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ABSTRACT Convolutional neural network (CNN)-based deep learning techniques have enjoyed many
successful applications in the field of medical imaging. However, the complicated between-manifold projec-
tion from the projection domain to the spatial domain hinders the direct application of CNN techniques in
computed tomography (CT) reconstruction. In this work, we proposed a novel CT reconstruction framework
based on a CNN, i.e., an intelligent back-projection network (iBP-Net). The proposed iBP-Net method
fused a pre-CNN, a back-projection layer, and a post-CNN into an end-to-end network. The pre-CNN
adopted CNN techniques to model a filtering operation in the projection domain. In the back-projection
layer, a back-projection operation was employed to perform between-manifold projection. Based on CNN
techniques, the post-CNN worked together with the pre-CNN to recover reconstructed images from the
outputs of the back-projection layer in the spatial domain while maintaining high visual sensitivity. The
experimental results demonstrate the feasibility of the proposed iBP-Net framework for CT reconstruction.

INDEX TERMS Convolutional neural network, deep learning, between-manifold projection,
CT reconstruction.

I. INTRODUCTION
X-ray computed tomography (CT) is one of the most valuable
and widely used imaging techniques in clinical, industrial,
and other applications [1]. The main problem in tomography
is the process of reconstructing unknown images from their
projections. In the past 30 years, with the wide application
of tomography techniques in many fields, researchers have
dedicated major efforts to the development of CT image
reconstruction methods. Because CT image reconstruction
is a typical example of an ill-posed inverse problem, it is
difficult to find accurate reconstructions in practice. Current
solutions for improving the quality of reconstructions can
be roughly divided into three categories: analytical methods,
iterative reconstruction (IR) methods and artificial neural
network methods.

An analytical method is a direct reconstruction method
based on the central slice theorem, which provides the
relationship between the Radon transform of an object
and its two-dimensional Fourier transform. The filtered
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back-projection (FBP) algorithm [2] is a classical analytical
method and is the most widely used reconstruction method in
actual clinical applications. The FBP algorithm is capable of
computing accurate reconstructions with high computational
efficiency. However, its limitations are also very obvious. The
quality of the reconstructed images degrades significantly
when only a small number of projections can be acquired or
when the obtained projection data are heavily polluted [3].

Compared with analytical methods, IR methods can con-
sider the statistical characteristics of both the obtained pro-
jection data and the corresponding reconstructed images.
The IR methods dramatically improve CT reconstruc-
tion results by incorporating some elaborate prior knowl-
edge/regularizations, such as total variation (TV) [4], [5],
nonlocal patches [6], dictionary learning [7], and sparsify-
ing transform learning [8], [9]. The existing regularizations
indeed guide IR algorithms to yield better reconstruction
results. Nevertheless, to obtain promising reconstructions, the
corresponding hyperparameters of the IR methods need to be
tuned carefully. More importantly, the wide application of
IR methods is greatly hindered by the computational loads
of the projection and back-projection operations during each
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iteration. Though the reconstruction time can be greatly
reduced by parallelizing the computations [10], [11], the IR
methods still take longer to reconstruct large volumes than
the FBP algorithm.

Recently, artificial neural network methods have achieved
tremendous success in the fields of computer vision [12]
and natural language processing [13], especially those that
incorporate deep learning (DL) approaches. DL techniques
can efficiently exploit high-level features from the pixel level
of an image through a hierarchicalmultilayer framework [14].
Lately, convolutional neural networks (CNNs) have become
the most popular DL frameworks. The fast development
of CNN techniques has accelerated many successful appli-
cations in the field of medical imaging. Inspired by these
successful applications [15], several network architectures
have also been proposed for CT reconstruction, leading to
promising experimental results.

The direct application of CNN-based DL techniques in
CT reconstruction is greatly hindered by the complicated
between-manifold projections from the sensor to the spatial
domain. To address this problem, the stacked fully connected
layer technique can be adopted to perform a domain trans-
form from the feature space of the extracted data to image
space [16], [17]. CNNs are utilized only to process the pro-
jection data or improve the reconstructed images. However,
the application of the stacked fully connected layers in net-
work architectures dramatically increases the number of uti-
lized parameters, which results in a substantial computational
cost for neural network training.

To avoid the application of stacked fully connected layers
for between-manifold projections, researchers have tried to
apply DL to the reconstruction problem by unrolling an itera-
tive algorithm to a fixed N-step iterative algorithm. On the
one hand, some regularizations in the objective functions
of IR algorithms can be directly replaced by neural net-
works [18], [19]. On the other hand, an objective function
can be divided into several subobjective functions according
to operator splitting methods. The solutions of these subob-
jective functions are equivalent to those of the corresponding
objective functions. Some of these subobjective functions can
be solved with neural networks [20]-[23]. Such unrolling
methods avoid the adoption of stacked fully connected layers
in the network architectures and reduce the number of param-
eters used by these architectures. However, the complexity
of such an algorithm is still much higher than that of an
analytical method.

Different from the two kinds of DL methods above, a
back-projection operation is applied to perform between-
manifold projection in neural networks. Obtained by filter-
ing the projection data with a special filter, the solution of
back-projection is comparable to that of a certain IR algo-
rithm. This special filter can be derived from a reformula-
tion of an IR algorithm [24] or acquired by calculating the
filter matrix with an IR algorithm [25]. Würfl et al. [26]
attempted to learn the projection-domain weights of the FBP

algorithm with a fully connected layer, and this algorithm
can effectively balance the tradeoff between reconstruction
performance and speed. He et al. [27] utilized two fully
connected layers to model the filter of the FBP algorithm and
further improved the overall algorithmic performance with
a common network architecture. Because there are no ideal
filtered sinograms, special filters cannot be directly learned
through a common neural network. In the two abovemethods,
via combination with a back-projection layer, the special
filters of the FBP algorithm are obtained from big data with
DL approaches. These two methods avoid the application
of a fully connected layer in the between-manifold projec-
tion [16], [17]. However, the fully connected layer is also
involved in the neural network to filter projection data, sig-
nificantly increasing the difficulty of neural network training.
Yin et al. [28] and Wang et al. [29] proposed the similar
network architectures. These two neural networks are not
end-to-end networks. Their special filters are learned from
the ‘‘ideal filtered sinograms’’, which are the full-dose pro-
jections, or are generated from tomography images with a
Radon transform. Thus, the latter two algorithms cannot yield
optimal filters, thereby limiting the overall performance of
CT reconstruction.

In this study, in order to reduce the difficulty of neural net-
work training and build an end-to-end network, we proposed
an intelligent back-projection network (iBP-Net) to recon-
struct CT images. The proposed iBP-Net consists of three
components, i.e., a pre-CNN, a back-projection layer, and a
post-CNN. In the pre-CNN, a CNN was directly employed to
filter the obtained projection data in the projection domain.
The back-projection layer was utilized to perform a domain
transform from the projection space to the image space. In the
post-CNN, a CNN was applied to recover the desired images
from the outputs of the back-projection layer. Our main con-
tributions in this paper are summarized as follows:

1) Two CNNs were applied to build the proposed iBP-Net
method for CT reconstruction. The proposed method avoids
incorporating fully connected layers, thereby lightening the
workload of neural network training.

2) A new neural network architecture was proposed for
CT reconstruction. A pre-CNN and post-CNN work together
to generate feasible reconstruction images. The post-CNN is
more than a denoiser; it further improves the outputs of the
back-projection layer. More importantly, the post-CNN was
adopted to extract detailed information from the outputs of
the back-projection layer, contributing to the reconstruction
of feasible images.

3) The proposed iBP-Net model is an end-to-end network.
All parameters in the iBP-Net model are directly learned from
the big data. Given its excellent end-to-end learning capabil-
ities, the proposed iBP-Net method can achieve promising
performance in CT reconstruction.

Clinical patient data were used to evaluate the performance
of iBP-Net. The experimental results demonstrate that iBP-
Net possesses a promising reconstruction ability.
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II. METHODS AND MATERIALS
A. DATA-DEPENDENT FBP METHOD
The present study employed a fan-beam geometry in a 2D CT
scanning setting. The projection data y were acquired only
for a finite set of Nθ projections and Nd detector elements,
and the scanned object x was represented by a pixel grid of
N × N pixels. Typically, the CT reconstruction problem can
be formulated as solving a linear system:

Ax = y, (1)

where A is the system matrix of NθNd × NN elements cor-
responding to a specific configuration of the CT system. The
purpose of CT reconstruction is to recover the unknown x
from the system matrix A and the projection data y. Math-
ematically, aij, the element of A, stands for the intersection
of the i-th X-ray path with the j-th pixel. In this context,
the product of the system matrix A with an image x is called
a forward projection, and the product of the back-projection
matrix AT with the projection data y is called a backward
projection. Since the system matrix can be extremely large
for typical problem sizes in practice, the matrix is usually not
computed explicitly. Instead, each multiplication of a vector
with A or AT is computed on the fly [1].

The CT reconstruction problem in (1) can be analytically
inverted with FBP. The FBP method starts by filtering the
projection data ywith a filter h. Afterwards, the filtered results
are back projected to obtain the reconstructed image. The
operation of the FBP algorithm can be modeled as a linear
operator applied to the projection data y, and this can be
written as:

x = FBP(y) = ATFhy, (2)

where Fhy is the convolution of y by h, i.e., the filtering of the
projection data y can also be modeled as a linear operation
with the matrix Fh. The FBP method is the most widely used
approach because it is computationally efficient. However,
the images reconstructed with FBP suffer greatly from image
artifacts and significantly degraded image quality when the
number of projections is small compared to the size of the
image or when noise is present in the projection data [25].

An IR method is a different type of approach for solving
the CT reconstruction problem in (1). Based on iteratively
solving the discrete linear system in (1), a popular class
of IR algorithms tries to find images that minimize a data
fidelity term and the suitable regularizers R(x). The data
fidelity term represents the difference between the acquired
data and simulated projections of the reconstructed images,
and the regularizers penalize images that do not fit the chosen
prior knowledge about the scanned object. In this setting,
the inverse problem is formally expressed as:

x∗ = argmin
x
‖y− Ax‖22 + λR(x), (3)

where λ controls the relative weighting between the data
fidelity term and the prior knowledge penalty. A popular
choice for determining R(x) is TV minimization [4]. As they

are capable of easily accommodating imaging physics and
prior knowledge, IR algorithms can retrieve feasible images
and outperform the FBP method. However, the main disad-
vantage of IR algorithms is their high computational costs,
which hinder their extensive use in practice.

To balance the tradeoff between promising reconstruction
performance and high reconstruction speed, major efforts
have been dedicated to incorporating the advantages of both
analytical methods and IR methods [24], [25]. For a given set
of projection data y and a filter h, the reconstructed image x
can be acquired by the FBP method in (2). By exchanging the
positions of y and h, (2) can be rewritten as:

x = ATFyh, (4)

where the matrix Fy is made up of the projected data y.
Substituting (4) into (3) gives:

h∗ = argmin
x

∥∥∥y− AATFyh∥∥∥2
2
+ λR(ATFyh). (5)

After this substitution, the minimization problem in (3) turns
into a problem of solving the optimal filter in (5). For a
given system matrix A and projection data y, there is a linear
relationship between the reconstructed images x and the filter
h in (4). Thus, in theory, the minimization problem of solving
the reconstruction images x in (3) is equivalent to the mini-
mization problem of solving the filter h in (5). After filtering
the projection data with the solved filter h∗ in (5), the recon-
structed image x is directly acquired by a back-projection
operation. As a result, the reconstruction performance of such
an FBP algorithm is similar to that of an IR model, while the
corresponding reconstruction speed is much faster. However,
although the time required to compute the filter h∗ in (5) is
close to that of a full iterative reconstruction process, the filter
h∗ can be precomputed and reused on problems with identical
experimental setups.

B. OVERALL NETWORK ARCHITECTURE
As discussed above, after processing the projection data with
a specific filter, the solution of the FBPmethod is comparable
to those of IR methods. However, the wide applications of
the data-dependent FBP method are severely hindered by
the use of precomputed filters for all experimental setups.
In this work, to cope with this problem, the iBP-Net method
was proposed to obtain the optimal filter for a given prob-
lem by using a CNN. By taking the advantages of big
data-driven approaches, the learned filter is suitable for gen-
eral CT reconstruction setups. The overall architecture of
the proposed iBP-Net is shown in Fig. 1(a). The proposed
iBP-Net architecture consists of three components: a pre-
CNN, a back-projection layer, and a post-CNN. In the pro-
posed iBP-Net, the input includes the projection data, and
the output is the reconstructed image. The projection data
are filtered in the pre-CNN, as shown in Fig. 1(b). Using the
back-projection layer, the projection domain is connected to
the image domain. To generate realistic results, the post-CNN
extracts the subtle structural features from the outputs of
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FIGURE 1. Network architecture of iBP-Net. (a) Overall architecture of iBP-Net, (b) the pre-CNN architecture, and (c) the
post-CNN architecture.

the back-projection layer, as shown in Fig. 1(c). With the
back-projection layer, the loss of the iBP-Net can be easily
back propagated to update the weights in the pre-CNN. Thus,
iBP-Net is an end-to-end neural network. All parameters
in iBP-Net are directly determined by the neural network
training process with the big data.

C. PRE-CNN ARCHITECTURE
In the FBP algorithm, a high-pass filter, such as the Ramp
filter, is usually adopted to process the acquired projection
data. The value of an element in a filtered dataset is calculated
by all projection data in the corresponding view. Tomodel this
high-pass filter, the fully connected technique is employed for
the filtering operation [26], [27] because connections exist
from all inputs to each output. Adopting a fully connected
structure dramatically increases the difficulty of neural net-
work training. In the X-ray imaging process, an X-ray passes
through the phantom and deposits its energy both in the
human body and on the detector.Most of the energy deposited
on the detector is deposited in the detector bins around the
intersection point between the X-ray and the detector due
to X-ray scattering. Therefore, in a filtering operation, it is
unnecessary to connect all inputs to one output. In this work,
a CNN-based network with a large receptive field was applied
to model the filtering operation in the projection domain.
For a large receptive field, an X-ray can be connected by
the neural network to all detector bins in which this X-ray
deposits energy. Theoretically, the CNN technique is capable
of filtering projection data effectively. Moreover, a neural

network based on a CNN architecture is much easier to train
than one based on fully connected layers [14].

As the network depth increases, the complexity of the
neural network is increased and the problem of vanishing
gradients is increasingly likely to occur during neural network
training, leading to the loss of network feature extraction
ability. To address these problems, a pre-CNN based on
U-Net [30] was proposed to learn the optimal filter for a
given projection domain. One of the most important char-
acteristics of U-Net is its exponentially large receptive field.
As observed in Fig. 1(b), the pre-CNN architecture consists of
an encoder subnetwork (left half) and a decoder subnetwork
(right half), which are connected by a bridge section. The
encoder and decoder subnetworks in the U-Net architecture
consists of multiple stages. In our work, we set the number
of stages, i.e., the number of encoder and decoder subnet-
works used in U-Net, to 4. Specifically, each stage contained
4 sequential layers composed of convolutions with 1 × 3
kernels, batch normalization (BN), and (rectified linear unit)
ReLU layers. After each stage of the encoder subnetwork,
there is a max pooling operation (‘‘Max pooling’’) with a
1× 2 window and 1× 2 stride, which mainly realizes feature
downsampling and increases the size of the receptive field.
The number of channels is doubled after each pooling layer.
After each stage of the decoder subnetwork, there is an upcon-
volution operation (‘‘Up pooling’’) with a 1× 2 window and
1 × 2 stride. The upconvolution operation is mainly utilized
to double the size of each feature map. To learn more features
across different layers and effectively deal with the gradient
vanishing problem in deeper network training, U-Net [30]
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adopts skip connections [31] in some of its symmetric layers
rather than in adjacent layers, as shown in Fig. 1(b).

D. BACK-PROJECTION LAYER
In (2), the reconstructed image x can be directly acquired by
the multiplication of the filtered projection data y and the
back-projection matrix AT. Theoretically, AT can be easily
mapped to a neural network with the fully connected tech-
nique. However, for modest CT reconstruction problem sizes,
an extremely massive number of parameters is involved in the
fully connected layer, and the parameter size easily reaches
several terabytes, making it infeasible to implement and train
such a model [26], [27]. In our work, to address this problem,
we computed AT and A on the fly and constructed a new
back-projection layer without adjustable parameters. In terms
of a neural network, the forward pass operation of such a layer
can be expressed as:

xl+1 = ATxl, (6)

where the vector xl+1 is the output of this layer in the image
domain, while the input xl is the output of the pre-CNN in the
projection domain. To make the system capable of updating
the parameters of the pre-CNN during neural network train-
ing, the error el from the post-CNN passes backward to the
pre-CNN by back propagation:

el−1− = Ael, (7)

where el−1 denotes the error back propagated to the pre-
CNN. To enhance the performance of iBP-Net, AT and A are
computed with the unmatched projectors [32]. In this work,
the forward projector was implemented in a ray-driven and
back-projector pixel-driven manner.

E. POST-CNN ARCHITECTURE
As displayed in Fig. 1(c), the post-CNN, a neural net-
work structure, was added after the back-projection layer
to recover the reconstructed images from the outputs of the
back-projection layer. Compared to that of the pre-CNN,
a similar U-Net architecture was applied to the post-CNN
in this work. As observed in Fig. 1(c), the post-CNN archi-
tecture consists of an encoder subnetwork (left half) and a
decoder subnetwork (right half). The number of stages in the
encoder and decoder subnetworks was set to 4. Each stage
contained 4 sequential layers composed of convolutions with
3×3 kernels, BN, and ReLU layers. The convolution kernels
were applied to obtain the features from the acquired feature
maps. After each stage of the encoder subnetwork, there is
a max pooling operation (‘‘Max pooling’’) with a 2 × 2
window and 2 × 2 stride. After each stage of the decoder
subnetwork, there is an upconvolution operation (‘‘Up pool-
ing’’) with a 2 × 2 window and 2 × 2 stride. In the selected
U-Net, a skip connection (in Fig. 1(c)) was also employed
to alleviate the vanishing gradient problem and improve the
optimal convergence speed of the system. The input image
of the post-CNN is the output of the back-projection layer,

and the output image is the reconstructed image. Both the
input and output images are in the image domain. Because
of the high sensitivity of the network to features with dif-
ferent scales, the post-CNN is capable of capturing subtle
structural features from the outputs of the back-projection
layer. By cooperating with the pre-CNN, the post-CNN can
generate feasible reconstructed images while maintaining
high visual sensitivity. Due to its strong feature extraction
performance, the post-CNN also contributes to shortening the
computational time required to find the optimal hyperparam-
eters for neural network training.

III. EXPERIMENTS
A. DATA
In this section, CT data provided by the AAPM Low Dose
CT Grand Challenge [33] were used for evaluation purposes.
The provided CT data included both raw projection data and
reconstructed images from 20 different patients who were
scanned from the chest under a normal dose of radiation. The
raw projection data cannot be utilized directly for fan-beam
CT reconstruction because it was acquired using a helix
trajectory. In this work, the projection data were obtained by a
forward projection of the provided reference volumes, which
were reconstructed from the full-dose projections. We per-
formed forward projections for 360, 180 and 90 degree views.
In these three different scanning modes, the corresponding
angular increments between every projection were 1◦, 2◦ and
4◦, respectively. The linear detector had 768 bins, and the
space between two adjacent bins was 1 mm. The dimen-
sionality of the reconstructed image was 512 × 512, and the
voxel size was 0.5859 mm × 0.5859 mm. The distance from
the X-ray source to the detector arrays was 1068.0 mm, and
the distance from the X-ray source to the center of rotation
was 595.0 mm. In total, we performed forward projection
for 3,570 reconstructed images. The images of 19 patients
were used for training iBP-Net, and the images of the last
patient were used for evaluating the performance of the neural
network.

B. IMPLEMENTATION DETAILS
We chose to implement the iBP-Net framework on the
PyTorch DL toolbox [34]. The iBP-Net model is an end-
to-end trainable neural network. The loss function of iBP-Net
is the Euclidean loss function, which is the mean square error
between the reconstructed image x and the reference x∗:

L −
∥∥x − x∗∥∥22 . (8)

Once the architecture of the proposed iBP-Net was config-
ured, its parameters could be learned by optimizing the loss
function. In our work, the loss function was optimized by
the Adam algorithm [35], where the base learning rate was
set to 10−4, and it slowly decreased to 10−5. The computer
platform was configured as follows: the CPU was an Intel(R)
Core (TM) i9-10900K at 3.70 GHz; the GPUwas an NVIDIA
RTX 2080 Ti with 11 GB of memory.
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FIGURE 2. Reconstruction results obtained on the AAPM challenge dataset (chest subdata) under the 360-degree view scanning condition.
(a1)-(a3) Ground truths; (b1)-(b3) images obtained with the FBP method; (c1)-(c3) images obtained with the TV method; (d1)-(d3) images
obtained with the RED-CNN method; (e1)-(e3) images obtained with the iBP-Net method. The display window is [−900, 2100] HU for the
images in the first two rows and [−360 440] HU for the images in the last row.

C. EVALUATION METRICS
We evaluated the quantitative performance of iBP-Net
and several comparison models by adopting three popular
indexes, i.e., the peak signal-to-noise ratio (PSNR), normal-
ized mean square error (NMSE), and structural similarity
index measure (SSIM) [36]. The PSNR and NMSE are the
most widely adopted quantitative indexes for assessing CT
reconstruction results, and they are written as follows:

PSNR(x,x∗) = 10× log
(
max (x · x) /

∥∥x − x∗∥∥22) , (9)

NMSE(x,x∗) =
∥∥x − x∗∥∥2 / ∥∥x∗∥∥2 , (10)

where · denotes elementwise multiplication. Combining a
luminance measure, a contrast measure, and a structure mea-
sure, the SSIMmeasures the structural similarity between two
images, and it is capable of evaluating the degree of artifacts
in a given image. The SSIM is defined as follows:

SSIM (x,x∗) =
(2µxµx∗ + α1) (2σxσx∗ + α2)(
µ2
x + µ

2
x∗ + α1

) (
σ 2
x + σ

2
x∗ + α2

) , (11)

whereµx denotes themean value of x, σx denotes the variance
of x, and similar properties are defined for the reference
image x∗. In (11), α1 and α2 are two constants that are used
to stabilize a division operation with a weak denominator.
The SSIM index lies between 0 and 1, and a higher value
represents better image quality.

D. REFERENCE METHODS
To evaluate the effectiveness of the proposed algorithm, the
iBP-Net model was compared with three different meth-
ods, i.e., FBP reconstruction (Ram-Lak filter), TV itera-
tive reconstruction [4], and the RED-CNN network for CT
image processing [37]. We executed the TV method with 40
iterations on the Tomographic Iterative GPU-based Recon-
struction (TIGRE) toolbox with the default parameters [38].
RED-CNN is a DL-based denoiser that operates in the spatial
domain. In this work, the RED-CNN network was applied
to further improve the obtained FBP reconstruction results.
The training settings of RED-CNN were set according to the
original paper [37].

IV. RESULTS
A. RESULTS FOR THE 360-DEGREE VIEWS
To show the effectiveness of the proposed network,
we performed CT reconstruction under different sparse-view
scanning conditions. Fig. 2 demonstrates the reconstruction
performances of different methods under the 360-degree view
condition. The three rows show three reconstruction cases.
The first column shows the corresponding ground truths. The
second, third, and fourth columns show the results yielded
by the FBP, TV, and RED-CNN methods, respectively, for
comparison purposes. The fifth column shows the iBP-Net
results. In Fig. 2, the images in the regions of interest (ROIs)
specified by the blue rectangles are zoomed in and displayed
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TABLE 1. Quantitative Results (Mean ± STD) Associated with Different Methods Regarding the Reconstructed images.

FIGURE 3. Residual images yielded by different methods under the
360-degree view scanning condition. The three rows show three
reconstruction cases in Fig. 2. From (a) to (d): FBP, TV, RED-CNN and
iBP-Net. The display window is [−512, 512] HU.

in the lower left corners of the corresponding full images. The
PSNR and SSIM indexes of the full images are listed in the
lower right corners of the corresponding images. In addition,
the residual images between the reconstructed images and the
references are presented in Fig. 3. The NMSE metrics are
listed in the lower left corners of the corresponding residual
images. It can be observed in Fig. 2 and Fig. 3 that the
traditional FBP reconstruction approach leads to obviously
amplified noise and artifacts, which may severely affect the
diagnostic accuracy of method. The IR-type TV reconstruc-
tion algorithm works well in terms effective noise suppres-
sion and structural feature preservation. However, some tiny
streak artifacts can be observed in the reconstructed images,
as indicated by the red arrow in Fig. 2(c1). The network-based
RED-CNN method can suppress noise and remove artifacts
to some extent. The resulting images still suffer from blurred
details and fake structures (as indicated in Fig. 2(d1)-(d3)).
The proposed iBP-Net method exhibits better anatomical
feature preservation, as shown in Fig. 2(e1)-(e3). Upon visual
inspection, the proposed iBP-Net method outperforms the
other three state-of-the-art methods due to its robust noise
suppression, artifact removal, and texture preservation per-
formances. However, the evaluation metrics of the proposed

iBP-Net method are slightly inferior to those of the TV
method, as shown in Fig. 2 and Fig. 3.

B. RESULTS FOR THE 180-DEGREE VIEWS
As we know, the evaluation metrics and the visual qual-
ity of the reconstructed images may be degraded with a
decrease in the number of projections. Fig. 4 demonstrates
the reconstruction performances obtained under the 180-
degree view condition. The corresponding residual images
are displayed in Fig. 5. As observed in Fig. 4 and Fig. 5,
the traditional FBP algorithm obviously increases the noise
and streak artifacts in the reconstructed images, resulting in
the loss of projection data. In contrast, while the TV algo-
rithm can effectively reduce noise and artifacts, the resulting
images suffer greatly from blurred details and streak artifacts
(as indicated in Fig. 4(c1) and Fig. 5(b1)). As indicated in
Fig. 4(d1)-(c3), the RED-CNN method severely smooths out
some of the anatomical details and introduces some fake
structures. Referring to the ground truth, the proposedmethod
effectively preserves the structural and textural information in
the reconstructed images. The proposed method outperforms
competing methods in terms of image quality metrics (as
shown in Fig. 4 and Fig. 5) and visual sensitivity.

C. RESULTS FOR THE 90-DEGREE VIEWS
With the further reduction in the amount of projection data,
the quality of the reconstructed images is severely degraded.
Fig. 6 demonstrates the reconstruction performances obtained
under the 90-degree view condition. The corresponding resid-
ual images are displayed in Fig. 7. As displayed in Fig. 6 and
Fig. 7, the reconstructed images produced by the three com-
peting methods suffer from the loss of subtle structural char-
acteristics, streak artifacts, and noise features. The proposed
iBP-Net method also blurs some content and leads to the
loss of structural details under the 90-degree view scanning
condition. However, the iBP-Net method better preserves the
underlying structural information and achieves higher scores
on the evaluation metrics than those of the competing meth-
ods (in Fig. 6 and Fig. 7).

D. QUANTITATIVE ANALYSIS
In Table 1, the PSNR, NMSE, and SSIM indexes are given
in terms of the Means ± SDs (average scores ± standard
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FIGURE 4. Reconstruction results obtained on the AAPM challenge data (chest subdata) under the 180-degree view scanning condition.
(a1)-(a3) Ground truths; (b1)-(b3) images obtained with FBP method; (c1)-(c3) images obtained with the TV method; (d1)-(d3) images
obtained with the RED-CNN method; (e1)-(e3) images obtained with the iBP-Net method. The display window is [−900, 2100] HU for the
images in the first two rows and [−360 440] HU for the images in the last row.

FIGURE 5. Residual images yielded by different methods under the
180-degree view scanning condition. The three rows show three
reconstruction cases in Fig. 4. From (a) to (d): FBP, TV, RED-CNN and
iBP-Net. The display window is [−512, 512] HU.

deviations) for the images reconstructed by the different
methods mentioned in this work. The total number of test
images obtained from one patient was 195. It can be seen
in Table 1 that the FBP method obtains the lowest SSIM and
PSNR scores. The TV method achieves the highest scores
under the 360-degree view scanning condition. However,

while the performance of the proposed iBP-Net method
slowly worsens as the number of projections decreases, this
method achieves higher scores than those of the other three
competing methods under both the 180-degree view and
90-degree view scanning conditions. To some extent, this
quantitative analysis is consistent with the visual performance
results in Figs. 2-7.

E. EVALUATING AND ANALYZING THE NETWORKS
To evaluate the CT reconstruction performance of the pro-
posed network, iBP-Net method was applied for CT recon-
struction under different view conditions, i.e., 360, 180, and
90 degrees. The convergence curves of the iBP-Net training
process are presented in Fig. 8, and the resulting network
after 160000 training iterations is used in this work. It can be
observed that the energy of the objective function decreases
with the increase in the number of training iterations. A run-
time comparison between the tested reconstruction methods
under three different scanning conditions is given in the
Table 2. As observed, the runtime is shortest for the FBP
method. The RED-CNN method is slightly faster than the
proposed iBP-Netmethod because fewer convolutional layers
are involved in RED-CNN. The TV method is the slowest
among the four reconstruction methods.

The proposed iBP-Net consists of three components: a pre-
CNN, a back-projection layer, and a post-CNN. If any of
the components are removed or replaced, the network may
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FIGURE 6. Reconstruction results obtained on the AAPM challenge data (chest subdata) under the 90-degree view scanning condition.
(a1)-(a3) Ground truths; (b1)-(b3) images obtained with the FBP method; (c1)-(c3) images obtained with the TV method; (d1)-(d3) images
obtained with the RED-CNN method; (e1)-(e3) images obtained with the iBP-Net method. The display window is [−900, 2100] HU for the
images in the first two rows and [−360 440] HU for the images in the last row.

FIGURE 7. Residual images yielded by different methods under the
180-degree view scanning condition. The three rows show three
reconstruction cases in Fig. 6. From (a) to (d): FBP, TV, RED-CNN and
iBP-Net. The display window is [−512, 512] HU.

perform poorly in terms of reconstruction and lead to severe
image quality degradation. By reassembling these three com-
ponents, we can obtain the following new reconstruction
methods. The ‘FBP’ method is obtained by replacing the pre-
CNN with a Ram-Lak filter and removing the post-CNN.
The ‘pre-CNN+BP’ method is produced by removing the

FIGURE 8. Training losses incurred under different scanning conditions.

TABLE 2. Comparison of reconstruction methods in terms of runtime
(seconds).

post-CNN. The ‘FBP+post-CNN’ method is obtained by
replacing the pre-CNN with a Ram-Lak filter. Fig. 9 presents
the reconstruction results of these new methods under the
360-degree view scanning condition. As observed, the results
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FIGURE 9. Reconstruction performances of different combinations of the
three components of the proposed iBP-Net framework. The display
window is [−900, 2100] HU.

of the ‘FBP’ method are contaminated by streak artifacts. The
‘pre-CNN+BP’ method yields the worst results in terms of
severe streak artifacts and fake structures in the reconstructed
images. The reconstruction results of ‘FBP+post-CNN’
method suffer from severe fake structures. The proposed
iBP-Net method outperforms the other three new reconstruc-
tion methods. The reconstruction performances of the above
new reconstruction methods indicate the feasibility of the
combination chosen for the proposed iBP-Net framework.

V. DISCUSSION AND CONCLUSION
In this work, we proposed a novel CT reconstruction
framework based on CNN, named iBP-Net. Inspired by the
data-dependent FBP method [25] and DL-based FBP recon-
struction paradigms [26]–[29], the proposed iBP-Net method
adopted the CNN technique to model a filtering operation
in the projection domain. Between-manifold projection was
conducted by a back-projection operation, thereby avoid-
ing the application of fully connected layers. By extracting
detailed information from the outputs of the back-projection
layer, the post-CNN yielded promising results with high
scores in terms of quantitative metrics and good visual quality
for the resulting images. The experimental results with clin-
ical patient data demonstrated the feasibility of iBP-Net for
CT reconstruction tasks.

For the data-dependent FBP method [25], its wide applica-
tion in general CT reconstruction tasks is limited by the appli-
cation of a data-dependent filter with the same experimental
setup. In this work, to address this limitation, CNN-based
techniques were applied to learn the optimal filter for a
given situation from big data. The learned filter is no longer
limited by the chosen experimental setup. Compared to the
filter learned from a neural network based on a fully con-
nected layer [26], [27], the proposed iBP-Net method greatly
reduces the difficulty of the neural network training process.
To effectively learn optimal filters by using DL techniques,
the proposed iBP-Net method fused a pre-CNN architecture,
a back-projection layer, and a post-CNN architecture into

an end-to-end network. Compared to non-end-to-end net-
works [28], [29], the proposed iBP-Net method provides a
strict mathematical derivation and learns the optimal filter
directly from big data.

Compared to IR algorithms [4] (as shown in Figs. 2-7),
the proposed iBP-Net method is capable of preserving more
underlying structural details and achieving images with better
visual quality. This advantage is increasingly obvious as the
amount of projection data decreases. However, some tiny
structures in the reconstructed images are also smoothed,
due to the loss of projection data. DL approaches using
neural networks with large receptive fields, such as U-Net,
have demonstrated impressive performance in sparse-data CT
reconstruction [39]. However, the existing U-Net architecture
does not satisfy the frame condition, and it overly emphasizes
the low-frequency component of a given signal [40]. Further
work will be devoted to investigating a more sophisticated
network and the perceptual loss incurred by the neural net-
work [41]; this superior network can maintain more detailed
information in reconstructed images. Additionally, compared
with IR algorithms, the proposed iBP-Net method does not
adopt an iterative process to solve the reconstruction prob-
lem, and this significantly reduces the required computational
time.

In the proposed iBP-Net method, both the pre-CNN and
post-CNN adopted similar U-Net architectures. As described
in section II.C, due to the characteristics of X-ray imaging,
the U-Net architecture was employed to enlarge the receptive
field of the pre-CNN. U-Net is the most widely used CNN
architecture for combining deep learning with a postpro-
cessing approach in sparse-data CT reconstruction [42]–[44].
It has many properties that make it well suited for artifact
removal, especially when the number of views is extremely
small [44]. Due to the enlarged receptive field, the U-Net
can easily capture globally distributed streaking artifacts [42].
Because it involves the mapping of a back-projection opera-
tor, the proposed method, to some extent, exhibits the charac-
teristics of FBP algorithms. Thus, in this work, the post-CNN
leveraged the U-Net architecture to solve globally distributed
few-view artifacts.

The proposed iBP-Net method was also tested on a dataset
with distributions that were obviously different from those
of the training set. The reconstruction results were contami-
nated by severe artifacts. This indicates that the proposed DL
method relies heavily on the chosen training set. By enlarging
the training datasets, the proposed method can also yield
promising results.

Many groups have explored directly learning a tomo-
graphic mapping from sensor data to an underlying image,
such as by using AUTOMAP [13] and FAR-Net [45].
In these methods, multiple fully connected layers are applied
to learn the entire reconstruction process through a man-
ifold encoding-decoding process. The main limitations of
a neural network based on multiple fully connected layers
are its critical dependency on big data and its expensive
computational cost [14], [46]. In this work, to address this
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problem, we proposed a CNN-based network for CT recon-
struction, in which between-manifold projection was per-
formed by a back-projection operation. Compared to a neural
network based on fully connected layers, a CNN-based neural
network is much easier to train [14].

For a fully 3D CT scan, because data in the projection
domain contain more inner correlations, working only in
the image domain might not be optimal [47]. Recently,
some authors have focused on incorporating an analytical
reconstruction-based operator to link data from the projection
domain to the image domain and thereby conduct end-to-end
network learning in a dual domain [47]–[50]. As mentioned
in [24] and [25], a modified ramp filter can further improve
the results of the conventional FBP method [2], especially for
sparse-view CT reconstruction. Compared to the methods of
the studies in [47]-[49], the proposed method is devoted to
modifying the ramp filter and replacing it with a CNN. Com-
pared to hdNet [50], the proposed method further improves
the back-projection layer and the CNN applied on the projec-
tion data. Moreover, the theoretical derivation for replacing
the ramp filter with a CNN is described in detail (in sections
II.A and II.B). The network architecture of iBP-Net is sim-
ilar to that of one unroll of an unrolling strategy [18]–[23].
However, the proposed method derives its reconstruction
network architecture from the data-dependent FBP method
rather than from an IR method. The proposed method signif-
icantly reduces the complexity of the reconstruction network
compared to that of an unrolling strategy.

As mentioned in [27], a common CNN structure is added
after the back-projection layer to further improve the over-
all performance of the system. However, in this work,
the post-CNN plays a more important role in the proposed
iBP-Net method. As observed in Fig. 9(c), without the post-
CNN architecture, the reconstructed results would be contam-
inated seriously by severe streak artifacts and fake structures.
As described in [51], good reconstruction results can be
achieved by the ‘pre-CNN+BP’ method with a large recep-
tive field and large training datasets. In this work, to decrease
the complexity of the pre-CNN, the proposed method reduces
the depth of the pre-CNN, which results in a reduction of the
receptive field. Thus, for a small receptive field and small
training datasets, it is difficult to obtain good reconstruction
results (in Fig. 9(c)) using the ‘pre-CNN+BP’ method men-
tioned in this work. However, the pre-CNN and post-CNN
in the proposed method work together to generate feasible
reconstructed images.

ACKNOWLEDGMENT
The authors would like to thankDr. C.McCollough, theMayo
Clinic, the American Association of Physicists in Medicine
for providing the data used in this study.

REFERENCES
[1] D. J. Brenner and E. J. Hall, ‘‘Computed tomography—An increasing

source of radiation exposure,’’ New England J. Med., vol. 357, no. 22,
pp. 2277–2284, Nov. 2007.

[2] L. A. Shepp and B. F. Logan, ‘‘The Fourier reconstruction of a head
section,’’ IEEETrans. Nucl. Sci., vol. NS-21, no. 3, pp. 218–227, Jun. 1974.

[3] K. J. Batenburg and L. Plantagie, ‘‘Fast approximation of algebraic recon-
struction methods for tomography,’’ IEEE Trans. Image Process., vol. 21,
no. 8, pp. 3648–3658, Aug. 2012.

[4] E. Y. Sidky and X. Pan, ‘‘Image reconstruction in circular cone-beam com-
puted tomography by constrained, total-variation minimization,’’ Phys.
Med. Biol., vol. 53, no. 17, pp. 4777–4807, Aug. 2008.

[5] S. Niu, Y. Gao, Z. Bian, J. Huang, W. Chen, G. Yu, Z. Liang, and J. Ma,
‘‘Sparse-view X-ray CT reconstruction via total generalized variation reg-
ularization,’’ Phys. Med. Biol., vol. 59, no. 12, pp. 2997–3017, Jun. 2014.

[6] H. Zhang, J. Huang, J. Ma, Z. Bian, Q. Feng, H. Lu, Z. Liang, and
W. Chen, ‘‘Iterative reconstruction for X-ray computed tomography using
prior-image induced nonlocal regularization,’’ IEEE Trans. Biomed. Eng.,
vol. 61, no. 9, pp. 2367–2378, Sep. 2014.

[7] Q. Xu, H. Yu, X. Mou, L. Zhang, J. Hsieh, and G. Wang, ‘‘Low-dose
X-ray CT reconstruction via dictionary learning,’’ IEEE Trans. Med. Imag.,
vol. 31, no. 9, pp. 1682–1697, Sep. 2012.

[8] S. Ye, S. Ravishankar, Y. Long, and J. A. Fessler, ‘‘SPULTRA: Low-dose
CT image reconstruction with joint statistical and learned image models,’’
IEEE Trans. Med. Imag., vol. 39, no. 3, pp. 729–741, Mar. 2020.

[9] Z. Li, S. Ravishankar, Y. Long, and J. A. Fessler, ‘‘DECT-MULTRA:
Dual-energy CT image decomposition with learned mixed material mod-
els and efficient clustering,’’ IEEE Trans. Med. Imag., vol. 39, no. 4,
pp. 1223–1234, Apr. 2020.

[10] F. Xu and K. Mueller, ‘‘Accelerating popular tomographic reconstruction
algorithms on commodity PC graphics hardware,’’ IEEE Trans. Nucl. Sci.,
vol. 52, no. 3, pp. 654–663, Jun. 2005.

[11] W. J. Palenstijn, K. J. Batenburg, and J. Sijbers, ‘‘Performance improve-
ments for iterative electron tomography reconstruction using graphics
processing units (GPUs),’’ J. Struct. Biol., vol. 176, no. 2, pp. 250–253,
Nov. 2011.

[12] X. Zhou, W. Gong, W. Fu, and F. Du, ‘‘Application of deep learning in
object detection,’’ in Proc. IEEE/ACIS 16th Int. Conf. Comput. Inf. Sci.
(ICIS), May 2017, pp. 631–634.

[13] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, ‘‘A survey of
deep neural network architectures and their applications,’’ Neurocomput-
ing, vol. 234, pp. 11–26, Apr. 2017.

[14] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2015.

[15] G. Wang, J. C. Ye, K. Mueller, and J. A. Fessler, ‘‘Image reconstruction
is a new frontier of machine learning,’’ IEEE Trans. Med. Imag., vol. 37,
no. 6, pp. 1289–1296, Jun. 2018.

[16] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, ‘‘Image
reconstruction by domain-transform manifold learning,’’ Nature, vol. 555,
no. 7697, pp. 487–492, Mar. 2018.

[17] Y. Li, K. Li, C. Zhang, J. Montoya, and G.-H. Chen, ‘‘Learning to recon-
struct computed tomography images directly from sinogram data under a
variety of data acquisition conditions,’’ IEEE Trans. Med. Imag., vol. 38,
no. 10, pp. 2469–2481, Oct. 2019.

[18] D.Wu, K. Kim, G. E. Fakhri, and Q. Li, ‘‘Iterative low-dose CT reconstruc-
tion with priors trained by artificial neural network,’’ IEEE Trans. Med.
Imag., vol. 36, no. 12, pp. 2479–2486, Dec. 2017.

[19] H. Chen, Y. Zhang, Y. Chen, J. Zhang, W. Zhang, H. Sun, Y. Lv, P. Liao,
J. Zhou, and G. Wang, ‘‘LEARN: Learned experts’ assessment-based
reconstruction network for sparse-data CT,’’ IEEE Trans. Med. Imag.,
vol. 37, no. 6, pp. 1333–1347, Jun. 2018.

[20] H. Gupta, K. H. Jin, H. Q. Nguyen, M. T. McCann, and M. Unser,
‘‘CNN-based projected gradient descent for consistent CT image recon-
struction,’’ IEEE Trans. Med. Imag., vol. 37, no. 6, pp. 1440–1453,
Jun. 2018.

[21] J. Wang, L. Zeng, C. Wang, and Y. Guo, ‘‘ADMM-based deep reconstruc-
tion for limited-angle CT,’’ Phys. Med. Biol., vol. 64, no. 11, May 2019,
Art. no. 115011.

[22] J. He, Y. Yang, Y. Wang, D. Zeng, Z. Bian, H. Zhang, J. Sun, Z. Xu, and
J. Ma, ‘‘Optimizing a parameterized plug-and-play ADMM for iterative
low-dose CT reconstruction,’’ IEEE Trans. Med. Imag., vol. 38, no. 2,
pp. 371–382, Feb. 2019.

[23] Q. Ding, G. Chen, X. Zhang, Q. Huang, H. Ji, and H. Gao, ‘‘Low-dose
CT with deep learning regularization via proximal forward–backward
splitting,’’ Phys. Med. Biol., vol. 65, no. 12, Jun. 2020, Art. no. 125009.

[24] G. L. Zeng, ‘‘A filtered backprojection MAP algorithm with nonuniform
sampling and noise modeling,’’Med. Phys., vol. 39, no. 4, pp. 2170–2178,
Mar. 2012.

VOLUME 9, 2021 71101



F. Jiao et al.: Dual-Domain CNN-Based Network for CT Reconstruction

[25] D. M. Pelt and K. J. Batenburg, ‘‘Improving filtered backprojection
reconstruction by data-dependent filtering,’’ IEEE Trans. Image Process.,
vol. 23, no. 11, pp. 4750–4762, Nov. 2014.

[26] T. Wurfl, M. Hoffmann, V. Christlein, K. Breininger, Y. Huang,
M. Unberath, and A. K. Maier, ‘‘Deep learning computed tomography:
Learning projection-domain weights from image domain in limited angle
problems,’’ IEEE Trans. Med. Imag., vol. 37, no. 6, pp. 1454–1463,
Jun. 2018.

[27] J. He, Y. Wang, and J. Ma, ‘‘Radon inversion via deep learning,’’ IEEE
Trans. Med. Imag., vol. 39, no. 6, pp. 2076–2087, Jun. 2020.

[28] X. Yin, J.-L. Coatrieux, Q. Zhao, J. Liu, W. Yang, J. Yang, G. Quan,
Y. Chen, H. Shu, and L. Luo, ‘‘Domain progressive 3D residual convolu-
tion network to improve low-dose CT imaging,’’ IEEE Trans. Med. Imag.,
vol. 38, no. 12, pp. 2903–2913, Dec. 2019.

[29] W. Wang, X.-G. Xia, C. He, Z. Ren, J. Lu, T. Wang, and B. Lei,
‘‘A deep network for sinogram and CT image reconstruction,’’ 2020,
arXiv:2001.07150. [Online]. Available: http://arxiv.org/abs/2001.07150

[30] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. (MICCAI), May 2015, pp. 234–241.

[31] T. Tong, G. Li, X. Liu, and Q. Gao, ‘‘Image super-resolution using
dense skip connections,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 4809–4817.

[32] G. L. Zeng and G. T. Gullberg, ‘‘Unmatched projector/backprojector pairs
in an iterative reconstruction algorithm,’’ IEEE Trans. Med. Imag., vol. 19,
no. 5, pp. 548–555, May 2000.

[33] C. McCollough, ‘‘TU-FG-207A-04: Overview of the low dose CT grand
challenge,’’Med. Phys., vol. 43, no. 6, pp. 3759–3760, Jun. 2016.

[34] A. Paszke, S. Gross, S. Chintala, G. Chanan, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, ‘‘Automatic differentiation in
PyTorch,’’ in Proc. NIPSW, 2017, pp. 1–4.

[35] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimiza-
tion,’’ Dec. 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.
org/abs/1412.6980

[36] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[37] H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and
G. Wang, ‘‘Low-dose CT with a residual encoder-decoder convolutional
neural network,’’ IEEE Trans. Med. Imag., vol. 36, no. 12, pp. 2524–2535,
Dec. 2017.

[38] A. Biguri, M. Dosanjh, S. Hancock, and M. Soleimani, ‘‘TIGRE: A
MATLAB-GPU toolbox for CBCT image reconstruction,’’ Biomed. Phys.
Eng. Exp., vol. 2, no. 5, Sep. 2016, Art. no. 055010.

[39] Y. Han and J. C. Ye, ‘‘Framing U-Net via deep convolutional framelets:
Application to sparse-view CT,’’ IEEE Trans. Med. Imag., vol. 37, no. 6,
pp. 1418–1429, Jun. 2018.

[40] J. C. Ye, Y. Han, and E. Cha, ‘‘Deep convolutional framelets: A gen-
eral deep learning framework for inverse problems,’’ SIAM J. Imag. Sci.,
vol. 11, no. 2, pp. 991–1048, Jan. 2018.

[41] C. You, W. Cong, G. Wang, Q. Yang, H. Shan, L. Gjesteby, G. Li,
S. Ju, Z. Zhang, Z. Zhao, and Y. Zhang, ‘‘Structurally-sensitive multi-scale
deep neural network for low-dose CT denoising,’’ IEEE Access, vol. 6,
pp. 41839–41855, Jul. 2018.

[42] Y. S. Han, J. Yoo, and J. C. Ye, ‘‘Deep residual learning for com-
pressed sensing CT reconstruction via persistent homology analysis,’’
Nov. 2016, arXiv:1611.06391. [Online]. Available: http://arxiv.org/abs/
1611.06391

[43] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, ‘‘Deep convolutional
neural network for inverse problems in imaging,’’ IEEE Trans. Image
Process., vol. 26, no. 9, pp. 4509–4522, Sep. 2017.

[44] S. Antholzer, M. Haltmeier, and J. Schwab, ‘‘Deep learning for photoa-
coustic tomography from sparse data,’’ Inverse Problems Sci. Eng., vol. 27,
no. 7, pp. 987–1005, Jul. 2019.

[45] G. Ma, Y. Zhu, and X. Zhao, ‘‘Learning image from projection: A
full-automatic reconstruction (FAR) net for computed tomography,’’ IEEE
Access, vol. 8, pp. 219400–219414, Nov. 2020.

[46] G. Wang, J. C. Ye, and B. D. Man, ‘‘Deep learning for tomographic
image reconstruction,’’ Nature Mach. Intell., vol. 2, no. 12, pp. 737–748,
Dec. 2020.

[47] A. Zheng, H. Gao, L. Zhang, and Y. Xing, ‘‘A dual-domain deep
learning-based reconstruction method for fully 3D sparse data helical CT,’’
Phys. Med. Biol., vol. 65, no. 24, Dec. 2020, Art. no. 245030.

[48] Y. Ge, T. Su, J. Zhu, X. Deng, Q. Zhang, J. Chen, Z. Hu, H. Zheng, and
D. Liang, ‘‘ADAPTIVE-NET: Deep computed tomography reconstruction
network with analytical domain transformation knowledge,’’Quant. Imag.
Med. Surg., vol. 10, no. 2, pp. 415–427, Feb. 2020.

[49] W. Lin, H. Liao, C. Peng, X. Sun, J. Zhang, J. Luo, R. Chellappa, and
S. K. Zhou, ‘‘DuDoNet: Dual domain network for CT metal artifact reduc-
tion,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 10512–10521.

[50] Q. Zhang, Z. Hu, C. Jiang, H. Zheng, Y. Ge, and D. Liang, ‘‘Arti-
fact removal using a hybrid-domain convolutional neural network for
limited-angle computed tomography imaging,’’ Phys. Med. Biol., vol. 65,
no. 15, Aug. 2020, Art. no. 155010.

[51] A. Yamaev, M. Chukalina, D. Nikolaev, A. Sheshkus, and A. Chulichkov,
‘‘Lightweight denoising filtering neural network for FBP algorithm,’’Proc.
SPIE, vol. 11605, Jan. 2021, Art. 116050L.

FENGYUAN JIAO received the M.S. degree in
software engineering from the North Univer-
sity of China, Taiyuan, China, in 2017, where
she is currently pursuing the Ph.D. degree. Her
research interest includes image denoising and
enhancement.

ZHIGUO GUI received the Ph.D. degree in signal
and information processing from the North Uni-
versity of China, in 2004. He is currently working
as a Professor with the North University of China.
His research interests include image processing
and image reconstruction.

KUNPENG LI is currently pursuing the M.S.
degree in electronics and communication engi-
neering with the North University of China,
Taiyuan, China. His research interests include
medical image processing and pattern recognition.

71102 VOLUME 9, 2021



F. Jiao et al.: Dual-Domain CNN-Based Network for CT Reconstruction

HONG SHANGGUANG received the B.E. degree
in biomedical engineering and the Ph.D. degree in
signal and information processing from the North
University of China, in 2011 and 2016, respec-
tively. Since 2016, she has been with the Taiyuan
University of Science and Technology, where she
is currently an Associate Professor. Her research
interests include medical image processing and
pattern recognition.

YANLING WANG received the Ph.D. degree
in signal and information processing with the
North University of China, in 2018. In 2018, she
joined the School of Information Management,
Shanxi University of Finance and Economics. Her
research interests include image processing and
CT image reconstruction.

YI LIU received the Ph.D. degree in signal and
information processing from the North University
of China, in 2014. In 2015, she joined the School
of Information and Communication Engineering,
North University of China. Her research interests
include CT imaging and image processing.

PENGCHENG ZHANG received the Ph.D. degree
in computer science and technology from South-
east University, Nanjing, China, and the Ph.D.
degree in traitement du signal et télécommuni-
cations from Université de Rennes 1, Rennes,
France, in 2014. He currently engages in teaching
and research with the North University of China.
His research interests include medical image
reconstruction, medical image analysis, dose cal-
culation, and planning optimization.

VOLUME 9, 2021 71103


