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ABSTRACT Breast cancer (BC) is one of the primary causes of cancer death among women. Early detection
of BC allows patients to receive appropriate treatment, thus increasing the possibility of survival. In this work,
a new deep-learning (DL) model based on the transfer-learning (TL) technique is developed to efficiently
assist in the automatic detection and diagnosis of the BC suspected area based on two techniques namely 80-
20 and cross-validation. DL architectures are modeled to be problem-specific. TL uses the knowledge gained
during solving one problem in another relevant problem. In the proposed model, the features are extracted
from the mammographic image analysis- society (MIAS) dataset using a pre-trained convolutional neural
network (CNN) architecture such as Inception V3, ResNet50, Visual Geometry Group networks (VGG)-19,
VGG-16, and Inception-V2 ResNet. Six evaluation metrics for evaluating the performance of the proposed
model in terms of accuracy, sensitivity, specificity, precision, F-score, and area under the ROC curve (AUC)
has been chosen. Experimental results show that the TL of the VGG16model is powerful for BC diagnosis by
classifying the mammogram breast images with overall accuracy, sensitivity, specificity, precision, F-score,
and AUC of 98.96%, 97.83%, 99.13%, 97.35%, 97.66%, and 0.995, respectively for 80-20 method and
98.87%, 97.27%, 98.2%, 98.84%, 98.04%, and 0.993 for 10-fold cross-validation method.

INDEX TERMS Breast cancer, machine learning, deep-learning, transfer learning, image classification,
convolutional neural networks.

I. INTRODUCTION
Cancer tumor is related to abnormal cell growth, which
invades the surrounding tissues in the human body. There are
two types of tumor: benign and malignant. A benign tumor
consists of non–cancerous cells that grow only locally and do
not spread in the human body. in contrast, a malignant tumor
consists of cancerous cells, which are capable of multiply-
ing uncontrollably, spreading to various parts of the human
body, and invading the tissues. In the USA, approximately
12% of women are expected to be diagnosed with BC over
their lifetime. On average, one woman every two minutes
is diagnosed with BC in the USA [1], [2]. This makes BC
the most common type of cancer in women [3]. BC is a dis-
ease in which breast cells grow uncontrollably. The BC type
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depends on the cells that become cancerous. BC can start in
various parts of the breast. Breast consists of three main parts:
lobes, ducts, and connective tissue. Most BCs start in the
ducts or lobules. Therefore, early BC detection is significant
in increasing patient survival rates. The high morbidity and
considerable cost of healthcare-associated with cancer have
instigated researchers to implement more precise models for
cancer detection. Mammography and biopsy are the twomost
common methodologies for BC detection. In mammography,
radiologist uses a specific type of breast images to detect
early symptoms of cancer in women. Studies have shown that
mammography has led to a reduction in death rates caused
by BC. A biopsy is another efficient diagnostic methodology
for BC detection. Automatic identification and localization of
cancer cells are the main challenges in BC images due to their
variance in size, shape, and location. Other abnormalities,
such as mastitis, adenopathy, and granuloma, may also be
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FIGURE 1. Transfer learning method.

found in breast images [4]. Machine learning (ML) tech-
niques have found its wide applications inmany fields such as
prediction problems in educational field [5]–[9], bankruptcy
prediction [10]–[16], pattern recognition [17]–[28], image
editing [29]–[39], feature reduction [40]–[44], fault diagnosis
[45]–[50], face recognition and micro-expression recognition
[51]–[57], natural language processing [58], [59] and med-
ical diagnosis [60]–[74]. Especially, it has found its great
potential in BC diagnosis. In recent decades, various solu-
tions for automatic cell classification in BC detection have
been suggested by many researchers. In this context, some
researchers have worked on nucleus analysis by extracting
nucleus features that represent useful information in classify-
ing cells into benign or malignant [75]. Similarly, grouping-
based algorithms using the circular Hough-transform and
various statistical features have also been exploited for nuclei
segmentation and classification. However, due to the complex

nature of classic ML techniques, such as preprocessing,
segmentation, feature extraction, and other, the system’s per-
formance degrades in terms of efficiency and accuracy. Tra-
ditional ML challenges can be overcome by the DL method,
which has emerged recently. This method is capable of
achieving outstanding feature representation to solve image-
classification and object-localization tasks. The most popu-
lar of the DL algorithms proposed in the literature are the
CNNs. The CNN architecture is specially modified with the
2D input-image structure [76], [77]. A CNN-training task
requires a large amount of data, which lack in the medi-
cal domain, especially in BC. A solution to this problem
is to use the TL technique from a natural-images dataset,
such as ImageNet, and implement a fine-tuning technique,
as shown in Fig. 1. The TL concept can be exploited to
enhance the performance of individual CNN architectures by
combining their knowledge [78]. The major advantage of TL
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is the enhancement of classification accuracy and the speed-
up of the training process. An appropriate TL method is a
model transfer; first, the network parameters are pre-trained
using the source data, then these parameters are applied in
the target domain, and finally the network parameters are
adjusted for better performance [79]. In this context, a frame-
work for multi-class BC detection and classification based
on TL is proposed and implemented. The proposed model
consists of two main components. The first component con-
sists of six main phases (noise removal, histogram equaliza-
tion, morphological analysis, segmentation, image resizing,
data splitting, and data augmentation), which are applied to
improve the breast images. Then, a pre-trained CNN such as,
the InceptionV3, VGG19, VGG16, ResNet50, and Inception-
V2ResNet, are used to transfer their learned parameters to the
BC-classification task. The major objectives of this work
are the automatic extraction of the affected patch using seg-
mentation, reduction in training time, and improvement in
classification performance.

This paper has the following contributions:
1) Reducing training time by extracting only the affected

regions from breast images.
2) Using noise reduction, histogram equalization, and mor-

phological analysis methods to improve the affected areas
detection.

3) Improving the classification performance by changing
the pre-trained networks classifier.

4) Solving the problem of overfitting.
Other contributions of this paper as follows:

• DL is introduced to help in BC automatic diagnosis.
• Compared between many pre-trained CNN such as
Inception V3, ResNet50, VGG-16, VGG-19, and
Inception-V2 ResNet results.

• Six different measures are used as accuracy, sensitivity,
specificity, precision, AUC, and F-score.

This paper is organized as follows. In Section II, the related
work is discussed, whereas a description of the proposed
model for BC detection and classification using TL tech-
niques is presented in Section III. The experimental results
compared with real data are presented in Section IV. Finally,
the paper is concluded in Section V.

II. RELATED WORK
Ting et al. [80] implemented a deep CNN for BC-lesion clas-
sification. This network consisted of 1 input layer, 28 hidden
layer, and 1 output layer. Overfitting was avoided using the
feature-wise-data augmentation (FWDA) algorithm. Their
proposed method sequentially achieved 89.47%, 90.50%,
and 90.71% for sensitivity, accuracy, and specificity, respec-
tively. Toğçar et al. [81] proposed the BreastNet, which con-
sisted of convolutional, pooling, residual, and dense blocks,
and it was capable of extracting the most effective features
from breast images. BreastNet achieved better results than
AlexNet, VGG-16, and VGG-19 models as its accuracy
approached 98.80%. Abbas [82] presented a multi-layer DL

architecture for classifying benign and malignant regions in
breast images. This network consisted of four phases for
extracting invariant features, which were transformed into
deep-invariant features, and learning features for making
the final decision. In [82], the MIAS dataset was used and
achieved a 92%, 84.2%, 91.5%, and 0.91 for sensitivity,
specificity, accuracy, and AUC, respectively. Using the same
dataset, Sha et al. [83] presented a method for automatic
detection and classification of the cancerous region in breast
images. Their proposed method was based on CNNs and the
grasshopper optimization algorithm. The results showed that
this proposed method was capable of achieving 96%, 93%,
and 92% for sensitivity, specificity, and accuracy, respec-
tively. Charan et al. [84] trained a CNN for BC detection.
Their proposed CNN consisted of six convolution layers,
four average-pooling layers, and three fully-connected lay-
ers (FCLs). They used a size of 224 × 224 for the input
image and the Softmax (SM) function to apply the classi-
fication results. The overall accuracy of this network was
65%, which was obtained using the MIAS database. In [85],
Wahab et al. exploited a pre-trained CNN and transferred its
learned parameters to another CNN formitoses classification.
Their proposed method achieved 0.50, 0.80, and 0.621 for
precision, recall, and F-measure, respectively. In addition,
for multi-class BC-classification purposes, Lotter et al. [75]
proposed a model in which the features were extracted using
a pre-trained ResNet50 network. Their model was capable
of classifying lesions into five classes: mass, calcifications,
focal asymmetry, architectural distortion, or no lesion. Their
model achieved 96.2, 90.9, and 0.94 for sensitivity, speci-
ficity, and AUC, respectively. Jiang et al. [86] achieved
better BC-classification accuracy in the case of TL from a
pre-trained network in building networks from scratch. The
accuracy approached 0.88 using GoogleNet and 0.83 using
AlexNet on the film mammography number 3 (BCDR-F03)
dataset. Khan et al. [87] implemented a model in which the
breast-image features were extracted using pre-trained CNN
architectures, namely, GoogleNet, VGGNet, and ResNet. The
model’s accuracy, which approached 97.525%, was evaluated
using a standard benchmark dataset. Cao et al. [88] improved
the performance of TL for BC-classification without any
fine-tuning on the source network layers (ResNet-125).
Instead, they used random forest dissimilarity for com-
bining various feature groups. The ‘‘ICIAR 2018’’ dataset
was used, and the classification accuracy was improved to
82.90%. Deniz et al. [89] fine-tuned the last three layers in
the AlexNet and VGG16 models to classify breast tumors on
the BreaKHis dataset. Their model achieved better accuracy
than five other methods as it approached 91.37%. In the
same dataset, Celik et al. [90] pre-trained the DenseNet-
161 model and achieved 92.38% and 91.57% for the F-score
and accuracy, respectively.

III. MATERIALS AND METHODS
The proposed method for BC detection and classification
consists of two main components. The first component is
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FIGURE 2. Data pre-processing.

FIGURE 3. Transferring CNN parameters.

used for data preprocessing and the second for transferring
the CNN parameters, as shown in Figs. 2 and 3.

A. DATA PREPROCESSING
Image preprocessing is very important to remove the limits
of observing abnormalities without undue influence from a
mammogram. In this work, the tumor regions are automat-
ically extracted using segmentation techniques before the
learning process to reduce computation time. Image quality
can be improved and the segmentation results can become
more accurate using noise removal, histogram equalization,
and morphological analysis before segmentation. As shown
in Fig. 2, data preprocessing consists of seven phases.

1) NOISE REMOVAL
A 2D median filter of a 3 × 3 size is applied to remove the
digitization noise from the mammogram image.

2) HISTOGRAM EQUALIZATION
Classical histogram equalization is applied to improve the
contrast for all levels of the original image. This is accom-
plished by effectively distributing the most frequent gray
level of the image that is, stretching the intensity range of
the image. In mammogram images, histogram equalization is
applied to make contrast adjustment so that image anomalies
become more visible.

3) MORPHOLOGICAL ANALYSIS
The morphological analysis is an important process for
removing non-breast regions before segmentation so that
the results are not affected. In morphological operations,
the relevant structures are extracted from the input image
after applying the structuring element (SE). The output image
of this operation has the size of the input. The value of
each pixel depends on the corresponding pixel in the input
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FIGURE 4. Mathematical morphological operation.

and its neighbors. The operations described in Fig. 4 can be
estimated as follows [91]:

• Image Opening (IO)

IO = Inp	 SE⊕ SE (1)

• Image Closing (IC)

IC = Inp⊕ SE	 SE (2)

• White Top-hat (WTH)

WTH = Inp− IO (3)

• Black Top-hat (BTH)

BTH = IC− Inp (4)

• Mathematical Morphological (MM)

MM = Inp+WTH− BTH (5)

where ⊕ and 	 refer to the dilation and erosion operations,
respectively.

4) SEGMENTATION
The computation time can be reduced, and the analysis can
be focused on the region mostly affected by cancer using

71198 VOLUME 9, 2021



A. Saber et al.: Novel DL Model for Automatic Detection and Classification of BC

a threshold-based segmentation method for automatic patch
extraction [92].

5) IMAGE RESIZING
The breast images are resized and converted into three chan-
nels: red green, and blue (RGB) to match the input size of the
pretrained CNN architecture.

6) DATA SPLITTING
The MIAS dataset is split into ‘‘80%’’ for the training set and
‘‘20%’’ for the testing set [93]–[95].

In addition, to overcome the problem of over-fitting,
the experiments have been re-performed using a cross-
validation technique with 10-folds. The cross-validation idea
is the partitioning of the dataset to k folds with equal size.
After that, k-1 folds will be used to train the classifier and
the remaining fold will be used to test data to predict each
sample label. The final result is the average of different data
rounds [96].

7) DATA AUGMENTATION ALGORITHM (DDA)
DL models work better when large datasets are used. Data
augmentation is considered one of the most popular meth-
ods to increase the size of the dataset, which helps over-
come overfitting when training a very small amount of data.
In this work, the training data can be augmented using a
set of transformations. DAA is implemented to increase the
input data. First, the segmented images are rotated clockwise
to 90◦, 180◦, 270◦, and 360◦. Then, every rotated image is
flipped vertically. In this way, an input image will produce
eight images. The detailed algorithm for data augmentation
is shown in Alg. 1.

Algorithm 1 Data Augmentation Algorithm (DDA)
Input:
Benign B, Malignant M, Normal N segmented mammo-
gram image.

Processing:
Step1: ∀ B, rotate to 0◦, 90◦, 180◦, 270◦

Step2: Perform flip on all step1.
Step3: ∀M, rotate to 0◦, 90◦, 180◦, 270◦

Step4: Perform flip on all step3
Step5: ∀ N, rotate to 0◦, 90◦, 180◦, 270◦

Step6: Perform flip on all step5
Repeat for all training data

Output:
Save steps1,2,3,4,5,6

B. DEEP-CNN TRAINING BASED ON TL
In this work, the Inception V3, ResNet50, VGG19, VGG16,
and Inception-V2 ResNet networks are used for feature
extraction. These networks are trained using the ImageNet

TABLE 1. Parameter settings.

dataset. The filters in the network layers are used to recognize
the input features such as colors, vertical, and horizontal
lines. Subsequently, trivial shapes and small parts can be
recognized. From the generated output, the class in which
the input image belongs (i.e. cats, birds, and other) can be
determined. Next, the pre-trained network for classifying
different objects in a new dataset is applied (in this work
for BC-classification to perform TL). The trained parameters
from the source task, except for the last three (FCL, SM, and
classification) layers are frozen and transferred to the target
task, as shown in Fig. 3. Then, the extracted patches from the
segmentation process during preprocessing are used to con-
tinue the network training. Hence, the newly-trained dense
layers are few. Furthermore, the already-trained layers in the
pre-trained network are combined with these layers for a new
class classification. Thus, the training process can be created
very quickly and very few training data are needed compared
with the CNN training from scratch. The extracted features
are then used to train support vector machine (SVM) and SM
classifiers for applying classification task. Fine-tuning is con-
ducted using the stochastic gradient-descent (SGD) method
with momentum (SGDM), which is actually an improved ver-
sion of SGD with the learning parameters shown in Table 1.
SGDM’ goal is to increase velocity in all dimensions, even
in those with consistent gradient. Due to SGDM jittering,
gradient high-velocity dimensions are reduced, whereas past
gradients that have some momentum are reduced due to
a saddle point when the current gradient is approximately
zero [97], [98]. Here, the same hyperparameter setting is
used in all experiments (before & after preprocessing). The
ResNet50 network was proposed by the Microsoft research
team [99], where 50 represented the number of deep layers.
It contains 48-convolution, 1 average-pooling, and 1 max-
pooling layer with a 224×224-input size. The residual block
is a concatenation for three convolution layers. The overall
architecture is shown in Fig. 5. The Inception-V2 ResNet
network contains 148 deep layers, and it is capable of clas-
sifying 1000 classes. This network was developed by the
Google research team. The network has an input-image size
of 244 × 244, as shown in Fig. 5. A detailed description
of the Inception-V2 ResNet, stem, and reduction blocks was
discussed in [100]. The Inception V3 is a CNN developed
by the Google research team. It contains 48 layers with an
input-image size of 299 × 299. The Inception V3 network
is trained using the ImageNet database, which contains one
million training images in 1,000 categories. The Inception
V3 has a decreased set of parameters due to factoring larger
convolution layers into smaller ones and using different other

VOLUME 9, 2021 71199



A. Saber et al.: Novel DL Model for Automatic Detection and Classification of BC

FIGURE 5. The ResNet50 and Inception V2-ResNet architectures.

means. A set of changes to the basic structure of the Inception
V3 leads to a faster and more accurate architecture, which
also works for smaller datasets as discussed in [101]. The
RMSProp Optimizer is added to the Inception V3 network
in addition to factorized 7 × 7 convolutions. The basic

architecture of the Inception V3 network is presented
in Fig. 6. The VGG19 is a CNN developed by the
Visual Geometry Group at Oxford’s and thus, the name
VGG. The VGG19 is a variant of VGG models trained
over the ImageNet database and contains 19 deep layers

71200 VOLUME 9, 2021



A. Saber et al.: Novel DL Model for Automatic Detection and Classification of BC

FIGURE 6. The Inception V3, VGG16, and VGG19 architectures.

(16 convolution and 3 max-pooling layers) with an input-
image size of 244×244. The kernel size used in the VGG19 is
3 × 3 with 1 stride size, whereas max-pooling is performed
in a 2 × 2-pixel window with a stride size equal to 2. There
are different variants of the VGG such as VGG16 and others.
The major disadvantage of this CNN is its large size in terms
of the number of parameters to be trained. The VGG19 CNN
is bigger than the VGG16. However, since the VGG19 per-
forms almost as well as the VGG16, many people use the
VGG16 [102]. The basic VGG19 architecture is presented
in Fig. 6. The VGG16 is trained over the ImageNet database.

Its architecture is deep and very simple. As shown in Fig. 6,
it consists of 13 convolution layers and 5 max-pooling layers,
followed by three FCLs and an SM classifier. The input is a
224 × 244-RGB image. The applied filters are 3 × 3 with a
stride equal 1, whereas max-pooling is a 2× 2-pixel window
with a stride equal to 2 [102].

IV. RESULTS
A. DATASET DESCRIPTION
As shown in Fig. 7, the digital database for screening mam-
mography (DDSM), MIAS, and private datasets are the most
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FIGURE 7. Dataset frequency usage for breast-tumor classification.

FIGURE 8. Tumor description in the mammogram images.

popular databases used for BC-classification models based
on the statistics discussed on [103]. In this work, the applied
mammogram database was provided by MIAS. Every image
has a 1024× 1024 size in portable gray map (PGM) format.
TheMIAS includes 322 images in three classes, 61 images for
the benign case, 52 images for themalignant case, and 209 for
the normal case. Data details are shown in Table 2. It provides
details for ground-truth information on the mammogram
images such as background tissue, abnormality present class,
tumor type, abnormality center coordinates, and approximate
radius for enclosing the abnormality circle. The abnormal-
ity class is presented by six forms; calcification (CALC),
well-defined circumscribed masses (CIRC), spiculated

masses (SPIC), other ill-defined masses (MISC), architec-
tural distortion (ARCH), and asymmetry. A tumor region in
the mammogram images is presented in Fig. 8.

B. EXPERIMENTAL ANALYSIS
In this section, several experiments conducted for investigat-
ing the performance of the proposed model on the MIAS
dataset are presented. Here, TL is applied to five DL models
(Inception V3, Inception-V2 ResNet, VGG16, VGG19, and
ResNet50) and compared in terms of accuracy, precision,
sensitivity, specificity, and AUC. The dataset was divided
into three classes ‘‘Benign, Malignant, and Normal.’’ Then,
it was split to 80% and 20% for the training and testing tasks,
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FIGURE 9. MIAS data preprocessing results.

TABLE 2. MIAS data description.

respectively. The efficiency of the proposed models was mea-
sured using the evaluation metrics for three classes, as shown
in Table 3 and Eqs. 6–10. The benefits of preprocessing were
investigated by conducting experiments twice, before and
after preprocessing. The classifier performance results with-
out preprocessing are presented in Table 4. It can be observed
that the Inception-V2 ResNet achieves the best performance
results in terms of accuracy, whereas the Inception V3 was
ranked the second-best in terms of accuracy. On the other
hand, the VGG16 achieves the best results in terms of sensi-
tivity and specificity with 55.76% and 69.68%, respectively.

Also, the ResNet50 achieves better results in terms of preci-
sion, AUC, and the F-score with values of 34.84%, 0.55, and
34.00%. The first component of the proposed model for pre-
processing phase results is described in Fig. 9. The training
data to be used as a training input for the proposed CNN are
then augmented using DAA, as shown in Fig. 10. The results
presented in Table 5 confirm that the VGG16 achieves the
best results in the case of TL in the BC detection mechanism
with SM classifier.

Sensitivity =
TP

TP+ FN
(7)

Precision =
TP

TP+ FP
(8)

Specificity =
TN

TN + FP
(9)

F - score =
2 ∗ Percision * Sensitivity
Percision+ Sensitivity

(10)

The detailed results per class are presented in Table 6. From
this table, it can be observed that: 1) In the benign case,
the VGG16 was ranked first in terms of accuracy, sensitiv-
ity, AUC, and the F-score, whereas the VGG19 was ranked
first in terms of specificity and precision. 2) In the malig-
nant case, the ResNet50 achieved the best accuracy, speci-
ficity, precision, and the F-score. In the last case (Normal),

Accuracy =
PBB + PMM + PNN

PBB + PMB + PNB + PBM + PMM + PNM + PBN + PMN + PNN
(6)
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TABLE 3. Evaluation metrics for BC-classification.

TABLE 4. BC-classification performance of various CNNs before preprocessing.

TABLE 5. BC-classification performance of various CNNs after preprocessing using 80:20 and SM classifier.

TABLE 6. BC-classification performance of various CNNs per class using 80:20 and SM classifier.

TABLE 7. BC-classification performance of various CNNs after preprocessing using 10-fold cross-validation and SM classifier.

TABLE 8. BC-classification performance of various CNNs after preprocessing using 80:20 and SVM classifier.
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TABLE 9. BC-classification performance of various CNNs per class using 80:20 and SVM classifier.

TABLE 10. BC-classification performance of various CNNs after preprocessing using 10-fold cross-validation and SVM classifier.

TABLE 11. Comparison between the proposed model and existing models.

FIGURE 10. Results obtained using the data augmentation algorithm.

the VGG16 was ranked first in terms of accuracy, specificity,
precision, and AUC, whereas the Inception V3 was ranked
first in sensitivity.

The results of 10-fold cross-validation are shown
in Table 7. It can be noted that the cross-validation method
achieved better results than the 80-20 technique in all CNNs
except VGG16. The results obtained from the SVM classifier
achieved better than the results obtained from the SM classi-
fier as presented in details in Tables 8 - 10. The experiments
performed are presented in Table 11, where the performance
is compared with four other existing models. The analysis
results confirm that the proposed model performs better
than other existing models in terms of accuracy, sensitivity,
specificity, and AUC.

V. CONCLUSION
In this paper, a novel deep learning model for improving the
classification results on the MIAS dataset was proposed. The
purpose of this model is to help medical doctors in BC detec-
tion and diagnosis. The MIAS images were divided into three
different classes, benign, malignant, and normal. The original
MIAS dataset was pre-processed for noise removal, improv-
ing contrast in breast images, non-breast region removal,
and determining the cancerous area. The data augmenta-
tion concept was also proposed for increasing the size of a
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dataset to enhance the performance of the CNN structure.
Then, the freezing and fine-tuning strategies were used to
improve the mass-lesion classification accuracy of the men-
tioned dataset. TheVGG16model achieved the best accuracy,
sensitivity, specificity, AUC, and the F-score compared with
four othermodels. Finally, it can be concluded that integrating
the CNN using learning transfer in the screening mechanism,
a clear improvement can be achieved compared with other
existing approaches. The results showed 98.96% accuracy,
97.83% sensitivity, 99.13% specificity, 97.35% precision,
97.66% F-score, and 0.995 AUC. These results are better than
the other mentioned methods.

In future work, the proposed method can be fur-
ther used to diagnosis or prognosis of paraquat-poisoned
patients [104]–[109], identification of poisoning status
[110]–[112], diagnosis of tuberculous pleural effusion [113],
differentiation of malignant and benign thyroid nodules
[114], early diagnosis of Parkinson’s disease [115]–[119],
RNA secondary structure prediction [120], detection of
erythemato-squamous diseases [121], online recognition of
foreign fibers in cotton [122].
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