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ABSTRACT The lithium-ion batteries of an electric vehicle belong to a high-voltage direct-current system.
The high-voltage insulation performance of electric vehicles is very important for their safe operation.
To solve the problems of slow response and the poor estimation accuracy of the insulation resistance
under complex vehicle working conditions, a real-time insulation resistance detection method based on the
variable forgetting factor least squares algorithm is proposed in this paper. Based on the low-frequency
signal injection method and considering the influence of the Y capacitor, the corresponding circuit model
and the mathematical model of the reflected wave voltage are established, and the mathematical model is
linearized by a first-order Taylor expansion. By analyzing the influence of the forgetting factor on model
parameter identification and setting appropriate shutdown criteria, the least squares algorithmwith a variable
forgetting factor is designed to quickly and accurately estimate the insulation resistance and Y capacitance.
The experimental test results show that the proposed method can quickly track the changes in the insulation
resistance and Y capacitance under the condition of noise interference and that the root mean square error
of the estimation resistor is within 0.012.

INDEX TERMS Electric vehicle (EV), embedded micro-control unit, insulation detection, lithium-ion
batteries, variable forgetting factor recursive least squares (VFFRLS).

NOMENCLATURE
ABBREVIATIONS
DC direct current
EKF extended Kalman filter
EV electric vehicle
HVDC high-voltage direct-current
MCU micro-control unit
PC personal computer
RC resistor capacitor
RLS recursive least squares
RMSE root mean square error
UKF unscented Kalman filter
VFFRLS variable forgetting factor recursive

least squares
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SYMBOLS
a1 Steady-state component of response
a2 Response gain
a3 Response time constant
â1(k − 1) Estimated value of a1 at time k − 1
â2(k − 1) Estimated value of a2 at time k − 1
â3(k − 1) Estimated value of a3 at time k − 1
A Parameters a1, a2, a3
Â(k − 1) Estimated values of parameters at time k − 1
b Scaling factor
Cn Negative Y capacitance
Cp Positive Y capacitance
Cp//Cn Equivalent Y capacitance value
Cp//Cn Equivalent Y capacitance measurement result
e(i) Difference between the observed value and

the estimated value at time i
Ea1 (k) Mean value of a1 in the sliding window
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Ea3 (k) Mean value of a3 in the sliding window
H Observation matrix
I1 Current flowing through R1
I2 Current flowing through R2
I3 Current flowing through Rp
I4 Current flowing through Rn
If Current flowing through Rf
If+ Current flowing through Rf in the

positive half period
J Cost function
K Gain of RLS
M Maximum voltage value of the reflected wave
P Error covariance matrix
Q Root mean square noise value
R1 Positive current limiting resistor
R2 Negative current limiting resistor
Rf Sampling resistor
Rn Negative insulation resistance
Rn Negative insulation resistance

measurement result
Rp Positive insulation resistance
Rp Positive insulation resistance

measurement result
U Power battery voltage
Uf Reflected wave voltage
Uf+ Reflected wave voltage in the positive

half period
Uf− Reflected wave voltage in the negative

half period
Un0 Initial voltage value of Cn
Up0 Initial voltage value of Cp
Us Voltage value generated by the signal generator
Us+ Voltage value generated by the signal generator

in the positive half period
Us− Voltage value generated by the signal generator

in the negative half period
V One-dimensional random observation noise
Y Constant error term
β Parameter for calculating the forgetting factor
δ Relative error
1t Sampling interval
λ Forgetting factor
λ0 Parameter for calculating the forgetting factor
λ1 Parameter for calculating the forgetting factor
σa1 (k) Standard deviation of a1 in the sliding window
σa3 (k) Standard deviation of a3 in the sliding window

I. INTRODUCTION
As automobile pollutant emissions become increasingly
serious [1], electric vehicles are becoming increasingly
popular [2]–[6]. Lithium-ion batteries have high energy den-
sity and power density, and their high voltage can signifi-
cantly improve the energy utilization efficiency. Therefore,
most electric vehicles use high-voltage lithium-ion batteries
as power batteries [7]–[9]. As the high-voltage lithium-ion

battery belongs to high-voltage direct current (DC) systems,
the high-voltage insulation performance of automobiles is
of great significance for the safe driving of electric vehi-
cles [10]–[12]. The operating conditions and operating envi-
ronment of electric vehicles, including high temperature,
high humidity, and high salt spray operating environments,
are complex [13]–[18]. High-voltage electrical components
exhibit high-voltage insulation changes or even high-voltage
insulation failure. The China national standard file GB
18384-2020 [19] and the International Organization for Stan-
dardization standard file ISO 6469-1: 2019 [20] stipulated
that the insulation resistance of the high voltage systems of
electric vehicles must not be less than 100 V/ohm. Therefore,
the real-timemonitoring of electric vehicle high-voltage insu-
lation performance changes and responding to the changes in
the insulation resistance, represent important guarantees for
the safe operation of electric vehicles. Because it is difficult
to directly measure the high-voltage insulation of electric
vehicles online, researchers have invented a variety of meth-
ods to detect the high-voltage insulation resistance [21]–[24],
but most of them face problems such as a slow response
time, insufficient estimation accuracy, and poor reliability.
Therefore, it is necessary to study a new insulation resistance
detectionmethodwith a rapid response, high estimation accu-
racy and high reliability.

A. REVIEW OF INSULATION RESISTANCE
DETECTION APPROACHES
In the laboratory, a high-precision voltmeter is usually used
to measure the voltage of the high-voltage direct-current
(HVDC) system supplied to the electrical chassis in order to
calculate the insulation resistance of the positive and negative
poles of the HVDC system with respect to the automobile
electrical chassis [19], [20]. This method requires a stopped
electric vehicle for static testing, so it does not employ actual
driving conditions to measure the insulation resistance of
the HVDC system; therefore, the value of the promotion
of the electric vehicle is not utilized. The balanced bridge
method [25] has been the most commonly used high-voltage
insulation resistance measurement method for electric vehi-
cles due to its advantages of a simple measurement circuit
and low cost. This method can accurately measure the insu-
lation resistance of an HVDC system when the different
insulation resistance value exists between the positive and
negative poles of the HVDC system and the automobile elec-
trical chassis. In the case of same insulation resistances, this
method has an obvious measurement error, and in the case of
high temperature and high humidity, the measurement error
will be enhanced: the balanced bridge method has thus been
eliminated by mainstream electric vehicle manufacturers.
The unbalanced bridge method can overcome the shortcom-
ings of the balanced bridge method but will greatly increase
the cost of the measurement circuit. Additionally, this method
cannot respond to the rapid change in the insulation resistance
when the system has Y capacitance, so it is gradually replaced
by other new methods in current electric vehicles.
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In view of the influence of the Y capacitance on the mea-
surement system, Mathsyaraja Aravind [26] proposed two
new insulation resistance measurement methods. Method 1
designs the Y capacitor discharge circuit and uses the resistor
capacitor (RC) characteristics of the HVDC system to esti-
mate the insulation resistance of the system. This method
can effectively measure the insulation resistance of the high
voltage system when the Y capacitor is large enough, but
when the Y capacitor is small, the discharge current is small,
and the current measurement error will significantly affect
the measurement result. Method 2 injects a high voltage
into the HVDC system and calculates the insulation resis-
tance of the HVDC system by observing the charging process
of the Y capacitor. This method can quickly and accurately
calculate the insulation resistance of the HVDC system but
may cause damage to the HVDC systems of electric vehi-
cles. Moreover, there is a risk that the measurement error
will increase or even reach failure under the high frequency
interference of the high voltage system. Due to its safety,
reliability and low cost, the low-voltage and low-frequency
voltage injection method to measure insulation resistance
has gradually become the mainstream test method for the
insulation resistance of the high voltage systems of electric
vehicles [27]. The method injects a ± 34 V square wave
with a frequency of 0.1 Hz into the high voltage system
of electric vehicles, returns to the electric chassis after the
voltage divider, and collects feedback from the electrical
chassis. In addition, the Kalman filter algorithm [28] has been
applied to filter noise, and the recursive least squares (RLS)
algorithm [29] has been applied to solve the problem of the
fluctuation of the insulation resistance detection results of a
high voltage system caused by the unstable voltage of a power
battery under complex working conditions. This method
needs to calculate both the Kalman filter algorithm and RLS
algorithm at the same time, which leads to an increase in
computational complexity and the failure to run smoothly on
a low-cost on-boardmicroprocessor, which limits the applica-
tion of this method in electric vehicles. Chuanxue Song [30]
proposed an equivalent circuit model for HVDC insulation
resistance measurements based on the method of low voltage
and low-frequency voltage injection and used the extended
Kalman filter (EKF) algorithm to estimate the insulation
resistance of an HVDC system. This method can accurately
estimate the insulation resistance of the HVDC system, but
due to the large rounding error in the nonlinear process of the
extended Kalman algorithm [31], the estimation of insulation
resistance cannot be further improved. At the same time,
in the case of strong noise interference, this method poses the
problem of algorithm divergence [32].

B. CONTRIBUTIONS OF THIS STUDY
To overcome the problems of poor accuracy, slow response,
low robustness andweak anti-interference ability of the above
methods, based on the low-voltage low-frequency injection
method, this paper analyzes the reflected wave, establishes
a new insulation detection circuit model, and proposes the

variable forgetting factor recursive least squares (VFFRLS)
algorithm to estimate the insulation resistance of an HVDC
system. Specifically, based on the low-frequency signal injec-
tion method, the influence of system Y capacitance is consid-
ered, the corresponding circuit model and the mathematical
model of the reflected wave voltage are established, and the
mathematical model is linearized by using a first-order Taylor
expansion. By analyzing the influences of the forgetting fac-
tor on model parameter identification and setting appropriate
shutdown criteria, the least squares algorithm with a vari-
able forgetting factor is designed to quickly and accurately
estimate the insulation resistance and Y capacitance values.
This method has the advantages of a fast response speed (the
average response time is 3 s), high robustness, high estimation
accuracy (the root mean square error (RMSE) is less than
0.012) and strong anti-interference ability, which is suitable
for promotion in electric vehicles.

C. ORGANIZATION OF THIS PAPER
The sections organized in the remainder of the paper are as
follows: In Section 2, the calculation model of insulation
resistance and the reflected wave voltage model affected by
the Y capacitor are described. The VFFRLS algorithm for
insulation resistance estimation is proposed in Section 3.
Simulations and experimental configurations are presented in
Section 4. Three experiments were performed on the simula-
tion and test bench to verify the proposedmethod in Section 5.
The main conclusions are drawn in Section 6.

II. MODEL DERIVATION BASED ON LOW-FREQUENCY
SIGNAL INJECTION METHOD
A. INSULATION RESISTANCE CALCULATION MODEL
In this paper, when the circuit model for measuring insulation
resistance by the low-frequency signal injection method is
established, the power battery voltage is taken into account,
and the calculation formula of the insulation resistance under
the joint action of the pulse voltage and high voltage system is
derived. Fig. 1 shows the insulation detection circuit model,
in which the power battery voltage is U , the pulse signal
generator is Us, the equivalent insulation resistances of the
positive and negative electrodes are Rp and Rn, the current
limiting resistors of the detection equipment are R1, R2, and
R1 = R2 = R, and the voltage at both ends of the sampling
resistor Rf is Uf . The voltage values generated by the pulse
signal generator in the positive and negative half periods are
set as Us+ and Us−, respectively.
In the positive half period, the pulse signal generator gener-

ates a step voltagewith valueUs+, and the currents flowing on
R1, R2, Rp, Rn, and Rf are I1, I2, I3, I4, and If+, respectively.
U and Rp, Rn form loop II, U and R1, R2 form loop I, Us and
Rp, R1, Rf form loop III. It is assumed that the power battery
voltage remains constant within one pulse period. According
to Kirchhoff’s law:

If+ = I1 + I2 (1)

If+ = I3 + I4 (2)
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FIGURE 1. Insulation detection circuit model based on the low-frequency
signal injection method.

U = RnI4 − RpI3 (3)

U = R1I1 − R2I2 (4)

Us+ = RpI3 + R1I1 + Rf If+ (5)

According to (1)-(5), the voltage Uf+ across the sampling
resistor Rf in the positive half period can be obtained as:

Uf+ = Rf
U (Rp − Rn)+ 2Us+(Rp + Rn)
(R+ 2Rf )(Rp + Rn)+ 2RpRn

(6)

Similarly, in the negative half period, the voltage Uf− at
both ends of the sampling resistor Rf is:

Uf− = Rf
U (Rp − Rn)+ 2Us−(Rp + Rn)
(R+ 2Rf )(Rp + Rn)+ 2RpRn

(7)

When the insulation resistances Rp and Rn remain
unchanged in a pulse period, according to (6) and (7), respec-
tively, the insulation resistances Rp and Rn of the two poles
of the power battery relative to the vehicle chassis can be
obtained as follows:

Rp =
(R+ 2Rf )(Uf+U − Uf−U )+ 2RfU (Us− − Us+)
−2Uf+Us− + 2Uf−Us+ + U (Uf− − Uf+)

(8)

Rn =
(R+ 2Rf )(Uf+U − Uf−U )+ 2RfU (Us− − Us+)

2Uf+Us− − 2Uf−Us+ + U (Uf− − Uf+)
(9)

The voltages Us+ and Us− generated by the pulse signal
generator in the positive and negative cycles are set val-
ues. The power battery voltage U can be measured by the
high-voltage measuring circuit, and the voltages Uf+ and
Uf− on the sampling resistor can be measured by the sam-
pling circuit in the positive and negative cycles. Therefore,
as long as the corresponding Uf+, Uf−, and U are measured
in a signal period, the corresponding insulation resistances
Rp and Rn in the period can be calculated by (8) and (9),
respectively.

B. REFLECTED WAVE VOLTAGE MODEL AFFECTED
BY Y CAPACITOR
Considering the influence of the Y capacitance between the
positive and negative poles of the power battery and the
chassis of the vehicle on the measurement of the insulation
resistance, an insulation detection circuit model with the Y

FIGURE 2. Insulation detection circuit model with the Y capacitor.

capacitance is constructed based on the low-frequency signal
injection method, as shown in Fig. 2, and the step response of
the circuit model with respect to the pulse injection signal is
analyzed.

In Fig. 2, U is the power battery voltage, Us is the pulse
signal generator, Rp and Rn are the power battery positive
and negative insulation resistors, respectively, Cp and Cn are
positive and negative Y capacitors, respectively, R1 and R2
are current limiting resistors, R1 = R2 = R, and Rf is the
sampling resistance. When the pulse generator generates a
step voltage with an amplitude of Us, the currents flowing
over R1, R2, and Rf are set to I1, I2, and If , respectively. The
sum of the current flowing to Rp and Cp is I3, the sum of
the current flowing to Rn and Cn is I4, and the initial voltage
values of capacitors Cp and Cn are Up0 and Un0, respectively.
U and Rp, Rn form loop I, U and R1, R2 form loop II, and Us
and Rp, R1, Rf form loop III. According to Kirchhoff’s Law,
the formula for s-domain is as follows:

If (s) = I1(s)+ I2(s) (10)

If (s) = I3(s)+ I4(s) (11)

U (s) =
Rn(I4(s)+ CnUn0)

1+ sCnRn
−
Rp(I3(s)+ CpUp0)

1+ sCpRp
(12)

U (s) = R1I1(s)− R2I2(s) (13)

Us(s) =
Rp(I3(s)+ CpUp0)

1+ sCpRp
+ R1I1(s)+ Rf If (s) (14)

Sorting out (10)-(14), the reflected wave voltageUf across
the sampling resistor Rf can be obtained, and the inverse
Laplace transform can be performed to obtain:

Uf (t) = a1 + a2 exp(−t/a3) (15)

Equation (15) is a function of the voltage of the sampling
resistance varying with time in a half period, where t is a time
variable and the function parameter expression is:

a1 =
Rf (U (Rp − Rn)+ 2Us(Rp + Rn))
(Rp + Rn)(R+ 2Rf )+ 2RpRn

(16)

a3 =
(Cp + Cn)RpRn(R+ 2Rf )

(Rp + Rn)(R+ 2Rf )+ 2RpRn
(17)

where a1 is the steady-state component of the response, which
is the stationary value of the reflected wave voltage. a2 is a
response gain, which is independent of the calculation of the
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resistance and capacitance values and is not considered in this
paper. a3 is the response time constant of the equivalent Y
capacitance.

The equivalent Y capacitance value can be obtained
by (17), that is, the parallel value of capacitance Cp and Cn:

Cp//Cn = a3
(Rp + Rn)(R+ 2Rf )+ 2RpRn

RpRn(R+ 2Rf )
(18)

where Cp//Cn represents the equivalent Y capacitance value.
In summary, the insulation resistances Rp and Rn can be

calculated by the identified a1 value and (8) and (9), and
the equivalent Y capacitance value can be calculated by the
identified a3 value and (18).

III. PARAMETER IDENTIFICATION METHOD BASED ON
THE VFFRLS ALGORITHM
A. FORGETTING FACTOR RLS ALGORITHM
It can be found from (15) that the reflected wave voltage Uf
is a nonlinear model under t . Considering the computational
complexity and estimation accuracy, the first-order Taylor
series expansion is used to linearize it.

According to (15), the discrete time function of Uf can be
obtained, and its expression is as follows:

Uf (k) = a1(k)+ a2(k) exp(−k1t/a3(k))

= F(A(k), k) (19)

where 1t is the sampling interval.

A(k) = [a1(k) a2(k) a3(k)]> (20)

The linearization method of (19) is as follows. Expand
Uf (k) around the estimated value Â(k−1) at time k−1 into a
Taylor series, omitting the quadratic and above terms, so that
the equation can be reduced to:

Uf (k) ≈ F(Â(k − 1), k)

+ (A(k)− Â(k − 1))
∂F
∂A>

∣∣∣A(k)=Â(k−1) (21)

FIGURE 3. Positive half-period reflected wave voltage when Rp = Rn =

2000 k� and Cp = Cn = 0.2 µF.

where Â(k − 1) represents the parameter estimation value at
time k − 1. The above formula can be written as a regression
equation of least squares, and its expression is:

Uf (k) = H (k)A(k)+ Y (k)+ V (k) (22)

where

H (k) = [1 e
−

k1t
â3(k−1)

â2(k − 1)k1te
−

k1t
â3(k−1)

â23(k − 1)
] (23)

Y (k) = −
â3(k − 1)â2(k − 1)k1te

−
k1t

â3(k−1)

â23(k − 1)
(24)

Equation (22) can be regarded as a model with constant
error term Y (k) in the observation equation.H (k) is the obser-
vation matrix, V (k) is one-dimensional random observation
noise, which is a zero mean and independent white Gaussian
noise sequence.

The forgetting factor RLS algorithm is used to identify
the model parameters. The implementation process of the
algorithm is shown in Table 1.

TABLE 1. The implementation process of the forgetting factor RLS algorithm.
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FIGURE 4. The identification process when the forgetting factor is 0.99: (a) the identification process of a1 and (b) the identification process of
a3.

FIGURE 5. The identification process when the forgetting factor is 1: (a) the identification process of a1 and (b) the identification process of a3.

B. VARIABLE FORGETTING FACTOR
In the RLS algorithm, the forgetting factor λ is mainly used to
increase the weight of the current data. The idea is to add the
forgetting factor to the old data and attenuate the influence
of the old data on identification in the form of exponential
weighting. The cost function of the forgetting factor RLS
algorithm is

J (n) =
∑

λn−ie2(i) (29)

where i = 1, 2 . . . , n, 0< λ≤ 1, e(i) represents the difference
between the observed value and the estimated value at time i.
By analyzing the recursive formula in Table 1, it is found
that the larger the λ value is, the smaller the gain K (k),
which reduces the correction effect of the observation data
on the parameter estimation and thus leads to the slower
convergence speed of the algorithm. However, it is not sen-
sitive to noise. The estimation error of the parameter is also
smaller. In the same way, if the value of λ is smaller, then the
convergence speed is faster, but it is more sensitive to noise,

and the estimation error of the parameter at convergence is
also larger [33], [34].

To obtain the influence of different λ values on the con-
vergence speed and parameter estimation, set the insula-
tion resistance Rp = Rn = 2000 k�, the Y capacitance
Cp = Cn = 0.2 µF, the power battery voltage U =

300 V, and the pulse injection voltage amplitude Us =
40 V. The positive half-period reflected wave voltage data
shown in Fig. 3 are obtained through simulation, and the
data noise variance is 0.001. Due to the charging process
of the Y capacitor, the reflected wave voltage decreases
exponentially, and as time increases, the voltage gradu-
ally stabilizes, which conforms to the description of (15).
By identifying with the forgetting factor RLS algorithm,
the identifying processes with the forgetting factor equal to
0.99 and 1 are obtained, as shown in Figs. 4 and 5, respec-
tively. Figs. 4(a) and 5(a) show the identification process of
parameter a1, and Figs. 4(b) and 5(b) show the identification
process of parameter a3. Through comparison, it can be found
that when λ = 0.99, the identification process converges
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FIGURE 6. The identification process when the variable forgetting factor: (a) the identification process of a1 and (b) the identification process
of a3.

faster, starting to converge in approximately 0.6 s, but the con-
vergence accuracy is relatively low, and the parameters a1 and
a3 fluctuate greatly. When λ = 1, the convergence accuracy
is relatively high, and the fluctuations of parameters a1 and a3
are also relatively small, but the convergence speed is slower
and starts to converge in approximately 1.0 s. In addition,
in Fig. 4(b), since λ < 1 and the reflected wave voltage
gradually stabilized after 1.0 s, the identification error of a3
begins to increase after 1.0 s. Therefore, when designing the
forgetting factor RLS algorithm, the selection of the λ value is
very important, and it should be considered as a compromise
between the convergence speed and stability of the algorithm.

In view of the characteristics of the system reflected wave
voltage signal, it is hoped that when the injected square wave
signal changes between positive and negative values, λ takes
a smaller value so that the system can quickly track the signal
trend and improve the dynamic response speed. When the
algorithm starts to converge, a larger λ value is used to obtain
a smaller steady-state error of the system and improve the
accuracy of convergence. Since the fixed forgetting factor
cannot take into account the requirements of accuracy and
convergence speed [35], this paper proposes a variable forget-
ting factor method to achieve both accuracy and convergence
speed. The variable forgetting factor is defined as follows:

λ(k) = λ1 − (λ1 − λ0) exp(−βk1t) (30)

where λ0, λ1, and β are the parameters for calculating the
forgetting factor. The parameter values used in this article are
λ0 = 0.96, λ1 = 1, and β = 40. It can be determined from
(30) that after the injected signal changes between positive
and negative values, λ will gradually increase from a smaller
value of 0.96 to 1 until the algorithm reaches the set conver-
gence accuracy. By simulating the VFFRLS algorithm, the
results shown in Fig. 6 are obtained. It can be found from
the figure that the algorithm starts to converge in 0.4 s, the
convergence accuracy is relatively high, and the fluctuations
of parameters a1 and a3 are relatively small. The results show

that the variable forgetting factor RLS algorithm is better than
the fixed forgetting factor in terms of the convergence speed
and convergence accuracy.

C. ALGORITHM IMPLEMENTATION
In the process of using the VFFRLS algorithm to identify
model parameters, the stopping condition of the algorithm
is one of the key factors affecting the effectiveness of the
algorithm. If it stops prematurely, then the algorithm does
not converge at this time, and the error of the identification
result is large. If the shutdown occurs too late, then the mea-
surement period will increase, which reduces the response
speed of the measurement system, wastes substantial com-
puting resources, and may also increase the number of errors.
As shown in Fig. 4(b), in the process of identifying a3 when
λ = 0.99, the reflected wave voltage tends to be stable in
the later stage, causing the error to increase again. Therefore,
it is necessary to determine whether the algorithm converges
on the basis of weighing the identification accuracy and the
measurement period to establish an appropriate shutdown
criterion. The specific process of judging whether the algo-
rithm has converged is shown in Fig. 7. When the standard
deviation of a1 and a3 in the sliding window is less than ε at
the same time, the algorithm is considered to have converged
and the iteration is exited. Using the form of the standard
deviationwithin the slidingwindow can effectively determine
whether the algorithm has converged, control the stopping of
the algorithm, and avoid misjudgment of the convergence.

Fig. 8 is the implementation flow chart of the insulation
resistance measurement method proposed in this paper. First,
the initial value and parameters of the algorithm are set. Then,
the VFFRLS algorithm is used to identify the model parame-
ters. When the convergence accuracy is reached, the average
values of a1 and a3 in the slidingwindow are used as the result
of parameter identification. Finally, the insulation resistance
value is calculated by (8) and (9), and the equivalent Y
capacitance value is calculated by (18).
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FIGURE 7. The flow chart of judging whether the algorithm has
converged.

The calculation formulas for the mean values Ea1 (k) and
Ea3 (k) and the standard deviations σa1 (k) and σa3 (k) are as
follows:

Ea1 (k) =
1
w

k∑
i=k−w+1

â1(i) (31)

Ea3 (k) =
1
w

k∑
i=k−w+1

â3(i) (32)

σa1 (k) =

√√√√ 1
w

k∑
i=k−w+1

(â1(i)− Ea1 (k))2 (33)

σa3 (k) =

√√√√ 1
w

k∑
i=k−w+1

(â3(i)− Ea3 (k))2 (34)

IV. SIMULATION AND EXPERIMENTAL CONFIGURATION
To verify the electric vehicle insulation detection method
based on the VFFRLS algorithm proposed in this paper, sim-
ulation experiments and bench experiments were carried out
under different insulation resistances andY capacitances. The
parameters of the insulation detector system in the process of
the simulation experiment and bench experiment are shown
in Table 2. In the actual use of electric vehicles, a long
transition time is required for the insulation resistance and Y
capacitance values to change. However, considering that the
model parameters change slowly, it is difficult to verify the

TABLE 2. The parameters of the insulation detector system.

rapidity and accuracy of the identification algorithm conver-
gence. Therefore, in the experiment, the insulation resistance
value and the Y capacitance value were changed artificially
to cause a sudden change.

A. SIMULATION CONFIGURATION
The simulation model of the system is established using
MATLAB software, as shown in Fig. 9. Fig. 9(a) depicts a
circuit simulation model that generates the required data by
simulating the high-voltage circuit and insulation detection
circuit of electric vehicles. Rp and Rn are the insulation
resistances, Cp and Cn are the Y capacitors, R1 and R2 are
the current limiting resistors, Rf is a sampling resistor, Us
is an injection voltage signal, and the power battery voltage
is 300 V. Fig. 9(b) shows the VFFRLS model. The input of
the model is the data obtained by the simulation in Fig. 9(a),
and the output is the identified a1 and a3. The model mainly
consists of a time module, an observation matrix module, a
forgetting factor module, a gain module, an estimated value
update module, an error variance update module, and a judg-
ment convergence module. In the simulation experiment, the
fixed-step calculation mode is adopted, and the simulation
step is set to 0.001 s according to a sampling frequency
of 1 kHz.

B. EXPERIMENTAL CONFIGURATION
The structure of the test bench is shown in Fig. 10. The test
bench mainly consists of a high-voltage DC power supply,
an insulation detector, a low-voltage DC power supply, two
DC resistance boxes, two decimal adjustable capacitor boxes,
a CANmonitor, a downloader and a personal computer (PC).
The high-voltage DC power system is used to simulate the
power battery voltage and is set to 300 V. The low-voltage DC
power system supplies power to the insulation detector, and
the power supply voltage of the insulation detector is 12 V.
The two DC resistance boxes simulate the insulation resis-
tance of the positive and negative electrodes. The two capac-
itor boxes simulate positive and negative Y capacitors. The
PC downloads the software project file to the micro-control
unit (MCU) of the insulation detector through the downloader
and collects experimental data such as the power battery volt-
age, injection voltage signal, reflected wave voltage signal,
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FIGURE 8. Flowchart of the insulation resistance estimation based on VFFRLS.

and insulation resistance measurement value through a CAN
monitor.

V. RESULTS AND DISCUSSION
A test bench for the simulation with the configuration shown
in Fig. 9 was built using MATLAB software. Three tests
were executed to test the performance of the VFFRLS algo-
rithm using the test bench for the simulation. The system
cost should be lower for the electrical vehicle, so the hard-
ware of insulation detection was designed for the lower cost.
Freescale’s KEA128 was used as an embedded MCU to test
the performance of the proposed method with respect to the
system cost. Hardware was designed with the selected MCU,
a test bench was built, and three tests were executed to test the
performance of the proposed method with the configuration
of Fig. 10.

A. EXPERIMENT 1: SIMULATIONS WITHOUT/WITH
MEASURING NOISE
The reflected wave voltage data, as shown in Fig. 11, are
obtained through Simulink simulation. The injection signal
cycle is 3 s, the simulation time is 12 s, and a total of 4 cycles
are simulated. The blue curve represents the reflected wave
voltage data without noise. To simulate the actual reflected
wave voltage value, Gaussian white noise with a variance
of 0.01 is superimposed on the signal sampling end to obtain
the red curve in Fig. 11. The model parameters exhibit
sudden change at the end of each cycle, and the insulation

TABLE 3. Insulation resistance and Y capacitance value of Four cycles.

resistance and Y capacitance values of the four cycles are
shown in Table 3.

Using the reflected wave voltage data without noise for
the simulation, the measurement results shown in Table 4 are
obtained, where Rp and Rn are the measurement results of
the positive and negative insulation resistances, respectively,
Cp//Cn is the measurement result of the equivalent Y capac-
itance, and δ is the relative error. It can be found from the
table that the relative error of measurement is within 1% and
the measurement time T is within 0.3 s without noise. The
insulation resistance and Y capacitance can be accurately and
quickly measured.

The simulation is carried out using reflected wave voltage
data with a noise variance of 0.01. Each set of data is simu-
lated ten times, the average values are taken as the measure-
ment results of the insulation resistance and the Y capacitance
value, and the measurement results shown in Table 5 are
obtained. It can be determined from the table that in the
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FIGURE 9. Simulation model of the insulation detection system: (a) the insulation detection circuit model and (b) the VFFRLS model.

TABLE 4. Measurement results without noise.

presence of noise interference, the relative measurement error
of insulation resistance is within 1.8%, and the relative mea-
surement error of the Y capacitor is within 1.9%. VFFRLS
effectively reduces noise interference.

Through simulation, compare EKF, unscented Kalman fil-
ter (UKF) and the algorithm proposed in this paper. The

three algorithms adopt the same initial value and convergence
condition.When using noisy data for simulation, it was found
that EKF and UKF diverged. Therefore, the data without
noise in the second cycle is selected for simulation, and
the results are shown in Table 6. The results show that in
the absence of noise, the convergence speed of EKF and
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FIGURE 10. Insulation resistance test bench.

FIGURE 11. Reflected wave voltage data.

TABLE 5. Measurement results with a noise variance of 0.01.

UKF is faster than the VFFRLS algorithm, and the mea-
surement accuracy of the VFFRLS is higher than EKF,
but slightly lower than UKF. The simulation results show

that although UKF is better than VFFRLS, when there is
noise, UKF and EKF will diverge, and VFFRLS can run
smoothly.

73600 VOLUME 9, 2021



Z. Chen et al.: New Method of Insulation Detection on Electric Vehicles Based on a VFFRLS Algorithm

TABLE 6. Measurement results of different algorithms.

FIGURE 12. Reflected wave voltage data without measuring noise and with measuring noise of reflected wave: (a) without
measuring noise and (b) with 2.5% measuring noise.

B. EXPERIMENT 2: COMPUTING COMPLEXITY TEST
To verify the computing complexity of the proposed algo-
rithm, a contrast test with an EKF, an UKF and the proposed
algorithm is executed. The bus frequency is set to 48 MHz,
the programs are executed once every 3 ms, the period of the
reflected wave is 3 s, and the results are shown in Table 7.
It is shown that the computing complexity of the proposed
algorithm is the lowest among the three algorithms. The load
rate of the KEA128 embedded MCU is lower than 70%when
running the program of the proposed algorithm. This result
shows that the VFFRLS algorithm for insulation detection
can run smoothly on the KEA128 embedded MCU.

C. EXPERIMENT 3: TESTS WITHOUT AND WITH
MEASURING NOISE
To verify the performance of the VFFRLS algorithm in an
actual demo with the test bench shown in Fig. 10, the test

TABLE 7. Computing complexity of different algorithms.

requires a total of 300 s and is divided into four time periods.
The parameter settings of the insulation resistance and Y
capacitor in different time periods are shown in Table 8. The
period of the wave is 3 s, so the half period of the reflected
wave is 1.5 s.

Electric vehicles have many components with high elec-
tromagnetic interference (including a relay, solenoid valve,
motor control, motor, etc.) and the operating environment
and working conditions are complex. The signal sampling
circuit is easily interfered with, and the insulation detection
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FIGURE 13. Results of a1 and a3 without measuring the noise of the reflected wave: (a) estimated a1 and (b) estimated a3.

TABLE 8. Working conditions of the tests.

algorithmmust be useful, with strong anti-interference ability
and good robustness. To test the anti-interference perfor-
mance and robustness of the proposed algorithm, 2.5% sam-
pling signal noise was applied to the reflected wave sampling
circuit, and the noise was described as follows:

Q = b∗M/3 (35)

where Q is the root mean square noise value, b represents
the scaling factor, and M is the maximum voltage value of
the reflected wave. The measurement noise is loaded with
2.5% of the actual signal. Themeasured signal of the reflected
wave is shown in Fig. 12 without/with measuring noise.
Fig. 13 shows the results of the estimated parameters of a1
and a3 achieved by the VFFRLS algorithm without measur-
ing noise, and the results of the two parameters are shown
in Fig. 14 with measuring noise. Figs. 15-17 are the results of
Rp, Rn, and Cp//Cn without and with measuring noise, and

Fig. 18 displays the error distribution of the estimation results
of Rp, Rn, and Cp//Cn.
When the changes in the capacitance or resistance before

and after the switching point are small, the fluctuation of the
estimated results of a1 and a3 is minimal; in contrast, the fluc-
tuation of the estimated results of a1 and a3 is large. The
results of a1 can converge to the correct value in one reflected
wave period, while a3 can converge to the correct value in two
reflected wave periods. According to the method described
in this paper, the values of Rp, Rn, and Cp//Cn are further
obtained from the estimated values of a1 and a3. At the same
time, the calculation of Rp, Rn, and Cp//Cn values requires a
complete reflected wave period, so the calculated fluctuation
period of Rp, Rn, and Cp//Cn values will be further extended,
and the maximum fluctuation time is approximately 8 s in
experiment 3. According to the error distribution diagram,
with or without the reflected wave measurement error, except
for the error during initialization and near the switching point,
the relative error of the Rp, Rn, and Cp//Cn parameters in the
whole process is less than 2%, and the RMSE is less than
0.012. In practical engineering, limit filtering can be carried
out at the switching point to further smooth the fluctuation
error caused by large parameter changes during the switching
to further improve the estimation accuracy of the whole pro-
cess. Considering that drastic changes in the capacitance and
resistance at 0.003 s are rare under actual work conditions,
the maximum fluctuation of the estimated value is approx-
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FIGURE 14. Results of a1 and a3 with 2.5% measuring noise of reflected wave: (a) estimated a1 and (b) estimated a3.

FIGURE 15. Results of Rp without and with 2.5% measuring noise of reflected wave: (a) Rp without measuring noise
and (b) Rp with 2.5% measuring noise.

imately 3 s (that is, convergence can be completed in one
reflected wave cycle) when the change in working conditions
is small.

Therefore, in the cases of different Y capacitors and insu-
lation resistors, the detection accuracy of the insulation resis-
tance is still very high (the RMSE is within 0.012) after
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FIGURE 16. Results of Rn without and with 2.5% measuring noise of reflected wave: (a) Rn without measuring noise and
(b) Rn with 2.5% measuring noise.

FIGURE 17. Results of Cp//Cn without and with 2.5% measuring noise of reflected wave: (a) Cp//Cn without
measuring noise and (b) Cp//Cn with 2.5% measuring noise.

loading themeasurement noise with 2.5%, the response speed
is very short (the average response time is within 3 s), and
the convergence property of the continuous algorithm is still

maintained after running continuously. The results show that
the proposed method exhibits high anti-interference ability
and robustness.
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FIGURE 18. Distribution of the relative error of the estimation results: (a) Rp relative error without measuring noise;
(b) Rn relative error without measuring noise; (c) Cp//Cn relative error without measuring noise; (d) Rp relative error
with measuring noise; (e) Rn relative error with measuring noise; and (f) Cp//Cn relative error with measuring noise.

VI. CONCLUSION
Based on the circuit model of low-frequency signal injec-
tion to measure the insulation resistance, the principle of
insulation detection is described in detail, and the calcu-
lation formula of insulation resistance is derived. Consid-
ering the influence of the Y capacitance of the system,
a nonlinear reflected wave voltage model is established
according to the step response of the injected signal. After
linearizing it through a first-order Taylor expansion, the
model parameters are identified by the variable forgetting
factor recursive least squares algorithm, and the insulation
resistance value and Y capacitance value are calculated
according to the model parameters. The experimental test
results show that the proposed method can quickly track
the changes in the insulation resistance and Y capacitance
under the condition of noise interference. The root mean
square error is within 0.012, and the average response
time is within 3 s. Simulation experiments and bench tests
prove that this method exhibits the advantages of a fast
response speed, high robustness, high estimation accuracy
and strong anti-interference ability. At present, this method
has been tested on a bench in the laboratory. In future
work, the proposed method shall be applied to actual elec-
tric vehicles to further verify its performance in realistic
environments.
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