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ABSTRACT Inertial navigation system stationary fine alignment process is a critical step in reducing the
initial errors of the attitude and sensor biases. While many studies had been made for tactical grade systems,
less attentionwas given to low-cost sensors, which are amajor player in today’s inertial sensorsmarket. To fill
this gap, a measurement strategy combining different INS aiding types is proposed, analyzed and compared
using numerical simulations and field experiments. Additionally, an analytical linear observability analysis is
made to support the numerical comparisons. Further, five types of adaptive Kalman filters with the proposed
measurement strategy are compared to find the appropriate one to improve the alignment performance.
The proposed measurement strategy can be used in other applications of stationary conditions such as land
vehicles, robots or shoe-mounted inertial navigation systems.

INDEX TERMS Extended Kalman filter, fine alignment, inertial sensors, zero velocity updates.

I. INTRODUCTION
Inertial Navigation Systems (INS) are commonly used in
many types of platforms such as autonomous vehicles,
quadrotors, ships, airplanes and more. The INS popularity
stems from the fact that it provides a full navigation solu-
tion consisting of the platform position, velocity and attitude
vectors [1], [2]. INS is a standalone system that uses its own
sensors, namely accelerometers and gyroscopes, to provide
the navigation state. Also, INS is capable of working in any
environment (air, sea, undersea, indoor and etc) and it is
available in many different grades starting with low-cost low
performance to high-cost high performance systems.

INS is a dead-reckoning system meaning it requires an
initial navigation state vector prior to its operation. The ini-
tial position and velocity vectors are provided by external
sensors (such as the global navigation satellite system) or
information (like zero velocity). The initial attitude can also
be provided by external sensors (such as a higher grade INS)
or by using the INS inertial sensors in a process known
as analytic coarse alignment. There, when the platform is
in stationary conditions, the accelerometers and gyroscopes
outputs are compared to the expected values of the gravity and
Earth turn rate vectors, to calculate the initial attitude vector.

The associate editor coordinating the review of this manuscript and

approving it for publication was Seung-Hyun Kong .

Jiang [3] proposed an alternative alignment formulation
for stationary INS with analytical error assessment of both
approaches. Silve et al. [4] presented a comprehensive liter-
ature review and error analysis of coarse alignment formu-
lations for stationary strapdown INS. Recently, an analytical
evaluation of partial coarse alignment for a gyro-free station-
ary INS system was derived in [5].

Usually, the accuracy of the coarse alignment process is
not satisfactory, in particular if pure inertial navigation is
required, and therefore external sensors or information are
used to obtain a more accurate attitude vector in a process
known as fine alignment (FA). For example, the global posi-
tioning system position and velocity measurements are used
for in flight alignment [6], while underwater, the Doppler
velocity log velocity measurements are employed in the
alignment process. [7], [8]

In stationary alignment conditions the platform has zero
velocity. This information is used as external measurement in
the navigation filter to improve the attitude accuracy [9], [10].
As a consequence, in addition to the attitude vector, some of
the inertial sensors error terms can also be estimated during
the process [11], [12].

Recently, closed-form analytic solutions to the error-state
covariance of the FA process and semi-analytic solutions
to the convergence time of the error-state covariance were
derived [13].With such closed-form solutions at hand, insight

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 79021

https://orcid.org/0000-0001-7846-0654
https://orcid.org/0000-0003-1317-3368
https://orcid.org/0000-0002-4753-1998


I. Klein, Y. Bar-Shalom: INS Fine Alignment With Low-Cost Gyroscopes

can be gained into the parameters involved in the FA process
in preliminary design process.

Another measurement update usually applied is zero angu-
lar velocity with a version for gyroscopes capable of mea-
suring the earth turn rate [12], [14] and ones which are
not capable [15]. A less common measurement in stationary
conditions is zero acceleration, where an assumption of small
roll and pitch angles is made [12], [16].

Recent papers combining several measurement types
includes [17] which used zero velocity, angular velocity and
acceleration measurements for a stationary FA process using
a tactical grade INS but without including the sensor error
terms in the state vector. Later, [18] employed zero angular
rate aiding for a tactical grade INS mounted on a vehicle and
proposed means to overcome the quasi-stationary conditions.
In [19] FA during the erecting process on a stationary base is
considered using position and velocity updates.

In this paper, the scenario of stationary INS FA using
low-cost gyroscopes is considered. The goal is to explore and
combine all available measurement possibilities appearing in
the literature in a single paper and find the best combination
of measurement for the FA process using analytical, numeri-
cal and experimental analysis. The contributions of the paper
are as follows:

1) Derivation of a measurement strategy and comparison
between all possible measurement types for stationary
INS FA using low-cost gyroscopes.

2) Analytical observability analysis for all measurement
types for a low-cost gyroscopes INS.

3) Application of roll and pitch measurements for reduced
INS sensor set for land vehicle dynamics, to the FA
process regardless of the platform as long as stationary
conditions apply.

4) Comparison for two different approaches for zero
acceleration measurement. One requires small roll and
pitch angles regardless of the accelerometers grade
while the other requires high accelerometer grade
regardless of the actual roll and pitch angles.

5) Comparison between five adaptive Kalman filters, with
all measurement types, on the FA filter performance.

In addition to the numerical simulation, a field experiment
using a smartphone was conducted to support the analysis.

The rest of the paper is organized as follows: Section II
describes the FA process and EKF. Section III presents
four different types of adaptive filters in the Kalman
framework. Section IV shows the strategy of the paper
while Section V gives the analytical observability analysis.
Section VI presents the results and Section VII gives the
conclusions.

II. FINE ALIGNMENT
The Extended Kalman Filter (EKF), with error state imple-
mentation, is commonly used in the fusion process between
INS and aiding sensors [1], [12]. The error states are usually
expressed in the North-East-Down (NED) reference frame
with a 12 error-state linear model. It is assumed that the

sensors coordinate frame coincides with the body frame.
Since low-cost gyroscope sensors are addressed, the earth
turn rate cannot be measured and hence neglected. The
error-state vector is

δx =
[
δvn εn ba bg

]T
∈ R12 (1)

where δvn =
[
δvN δvE δvD

]T is the velocity error vector,
and εn =

[
εN εE εD

]T is the attitude error state vector.
ba =

[
ba,x ba,y ba,z

]T and bg =
[
bg,x bg,y bg,z

]T are
accelerometer and gyro biases represented by random con-
stants process. The state-space model associated with the
error state vector is [11]

δẋ = Aδx+Gw (2)

where A, the system matrix, is defined by

A =


03×3 −

[
f n×

]
Tnb 03×3

03×3 03×3 03×3 Tnb
03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3

 (3)

Tnb is the transformation matrix between the body and navi-
gation frames, the shaping matrix G is

G =


Tnb 03×3 03×3 03×3
03×3 Tnb 03×3 03×3
03×3 03×3 I3×3 03×3
03×3 03×3 03×3 I3×3

 (4)

w is the process noise and the skew-symmetric matrix
[
f n×

]
is

[
f n×

]
=

 0 −fd fe
fd 0 −fn
−fe fn 0

 (5)

A. EXTENDED KALMAN FILTER
The EKF error-state closed loop implementation algorithm
using the Joseph form for covariance update [12], [20] is
implemented for the FA process using

δx̂−k = 0 (6)

P−k = 8k−1P+k−18
T
k−1 +Qk−1 (7)

δx̂+k = Kkδzk (8)

Kk = P−k H
T
k [HkP−k H

T
k + Rk ]−1 (9)

P+k = [I−KkHk ]P−k [I−KkHk ]T +KkRkKT
k (10)

where k is the time step index, δx−k is the a priori estimate
of the error-state, δx+k is the a posteriori estimate of the error-
state, δzk is themeasurement residual vector,P−k is the covari-
ance of the a priori estimation error, P+k is the covariance of
the posteriori estimation error, Kk is the Kalman gain, Qk is
the process noise covariance assumed to be constant for all
samples,Rk is the measurement noise covariance assumed to
be constant for all samples, 8k is the state transition matrix
andHk is themeasurementmatrix. Themeasurement residual
vector and matrix are determined by the aiding types as
addressed in the following subsection.
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B. MEASUREMENT MODELS
1) ZERO VELOCITY UPDATE (ZV)
In stationary conditions the linear velocity is zero. This infor-
mation, of zero velocity (ZV), is used to update the filter.
Thus, the measurement residual (difference between INS
measurement to its aiding counterpart) is [9], [10]

δzZV = vnINS − 03×1 = HZVδx+ vZV (11)

where vnINS is the calculated INS velocity vector, δzZV is
the measurement residual vector, vZV is a zero mean white
Gaussian measurement noise and the measurement matrix
HZV is

HZV =
[
I3×3 03×3 03×3 03×3

]
(12)

2) ZERO ANGULAR RATE UPDATE (ZAR)
While in stationary conditions, the angular rate vector
between the body and navigation frames is zero

ωnb = 0 (13)

The corresponding measurement is

ω̃nb = ωib − ωin = bg (14)

where ωib is the angular velocity as measured by the gyro-
scopes and the transport rate ωin is neglected (station-
ary conditions and low-cost gyroscopes). Since stationary,
the expected gyros output is only their biases as shown in (14).
Thus, the measurement residual equation for zero angular
rate (ZAR) updates during the FA process is [15]

δzZAR = bg − 03×1 = HZARδx+ vZAR (15)

where δzZAR is the measurement residual vector, vZAR is zero
mean, random white Gaussian measurement noise, and the
measurement matrix HZAR is

Hzar =
[
03×3 03×3 03×3 I3×3

]
(16)

3) ACCELEROMETER ROLL AND PITCH UPDATE (ARP)
Since the system is at stationary conditions the accelerome-
ters output only the gravity vector. This property is utilized in
the coarse alignment phase to directly estimate the initial roll
and pitch angles before the FA process is applied. Another
approach to calculate the roll and pitch angles, in stationary
conditions, with a reduced set of accelerometers was sug-
gested by [21] based on the works of [22] and [23] for land
vehicle navigation. There, the two angles are calculated by

φ = sin−1
(
−fy/

√
g2 − f 2x

)
(17)

θ = sin−1 (fx/g) (18)

where φ is the roll angle, θ is the pitch angle, g is the
gravitational constant, fx and fy are the specific force com-
ponents expressed in the body frame. Notice, that (17)-(18)
are only valid for small pitch and roll angles, which is a

reasonable assumption in land vehicles. Yet, for the general
fine alignment setup the following equations should be used:

φ = arctan2(−fy,−fz) (19)

θ = arctan2(fx ,
√
f 2y + f 2z ) (20)

Taking the accelerometer measured roll and pitch (ARP)
angles (19)-(20) as update and comparing to their estimated
counterparts gives the measurement residual

δzARP =
[
φINS − φ

θINS − θ

]
= HARPδx+ vARP (21)

where δzARP is the measurement residual vector, vARP is a
zero mean white Gaussian measurement noise, and HARP

is the measurement matrix. Notice, since small angles are
addressed, the misalignment errors are equal to the Euler
angles errors and therefore, the latter relates directly to the
error state (1) by the following measurement matrix:

HARP =
[
02×3 I2×2 02×4 02×3

]
(22)

Notice, that in situations when the small angles assumption
does not hold, the following measurement matrix should be
used:

HARP =
[
02×3 Hθ 02×4 02×3

]
(23)

where

Hθ =
[ cosψ

cos θ
sinψ
cos θ

− sinψ cosψ

]
(24)

4) ZERO ACCELERATION UPDATE (ZA)
Another approach to take advantage of the fact that in sta-
tionary conditions the accelerometers measure the gravity
vector is termed zero acceleration (ZA) update. There the
specific force measurement is used directly instead of using
it to calculate the roll and pitch angles. Although the same
information is used, it is delivered in a different way to the
filter and thus, due to the nonlinear system, may lead to a
different filter performance.

The specific force vector expressed in the navigation frame
is related to the one expressed in the body frame by

fn = Tnbf
b (25)

The difference between the measured and actual specific
force is

δfn = fnINS − fn = Tnb,INSf
b
INS − fn (26)

Perturbation around the nominal trajectory and remov-
ing second order error terms, yields the measurement residual

δzZA1 = −(f n×)εn + Tnbbg = HZA1δx+ vZA1 (27)

where δzZA1 is the measurement residual vector, vZA1 is a
zero mean white Gaussian measurement noise and the mea-
surement matrix HZA1 is given by (ZA1 implementation)

HZA1 =
[
03×3 −(f n×) Tnb 03×3

]
(28)
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Another approach to formulate the ZA measurement is
described in [12]. There, small roll and pitch angles are
considered. In such a case, the term−(f n×)εn can be replaced
with the known local gravity vector expressed in the naviga-
tion frame, gn and a noise term to represent the navigation
frame disturbances (due to the small roll and pitch angle).
In this implementation (ZA2), the measurement residual and
matrix are

δzZA = (gn×)εn + Tnbbg + f d = HZAδx+ vZA (29)

HZA =
[
03×3 (gn×) Tnb 03×3

]
(30)

where f d represents the navigation frame disturbances and

gn =
[
0 0 g

]T (31)

III. ADAPTIVE KALMAN FILTERS
The motivation of using adaptive approaches within the
Kalman filter algorithms, is to examine the possibility they
will improve the filter performance in terms of accuracy and
time to converge. In particular, in situations where the process
or measurement noise covariance are not exactly known.

A. EXPONENTIAL DATA WEIGHTING (EKF-E)
Generally, there are two methods for preventing divergence:
fictitious process noise injection and exponential data weight-
ing. Both methods work by preventing the predicted error
covariance P+k , and hence the Kalman gain Kk from going to
zero with k . This means that as time k increases, the process
and measurement noise covariances decrease, so that we are
giving more credibility to the recent data by decreasing the
noise covariance exponentially [24]. The model covariance
matrices are set to [24], [25]

Rk = Rα−2(k+1) (32)

Qk = Qα−2(k+1) (33)

for some α ≥ 1 and constant matrices R and Q.

B. SCALING FACTOR ON THE PROCESS NOISE
COVARIANCE (EKF-Q)
As shown in [26] increasing the process noise will lead to an
improvement in the convergence rate of the filter. As pointed
out in [27], since this additive positive definite matrix is
selected arbitrarily, it can be combined into a scaling factor
on the process noise covariance, such that (7) is modified as

P−k = 8k−1P+k−18
T
k−1 + αQQk−1 (34)

where αQ is a scaling factor greater than one.

C. SCALING FACTOR ON THE MEASUREMENT NOISE
COVARIANCE (EKF-R)
This method aims to improve the convergence rate of the
filter considering the opposite of the ‘‘underweighting’’
approach [27]. The purpose of ‘‘underweighting’’ is to pre-
vent the state error covariance from converging too quickly
from very precise measurements. This process effectively

slows the convergence of the filter; however it contains some
desirable robustness to erroneous measurements. To create
the opposite behavior, the gain (9) and covariance update (10)
equations are modified using a scaling factor

Kk = P−k H
T
k [HkP−k H

T
k +

1
αR

Rk ]−1 (35)

P+k = [I−KkHk ]P−k [I−KkHk ]T +
1
αR

KkRkKT
k (36)

where αR is a scaling factor greater than one.

D. SCALING FACTOR ON THE ERROR STATE
COVARIANCE (EKF-P)
Another implementation of exponential data weighting was
suggested in [28]. There, a scale factor was used to improve
the stability the system, at the cost of performance. However,
since this scaling factor increases the covariance it may lead
to faster convergence. To employ, this approach (7) is modi-
fied as

P−k = αP8k−1P+k−18
T
k−1 +Qk−1 (37)

where αP is a scaling factor greater than one.

IV. STRATEGY
Four different measurement types, namely: ZV, ZAR, ARP
and ZA, where the latter has two approaches for implementa-
tion in the filter. Before, describing our proposed strategy we
elaborate on the difference between the two. Notice, in the
measurement equation (26) knowledge of f n is required. For
stationary conditions, the specific force vector is given by

f b =

 sin θ
− cos θ sinφ
− cos θ cosφ

 g (38)

In the first ZA implementation, (27), the roll and pitch
angles are taken from the calculated INS solution where
in the initial step they are determined by the coarse align-
ment process. Thus, as the accelerometer quality increases
(reduced level of error terms) the initial roll and pitch
accuracy increases resulting in a better filter performance
since (38) is satisfied. However, for low-cost accelerometers
a higher error in (38) is expected, leading to a degrada-
tion of the filter performance. On the other hand, the sec-
ond ZA implementation uses the gravity vector (31) instead
of (38) in the measurement (29). Thus, it does not depend on
the accelerometer quality. Rather, it requires that the actual
roll and pitch angles during the alignment will be small so
that (38) will give f n ≈ −gn. The answer which one of the
ZA implementations is suitable, depends on the actual roll
and pitch angles, gyroscopes and accelerometer quality and
needs to be numerically evaluated. Therefore, our first step
will be a numerical comparison between the two.

Regardless of the initial roll and pitch angles or accelerom-
eter grade, the ZV and ZAR measurement models will yield
the same filter behaviour. The ARP update depends on the
gyroscope and accelerometer quality. The ARP measurement
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residual (22) depends on the calculated accelerometer roll
and pitch angles and also on the INS calculated ones which
in turn depend on the gyroscopes’ outputs. Therefore, for
low-cost sensors with high error terms in the sensor mea-
surements, this update is questionable. However, using ZAR
update, the gyros’ bias are measured directly by (15), thus it
is expected that the accuracy of the INS roll and pitch will
increase. Therefore, it is likely that, ARP update should be
combined with ZAR update. This assumption of improved
accuracy is made since by using the gyros measured angular
velocity vector, the transformation matrix between body to
navigation frame is updated and then the updated Euler angles
can be extracted. Thus, if the gyro measurements had no bias
it is likely that the Euler angles will be more accurate.

Based on the discussion above we examine the following
set of measurements models with the FA process.

1) ZV: Zero velocity update using the measurement resid-
ual (11) and matrix (12). This is the most commonly
used measurement type in the literature and represents
the minimum set of measurements.

2) ZVZAR: Zero velocity and zero angular rate updates.
Those two updates do not depend on the initial roll and
pitch angles. The resulting measurement matrix from
the combination of (12) and (16) is

HZVZAR =

[
I3×3 03×3 03×3 03×3
03×3 03×3 03×3 I3×3

]
(39)

3) ZVZARARP: Zero velocity, zero angular rate and
accelerometer based roll and pitch updates. This model
enhances the previous one with a direct measurement
of the roll and pitch angles.

HZVZARARP =

 I3×3 03×3 03×3 03×3
02×2 I2×3 02×4 02×3
03×3 03×3 03×3 I3×3

 (40)

4) ZVZARZA: Zero velocity, zero angular rate and zero
acceleration updates. Here, ARP is replaced by the ZA
measurement model.

HZVZARZA =

 I3×3 03×3 03×3 03×3
03×3 (gn×) Tnb 03×3
03×3 03×3 03×3 I3×3

 (41)

After the measurement types have been selected, their
contribution in estimating the error state (1) is evaluated using
observability analysis. To that end, analytical linear
observability analysis, as detailed in the following section,
is performed. After the analytical observability analysis,
we examine the four types of measurement sequences on the
regular EKF filter and only then on the other adaptive filters
as presented in Section III.

V. OBSERVABILITY ANALYSIS
In the FA process the system is held in stationary condi-
tions and without loss of generality we assume the body and
navigation coordinate frames coincide, thus Tnb = I3. This
assumption is made to ease the mathematical derivation and

enable to gain insight from the observability analysis. To
derive analytically the observable subspace, we follow the
analytical observability approach as in [9], [29] and start by
calculating the observability matrix.

The observability matrix at t = 0 is constructed to examine
the rank of the observability error-states. Notice, that at t = 0
the system (2) is linear and thus the observability matrix is a
valid test. The observability matrix is defined by the system
matrix and measurement matrix as

O =


H
HA
...

HAm−1

 (42)

where m is the error state dimension which is 12 in our
case. Further, the observable and unobservable subspaces
are spanned by the observability matrix image Im(O) and
kernel ker(O), where the state space can be spanned using
Im(O)⊕ker(O). A state transformation matrix is constructed
by taking n (the rank of O) independent rows from Im(O)
and constructing O1. The other 12 − n independent vectors,
orthogonal to O1, are found by the null space of O1 to
construct O2, that is ker(O). In that manner, a state trans-
formation matrix, T, from the original state vector (1) to the
observable and unobservable states is formed

T =
[
O1
O2

]
(43)

1) ZERO VELOCITY UPDATE
Plugging the system (3) and measurement (12) matrices into
the observability matrix yields a rank of eight, meaning that
there are only eight observable states or a linear combination
of them. Next, the state transformation matrix (43) is formed
to give the observable subspace (OS):

OSZV =



vn
ve
vd

εN − ba,y/g

εE + ba,x/g

ba,z
bg,x
bg,y


∈ R8 (44)

Notice that OSZV contains linear combinations of the hor-
izontal biases and misalignment errors.

2) ZERO VELOCITY AND ZERO ANGULAR RATE UPDATE
In the same manner, the observability matrix using the lin-
ear and angular velocity update measurement matrix (12)
and (16) was found to have rank of nine. There, the addition
of the zero angular velocity vector measurement increased
the system by only one more observable state. The resulting
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observable subspace is

OSZVZAR =



vn
ve
vd

εN − ba,y/g
εE + ba,x/g

ba,z
bg,x
bg,y
bg,z


∈ R9 (45)

Comparing (45) to (44) we observe that the addition of the
zero angular velocity measurement added the gyro’s z-axis
bias, bg,z to the OS.

3) ZERO VELOCITY, ZERO ANGULAR RATE AND ZERO
ACCELERATION UPDATE
The measurement matrix is constructed using the ZV mea-
surement matrix (12), the ZAR measurement matrix (16) and
the ZA measurement matrix (30). Using (42), the resulting
number of observable states is 11, where the OS is

OSZVZARZA =



vn
ve
vd
εN
εE
ba,x
ba,y
ba,z
bg,x
bg,y
bg,z


∈ R11 (46)

Comparing (45) to (46) we observe that the addition of
ZA update managed to remove the linear dependence of the
misalignment angle εN to ba,y and εE to the bias ba,x added
all the four states to the OS. Also, the same observable space
will result if instead of (30) the other ZA implementation,
(28), is used.

4) ZERO VELOCITY, ZERO ANGULAR RATE AND
ACCELEROMETER ROLL AND PITCH UPDATE
In this case, the measurement matrix is constructed using
the ZV measurement matrix (12), the ZAR measurement
matrix (16) and the ARP measurement matrix (22). Substi-
tuting the resulting measurement matrix in the observability
matrix (42) the resulting rank is 11 and the OS is equal to the
ZVZAEZA update

OSZVZARARP = OSZVZARZA (47)

VI. ANALYSIS AND RESULTS
A stationary FA simulation was employed for the analysis
using standard navigation equations. The true value of the
velocity vector, roll, pitch and yaw angles were set to zero
throughout the simulation. Their initial conditions were ran-
domized in each run using a zero mean white Gaussian noise

TABLE 1. Accelerometers and gyroscopes error terms specifications.

with standard deviation (STD) of 0.5m/s for the velocity
vector, 3deg for the roll and pitch angles and 10deg for the
yaw angle.

The FA process was carried out for a time duration of
60s. The inertial sensors provide measurements with a sam-
pling rate of 100Hz. The accelerometers and gyroscopes
are modeled with a constant bias and a random walk pro-
cess with parameters provided in Table 1. The EKF is
employed using (6)-(10) with the error-state vector (1), sys-
tem matrix (3) and shaping matrix (4). For the initial error
state covariance, P0, the same initial conditions as described
above for the velocity and Euler angles were used while for
the accelerometer and gyroscopes the initial biases (Table 1)
were multiplied by a factor of 3.

To evaluate the proposed approach, 50 Monte-Carlo (MC)
runs were made, where for each run random initial conditions
were used and in each time-step random values for the sensors
outputs and measurement noise were drawn. Since station-
ary conditions are given and also the velocity estimation
it is not the purpose of the FA process, we don’t address
the velocity estimation performance. Focus is given to the
Euler angles and the inertial sensors error terms. For those
states, we present the MC mean and STDs in the following
figures.

A. COMPARISON BETWEEN ZA IMPLEMENTATIONS
As discussed in Section IV, first the two implementations of
ZAmeasurement are compared. For the first implementation,
ZA1, the measurement residual and matrix are given by (27)
and (28) while for the second implementation, ZA2 (29)
and (30) are used. For both implementations, the ZV and
ZAR measurement models are added and the approaches are
labeled as ZVZARZA1 and ZVZARZA2. The comparison is
made using the regular EKF with two sets for accelerometer
parameters: 1) as presented in Table 1 with 3deg STD for the
initial roll and pitch angles denoted as case 1 and 2) 3mg
accelerometer bias and 0.3deg for the initial roll and pitch
angles denoted as case 2.

Since the ZA measurement model influences the observ-
ability and performance of the roll, pitch and accelerometer
biases in the x and y axes, only their error-states are addressed
in this section for the comparison.

As discussed in Section IV, ZA1 performance should
increase as the accelerometer quality increases (lower level
of bias and noise) thus, it is expected to work better in case 2.
ZA2 model performance should improve for smaller roll and
pitch angles. Since we consider zero nominal roll and pitch
it is expected that ZA2 will also give better performance for
case 2 since its initial roll and pitch angles are smaller by a
factor of ten.
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FIGURE 1. Monte Carlo mean error of the roll (δφ) and pitch (δθ) angles
using the two implementations of the ZA measurement model.

FIGURE 2. Monte Carlo mean error of the x and y accelerometer bias
components using the two implementations of the ZA measurement
model.

The mean MC results for the roll and pitch error are
presented in Figure 1. The solid lines show the results
of case 1 and in the dashed lines are for case 2. For
ZVZARZA1 case 1, themean error is 0.7 for the roll and 1deg
for the pitch while for ZVZARZA2 the mean error is 0.3 and
0.15deg, respectively. The corresponding STDs for case 1 are
2deg for ZVZARZA1 and 1.3deg for ZVZARZA2. Thus,
ZVZARZA2 model outperformed ZVZARZA1 for case 1.
For case 2, both approaches obtained similar performance for
the mean, yet ZVZARZA1 STD was two times bigger than
ZVZARZA2 STD. Also, the convergence time is approxi-
mately five seconds for ZVZARZA1 and up to one secnod
for ZVZARZA2.

The mean MC results for the accelerometer biases are
presented in Figure 2. For case 1, ZVZARZA1 man-
aged to estimate about 50% of the actual bias while
ZVZARZA2 about 85% of it. The same level of accuracy
was kept in case 2 for ZVZARZA2 and improved to about
65% for ZVZARZA1. The STDs were 30 and 20mg for
ZVZARZA1 and ZVZARZA2, respectively for case 1 and
2 and 0.5mg for case 2. Based on the above results and since
we are addressing low-cost sensors as presented in Table 1,
ZA2 (29)-(30) is chosen for the measurement model imple-
mentation for the rest of the paper and will be addressed
as ZA.

FIGURE 3. Monte Carlo mean error of the Euler angles using all four
measurement models with a regular EKF.

B. EKF WITH DIFFERENT MEASUREMENT TYPES
The standard EKF filter with the four type of measure-
ment models ZV, ZVZAR, ZVZARARP and ZVZARZA is
addressed. The objective, is to determine the best measure-
ment model for the FA process using low-cost sensors.

Figure 3 shows the results of the mean MC runs for the
Euler angles. ZV and ZVAR obtained the almost the same
performance for the roll and pitch angles with an error of
0.5deg. As expected, for ZV the yaw error diverges rapidly
since it is not part of the observable subspace (44). Actually,
the yaw angle is not observable for all the measurement
models addressed. However, since ZAR helps to estimate the
gyroscope biases, the divergence of the yaw error is decreased
in all other measurement models.

Both ZVZAPARP and ZVZARZA observable sub-
space (47) shows that the roll and pitch angles become
observable. Between the two, ZVZAPARP obtained a mean
error less than 0.01deg for both pitch and roll. The corre-
sponding STDs of the Euler angles are presented in Figure 4.
As shown in the analytical observable subspaces (44)–(46)
for all measurement models the yaw angle is not observable.
This analytical derivation is supported by the diverging yaw
error STDs of all measurement models. As for the roll and
pitch STDs, ZV and ZVZAR produces the same value while
ZVZARARP has the lowest STD of 0.08deg.

The accelerometer biases error states MC mean and STD
are presented in Figures 5–6. The accelerometer z-axis bias is
observable by the ZV measurements (44) which are present
in all measurement models. Thus, the STD of all models con-
verge at the same time to values less than 0.05mg except for
ZVZARZA that converges to 0.9mg. On the other, the x and
y biases are not directly observable by ZV measurements and
therefore do not converge in the ZV and ZVZAR measure-
ment models. For the ZVZARARP and ZVZARZA models,
those biases are directly observable (46). Comparing the two,
ZVZARARP results in a convergence of the biases STD and
an accurate estimation of the biases, while for ZVZARZA the
STD remains fixed with a value 20mg and a 85% estimation
of the actual bias.
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FIGURE 4. Monte Carlo standard deviation of the Euler angles using all
four measurement models with a regular EKF.

FIGURE 5. Monte Carlo mean error of the accelerometer biases using all
four measurement models with a regular EKF.

FIGURE 6. Monte Carlo standard deviation of the accelerometer biases
using all four measurement models with a regular EKF.

The gyroscope biases error states MC mean and STD are
presented in Figures 7–8. The ZAR measurement makes all
three biases observable while ZV enables only the observabil-
ity of x and y components. This is observed in the behavior
of the STDs. The convergence of all measurement models,
except ZV, is equal in the z direction and the bias is accurately

FIGURE 7. Monte Carlo mean error of the gyroscopes biases using all four
measurement models with a regular EKF.

FIGURE 8. Monte Carlo standard deviation of the gyroscopes biases using
all four measurement models with a regular EKF.

estimated. At the end of the trajectory, the x and y biases are
estimated by all measurement models, however with different
convergence rate. ZVZAR and ZVZARZA converge after
two seconds, ZVZARARP after 16s and ZV after 60s.

Lastly, the OS of ZV (44) and ZVZAR (45) showed a linear
combination of the misalignment errors and accelerometer
biases are observable. This connection was removed in the
OS of ZVZARARP and ZVZARZA models (46) enabling
direct observability of those states. Figure 9 presents those
linear connections for the four measurement models. For
ZV and ZVZAR models, the results are almost the same
since only ZV contributes to the estimation of those states.
There, a convergence to a value of 0.6 is achieved. For the
ZVZARZA, the convergence is to a value more than two
times bigger. This is attributed to the relatively high STDs
obtained for the Euler (Figure 4) and accelerometer bias (6)
states. ZVZARARP obtained the best performance were the
convergence value was reduced to 0.2.

C. ADAPTIVE FILTER COMPARISON
In the previous section, ZVZARARP was found to be the
best measurement model for FA process using a regular EKF.
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FIGURE 9. Monte Carlo standard deviation of the observable linear
combinations using all four measurement models with a regular EKF.

FIGURE 10. Monte Carlo mean error of the Euler angles using ZVZARARP
measurement model with five different adaptive EKFs.

In this section, we examine ZVZARARP with the other
four adaptive filters described in Section III, namely EKF-
Q, EKF-R, EKF-P and EKF-E. For each type of filter many
values for the scaling factors were examined. To produce
the following figures, the scale factor that gave the best
performance in each filter was used. For the EKF-E filter
α = 1.0001, for EKF-R αR = 50, for EKF-Q αQ = 1.00005
and for EKF-P αP = 1.00001.

The Euler angles error states MC mean and STD are pre-
sented in Figures 10–11. In the roll and pitch angles mean
and STD nomajor difference was obtained between the filters
except for EKF-R. There, the STD diverges and the error
fluctuates with higher overshot, yet the mean error over time
is equal between all filters. For the yaw error, the regular EKF
divergence is the fastest one with en error of 0.3deg after 60s
while EKF-Q has the lowest error of 0.04deg.

For the accelerometer biases error states, only the MC
mean is presented in Figure 12 since the STDs are equal. For
ba,z there is no difference between the filters. For ba,x and
ba,y the convergence time of all filters are same although their

FIGURE 11. Monte Carlo standard deviation of the Euler angles using
ZVZARARP measurement model with five different adaptive EKFs.

FIGURE 12. Monte Carlo mean error of the accelerometer biases using
ZVZARARP measurement model with five different adaptive EKFs.

behavior is a function of time is different. At the end of the
scenario EKF-Q improves the regular EKF by 0.1mg.

The gyroscope bias error states MC mean and STD are
presented in Figures 13-14. For the STDs, no difference
was observed in bg,z, however, for bg,x and bg,y EKF-R
convergence time is 2.5 times faster than the other filters.
As a consequence, the mean error has the same behavior.
Also, the EKF-R error at the end of the scenario is lower by
0.5deg/hr than the regular EKF. For the bg,z, the mean MC
error of the EKF-R convergences after 0.4s while the other
filters it takes approximately 2.5s.

D. FIELD EXPERIMENT
To support the simulation results, a field experiment was
conducted using a Samsung Galaxy A7 smartphone. It is
equipped with ST Microelectronics LSM6DSL inertial
module. The accelerometer and gyroscopes readings were
recorded at 100Hz while the smartphone was set stationary
on a table with approximately zero roll and pitch angles.
The recording duration was 70.4s. To estimate the actual bias
experienced by the sensors, the average of the readings was
calculated in each axis and the resulting value was treated as
the zero offset bias (taking into account the gravity value).
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FIGURE 13. Monte Carlo mean error of the gyroscope biases using
ZVZARARP measurement model with five different adaptive
EKFs.

FIGURE 14. Monte Carlo standard deviation of the gyroscope biases
using ZVZARARP measurement model with five different adaptive EKFs.

The standard EKF filter with the four type of measure-
ment models ZV, ZVZAR, ZVZARARP and ZVZARZAwas
examined.

The Euler angles errors are presented in Figure 15. As
observed in the simulation results, the ZV yaw error diverges
rapidly since it is not part of the observable subspace (44).
Actually, the yaw angle is not observable for all the mea-
surement models addressed. However, since ZAR helps to
estimate the gyroscope biases, the divergence of the yaw error
is decreased in all other measurement models. ZVZAPARP
obtained the best performance with roll and pitch mean error
of 0.01deg while ZVZARZA obtined 0.015deg. The estima-
tion of the accelerometer biases is shown in Figure 16 for
the last 20 seconds of the experiment in order to visualize
the difference between the measurement types. The z-axis
accelerometer bias was estimated with all measurement types
as expected from the observability analysis in Section V.
As in the simulation results, ZVZARZA obtained the worst
performance. For the x-axis accelerometer bias, ZVZARARP
managed to estimate 89% of the bias while ZV and ZVZAR
about 80%. In the same manner, ZVZARARP managed to
estimated 81% of the y-axis accelerometer bias while ZV and
ZVZAR about 83%.

Figure 17 presents the estimation of the gyroscopes biases.
The ZAR measurement makes all three biases observable

FIGURE 15. Euler angles error using all four measurement models with a
regular EKF for the smartphone experiment.

FIGURE 16. Accelerometer biases estimation using all four measurement
models with a regular EKF for the smartphone experiment.

FIGURE 17. Gyroscope biases estimation using all four measurement
models with a regular EKF for the smartphone experiment.

while ZV enables only the observability of x and y compo-
nents. The performance of ZVZARZA and ZVZARARP was
superior to that of ZVZAR.

The experiment was repeated two more times to validate
the analysis and similar results were obtained.
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VII. CONCLUSION
The stationary fine alignment process with low-cost gyro-
scopes was addressed. Four types of measurement models are
available in such conditions: zero velocity, zero angular rate,
accelerometer roll and pitch and zero acceleration, where for
the latter two implementations were examined. After exam-
ining the benefits of those measurements, a strategy for com-
bination between them was proposed. Four combinations of
measurement models were suggested, namely: ZV, ZVZAR,
ZVZARARP and ZVZARZA. First, the difference between
the two ZA implementations was highlighted. One of them
assumes small roll and pitch angles and does not depend on
the inertial sensor grade while the other depends on the sensor
grade and not on the initial values of the roll and pitch. From
an observability point of view, there is no difference in their
observable subspaces. Since we consider stationary condi-
tions, in most scenarios (but not in all of them) the actual
roll and pitch angles are indeed small. Thus, we assumed
small angles (zero mean with 3deg STD) and low grade
sensors. A numerical comparison under those conditions
showed that the ZA implementation assuming small error is
preferred.

Next, the four measurement models were plugged in a reg-
ular EKF implementation. The results of all models matches
the derived analytical observability analysis. The numerical
comparison showed that ZVZARARP measurement model
outperformed all other models. It obtained the lowest MC
mean error results in all error-states. A field experiment
conducted using a smartphone, held stationary, validated this
conclusion.

Finally, to further improve the estimation performance four
different adaptive filters, in the Kalman framework, were
applied with the ZVZARARP measurement model. There,
the EKF-R managed to improve the convergence rate of the
gyroscopes biases with a cost of increased fluctuations in the
roll and pitch error. A practical solution for such trade-off is
to run in parallel two EKFs implementations, the regular one
and EKF-R, and take the roll and pitch estimation results from
the regular filter. If due to hardware or software capabilities
this solution is not possible, then, if there is no limit on the
time to complete the fine alignment process the regular EKF
should be used. However, if there exists a time limit of sev-
eral seconds (less than 10) EKF-R should be the implemented
filter.

Although the paper focused on fine alignment applications,
the measurement models as well as the analytical observ-
ability analysis, provided here, can be used also in other
stationary condition scenarios such as land vehicles stopping
at a red light or for any other reason, wheeled robots or other
types of robots at rest and even a shoe-mounted INS for the
periods when the shoe is on the ground.
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