2,. . . ,
K represents the number of constraints. In our formulated
problem, K = 5, as given in (13). The parameter vmax is the
maximum value among all the constraint violations and vk
represents the violation of the kth constraint, which is given
by

vk = max(0, gk ), (18)

where gk is the kth inequality constraint. The expression
1
K

∑K
k=1

vk
vmax

in (17) represents the sum of normalized con-
straint violations divided by the number of constraints. (17)
clearly denotes that the distance parameter will be equal to
the sum of normalized constraint violations divided by the
number of constraints when there are no feasible individuals
in the current population. Hence, individuals with a smaller
constraint violation are better than those with a larger viola-
tion. This guides the algorithm to quickly approach feasible
solutions. In the case where some feasible individuals are
present in the population, the distance parameter is equal to
the squared root of the normalized objective function and
the sum of normalized constraint violations divided by the
number of constraints. This guides the algorithm to approach
the optimal solution. The mechanism to compute dεj is sum-
marized in Algorithm 1.
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Algorithm 2 Pseudocode to compute Pεj

Input: Population size N , εj, εmin, εmax , 1
K

∑K
k=1

Vk
Vmax

,

rf ∀j, j = 1, 2, . . . ,N
Output: Pεj∀j, j = 1, 2, . . . ,N
Begin

1. For j = 1 to N
2. If rf = 0 then
3. λ1j ← 0
4. λ2j ← ‖εj‖

5. Else
6. λ1j ←

1
K

∑K
k=1

Vk
Vmax

7. λ2j ← 0
8. End If
9. Pεj ←

(
1− rf

)
λ1j + rf λ2j

10. End For
11. End

Next, we compute the self-adaptive penalty factor Pε,
which is determined by the number of feasible individuals
in the population:

Pε = (1− rf )λ1 + rf λ2, (19)

where rf is the ratio of the number of feasible individuals in
the population to the size of the population, whereas λ1 and
λ2 are the self-adaptive penalty coefficients computed as

λ1 =

0, if rf = 0
1
K

∑K
k=1

vk
vmax

, otherwise
, (20)

λ2 =

{
0, if rf 6= 0
‖ε‖ , otherwise

. (21)

Equation (19) shows that coefficient λ1 has a greater
impact than coefficient λ2 when few feasible individuals are
present in the population. In contrast, the impact of λ2 is
dominant when the number of feasible individuals in the
population is greater than that of infeasible individuals. The
mechanism to compute Pεj is summarized in Algorithm 2.

The self-adaptive penalty function algorithm utilizes the
information from the infeasible solution to guide the algo-
rithm toward the optimal solution. This is done by computing
the distance parameter (i.e., dε) and self-adaptive penalty
factor (i.e., Pε). Hence, the final constraint-free objective
function (i.e., ε′) is computed by adding (17) and (19):

ε′ = dε + Pε. (22)

Finally, we obtain the problem without constraints.

TABLE 1. List of symbols.

4) APPLYING GA TO THE CONSTRAINT-FREE PROBLEM
To maximize the overall energy efficiency, we apply GA to
the final objective function computed in (22), which can be
expressed as

max{φCm−DDp ,PCm ,PDDp }ε
′. (23)

Algorithm 3 summarizes the steps of the proposed scheme.
Its working mechanism is described using a flowchart
in Fig. 2. Table 1 lists the symbols used in the paper.

The proposed algorithm starts by randomly initializing the
population of a solution set Ss =

{
φCm−DDp ,PCm ,PDDp

}
.

dε =


1
K

∑K
k=1

vk
vmax

, if all population is infeasible√
(‖ε‖)2 + (

1
K

∑K
k=1

vk
vmax

)
2
, otherwise

(17)
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FIGURE 2. Flowchart diagram to illustrate the mechanism of proposed
scheme.

For all the population members, it computes dε and Pε using
the methods given in Algorithms 1 and 2, respectively. The
ε′ value is calculated using the computed dε and Pε. GA
operators, such as selection, crossover, and mutation, are then
used to generate a new population. The current population is
updated by comparing the new population with the older one
until the algorithm reaches the final iteration.

IV. NUMERICAL RESULTS
In this section, we present and discuss the numerical results
obtained from the simulations of the proposed scheme to
validate its performance. We assume a hexagonal single-
cell environment of a radius 500 m with cellular and D2D
users for our simulations, as shown in Fig. 3. The social
and physical parameters described in Section II are assigned
numerical values according to their definitions in [4]. Then,
the algorithm proposed in same paper is used to compute
1DDp . On the basis of 1DDp and other parameters listed
in Table 2, the proposed algorithm computes the SINR, data
rate, energy efficiency, and throughput. Finally, the self-
adaptive penalty based GA is applied to maximize the overall
energy efficiency.

The feasibility of the proposed scheme is analyzed in terms
of time complexity and the convergence between the maxi-
mum and average values of the energy efficiencies regarding
the number of iterations. The performance is also shown in
terms of overall energy efficiency and system throughput for
various scenarios. The comparisons with the state-of-the-art
algorithm are performed in two ways. First, the proposed
algorithm is compared with the static penalty-based GA algo-
rithm [8] in terms of overall energy efficiency and system
throughput for different numbers of cellular and D2D users.
Second, the impact of combining the social and physical
parameters is investigated by comparing the proposed scheme
with schemes based only on the social or physical parameters.

The time complexity of our proposed scheme depends
on the TOPSIS algorithm (from [4]), self-adaptive penalty

FIGURE 3. Simulation model for the proposed scheme.

TABLE 2. Simulation parameters.

algorithm, and GA. The maximum time complexity of
TOPSIS algorithm is O(n2), which results from the normal-
ization and weight assignment [35]. Moreover, we divide
the self-adaptive penalty algorithm in two sub-algorithms
(Algorithm 1 and 2). The time complexity of each of these
sub-algorithms is O(n). Finally, the time complexity of GA
(i.e., Algorithm 3) is O(n2). Hence, the maximum time com-
plexity of our proposed scheme is O(n2), which is considered
feasible for less number of inputs [36].
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Algorithm 3 Pseudocode for the proposed scheme
Input: Population size N , Number of Iterations T ,
Mutation Probability Pmu, Crossover Probability Pcr ,
Ss =

{
φCmj−DDpj ,PCmj ,PDDpj

}
, ∀j, j = 1, 2, . . . ,N

Output: Ss with maximum value for ε′j
Begin

1. Generate an initial population (Ss) randomly
//Constraint Handling based on Self-Adaptive
Penalty Function Algorithm

2. For j = 1 to N
3. Evaluate dεj and Pεj for current

Population and compute ε′j
4. End For
5. Compute rf

//Genetic Algorithm
6. For j = 1 to N
7. num_iter ← 0
8. While (num_iter < T )
9. Select parents for generating

offspring from Ss
10. Generate offspring through mutation and

crossover
11. Evaluate dεj and Pεj for generated

offspring solution and compute ε′j
12. Update population in Ss
13. num_iter ← num_iter+1
14. End While
15. End For
16. End

FIGURE 4. Convergence analysis of the proposed scheme.

To demonstrate the feasibility of our proposed scheme,
we perform simulations for 50 iterations. The average of the
energy efficiency values is taken after every five iterations
and compared with the maximum overall energy efficiency
value achieved during those iterations. Fig. 4 shows that the
maximum value of the overall energy efficiency converges at
∼25 iterations. Moreover, the average value approaches the

FIGURE 5. Impact of increasing the number of cellular users on the
overall energy efficiency.

maximum value at∼30 iterations, which shows the feasibility
of the proposed algorithm for solving the energy efficiency
maximization problem.

Figure 5 shows the impact of increasing the number of
cellular users on the overall energy efficiency of the proposed
scheme. The number of D2Dpairs is kept constant at five. The
overall energy efficiency with the number of cellular users is
increased. This is because more cellular users contribute to
improve the overall energy efficiency. Moreover, the number
of channels available for reuse by the D2D pairs is increased.
Hence, a D2D pair obtains a better reuse channel in cases
where there are more cellular users. This increases the energy
efficiency of the cellular and D2D users and ultimately the
overall energy efficiency. The initial rate of increase in the
overall energy efficiency for the proposed scheme is faster
than that of the static penalty-based GA algorithm as the
chances for a D2D pair to avail a better reuse channel are
increased. However, with further increases in the number of
cellular users, the growth rate in the overall energy efficiency
slows down as the number of available channels for reuse
by the D2D pairs exceeds the number of required channels.
Therefore, some of the channels remain unused. In the case of
the static penalty-based GA algorithm, the energy efficiency
also increases but the rate of increase is uneven because
it requires tuning of the penalty coefficients to obtain the
optimal solution. Furthermore, the overall energy efficiency
of the proposed scheme is much better than that of the static
penalty-based GA scheme. The reason for this is that the
proposed algorithm efficiently uses the information available
from the infeasible solutions to guide the algorithm toward
feasible solutions and ultimately the optimal solution. Fur-
thermore, it limits the transmit power of the cellular and
D2D users while fulfilling the QoS requirements. In addition,
the proposed scheme uses the TOPSIS algorithm to combine
the social and physical parameters of the D2D users and
utilize it to compute the SINR as described in Section III.C.1.
Then, it utilizes the SINR to calculate data rate and ultimately
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FIGURE 6. Impact of increasing the number D2D pairs on the overall
energy efficiency.

the overall energy efficiency, which further improves its per-
formance.

Figure 6 shows the impact of increasing the number of
D2D pairs on the overall energy efficiency of the proposed
scheme and the static penalty-based GA scheme. The number
of cellular users is kept constant at five. The figure clearly
shows that the overall energy efficiency increases for both
schemes because the number of cellular channels reused
by the D2D pairs also increases. Moreover, no interference
occurs between the D2D pairs as both schemes ensure the
allocation of a cellular channel to (at most) one D2D pair.
In the beginning, the static penalty-based GA algorithm
scheme has slightly better energy efficiency as it may rarely
obtain the optimal penalty coefficients in few computations.
However, the energy efficiency of the proposed scheme
rapidly increases with the number of D2D pairs as more D2D
pairs contribute to the overall energy efficiency improvement.
Furthermore, as stated earlier, the proposed scheme utilizes
the TOPSIS algorithm to incorporate the social and physical
parameters of the D2D users and exploit it to compute the
SINR, data rate, and the overall energy efficiency, which adds
to the improvement in overall energy efficiency.

Figure 7 depicts the impact of increasing the number of
cellular users on the system throughput of the proposed
and static penalty-based GA schemes. The number of D2D
pairs is kept constant at five. The graph demonstrates that
the system throughput increases with the number of cellular
users because a greater number of reuse cellular channels is
available for the D2D pairs. The initial rate of increase in
the system throughput is higher for the proposed scheme as
the D2D pairs tend to obtain better reuse channels for their
communications. Moreover, the proposed scheme utilizes the
information from infeasible solutions to direct the algorithm
toward the optimal solution. In contrast, the static penalty-
based GA algorithm scheme requires tuning of the penalty
coefficients, leading to suboptimal results. Likewise, the inte-
gration of social and physical parameters of D2D users using

FIGURE 7. Impact of increasing the number of cellular users on the
system throughput.

FIGURE 8. Impact of increasing the number of D2D pairs on the system
throughput.

the TOPSIS algorithm by the proposed scheme improves the
SINR, data rate, and system throughput.

Figure 8 illustrates the impact of increasing the number of
D2D pairs on the system throughput for the proposed and
static penalty-based GA schemes. The number of cellular
users is kept constant at five. The figure shows that the
system throughput increases with the number of D2D pairs
because the number of cellular channels reused by the D2D
pairs is increased. The proposed scheme shows a monotonic
increase as it achieves the optimal result using information
from the infeasible solutions without the need to adjust the
penalty coefficients (as required in the static penalty-based
GA scheme). The system throughput of the static penalty-
based GA algorithm scheme also rapidly increases when
the number of D2D pairs is three, becoming closer to the
proposed scheme at five D2D pairs, which is the maximum.
However, the overall performance trend shows that at best it
can get closer to the proposed scheme when both schemes
achieve the optimal solutions.
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FIGURE 9. Impact of increasing the D2D distance on the overall energy
efficiency.

FIGURE 10. Impact of increasing the D2D distance on the system
throughput.

Figure 9 demonstrates the impact of increasing the dis-
tance between D2D users on the overall energy efficiency of
the proposed scheme. Moreover, the influence of combining
the social and physical parameters of the users is shown
by comparing the performance of the proposed social-aware
scheme with two schemes based on only one type of param-
eter: physical or social. The distance between D2D users is
changed within the range of 10–50 m while the number of
cellular users and D2D pairs are each maintained as five. The
figure shows that the overall energy efficiency decreases with
increasing distance between D2D users. This is because when
the distance increases, the path losses increase and higher
transmission power is required, consequently decreasing the
overall energy efficiency. Because the proposed scheme effi-
ciently integrates both the physical and social parameters of
users, its performance is significantly better than the schemes
based on one type of parameter only. Furthermore, it is
clear that physical parameters have greater impact on the

performance of D2D communications than social parameters.
However, the incorporation of social parameters definitely
improves the performance.

Figure 10 depicts the impact of increasing the distance
between D2D users on the system throughput of the pro-
posed scheme. Similar to the results in Fig. 9, the proposed
algorithm is compared with two algorithms, each based on
one type of parameter (i.e., social or physical). The num-
bers of cellular users and D2D pairs are each kept at five.
The figure shows that the throughput graph declines with
increasing D2D distance for both the proposed and compar-
ing schemes. This is because the increase in the distance neg-
atively affects the SINR, data rate, and ultimately the system
throughput. However, the throughput of the proposed social-
aware scheme is much better than that for single-parameter
schemes as it efficiently exploits both types of parameter.

V. CONCLUSION AND FUTURE WORK
Herein, we propose a novel algorithm for energy effi-
ciency maximization in social-aware D2D communications.
We exploit both social and physical parameters of D2D users
to formulate their energy efficiencies and compute the overall
energy efficiency of the system by adding the energy effi-
ciency of cellular and D2D users. Furthermore, we derive
an objective function with constraints for the spectral reuse,
spectral efficiency, and transmit power of cellular and D2D
users. A self-adaptive penalty function method is used to
handle the constraints in the problem. Moreover, we use GA
to maximize the overall energy efficiency. The results are
obtained in terms of algorithm convergence, time complexity,
overall energy efficiency, and throughput for different sce-
narios to demonstrate the feasibility of the proposed scheme
and its efficiency over the static penalty-based GA algorithm.
Furthermore, the importance of combining the social and
physical parameters of users is demonstrated in terms of
the overall energy efficiency and system throughput. The
proposed method is easy to implement and does not require
the tuning of the penalty coefficients. In the future, we aim to
extend this study to unmanned aerial vehicle-assisted social-
aware D2D communications.
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