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ABSTRACT In a nuclear power plant (NPP), operator performance is a critical to ensure safe operation of
the plant. The fitness for duty (FFD) of the operators should be systematically assessed before they engage in
duties related to reactor operations. This study proposes the use of an electroencephalography (EEG)-based
deep learning algorithm to classify an operator’s FFD. To determine the suitability of this approach, EEG
data were collected during simple cognitive exercises designed to examine the mental readiness of nuclear
operators. The EEG-based FFD classification system designed could successfully determine an operator’s
sobriety, stress, and fatigue in a timely and cost-effective manner. As protecting personal information of
the operators while using their EEG data is important and necessary, this study also investigated schemes
for providing information security to the EEG-based FFD status classification system by following the
International Organization for Standardization/International Electrotechnical Commission standard. Data
confidentiality, integrity, and unlinkability were considered in the resulting schemes of information security
for the EEG data. The resulting system provides the necessary protection of personal information and the
FFD databases without significantly affecting the overhead of FFD classification through near real-time
analysis.

INDEX TERMS Information security, brain computer interface, electroencephalography (EEG), deep

learning, nuclear safety, fitness for duty (FFD).

I. INTRODUCTION
In a nuclear power plant (NPP), operator performance is a key
factor for achieving safe operation. According to the United
States Nuclear Regulatory Commission (USNRC), 65% of all
US commercial NPP accidents are caused by human error [1].
Therefore, operators must be fit to undertake their work
duties in an NPP [2]. The USNRC developed 10 Code of
Federal Regulations (CFR) Part 26 to assist the licensee in
implementing good practices to manage their NPP operators
and to determine their fitness for duty (FFD). FFD programs
are designed to provide reasonable assurance that NPP opera-
tors are trustworthy, are capable of performing their tasks in a
reliable manner, are not under the influence of any substance,
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legal or illegal, that may impair their ability to perform their
duties, and are not mentally or physically impaired from any
cause that can adversely affect their ability to safely and
competently perform their duties.

Among the various features contained in 10 CFR Part 26,
the USNRC’s focus is on alcohol testing, stress management,
and fatigue management [3]. However, there are some limita-
tions in the implementation of this approach. Alcohol testing
is conducted only a few times a year, whereas stress and
fatigue management are based on self-evaluations, which are
subsequently assessed by qualified technicians and in some
cases, may include a doctor’s interview. These tests are infre-
quent and the interpretation of the results can be subjective.
There remains a need to develop a comprehensive, timely,
and cost-effective system that supports frequent and objective
analyses of an operator’s sobriety, stress, and fatigue [4].
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Such a system would result in more effective management of
the workforce and enhanced workplace safety and security.

With the development of data science and information
technologies, the use of electroencephalography (EEG) data,
along with machine learning algorithms, has been widely
applied in various fields, such as alcohol intake, stress, and
fatigue evaluation [5]—[8]. Appropriate use of machine learn-
ing has made it possible to classify EEG data in a reliable
manner.

Protecting personal information (PI) is an important
requirement in the use of biosignals. In 2016, the European
Union (EU) enacted the General Data Protection Regula-
tion (GDPR) in recognition of the importance of handling
PI. In GDPR, biometric data means personal data resulting
from specific technical processing relating to the physical,
physiological, or behavioral characteristics of a natural per-
son, which allows or confirms the unique identification of
that natural person, such as facial images or dactyloscopic
data.

Until now, there has been no concrete international con-
sensus on protecting the PI associated with the use of EEG
data. A user’s private information is potentially vulnerable if
an unauthorized person knows the position of the electrodes,
extracted features, and frequency ranges measured during
the examination. According to the reference, sensitive PI
includes users’ emotions, alcohol abuse behavior, the area of
residence, medical conditions, and learning ability [9], [10].
It may be possible to link a subject’s EEG data to some of
these PI attributes. Without adequate data privacy, ethical and
legal issues could stifle the collection of EEG data and its
use [11], [12]. Hence, EEG data and any related PI must be
protected and treated as sensitive information.

While a large number of studies continue to explore human
performance based on EEG data, there is still a lack of
research regarding the ways to ensure the privacy of the EEG
data. This indicates the need to implement an adequate infor-
mation security management system (ISMS) to protect the
privacy of sensitive PI while applying EEG-based technology
in the field.

Along with development of an EEG-based FFD evaluation
system, protection of PI during the use of EEG data was
examined in this study through the application of relevant
information security technology. The EEG data were col-
lected while the subjects performed cognitive tasks related
to nuclear safety. This study explored the feasibility of using
these data as the basis for classifying the FFD status of
nuclear operators. The FFD status to be examined include
alcohol intake, stress, and fatigue based on EEG signals.

The objectives of this study were: (1) to determine the
feasibility of classifying an NPP operator’s FFD using deep
learning algorithm based on EEG data collected while per-
forming cognitive tasks, (2) to investigate the methods to
acquire and analyze the EEG data considering aspects related
to information security, and (3) to examine the feasibility of
an ISMS that can quickly and securely process the PI and
the FFD results for immediate use in daily work planning.
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If successful, the proposed ISMS will remove the time delays
and subjectivity that burden the current FFD in NPPs.

Il. EEG-BASED OPERATORS’ FFD EVALUATION
This section describes the development of the methods of
EEG analyses to comprehensively evaluate operators’ FFD.

A. SUBJECTS

To examine FFD status outlined in 10 CFR Part 26,
the present study recruited four different groups: three groups
related to FFD criteria (alcohol intake, stress, and fatigue)
and a fourth group labeled the normal group. Ninety subjects
(80 males and 10 females with ages ranging between 20 and
35, with a mean of 24) having engineering backgrounds were
voluntarily recruited from the Korea Advanced Institute of
Science and Technology (KAIST) student community. The
subjects enrolled in the program had no history of neurolog-
ical disorder, mental disorder, alcohol dependence, or drug
dependence.

By carefully controlling factors that could affect their clas-
sification status, recruited subjects represented only one of
the specific groups.

The Perceived Stress Scale (PSS-10) was performed on
all the subjects as part of the recruiting procedure [13]. PSS
scores ranging from 14-26 indicated a moderate perceived
stress level while 27-40 was a high perceived stress level. The
alcohol intake group, the fatigue group, and the normal group
were recruited from subjects with PSS scores ranging from
14-26. In contrast, 24 subjects with PSS scores above 27 were
placed in the stress group.

The alcohol intake group consisted of 19 subjects with a
blood alcohol concentration (BAC) above 0.03% based on
10 CFR Part 26. The subjects in the alcohol intake group
were instructed to consume the same amount of alcohol one
hour and thirty minutes before the experiment. Over the
next 30 minutes, each subject was fitted with an Ag/AgCl
electrode cap arranged in the international 10-20 system of
electrode placement. Exactly two hours after drinking, their
BAC was measured using a breathalyzer.

The non-alcohol intake subjects were instructed to abstain
from consuming alcohol for at least 24 hours before the
experiment. Of these subjects, twelve were categorized into
the fatigue group. The fatigue group was instructed to sleep
less than four hours over a 48-hour period. The remainder of
the subjects in the non-fatigue group were instructed to sleep
for more than seven hours and to abstain from consuming
caffeine for at least 24 hours before the experiment.

The remaining thirty-five subjects with no alcohol intake,
no stress, and no fatigue were categorized into the normal
group.

Prior to testing, the experimenter explained the experi-
mental procedure to the subjects, as required by KAIST
Institutional Review Board (IRB) guidelines. Subjects read an
information sheet and signed an agreement regarding the data
collection process. The EEG experiments were conducted
in a dark room with soundproofing to support the subject’s
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concentration and to minimize the background light and
noise. This protocol was essential, as the collection of a
subject’s EEG signals can be easily influenced by light and
sound.

B. EXPERIMENTAL DESIGN

An experiment was designed to measure EEG data while
the subjects performed cognitive tasks mimicking the mental
activities of operators in advanced NPPs. The tasks in the
experiment intended to test the patterns of EEG data while
performing cognitive tasks before entering the main control
room (MCR) for the identification of FFD for safe nuclear
reactor operations.

The design of an advanced NPP MCR is based on the
use of digital technologies. In these reactor’s MCR, oper-
ators rely on using hard devices with soft controls such as
mice and keypads to perform operator functions. Generally,
the key activities of the MCR operator are related to safety in
advanced NPPs demands cognitive work in order to monitor
and diagnose situations involving visual matching ability,
visual recognition memory, problem-solving ability, atten-
tion, and multitasking. These are related to the four major
factors that contribute to human errors: observation, search,
memory, and decision-making. In our previous research [14],
EEG-based human attention monitoring, while performing
related cognitive work was examined using an NPP simulator,
called the Windows-based Nuclear Plant Performance Ana-
lyzer (Win-NPA). Win-NPA is a compact nuclear simulator
capable of simulating 53 malfunctions in nuclear reactor
operations. In the study, the subjects conducted operational
tasks for both normal (i.e., startup and shutdown) and two
accident situations with Win-NPA involving visual matching,
visual recognition memory, problem-solving, attention, and
multitasking.

The experiments in the study were performed by engaging
the subjects with similar cognitive tasks using a computer
program, Lumosity. Lumosity is a computerized program
developed to improve cognitive skills including memory and
attention. This program is widely used in the field of cognitive
psychology [15]-[17]. Kim et al. found that the general tasks
with observation, search, memory, and decision-making show
similar classification accuracy with soft control-based tasks
using Win-NPA as an advanced MCR mock-up [14].

Use of the Lumosity program to mimic nuclear opera-
tors’ actions was based on the tasks such as the memory
matrix (MM) test, a chalkboard challenge (CC), and the train
of thought (TT) test.

In the MM test, the subjects were required to quickly
memorize a group of tiles on a grid. This program challenges
the memory of a subject to track the location and position
of a tile within an environment. The memory of the subject
temporally stores and manipulates the presented information.
The MM test describes a situation of the Win-NPA tsk, which
monitors and memorizes the indicator value in the key areas
of interest (AOI) in the MCR.
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The CC test measures quantitative reasoning and
problem-solving skills for decision-making. The test uses
numerical estimation to quantify a subject’s ability to approx-
imate numerical relationships quickly or with incomplete
information. This test is similar to a situation of the Win-NPA
task, which monitors the indicator in the key AOI and verifies
that the indicator value is within the procedure range.

In the TT test, a subject guides an increasing number
of trains to their predetermined stations using a computer
mouse. The subject must divide their attention to guide all
trains simultaneously thus experiences a situation similar to
the Win-NPA multitasking task, which monitors various indi-
cators in key AOI and identifies scenario (normal operation
or accidents).

As shown in Figure 1, each experiment session consisted
of five steps. The first step involved collection of the subjects’
baseline EEG signals. This was performed by collecting EEG
signals for two minutes with the subjects’ eyes closed (EC).
This step was followed by another EEG measurement for two
minutes with the subjects’ eyes open (EO). Subsequently,
the EEG signals were measured for two minutes while the
subjects performed each of the program’s test (MM, CC, and
TT). This timeline of testing was followed once each of the
90 subjects.

\EC

120s

cC

240 s

360s

480s
Time

FIGURE 1. EEG experiment paradigm of the cognitive training programs.

C. EEG RECORDING AND PREPROCESSING
EEG signals were measured using the BrainMaster Discovery
24E system (BrainMaster Technologies Inc.). Each subject
was fitted with an Ag/AgCl electrode cap arranged in the
international 10-20 system of electrode placement. The EEG
data were recorded from 19 channels Fpl, Fp2, F7, F3, Fz,
F4, F8, T3, C3, Cz, C4, T4, TS, P3, Pz, P4, T6, O1, and
02 at a sampling rate of 1024 Hz. Reference electrodes were
located on both earlobes. During the experiment, an electrode
impedance of below 5 k€2 was maintained for all the channels.
One of the related objectives of the use of these channels
was to develop a minimum set of channels to minimize the
use of EEG data while providing meaningful signals for FFD
classification.

Data preprocessing was performed based on using
Makoto’s preprocessing pipeline using EEGLAB to remove
artifacts in the collected EEG data [18]. The line noise
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was removed with the CleanLine plugin [19]. Bad channels
were rejected using the Clean Rawdata plugin, and continu-
ous data were corrected using artifact subspace reconstruc-
tion (ASR). The Adaptive Mixture Independent Component
Analysis (AMICA) program and postAmicaUltility toolbox
were used to conduct an independent component analysis
(ICA) [20]. The artifacts from body motions, rolling eyeballs,
and blinking were excluded from the analysis based on a
visual inspection of each component. The preprocessed data
were divided into six 20-second epochs for each task (EC,
EO, MM, CC, and TT) in the experiment. Thus, each task
contained 540 20-second epochs, 114 from the alcohol intake
group, 144 from the stress group, 72 from the fatigue group,
and 210 from the normal group.

D. FEATURE CONSTRUCTION

Our previous work involving EEG-based classification, fea-
tures extracted from the time domain that were found signifi-
cant [11]. Based on these results, this study selected features
from the time domain of the EEG signals that supported
the development of a deep learning algorithm. In the time
domain, the Hjorth features and the peak-to-peak values were
calculated from each channel. Three Hjorth features reflected
the characteristics of activity, mobility, and complexity [21].
Hjorth activity represents the signal power, the variance of a
time function. Hjorth mobility is defined as the proportion of
standard deviation of the power spectrum. It can be derived
by calculating the square root of the variance of the first
derivative of the signal divided by variance of the signal.
Hjorth complexity represents the change in frequency and
indicates the signal’s similarity to a pure sine wave. It can be
computed by calculating the mobility of the first derivative
of the signal divided by the mobility of the signal. The peak-
to-peak value is the difference between the maximum value
and the minimum value of the time series. Consequently,
four features from the time domain were extracted from each
channel of EEG data. However, to evaluate operators’ FFD,
it may be necessary to include all the available features such
as those based on connectivity, synchronization and non-
linear features. Using a large number of features may result in
overfitting and adding time delay to the system. Furthermore,
one of the related objectives of the use of these features was
to minimize the use of EEG data while providing meaningful
signals for FFD classification. Therefore, this study used the
fewest features possible to minimize the leakage of PI that is
technically required to identify individuals.

E. CHANNEL SELECTION

A user’s private information is potentially vulnerable, if an
unauthorized person knows the location of the electrodes
and the extracted features. Information should be used to a
minimum to minimize the leakage of PI that is technically
processed to identify individuals. During the process of col-
lecting EEG data, recording unnecessary data (e.g., full set of
EEG data) should be avoided. To examine the issue, this study
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selected frontal and temporal where four to seven channels
are located in comparison to the use of full brain scanning.

The brain areas and their corresponding electrode place-
ments, consistent with the international 10-20 system of elec-
trode placement are frontal (Fp1, Fp2, F3, F4, F7, F8, Fz) and
temporal (T3, T4, T5, T6), as shown in Figure 2. Extracted
features were measured on these parts of the brain. Therefore,
76 features (four time domain features with 19 channels) were
used for total brain, 28 features (7 channels) for frontal lobe,
and 16 features (4 channels) for temporal lobe.

FIGURE 2. Selected channels corresponding to the international
10-20 system of electrode placement.

However, the possibility of leakage of PI that may identify
individuals cannot be completely removed by simply mini-
mizing the collected information. While dealing with the PI
that may identify individuals, a system specifically designed
to protect PI should be implemented. This study introduced
an ISMS to protect private information resulting from EEG
signals.

F. DEEP LEARNING ALGORITHM FOR FFD
CLASSIFICATION

For the intended classification of FFD status of workers, this
study employed several major machine learning algorithms
for comparative evaluations. The methods used include multi-
nomial logistic regression (MLR), support vector machine
(SVM), convolutional neural networks (CNN), and long
short-term memory (LSTM) algorithms.

The MLR is an extension to the logistic regression model
that involves cross-entropy loss and predict probability dis-
tribution to support multi-class classification. The softmax
function was used to find the predicted probability of each
class.

The SVM is a supervised learning algorithm and formu-
lates a separating hyperplane. Kernel SVM finds the optimum
hyperplane into a higher dimensional space, which ensures
that the distance between margins is maximum. This study
specifically used the radial basis function (RBF) kernel to
project input vectors into a Gaussian space.
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The CNN consists of several convolution-pooling layer
pairs and a fully connected layer at the output. A standard
CNN is designed to recognize shapes in images and is par-
tially invariant to the location of the shapes. To classify
operators’ FFD, EEGNet, a compact CNN for EEG-based
brain—computer interfaces, was employed in this study [22].
It exhibits superior performance for detecting patterns in
EEG for various applications. In the classification block, the
features are passed directly to a softmax classification with
4 units, which represents the number of classes in the data.
The model was fitted using the Adam optimizer. Altogether,
300 training iterations were run, validation was stopped, and
the model weights that produced the lowest validation set loss
were saved. The EEG raw data was used as an input for CNN
analysis.

Since EEG signals constitute highly dynamic and
non-linear time series data, LSTM algorithm exhibit a design
advantage in isolating temporal characteristics of brain activ-
ity at different states [23]. Therefore, this study also evaluated
the operators’ FFD using the LSTM algorithm. To meet the
irreversibility criteria, this study proposed a method to extract
and store features through preprocessing without direct use of
the EEG raw data.

As shown in Figure 3, the proposed LSTM algorithm
consists of two LSTM layers (with 32 and 16 neurons, respec-
tively), two dropout layers, and a dense layer. The LSTM
structure is composed of two LSTM layers to obtain optimal
performance while reducing the analysis time. The model
was fitted using the Adam optimizer. Altogether, 300 training
iterations were run, validation was stopped, and the model
weights that produced the lowest validation set loss were
saved. The dropout technique was used to help regularize the
model with a dropout probability of 0.2 for classification to
help prevent overfitting.

‘ Raw EEG signals ‘
l

‘ Feature extraction ‘

l
‘ LSTM layer 1 (Relu) [32 neurons]| ‘
!
‘ Dropout layer (0.2) ‘

l
‘LSTM layer 2 (Sigmoid) [16 neurons] ‘

‘ Dropout layer (0.2) ‘

‘ Dense layer (Softmax) ‘

l
‘ Output ‘

FIGURE 3. The structure of the proposed LSTM algorithm.

The EEG data were downsampled to a sampling rate
of 256 Hz with 19 channels and 30720 time samples. A six-
epoch size of 7680 time samples were used for analysis. For
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the MLR and SVM algorithms, 5-fold cross validation was
used to classify a subject’s group. In total brain classification,
116736 epochs were used as training data and 29184 epochs
as testing data.

For both the CNN and LSTM algorithms, 60% of the
observations were randomly selected and used as training
data, 10% of the observations were used as validation data,
and 30% of the observations were used as testing data to
classify a subject’s group.

IIl. ISMS DESIGN

The objective of this section is to examine the feasibility of
an ISMS that can quickly and securely process the PI and the
FFD results for immediate use in daily work planning.

The ISMS proposed in this study is based on the incor-
poration of the International Organization for Standardiza-
tion/International Electrotechnical Commission (ISO/IEC)
24745 standard “Information technology — Security tech-
niques — Biometric information protection” [24]. ISO/IEC
24745 describes the requirements and guidelines necessary
to protect personal and biometric information. Although the
ISMS suggested in this study is not a biometric authentica-
tion system, it essentially performs the same function in the
context of how EEG data and PI would be handled.

According to ISO/IEC 24745, an ISMS should meet the
security requirements of confidentiality and integrity. Confi-
dentiality is a property that protects the data against disclo-
sure or unauthorized access [25]. This property makes the
data indecipherable. Integrity is a property that protects the
data from being forged or damaged. This property guarantees
that the original data maintain their integrity.

An ISMS should also meet the privacy requirements
of irreversibility and unlinkability. Irreversibility means
transforming data irreversibly before they are stored.
Thus, the transformed data can never disclose the information
in the original data. This property prevents unintended use of
the original data. Unlinkability prevents linking biometric or
other data across applications or databases, thereby preclud-
ing an individual’s data from being inadvertently linked to
his/her identity.

In the following sections, the proposed ISMS, its imple-
mentation, and data use are described. The ISMS proposed in
this research consists of five subsystems: the data capture sub-
system, the preprocessing subsystem, the decision subsystem,
the data storage subsystem, and the management subsystem,
as shown in Figure 4.

A. DATA CAPTURE SUBSYSTEM
If the FFD classification is based on real-time EEG mea-
surements, there are potential technical or regulatory issues
regarding information security. Therefore, this study assumed
that an operator performs cognitive tasks for 120 seconds
before entering the MCR for evaluation of his/her FFD based
on the baseline EEG data.

Before collecting PI and the EEG data, operators have to
provide official consent for the acquisition and processing
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FIGURE 4. Proposed ISMS component diagram.

of the PI and the EEG data according to the Korean Act
on Personal Information Protection (KAPIP). In Korea, this
Act requires an NPP operator to understand and agree to the
purpose of collecting PI and the EEG data and to understand
the information that will be used, the way this information
will be used, and the duration for which it will be used. This
process is similar to the requirements of the EU GDPR.

In this study, it was assumed that the operators had proceed
written consent for the collection of their PI and the EEG data
to assess their readiness for operational duties. In addition,
the data controller was required to secure a separate agree-
ment for collecting health information. This was necessary
because health information may be specified as sensitive
information. After obtaining the users’ agreement, the data
controller could access the users’ PI and record their EEG
data.

B. PREPROCESSING SUBSYSTEM

To ensure PI security, three approaches are typically applied:
data anonymization, encryption, and access control. Data
anonymization eliminates personal identifiers such as names
and personnel identification number from the collected data.
This means that the subject cannot be directly identified from
the anonymized data. However, once the EEG data analy-
sis determines that one of the operators is not fit for duty,
the anonymization of PI makes it impossible to link the EEG
determination to the specific operator who has fitness issues.

The proposed ISMS needs a system that will not only
protect the identity of the operator’s PI and the FFD status, but
will also allow tracking FFD to identify operators with any
fitness issues. In such cases, pseudonymization can be used to
replace personal identifiers with uncorrelated artificial identi-
fiers called pseudonyms. Pseudonyms are used instead of data
anonymization. As shown in Figure 5, an operator’s name and
unique identifier (UID) will be combined and replaced with
a unique pseudonym to enable identification of each operator
if necessary. Unique pseudonyms can be created using a hash
function.

Hash function is an internationally accepted method to
create pseudonyms. It maps arbitrary data to a fixed-size
value called a hash value. A hash function with a specific
length is often called one-way encryption because it converts
one kind of data into another data type that does not contain
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Name UID | Birthday Medicine | -+ | EEG Data
G. Hong. 48521 | 1993-07-04 | none -+ | 5f1a71b767-
Y. Yang 69862 | 1977-10-17 | Candesartan | - | c290d84531-

jzati Pseudonym | UID | EEG Data £F Decision Pseudonym | UID__| FFD Group
i isi

+ Pl Separation casselfd | 48521 | 5fla71b767- eagelfd | 48521 | Alcohol Intake

14231167 | 69862 | c290d84531- 14231167 | 69862 | Normal

Pseudonym | Name | Birthday | Medicine
ea88elfd G. Hong 1993-07-04 | none -
14a31167 Y. Yang 1977-10-17 | Candesartan | -

Encryption with ke Encryption with ke

Pseudonym | Encrypted PI Pseudonym | Encrypted FFD

easgelfd | vGOTU1242D0WYbFRAGPMBQoOCXnnsIAUM eaggelfd | 43WxILhd7WzpStoJqTo
8UK3UIQbA3BexuPNGxJvz1XeFrPVqwJYT8 d6gFNqASZJEaknSBRYG

JITgQHbB3M69JbsYUCA== =

14231167 | 40Ueh/KLW6S5fyuSI3DRvykZoDDlojNhnzOU 14231167 | WUICXaAbSYJ+TMMSIWQ
kZPBIGWRqQGacTgfUKLY9*MMFgZQKHPo 0ZX6ISSCnePawTiukROT

1TbrhOGV2qmhEh7adQ== =

Pl Database FFD Database

FIGURE 5. Dataflow diagram for saving Pl and the FFD data using
pseudonymization and encryption with authentication.

any of the original information and is practically noninvert-
ible. In addition, it always produces the same output when
the same input is provided, but a highly different output
when there is a very small change in the input (avalanche
effect). This feature is important for the protection of the input
information, i.e., the PI and the FFD databases (DBs) in the
event of a potential attacker reaching the output information.
For example, the hash value of a string “Mary Jung” using
hash function Secure Hash Algorithm-256 (SHA-256) is
“e86a6b461b88dabfeb46388a89d6a4e9a20de9823af2402cfS
12dddda0c4db86,” which is completely different from
that of “Mary Jung.” (Mary Jung with a period) as
“91b027334cc5976eb2c84f9ebb48cb9ed2577b4b1f3cffSeb9
607e4a848d2c2a.”

Subsequently, the controller must take technical, adminis-
trative, and physical actions to securely process the pseudony-
mous data. It is essential that the pseudonymous data not to
be lost, stolen, leaked, forged, modified, or damaged. In addi-
tion, the access key used to restore the pseudonymous data to
its original state must be separately stored and managed.

C. DECISION SUBSYSTEM

The decision subsystem calculates an operator’s FFD using
a classification model as described in the previous section
(II. F). The FFD classification results are transferred to the
data storage subsystem and stored. To meet the irreversibility
criteria, only the FFD classification results will be stored
and not the EEG raw data. FFD classification results are
encrypted before being stored in the FFD database. This
process will be described in detail in the following section.
When an off-normal FFD status (e.g. alcohol intake, stress,
or fatigue) is identified, an authorized controller will be noti-
fied. Upon notification, the authorized controller can request
a decryption key to access the identity of the operator with an
off-normal FFD status.

D. DATA STORAGE SUBSYSTEM

To minimize the risk of privacy disclosure, it is recommended
that PI and the EEG data be encrypted and stored separately.
For further protection, a system can be set for access to the
encrypted data requiring two authorized controllers who are
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in possession of or can retrieve different portions of the access
key. The input of both authorized controllers is necessary to
create a complete access key to reach the encrypted PI and
FFD databases.

Ideally, the FFD database should be completely indepen-
dent from the PI database. However, as envisioned for the
use of FFD assessment results, when an operator is classi-
fied as unfit, the authorized controller needs timely access
to the PI database. Therefore, including minimal PI-related
information such as an encrypted UID in the encrypted FFD
database is necessary. As shown in Figure 5, timely access
to PI data can be achieved through decryption of the FFD
database, which makes the UID and FFD results accessible.

To ensure confidentiality and integrity of both the PI and
the EEG data, the standard ISO/IEC 24745 standard suggests
using encrypted and authenticated data. The following steps
present how this study approached the security in data storage
and the security necessary to link FFD issues to the employee
in question.

Initially, data encryption is needed to guarantee confi-
dentiality. Encryption algorithms use secret keys to encode
plain text and to decode ciphertext. Encrypted data can
be decrypted successfully only by using the correct key.
There are two kinds of encryption algorithms: symmetric-key
and asymmetric-key. The symmetric-key algorithm uses the
same key for both encryption and decryption, whereas an
asymmetric-key algorithm uses separate keys for each action.
Generally, symmetric-key algorithms are used for efficiency,
as asymmetric-key algorithms take significantly more time to
encrypt or decrypt a large volume of data.

In this study, the Advanced Encryption Standard (AES)
algorithm, the most commonly used algorithm among the
symmetric-key algorithms with encryption and decryption
capability was utilized. The AES algorithm has been adopted
as a standard by the U.S. National Institute of Standards and
Technology since 2001 and was approved by the U.S. Gov-
ernment for the security of classified information. Both PI
and the FFD results should be encrypted before the databases
are stored separately using different keys.

Data authentication is also needed to ensure integrity [26].
Data authentication guarantees that the original data have not
changed. In this study, a message authentication code (MAC)
was used for this purpose. MAC is similar to a hash but uses
a secret key while generating the code. This feature securely
provides integrity, and is called “‘strongly unforgeable,” since
an attacker cannot forge the data without knowing the key.
It was applied by attaching MAC to the ciphertext during data
encryption and was used for verification during data decryp-
tion. Among the various ways to implement authenticated
encryption, this study used encrypt-then-authenticate-then-
translate (EAX) mode of AES to evaluate ISMS reliability
with respect to processing time and security evaluation.

E. MANAGEMENT SUBSYSTEM
The aforementioned subsystems make the ISMS techni-
cally secure. However, the value of information security is
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extremely limited without appropriate management and pro-
cess security by the system. While all NPP operators are
educated in information security at the organization level
through security education, establishing security teams, secu-
rity screening of managers, or devising security processes,
the ISMS is organized to address information security at the
systems level.

In Figure 6, authorized controller is defined as the person
approved to request access to the relevant information from
the access control unit. This allows the authorized controller
to request the decryption key and if approved, the data in the
FFD database can be tied to an identified person using the
decryption key. The same process was used to identify PI
from the PI database.

Management Subsystem

Request
Request Access Control itapproved) | Key Management
Unit Unit
K K

Request
(il appraved)

| 3

Decryption

————— 4

Data Storage Subsystem o

Controller

Data Processing Unit

=

EEG/FFD Data — Pl Data —=»
Key pipg) ke

Management Process
Key rooe) &

FIGURE 6. Overall process of the management subsystem from the
controllers’ perspective.

Physical access control and information access control are
required to protect the security of a system. Therefore, only
authorized controllers are allowed this access. In an NPP,
physical access control can be achieved by defining security
zones where databases are physically located and access to
these areas is restricted. Permission for authorized controllers
to access PI and the FFD databases should be granted only
when necessary. To establish when access is necessary, pro-
cedures, processes, and conditions for information access
control need to be established.

Managing the encryption keys requires the highest security
because unauthorized use of encryption keys can destabilize
the whole ISMS. For security, the keys should be stored
in a designated, separate key management unit. ‘“‘Separate
storage” could be a physically separated device or a device
without any network connection. A policy addressing access
control to keys must define who has access and how they can
access and use the keys. Encryption keys can be fixed pass-
words. However, for enhanced security, it is recommended
that the passwords be changed periodically or generated as
needed. Additionally, it is necessary to have two different
controllers, each of whom has different portions of the pass-
word. Figure 7 shows the processes required to access the data
from the databases.

Figure 8 shows the processes necessary to link the FFD
and PI databases. Assuming that personal identifiers are
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FIGURE 7. Dataflow diagram of fetching FFD data from the FFD database.
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FIGURE 8. Dataflow diagram of linking FFD data to the PI data.

eliminated in the PI and the FFD databases, a pseudonym
must be used to link the two databases with each operator’s
information. To cope with an unexpected security event,
a system management process is needed to find a solution.
Such a process requires identification of the data that were
changed or leaked and the cause of the problem. To ensure a
successful solution, the ISMS should identify and keep a log
of every system event, such as access, modification, or data
selection.

IV. CLASSIFICATION RESULTS

The results relevant to the development of the FFD classi-
fication models using the EEG data and their features are
described in this section. As described in the feature construc-
tion section, four features from the time domain in the EEG
data were used for the classification.

Table 1 shows the average classification accuracy of EC,
EO, MM, CC, and TT across total, frontal, and temporal areas
for all classification groups based on using the MLR, SVM,
CNN, and LSTM algorithms. The classification accuracy was
calculated as the total number of correctly classified samples
by the model in the testing data divided by the total number
of samples in the testing data. For EEG data, the average
classification accuracy while performing cognitive activities
in the Lumosity program (MM, CC, and TT) outperformed
those obtained from EEG data measured during the EC and
EO states. In addition, SVM, CNN, and LSTM algorithms
exhibited higher classification accuracy across total, frontal,
and temporal areas than MLR.

In general, the average classification accuracy increases
when the number of epochs and channels increases (i.e., with
total brain channels). The effect of increasing the size of
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TABLE 1. All classification groups combined case: Comparison of average
classification accuracy of MLR, SVM, CNN, and LSTM algorithms using
different task EEG data from total, frontal, and temporal areas (Unit: %).

Task Classifier Total Frontal Temporal
EC MLR 84.2 70.0 68.3
SVM 87.1 82.5 86.0
CNN 88.0 70.0 65.8
LSTM 89.2 80.0 80.9
EO MLR 81.2 64.1 68.0
SVM 78.5 81.3 84.7
CNN 85.2 61.8 58.8
LST™M 84.5 77.7 80.6
MM MLR 85.2 68.0 68.8
SVM 91.5 87.2 85.1
CNN 98.4 71.7 72.3
LSTM 96.4 92.7 92.7
CcC MLR 84.9 69.8 62.3
SVM 87.2 85.2 86.1
CNN 97.5 722 70.3
LSTM 94.3 91.2 89.9
TT MLR 85.9 66.1 60.7
SVM 92.6 90.7 91.7
CNN 95.8 79.2 69.4
LSTM 95.2 91.7 88.1

EEG data was particularly significant with the CNN analysis.
Interestingly, the proposed LSTM algorithm exhibited higher
performance than the CNN algorithm when only the data
from the frontal or temporal areas are used. This indicates that
LSTM can constitute a useful algorithm for EEG-based FFD
classification employing a low number of channels. There-
fore, using the proposed LSTM algorithm makes it possible to
classify operators’ FFD while protecting information quickly
and accurately.

Table 2 shows the average classification accuracy of each
classification group across total, frontal, and temporal areas
based on the LSTM algorithm. As in all groups’ combined
cases, the average classification accuracy was also higher for
cases using the Lumosity program’s cognitive activities when
compared to the EC and EO states. In addition, the classi-
fication accuracy of each group increased as the number of
subjects increased (in most cases, higher performance was
observed for the normal group and the stress group).

To examine potential errors in the classification, false pos-
itives (FPs) and false negatives (FNs) were calculated for the
case using the LSTM algorithm. Here, FP is an error in which
a test result incorrectly indicates that subjects are from the
alcohol intake group, the fatigue group, or the stress group
while they are actually from the normal group. In contrast,
FN is an error where the test result incorrectly indicates that
subjects are from the normal group when in reality they are
not normal.

As shown in Table 3, the rates of FPs and FNs in the results
corresponded to 0.00-10.00% with the FN rates lower than
those of FP rates in most cases. Lower error rates and higher
classification accuracy can be achieved when large number
of EEG data can be accumulated for each subject. These
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TABLE 2. Average classification accuracy of each classification group
across total, frontal, and temporal areas with the use of the LSTM
algorithm (Unit: %).

Task Group Total Frontal Temporal
EC Alcohol 81.8 59.1 72.7
Fatigue 93.3 66.7 80.0
Normal 89.8 91.8 81.6
Stress 91.2 82.4 85.3
EO Alcohol 58.8 47.1 64.7
Fatigue 85.0 75.0 65.0
Normal 93.9 90.9 93.9
Stress 87.9 81.8 84.8
MM Alcohol 97.4 94.7 100.0
Fatigue 100.0 85.2 77.8
Normal 94.7 94.7 96.1
Stress 96.1 92.2 90.2
CcC Alcohol 85.7 82.9 68.6
Fatigue 90.0 80.0 90.0
Normal 98.6 97.2 100.0
Stress 97.0 93.9 90.9
TT Alcohol 93.5 93.5 87.1
Fatigue 96.2 88.5 80.8
Normal 95.5 89.6 88.1
Stress 95.5 95.5 93.2

TABLE 3. False positives (FPs) and false negatives (FNs) in FFD
classification across total, frontal, and temporal areas based on the use
of the LSTM algorithm (Unit: %).

Task FP/FN Total Frontal Temporal
EC FP 4.17 7.50 10.00
FN 4.17 3.33 7.50
EO FP 291 7.77 8.74
FN 1.94 291 1.94
MM FP 1.56 3.65 1.56
FN 2.08 2.08 1.56
cC FP 1.89 6.29 5.66
FN 0.63 1.26 0.00
TT FP 2.38 2.38 4.17
FN 1.79 4.17 4.76

findings indicated the feasibility of using EEG-based system
for FFD classification, perhaps at lease as a supportive system
for existing FFD evaluation systems.

V. ISMS RELIABILITY

The following section summarizes the results from the devel-
opment of supporting ISMS to meet the European and Korean
PI security system requirements.

The proposed near real-time data analysis in this research
requires special considerations for its application in the
nuclear industry. Any system that is essential for safe and
secure operation of an NPP must be equipped with a reli-
able security system as required by law. The reliability of
the information security approach should also be assessed
quantitatively in terms of defense against unauthorized users.
Moreover, a quick turnaround of the collected EEG data and
identification of the FFD status are essential to the implemen-
tation of the proposed approach for its intended application in
NPPs (to quickly determine an operator’s FFD and to notify
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the appropriate authority before the operator begins the daily
tasks). An EEG-based FFD evaluation system should also
comply with regulatory requirements with minimal impact on
the user.

A. PROCESSING TIME

The additional time required to implement information secu-
rity, i.e., pseudonymization, authenticated encryption, and
decryption, of the PI and the FFD data was assessed in this
study using an Intel® Core™ Processor 15-7267U, 16GB
RAM, and Mac OS X 10.14 with PyCryptodome package on
Python 3.8.

Altogether, 100 datasets were randomly generated using
four different lengths: 128bytes, 1KiB (2!%bytes), 32KiB, and
IMiB (2?bytes). These lengths were used to conservatively
represent the data to be processed in an ISMS at an NPP.
The average time required was calculated for pseudonymiza-
tion, authenticated encryption, and decryption for each set
of the 1000 combinations. For pseudonymization, the SHA-
256 hash function was used. For authenticated encryption
and decryption, the AES-256 algorithm with the EAX mode
was used. Table 4 summarizes the results of the overhead
calculations for different lengths of the data. The results of the
calculations indicated that the overhead was less than a few
milliseconds. Typical PI is smaller than 32KiB, which can
hold more than 8,000 characters when encoded by UTF-8.
FFD results can have even fewer characters. Therefore,
the addition of these three data security processes requires
only a few milliseconds.

TABLE 4. Calculation of the additional time required, in milliseconds (ms)
for pseudonymization, encryption, and decryption.

Pseudony

Data length mization Encryption  Decryption Sum
128B 0.0273ms 0.2850ms 0.3070ms 0.6200ms
1KiB 0.0355ms 0.2980ms 0.3170ms 0.6510ms
32KiB 0.1920ms 0.4230ms 0.4350ms 1.0500ms
IMiB 5.7300ms 4.5500ms 4.1800ms 14.4000ms

B. SECURITY EVALUATION

When a data storage subsystem is attacked, the attacker can
obtain only the pseudonymized identifier and encrypted data.
The time required for the attacker to decrypt the encrypted
data is important. This study calculated the time required
to decrypt the data without keys and assumed the use of
AES. AES supports key sizes of 128, 192, or 256 bits. The
key length is directly related to the strength of the secu-
rity, since the simplest method of attempting to decipher an
unknown key is to try to input all the possible key values
in the algorithm. This technique is called a brute-force key
search. With a key of n-bit size, the number of attempts
required during a brute-force key search is 2". On an average,
271 attempts are needed to find the correct key. The number
of attempts increases exponentially as the key size increases.
Supposing that a processor can decrypt 10,000,000 AES-
encrypted ciphertexts encrypted with a 128-bit key in 1 s
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(10MHz rate), the average expected time for a brute-force
key search is 2'?7 x 1077s = 5.40 x 10?3 years, making
decryption impractical. Currently, the best recorded attacks
on AES require 2!26001 operations for a 128-bit key and
the difficulty increases exponentially while using a 192-bit
or 256-bit key, verifying the impracticality of a successful
attack [27].

When an attacker attempts to forge an existing data entry in
a database (change an entry from ABC to ACB), he/she must
imitate the encryption process of the system. If this attempt
is unsuccessful, the forged data will be discovered during
the system’s authentication process. The same encryption
algorithm, key, and authentication logic are required to forge
an original data entry. Among these three elements, finding
the encryption key is impractical due to the time required
according to the aforementioned calculations. This indicates
that the security of the proposed system is appropriate for the
intended application.

V1. DISCUSSION

The following discussion examines information security-
enforced EEG-based nuclear operators’ fitness for duty clas-
sification methodology.

A. EEG-BASED FFD CLASSIFICATION

While this study found that all of the algorithms examined
are useful for EEG-based FFD classification, LSTM was
found to be the best choice considering both classification
accuracy and the information security. When a large amount
of EEG data is available for each operator, the proposed
LSTM algorithm makes it possible to quickly and accurately
classify operators’ FFD while protecting their PI.

The findings indicated the feasibility of using the proposed
methodology to support worker FFD classification with the
capability of simultaneously examining operators’ sobriety,
stress, and fatigue. For practical implementation, the method-
ology can serve the role of FFD screening without disclosing
the subjects’ identity. If necessary, the methodology can be
supplemented with subject specific tests as a follow-up. In the
case of stress and fatigue evaluations, subject-specific results
can be collected and used for personalized health and mental
assessment according to the existing protocol.

This study was based on the subjects’ performing cognitive
tasks mimicking the mental activities of nuclear operators
in advanced NPPs. Although the subjects and the experi-
ments do not represent the actual NPP workers and their
professional tasks, the methodology may still prove utility in
field applications. Future study should consider performing
experiments by using various age group subjects with work-
ing knowledge in nuclear reactors and a full-scale nuclear
simulator.

B. GUIDELINES

The six mandatory actions for secure PI handling required
by the national and international communities are: (a) Estab-
lishment and enforcement of an inner management plan for

72544

secure PI handling, (b) Restriction of permission and control
to access PI, (c) Application of encryption, or equivalent
action, in order to save and transmit PI securely, (d) Keeping
an access log to counteract a PI infringement accident and
prevent forgery and falsification of PI, (e) Installation and
updating of the security program for PI, and (f) Physical
action such as placing the storage facility in a secure area or
installing a lock for secure storage of PI. These requirements
are similar to those of the European GDPR and the Korean
E-KAPIP.

The ISMS can accomplish the six mandatory actions as
discussed in the sections of the data capture subsystem, pre-
processing subsystem, decision subsystem, data storage sub-
system, and management subsystem. An organization level
management plan is required for the implementation of the
system (Item a). Permission and control to access PI are
restricted and only authorized controllers are allowed the
access to PI. A policy addressing permission and access
control must define who has access and how they can access
using the keys (Item b). To securely save and transmit PI,
both the preprocessing and the decision subsystems must
be encrypted (Item c). To cope with an unexpected security
event, the ISMS should identify and keep a log of every
system event such as access, modification, or data selection.
This helps identify the data that were changed or leaked and
the cause of the problem (Item d). Additionally, security pro-
grams such as pseudonymization, encryption algorithms, and
encryption keys are updated periodically (Item e). Physical
access control can be achieved by defining security zones
where databases and EEG devices are physically located and
by ensuring that access to these areas is restricted. To store
encryption keys securely, a separate key management unit
(e.g., separate storage) that includes a physically separated
device or a device without any network connection can be
used (Item f). Matching the regulatory requirements with the
proposed design features suggests that the proposed ISMS is
expected to meet the current privacy requirements.

C. ATTACK SCENARIOS

There are three potential scenarios by which the data can
be attacked. The following section describes each of these
scenarios.

First, there is a potential for PI and the FFD results to be
disclosed while being transferred between the ISMS subsys-
tem prior to the data storage subsystem. To prevent this sit-
uation, data should be encrypted and decrypted immediately
after capture and before every transmission.

Second, the data storage subsystem can be made secure
from data disclosure or forgery by not storing the EEG data
in the ISMS. Thus, there is no link between an operator’s
identification and their PI, preventing it to be discerned from
the EEG data.

Third, when the management subsystem is attacked, seri-
ous data disclosure is likely to occur. Strict enforcement of
separate storage of the key along with strict access control
should be designed against an attack as explained above.
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Future studies are needed to address the bigger picture of
organization level management in the implementation of the
ISMS, which includes appropriate human resource manage-
ment and security education. To achieve such a broad objec-
tive, it is necessary to implement ISO/IEC standard. This
study assumed that the NPP network (intranet) was secure
among subsystems. However, the vulnerabilities that can
result from an insecure network should also be considered.
In addition, relevant regulations to ensure key management
security need to be developed.

VIl. CONCLUSION

This study presents the development of an information
security-enforced EEG-based classification system for eval-
uating an NPP operator’s FFD. By applying the time domain
analysis to multichannel EEG data, an operator’s FFD could
be classified with an accuracy of 88.1-96.4% (with cognitive
training program based on LSTM algorithm).

This study also designed an ISMS to protect the PI and
the FFD status for NPP operators whose FFD was deter-
mined using the proposed EEG-based classification system.
The resulting system design considers the data collection,
pseudonymization, encryption/decryption, and access con-
trol. Implementation of the information security measures in
the proposed ISMS is expected to provide the necessary pro-
tection of the PI and the FFD databases without significantly
impacting the overhead of FFD classification through near
real-time analysis.
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