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ABSTRACT Applications and technologies of the Internet of Things are in high demand with the increase of
network devices. With the development of technologies such as 5G, machine learning, edge computing, and
Industry 4.0, the Internet of Things has evolved. This survey article discusses the evolution of the Internet of
Things and presents the vision for Internet of Things 2.0. The Internet of Things 2.0 development is discussed
across seven major fields. These fields are machine learning intelligence, mission critical communication,
scalability, energy harvesting-based energy sustainability, interoperability, user friendly IoT, and security.
Other than these major fields, the architectural development of the Internet of Things and major types of
applications are also reviewed. Finally, this article ends with the vision and current limitations of the Internet
of Things in future network environments.

INDEX TERMS 10T, I0T2.0, machine learning, mission critical communication, scalability, energy harvest-

ing, interoperability, usability, security, 5G, 6G.

I. INTRODUCTION

The term ““Internet of Things” (IoT) was first coined by
Kevin Ashton in 1999 [1]. The International Telecommuni-
cation Union (ITU) has formally defined IoT as, “A global
infrastructure for the information society, enabling advanced
services by interconnecting (physical and virtual) things
based on existing and evolving interoperable information
and communication technologies [2].”” This definition can be
viewed as the basis of IoT technologies. There is an increas-
ing demand for the IoT applications and technologies world-
wide. It is predicted that networked devices will increase from
18 billion in 2017 to 28.5 billion in 2022, and Machine to
machine (M2M) connections will reach 15 billion in 2022 [3].
With recent advancements in the fifth-generation of mobile
telecommunications technology (5G), high speed and low
latency networks will further facilitate the development of
IoT technologies and applications [4]. However, with the
recent advancement of other technologies and application
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such as, machine learning, edge computing, and Industry
4.0, there is a need to update and redefine the concept of
IoT towards IoT 2.0 [4]-[6]. There are many industry and
public mentions of IoT 2.0 visions. Many of them focus on
improving IoT application productivity and service quality
with the vision of users [7]-[9]. Al-driven service develop-
ment is viewed as a way to enhance service quality [10].
IoT interoperability is another field that attracted attention
for IoT 2.0 [11]. Other than these fields, security and privacy
vulnerabilities are also mentioned as issues to be solved in
the next generation IoT systems [12]. A potential solution to
reinforce IoT security and privacy could be blockchain [13].

At the Samsung Developer Conference 2019, interoper-
ability, security, connectivity, and automation of IoT appli-
cations are major fields of further development in the IoT
2.0 vision [14]. Other than this conference, a report [15] from
the Joint Research Centre (JRC) of the European Commission
concluded that IoT 2.0 should utilize machine learning tech-
nologies to enhance the generated intelligence and knowledge
available to users. In this process, interpolation is an issue
that limits the advancement of specialized edge services.
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Therefore, approaches toward integration and standardization
are inevitable for the evolution of IoT and further develop-
ment of IoT applications. Compared to the enthusiasm in
the industry, academic works on the concept of IoT 2.0 are
limited. In [16], an IoT 2.0 platform is proposed. This plat-
form integrates application development, deployment, and
sharing. Interoperability is featured as a key function of the
IoT 2.0 platform [16], [17]. The authors of [18] demon-
strated the “Identity of Things” as an IoT 2.0 component.
IoT applications should also be identified by their manu-
facturers to avoid security issues generated by any criminal
parties [18]. In [19], an IoT 2.0 conceptual framework is
developed to emphasize the usability of IoT and systems
for end-users. Distributed intelligence powered by artificial
intelligence (Al) is discussed in [20] and recognized as an
aspect of IoT 2.0. The above works only describe one or
a few aspects of advancement in IoT. Also, the authors
of [21] concluded that very few existing survey papers had
connected different aspects of IoT. Therefore, the primary
objective of this article is to provide an in-depth analysis of
recent IoT advancement and define the concept of IoT 2.0.
This article surveys the recent development of IoT technol-
ogy over the period 2015-2020 in seven dimensions as [oT
2.0. These dimensions include machine learning intelligence,
mission critical icommunication, [oT scalability, IoT sustain-
ability, IoT interoperability, user friendly IoT, and IoT secu-
rity shielding the previous six aspects from external attacks
(Figure 1). The contributions of this article are:

1) Discussion of recent IoT architectures.

2) Identifying challenges and limitations on practical IoT
applications.

3) Conclude and analyze recent research trend.

4) Establishing visions of IoT in future sixth-generation of
mobile  telecommunications  technology  (6G)
environment.

The rest of this article is structured as follows. Section II
provides an overview of related technologies and concepts.
Section III examines the IoT architectures. Sections IV
and V elaborate on the usage of machine learning tech-
niques and the requirements of mission critical applications.
Then, Section VI describes different types of scalability and
scalability enabled by software defined networks (SDN).
Sections VII and VIII establish the security and performance
requirements of IoT 2.0. After that, Section IX focuses on
energy harvesting-based IoT sustainability. Section X reports
IoT interoperability with existing standards. Section XI illus-
trates user friendly IoT as the final dimension of IoT 2.0.
Section XII addresses the recent development of IoT appli-
cations. Finally, Section XIII defines current challenges and
future research directions, followed by Section XIV the
conclusion.

Il. TECHNOLOGIES AND CONCEPTS UNDERLYING loT 2.0
A. 5G

The authors of [22] revealed the requirements of 5G-based
IoT as high data rate, highly scalable and fine-grained
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FIGURE 1. loT 2.0 concepts.

networks, very low latency, reliability, resilience, security,
long battery lifetime, connection density and mobility. There-
fore, 5G grants IoT applications the capability to provide
better services by gathering more data in a faster and more
secure channel. Furthermore, 5G networks could support
the development of next-generation IoT applications. In this
subsection, the 5G enabling technologies are reviewed.

Wireless Network Function virtualization (WNFV) is a
major part of 5G networks. It not only enables network
services to be run through software, but also enables wireless
networks to be managed more efficiency and provide better
Quality of Service (QoS). Network slicing is key technol-
ogy within 5G which is built on top of the WNFV to cre-
ate logically separate networks and provide end-to-end QoS
guarantees [23].

5G Heterogeneous networks have evolved to improve the
speed of data transmission. To reduce latency, multi-tier
cell architectures are deployed to offload data from higher
tier centralized cells to lower-tier distributed cells. Lower
tier cells are closer to the end users. Hence, latency is
reduced [24].

Advanced spectrum sharing and interference management
enable wider coverage area and higher traffic load bal-
ance [24]. To further improve spectral efficiency, device to
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device (D2D) communication technology is also included
in 5G networks. This technology allows users in close dis-
tance to communicate without a base station. Therefore, D2D
communication improves not only spectral efficiency but also
provides high throughput and energy efficiency [22].

One key enabler of real-time applications is edge
computing. As edge computing enables low latency data
transmission, real-time smart applications can be devel-
oped to provide high quality services [25]. Therefore, in a
5G network age, integration of Al and edge computing
enhanced IoT will significantly enhance the quality of user
experience [22].

B. TACTILE INTERNET

The authors from [26] highlighted that Tactile Internet
includes human to machine interactions through haptic
devices. They view Tactile Internet on the same level as IoT
and 5G. Therefore, revealing the common properties of Tac-
tile Internet, IoT and 5G as low latency, ultra-high availabil-
ity, Human to Human (H2H)/M2M co-existence, data-centric
technologies and security. However, the authors from [27]
interprets Tactile Internet as another domain addressed by the
low latency requirement of 5G and actuated by the wireless
communications of [oT.

Based on the properties of Tactile Internet from [27],
the authors of [28] further categorized the challenges of
Tactile Internet into communications, haptics, artificial intel-
ligence, and computation. Communication challenges are
higher data rates, ultra-low latency, high reliability, and sup-
port of cloud/fog network overheads. These requirements are
almost identical to the properties of 5G networks. Therefore,
communication requirements can be resolved under the envi-
ronment of 5G. Low latency services also require artificial
intelligence and computation power. Artificial intelligence
can be leveraged to predict future actions to compensate
for latency. Furthermore, artificial intelligence is also the
basis of intelligent services. Similar to artificial intelligence,
faster computation also reduces the impact of latency. It also
supports computation for artificial intelligence and real-time
haptic services. The authors of [29] provided six use cases
of Tactile Internet applications. The first use case is health
care. An example of a health care application is exoskeletons
for disabled people. The exoskeleton can detect changes in
human muscle to perform certain movements. However, tac-
tile latency is required to ensure safety. Exoskeletons can also
be used for education and sports. It can be used in virtual
training centers so that students can train in any location.
Another use case is traffic. Tactile Internet enables fully
autonomous traffic, where vehicles can react instantly to
incoming humans on the street. Therefore, this system aims
to prevent any injury or death from traffic accidents. This
also enhances the performance of monitoring. The usage of
free-viewpoint video provides multi-perspective monitoring
for users [29]. In the industrial sector, Tactile Internet enables
mobile robots for production, reducing any human injuries
during production. The last use case is the smart grid. Using
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Tactile Internet, low latency networks can synchronize the
usage of power to the suppliers. This allows the suppliers
to precisely adjust the reactive power, preventing wastage of
power.

C. EDGE COMPUTING

The aim of edge computing is to reduce bandwidth usage and
latency for an IoT network. From Figure 2, as a major task
of edge computing, machine learning is highly deployable
on edge devices [30]. Edge computing is an enabler of low
latency and real-time Al applications. In this subsection,
the major architectures of edge computing are discussed.

There are three significant architectures of edge com-
puting: fog computing, mobile edge computing (MEC) and
cloudlet computing [30]. Fog computing is an extension of
traditional cloud computing with fog computing nodes [30].
These fog computing nodes are placed between the end
devices and a centralized cloud. The function of these fog
computing nodes is to aggregate heterogeneous data from
different sources. Furthermore, the fog computing nodes act
as an interface to access these heterogeneous data, protecting
any user from the heterogeneity of data. In the second archi-
tecture, MEC, is designed for cellular networks [30]. Unlike
fog computing nodes, MEC nodes utilize both computational
and storage capabilities. The functionality of these nodes can
be modified through virtualization interfaces. Hence, MEC
nodes can provide flexible, low latency, and real-time services
to mobile end users. Finally, cloudlet computing is imple-
mented with a cloudlet, which is a virtualized server that is
one hop away from the end user [30]. Cloudlets are able to
store provisional resources. Therefore, this architecture also
can provide end users with flexible, low latency, and real-time
services [31]. Based on these major architectures, there are
also further enhancements in IoT networks improving energy
efficiency [32], [33] and data reliability [34].

In conclusion, the major edge computing architectures are
implemented with extended servers or nodes near the end
users. The common purposes of these nodes are reducing
latency, providing computation or storage capabilities, and
delivering real-time services to end users. In a 5G envi-
ronment, these node properties are the basis of intelligent
services pushed by big data transmission and processing.
Tactile Internet and Industry 4.0 also drive potential appli-
cation requirements for IoT 2.0.

D. INDUSTRY 4.0

The authors of [35, p.835] defined Industry 4.0 as ““‘the fourth
industry revolution.” The Cyber-Physical System (CPS) is
the basis of this revolution. The authors of [5] revealed that
“CPS are industrial automation systems that integrate innova-
tive functionalities through networking to enable connection
of the operations of the physical reality with computing and
communication infrastructure.” This definition shows that
CPSs require heterogeneous data from multiple sources. As a
result, data analytics techniques are suitable for implementing
intelligence as part of the CPS service. The authors of [5]
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FIGURE 2. Major tasks of edge computing [30].

also pointed out that methods for processing data remain a
challenge for these CPS applications. Hence, the implemen-
tation of big data analytics and machine learning are essential
for the development of Industry 4.0. The amount of data
generated by intelligent CPSs is difficult for a centralized
cloud architecture to process. Inevitably, edge computing is
used to distribute the load for data processing. Also, edge
computing devices are closer to the end users. Therefore,
it ensures lower latency of a service [36].

E. MACHINE LEARNING

IoT data processing is a challenge due to the 5V
(volume, velocity, variety, veracity, and value) features of
these data [37]. Data analytics techniques like machine
learning can process data with complex 5V features [38].
Furthermore, applying machine learning on heterogeneous
IoT data ensures intelligence to IoT applications, providing
better and efficient services.

The major types of machine learning are supervised learn-
ing, unsupervised learning and reinforcement learning [39].
The supervised learning methods use input data with expected
outcomes to lead the learning process of a machine learn-
ing model. On the other hand, the expected outcome is
not provided when training an unsupervised learning model.
An unsupervised learning model is built through clustering
and other statistical methods [40]. Reinforcement learning
models perform actions with input features or state of the cur-
rent environment. This model learns from the return reward
of the action and improves through trial-and-error [41].

lll. lIoT ARCHITECTURES

In this section, technical improvements of current IoT archi-
tectures are revealed through a detailed analysis of novel
IoT architectures under the environment of 5G, Tactile
Internet, and Industry 4.0. There are many different IoT
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architectures [42]-[50]. The authors in [42] aggregated the
conventional IoT architectures into a layered architecture
of six layers. From Figure 3, this architecture consists of
the physical layer, the perception layer, the network layer,
the middleware/cloud layer, the application layer, and the
business layer. With the assumption that end devices have
limited power, memory and computational resource, the per-
ception layer or the end devices in the perception layer are
only responsible for data collection and transfer. Therefore,
all data is transmitted to the middleware/cloud layer for fur-
ther processing. For applications with extensive data flows
like virtual reality and augmented reality, the throughput and
latency of data transmission cannot meet the requirements of
real-time, perhaps mission critical service. Therefore, novel
IoT architectures are needed in this new era of 5G, Tactile
Internet, and Industry 4.0 [43], [51], [52].

Similar to conventional IoT architecture, the recent IoT
architectures reviewed in this paper also contain end-devices
and cloud layers. On the other hand, the most significant
difference is the utilization of an edge/fog layer in the recent
IoT architecture to provide real-time services, data analytics,
and data processing functionalities near the end devices. The
combination of machine learning models for data analytics
services is one of the drivers for these recent architectures
[43]1-[50]. Figure 4 shows the layers with the functions of
these recent IoT architectures. As an architecture providing
basic edge computing, the authors followed a three-layered
design. This design consists of the IoT end device layer,
the fog/edge layer, and the cloud layer. The IoT end device
layer is similar to the perception layer of the conventional IoT
architecture. This layer also contains IoT sensors, actuators,
and end devices for data collection and transmission. Data is
passed to the fog/Edge layer to perform analytical procedures
and processed for a higher-level layer. The final layer of
the three-layered architecture is the cloud layer, providing a
platform for centralized data analytics, storage, and decision
making [44]-[46]. Comparing the above recent architectures
with conventional IoT architectures, the involvement of the
edge computing layer is the root of the changes between
architectures.

The authors of [47] separated the cloud layer into a cloud
layer and a new network core layer. This layer connects
the cloud layer with the fog/edge layer. Also, it provides a
flexible and scalable interface for controlling the fog/edge
layers [47], [50]. This interface is also developed between
the data edge/fog layer and the IoT end device layer. More
specifically, the network domain and the communication
layer have similar functions to the network layer of the con-
ventional IoT architecture. These layers create a link between
the end devices and the fog/edge level devices. Also, as a
5G process, the communication layer facilitates advanced
spectrum sharing and interference management for D2D
communication [43], [49].

The application layer is above the cloud layer. For dif-
ferent IoT applications, the application layer is different.
However, in the recent [oT architectures, the application layer
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commonly acts as a software interface to control lower lay-
ers. Services could be deployed on the cloud level and the
edge/fog level to provide centralized high-level services and
distributed, real-time services, respectively [43], [48]-[50].

The authors of [43] proposed an eight-layer IoT archi-
tecture. Different from the previous architectures, the data
storage layer, the collaboration/process layer, and security
aspects are added to consider the security and performance
requirements under the 5G environment. The data storage
layer stores raw data from the edge/fog layers. This expands
the limited memory of edge devices and prepared for ser-
vices with high volume traffic. The second layer, collabora-
tion/process layer, is designed for modern business settings.
It allows collaboration from different personnel. Finally,
security is recognized as a concept applied to all layers to
protect them against possible external attacks.

IV. MACHINE LEARNING INTELLIGENCE
This section presents the machine learning intelligence appli-
cations. As a start, the relevant supervised, unsupervised,
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reinforcement, and other relevant machine learning algo-
rithms are introduced. Then, the usage of machine learning
on the physical layer, the network layer, the edge computing
layer, and the cloud layer are introduced. On the physical
layer, machine learning helps end devices perform energy
preservation scheduling and physical layer communication.
Then, this section demonstrates the usage of machine learning
to improve network layer performance and reduce manage-
ment overhead. After that, edge layer devices and motivations
of applying machine learning on edge are described. Finally,
this section focuses on the collaboration between the cloud
layer and the edge layer.

A. MACHINE LEARNING ALGORITHMS

1) SUPERVISED LEARNING ALGORITHMS

In supervised learning, the model learns through reducing
the output of the cost function, which usually represents the
model prediction and the true value. The major supervised
learning methods are linear regression, logistic regression,
support vector machines (SVM), Naive Bayes classifiers, and
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k-nearest neighbors. Some deep learning algorithms, includ-
ing artificial neural networks (ANN), convolutional neural
networks (CNN), and recurrent neural networks (RNN) are
suitable for supervised learning [53]. There is a wide range of
applications of supervised learning. For example, in the field
of computer vision, many CNN-based applications are estab-
lished in smart healthcare [54], smart home, smart city, smart
energy, agriculture, education, industry, government, sports,
retail, and IoT infrastructure [55]. The rest of this subsection
explains some of the supervised learning algorithms.

a: SUPPORT VECTOR MACHINE (SVM)

SVM is created to solve binary classification problems [56].
The aim of SVM is to create a hyperplane over a multidimen-
sional space to separate the data points of this space into two
classes. The SVM model can be represented by Equation (1)
[56]. In this equation y is the output class as a sign of positive
and negative, w is the weight vector, x is the input vector and
b is the scalar bias factor.

y = sign(w - x + b) (1)
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(Guo et al. 2018)

(Rahimi, Zibaeenejad| 1. Collecting data from the environment.
& Safavi 2018) 2. Transfer data to the upper layer.
3. Accept instructions from the upper layer.

From Figure 5, the distance between the two classes can be
represented by Equation (2) [56], where ||w|] is the Euclidean
distance.

p=_2 @

lel]

The parameter  is obtained through maximizing the
distance D with minimum classification error. Therefore,
the optimization problem can be defined as Equation (3) [56].

1
d(w) = §||w||2 ()

As indicated by [56], optimization of Equation (3) is
a quadratic optimization problem, which could be solved
through constructing a Lagrangian function as Equation (4),
where o; are the Lagrange multipliers.

1
1
L, b,e) = Sllol? = ) eyt xi+b) =1} 4
i=1

The SVM described above are only suitable for linearly
separable datasets. However, extensions as soft margin SVM
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FIGURE 5. Support vector machine.

and kernel SVM are all capable of handling non-linear
datasets. Another form of SVM is the multiclass SVM, which
is capable of classifying between more than two classes [56].

b: SUPPORT VECTOR REGRESSION (SVR)

SVM can also be extended to solve regression problems [56].
The generic SVR function is defined by Equation (5) [56],
where @ transforms non-linear inputs of x into a higher
dimension, the vector w and scalar b should be optimized to
minimize the regression risk function defined by Equation (6)
[56]. In Equation (6), C is a constant that represents penalty
to errors and I represents the cost function. Equation (7) [56]
defines this cost function with € as the least-modulus loss.

fX)=w-Pdx)+b )
l
1
i=0
— — €, f _ >
F(f(x) —y) = (U)‘OC) M —e t)ﬂiawsisen =

Finally, similar to the SVM, the optimal parameters can
also be found by constructing the Lagrangian function as
Equation (8) [56]. In this equation, function k is the kernel
function to transform inputs into high-dimensional vectors.
The variables «; and o] are the solutions for this optimization
problem.

!
1
L= 2 ‘Zl(ai* —a)(a} — ak(xi, x))
i,j=

1
— Y i i — ) —aiyi + €);
i=1
1 1
Where, Zai —af =0, AND Z ai,af €[0,C]  (8)
i=1 i=1

¢: LINEAR REGRESSION
Linear regression provides an approximation of the rela-
tionship between different data domains. In an example of
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one-dimensional input, the linear regression model is created
in the form of the line of best fit (Figure 6). The authors
in [57] gave a generic model of linear regression with multiple
outputs. However, to simplify the process of demonstration,
a single-output model is given by Equation (9). x and 8 of
Equation (9) represent the input vector and the weight vector
respectively.

J)=p8-x ©))

The mean squared error (MSE) is computed to be utilized
as the loss function (Equation (10)). The variable n is the
number of data in the training set, x; represents the ith input
vector and y; represents the ith real output.

e W
MSE = -~ l;(f(x,) vi) (10)

d: LOGISTIC REGRESSION
The logistic regression solves the binary classification prob-
lem. The output of logistic regression is a value between
0 and 1. Thus, providing the confidence level of the pre-
diction. Equation (11) demonstrates the logistic regression
model, which is based on the Sigmoid function [58]. Similar
to the linear regression, 8 and x are the input vector and the
weight vector, respectively.
1

f(x)=m (11)

In order to find the optimal 8, the method of maximizing
likelihood is leveraged [58]. Equation (12) is the loss func-
tion. Similar to the linear regression, x; is the ith input vector
and y; is the ith real output.

n
g = [ [reia—roaynt= (12)

i=1
However, to ensure this loss function can be processed
with an optimization algorithm such as gradient descent,
the problem is converted to maximizing the logarithm of the
likelihood. This function is presented by Equation (13) [58].

log(g) = ) _ yilog(f (x) + (1 — y)log(1 — f(x)) ~ (13)

i=1
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The authors of [58] also provide the general form of the logis-
tic regression using the Softmax function, which incorporates
the ability to solve multi-class classification problems.

e: K-NEAREST NEIGHBOR (KNN)

KNN is mainly used for classification tasks. The model is
built by plotting all training dataset in the feature space. When
a new data point is inputted for inference, the model finds K
nearest data points in the training set and provides an output
based on the majority label of these nearest data points [38].
In order to calculate the distances, distance metrics such as the
Euclidean distance, L-infinity norm, angle, Mahalanobis dis-
tance, and Hamming distance can be adopted [38]. Figure 7
demonstrates KNN with three nearest neighbors. The major
label of the neighbors is class 1. Therefore, the new input data
point is also labeled as class 1.

f: DECISION TREE (DT)
The authors of [59] emphasized that the main objectives
of DT classifiers are to limit the classification error to an
insignificant level, to classify with high accuracy beyond the
training dataset, to achieve incremental updates with new
training data, and to structure in a simple form. To achieve the
above objectives, algorithms are required to build a DT. Here
the ID3 algorithm is used as an example to illustrate DT.
ID3 uses the concept of entropy to construct the DT.
Equation (14) describes the calculation of entropy, where A
is a vector of input features, x; and x, represent the two
classes [60]. Entropy is calculated with all vector A in a tree
node.

H(a) = Z[—P(m |A)log2P(x1|A) — P(x2|A)log2P(x2|A)]
A
(14)

New tree nodes should be created with minimal
entropy [59]. Therefore, the first step of ID3 is to find an
attribute within the input vectors to produce child nodes
with the minimal entropy. Then, the input vectors in the
root are split according to the attribute to produce the child

70968

nodes. Next, if a child node contains input vectors with only
one class, the splitting process is terminated for this node
and continued with the next child node. On the other hand,
if the child node contains input vectors with more than one
class, the algorithm repeats the first step with the child node
recursively [60].

g: ENSEMBLE LEARNING

The authors of [61, p.1] defined ensemble learning as “meth-
ods that combine multiple inducers to make a decision...”
Therefore, as an advantage, models compensate errors of
other models. The authors of [61] also divided ensemble
methods into the dependent framework and the independent
framework. In the dependent framework, the construction
of the current model depends on the output of the previous
model. An example is the AdaBoost algorithm, where the
current model considers the error in the previous model.
Gradient boosting machines also adopts a similar concept
[61].

The independent framework includes multiple models,
which are built independently from each other. Some exam-
ples of these methods are bagging, random forest, random
subspace methods, error-correcting output codes, rotation
forest, and extremely randomized trees [61]. Random forest
is described in the next part of this subsection.

h: RANDOM FOREST

The random forest is an ensemble learning method based on
DT [61]. It consists of multiple DTs. Each DT is trained by
a random subset of the training data. Also, another random
subset of the attributes is produced for the creation of new
child nodes. Therefore, the algorithm only examines part of
the attributes for an attribute of the best split. Furthermore,
this randomness provides a low correlation between trees,
avoiding the domination of a few strong attributes [62].

i: NAIVE BAYES CLASSIFIER (NB)
NB is a supervised learning algorithm based on the Bayes
rule (Equation (15)). The Bayes rule provides a model of
the conditional probability of a result ¥ with the given input
or the condition X. This algorithm is generally applied to
classification problems. In classification problems, Y is from
a discrete set of classes. Moreover, an input X belongs to the
Y giving the greatest P(Y |X) [63].

P(Y|X) = PONPXIY) (15)

P(X)

The NB model consists of the probability of a class Y and
the joint probability of attributes (Equation (16)). Therefore,
the model is constructed by estimating P(Y) for every class
Y in the training set and the conditional probabilities of each
attribute P(X; = q;|Y) for every class.

PY =yilX =ap,a1,...,a)
_ PY =y)PX =ao, ai,...,alY =yi)
PX =ag,ay,...,a)

(16)
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J: BAYESIAN NETWORK (BN)

NB models assume that all attributes are independent of
applying the Bayes rule. However, in the real world, the cor-
relation between attributes is inevitable [63], [64]. BN is a
classifier that is not limited by the assumption of attribute
independence. A BN can be represented by Equation (17),
where G is a directed acyclic graph, where nodes repre-
sent the different events and the edges represent the depen-
dency. The symbol ® contains the Conditional Probability
Table (CPT) for all possible values of the attributes and their
conditions [64].

B=<G,0 > (17)

The learning process is divided into two phases. During
the first phase, the graph structure is determined and then in
the second phase, the CPT is constructed [65]. The structure
can be determined by an expert or learned by data with
score-based structure learning methods and constraint-based
structure learning methods [66]. The goal of score-based
methods is to find a structure that provides the maximum
score of a score function. For example, the Bayes Dirichlet
equivalent uniform and the Bayesian Information Criterion.
In the first step of score-based methods, the algorithm pro-
vides a score of suitable parents for every node. Then, parents
are assigned to nodes to maximize the scores and to avoid
cycles. On the other hand, constraint-based methods use con-
ditional constraints to update the model. An example is the
PC algorithm. When using the PC algorithm, the graph starts
as a fully connected undirected graph. Edges are removed
according to the result of CI tests. This method is repeated
until no edges can be removed [67]. After obtaining a graph
structure, CPT can be constructed to obtain a full model.

k: KERNEL BAYES RULE (KBR)

The KBR extends the Bayes rule by applying kernels to
represent probabilities in reproducing kernel Hilbert spaces.
Moreover, the prior and likelihood can be expressed by data,
which does not require a distribution model [68].

I: GAUSSIAN PROCESS REGRESSION (GPR)

GPR is a non-parametric regression method as the complexity
is determined by the data [69]. GPR utilizes the Gaussian
Process (GP) to model the function between the input X
and output Y. GP is an infinite dimension version of the
multivariate Gaussian distributions [69]. GP can be defined
by a mean and covariance function. The mean value is usually
set as zero and the covariance function can be modeled by
a kernel function representing the dependence between dif-
ferent function outputs for different input X [69]. The GPR
learning process adjusts hyperparameters of the kernel, such
as the length-scale, signal variance, and noise variance [69].

m: COLLABORATIVE FILTERING (CF)

CF algorithms provide recommendations to a user from expe-
riences of other users [70]. CF operates under two assump-
tions: Opinions of users do not change over time; Users with
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FIGURE 8. Sample feedforward neural network architecture.

similar characteristics provide similar opinions. With these
assumptions, CF can be implemented to provide a decision
basis for product promotion, social media recommendations,
e-commerce reputations, and even strategy [70].

n: FEEDFORWARD NEURAL NETWORK (FFNN)

A sample model of the FFNN is demonstrated by Figure 8.
An FENN contains an input layer, an output layer and one or
multiple hidden layers [71].

f(X) :foutput(fhiddenZ(fhiddenl X)) (18)

Equation (18) [71] provides the general form of the sample
model. In these layers, the input layer consists of the input
vector, and the hidden layers can be represented in the form
of (19) [71], where W is a matrix of coefficients, X is the
input vector, B is the bias vector, and g is the activation
function. W and B can be learned through the backpropa-
gation algorithm. Whereas, g is chosen by the data analyst
to provide nonlinearity [71]. Some candidates of g are the
ReLU function, the Sigmoid function, and the Tanh function.
Finally, the output layer defines the output type of the model.
If the output layer is a Softmax function similar to logistic
regression, the FFNN provides the output of discrete values,
which solves classification problems. On the other hand, if the
output layer provides continuous values like linear regression,
the FFNN solves regression problems.

fX) =g(WX + B) (19)

o: CONVOLUTIONAL NEURAL NETWORK (CNN)

CNN is a special type of FFNN. CNNs also process input data
in a layer-by-layer style. The major motivation of CNN is to
reduce the number of parameters to be trained [72]. Figure 9
demonstrates the general architecture of CNNs. A full con-
volutional layer group consists of the convolutional layer,
the detector layer, and the pooling layer. In the convolutional
layer, the input data is processed by a convolutional filter.
This filter is in the form of a vector for one-dimensional
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FIGURE 9. General convolutional neural network architecture.

data and matrix for two-dimensional data. The filter sweeps
through the input data as a moving window, and during each
iteration, the dot product of the filter matrix and the current
region is calculated. Figure 10 provides an example of the
first iteration and the final iteration of convolutional layer
calculation with 4 x 4 input and a 2 x 2 filter.

First Iteration
Input Data Filter Bias Output

10111 113 6
4

10111 2|3
11001
oj1(1|0

Final Iteration
Input Data Filter Bias Output
11011 113 6(8|9
10111 2|3 6|8 |11
110(0(1 8|55
oj1|1]|0

FIGURE 10. 2D convolution filtering.

After the convolutional layer, the detector layer processes
the data as a hidden layer with the ReL U activation function.
The ReLU function provides nonlinearity to the network [71].
Finally, a filter is also used in the pooling layer. Similar to the
convolutional layer, the filter in the pooling layer also sweeps
through the input. However, the filter only represents the area
for the current iteration. Pooling calculation could be simply
obtaining the average or the maximum of the filter area [72].
CNN is widely used for image processing.

p: RECURRENT NEURAL NETWORK (RNN)

Unlike the basic FFNN, which only accepts one input a time,
RNNSs accept several inputs [73]. In terms of time-series data,
individual data points are processed at once in the sequence
of time [73]. As shown in Figure 11, the output of the current
hidden state H' is generated from the input X’ of the current
time state and the output X’~! of the previous time state,
recursively [73]. Finally, if only one output is required (for
classification or regression), the output Y is calculated from
the final hidden state [73].

qg: LONG SHORT-TERM MEMORY (LSTM)
Since gradient propagates through multiple stages in RNNs,
issues such as gradient explosion and gradient vanishing
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arise [73]. To address these issues, Long Short-Term Mem-
ory (LSTM) is proposed as variants of the RNN [73]. The
LSTM incorporated an additional cell state to enhance long
term memory [74]. Also, the additional forget and input gates
are utilized to forget and insert information into the cell
state [74].

r: RANDOM NEURAL NETWORK (RANDNN)

The RandNN is a type of RNN. Excitatory impulse signals of
“+1” and inhibitory impulse signals of ““-1”’ are transmitted
between the neurons of RandNN [75]. The neuron state or
potential at a certain time is represented by a non-negative
integer. This potential increases when the neuron receives an
excitatory impulse and decreases when the neuron emits a
signal. The neuron emits signals when its potential is positive.
Also, the acceptance of an inhibitory signal outside of the
network decrements the neuron potential [75]. The RandNN
can be applied in multiple fields such as associative memory,
optimization, texture generation, magnetic resonance imag-
ing, function approximation, mine detection, and automatic
target recognition [75].

2) UNSUPERVISED LEARNING ALGORITHMS

The two major types of unsupervised learning models are
principal component analysis (PCA) and K-means cluster-
ing. PCA is used as a technique to compress data. This
is important for IoT applications, such as wireless sensor
networks (WSN), with limited throughput and energy [76].
The K-means algorithm is used for the clustering of multiple
sensors. By dividing the monitored field into areas using
the unsupervised K-means clustering, the complexity of data
gathering and processing are reduced [76]. Some other unsu-
pervised learning algorithms are also explained further in this
subsection.

a: K-means

The K-means algorithm produces a classification model
through clustering [77]. It aims to generate multiple K cen-
troids from the dataset. Data points close to a centroid forms a
cluster [77]. The centroids are initialized by choosing random
data points from the dataset. Then, data points are assigned to
the cluster of the nearest centroid. Next, the new K centroids
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are calculated by averaging the assigned data points within
their clusters. The above steps are iterated until the centroids
are stable, or the algorithm reached a preset number of itera-
tions [77]. With the centroids calculated, a data point can be
classified by computing the distance towards the centroids.
The new data point belongs to the cluster of the closest
centroid [77].

b: DENSITY-BASED SPATIAL CLUSTERING OF APPLICATIONS
WITH NOISE (DBSCAN)

DBSCAN is another clustering method similar to K-means.
However, compared to K-means, DBSCAN does not require
a predefined number of K centroids. Also, DBSCAN can
identify noises. Moreover, the shape of the cluster can be
arbitrary [78]. DBSCAN has two hyperparameters the min-
imum number of neighbor points minPoints within the dis-
tance R [78]. To construct the clusters, DBSCAN iterates
through all points in the dataset [78]. If an unvisited data
point has more than minPoints neighbors within R, the data
point is marked as a core point, and a new cluster is created.
After that, recursively, all previously unvisited neighbors of
the core point are visited and added into the cluster. Also,
if the neighbor point is another core point, the two clusters
would merge [78]. If a data point has less than minPoints of
neighbors within the range R, the data point is classified as
noise [78].

¢: HIERARCHICAL CLUSTERING ANALYSIS (HCA)

HCA is a clustering method, where the data sample is recur-
sively merged or split to form a tree diagram [79]. HCA
methods can be divided into agglomerative hierarchical clus-
tering and divisive hierarchical clustering. Agglomerative
hierarchical clustering is the bottom-up approach, where each
data point forms its own cluster, and similar clusters merge
until the desired architecture is obtained. On the other hand,
divisive hierarchical clustering is the top-down technique as
it starts with a huge cluster containing the whole data sample.
Then, the cluster is divided to form the tree [79]. Merg-
ing and division decisions are made with similarity criteria.
The three different sets of criteria are single-link clustering,
complete-link clustering, and average-link clustering. For the
three clustering methods, the distance between two clusters
is calculated as the shortest distance between any two mem-
bers from different clusters, the longest distance between
any two members from different clusters, and the average
distance between any two members from different clusters,
respectively [79].

d: EXPECTATION MAXIMIZATION (EM)

The EM algorithm computes maximum likelihood esti-
mations for latent variables [80]. The algorithm consists
of the Expectation (E) and Maximization (M) steps. The
E step computes the missing data from current function
parameters. During the M step, the function parameters are
updated to maximize the log-likelihood of the estimated latent
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variables [80]. The E and M steps are repeated until the model
converges slowly to a local maximum [80].

e: GAUSSIAN MIXTURE MODELLING (GMM)

The superposition of multiple Gaussian distributions can
approximate any continuous density through the adjustment
of their means, covariances, and coefficients [81]. Unlike the
parameters of a single Gaussian model that can be determined
directly by the maximum likelihood method, GMM is trained
using EM in an iterative way [81]. GMM can be applied to
solve clustering problems [81].

f: PRINCIPAL COMPONENT ANALYSIS (PCA)

PCA reduces the number of attributes in a dataset by
transforming the original inputs into another set of vectors
with low information loss [82]. Dimensionality reduction is
achieved by eliminating components with a lower variance.
These components are detected through the computation
of the eigenvectors and eigenvalues of a covariance matrix
from the original dataset [82]. A component with a higher
eigenvalue indicates more information contained. Therefore,
features can be extracted by choosing the corresponding com-
ponents or eigenvectors with higher eigenvalues [83].

g: MULTIDIMENSIONAL SCALING (MDS)

MBDS is another dimensionality reduction technique. How-
ever, unlike PCA, MDS preserves the distance or difference
between sample cases instead of the variance [84]. Stress,
the loss function of MDS is defined as Equation (20), where
d;j is the difference between sample cases i and j in the orig-
inal data space, and Dj; is the distance between i and j in the
lower dimension or projected data space [85]. MDS consists
of four steps [86]. In the first step, a squared distance matrix
is computed from the data points in the original data space.
Then, the matrix B is computed by applying double-centering
to the squared distance matrix. After that, the eigenval-
ues V and eigenvectors Q of matrix B can be obtained.
Vi is a matrix of the first m eigenvalues greater than zero,
and Q,, is a matrix of corresponding eigenvectors. Finally,
the CO(I)rdinate matrix can be calculated by multiplying Q,,

and V,2 [86].

Zi:],j:l(dij - Dij)2

‘;l}"ess - >
Z =1,= l

(20)

h: DIFFUSION MAPS (DM)

DM is also an algorithm for dimensionality reduction [87].
In contrast to PCA and MDS, DM unravels the potential
manifold structures in the dataset [87]. The DM algorithms
initiate by defining a kernel and a kernel matrix. Through
normalization of the kernel matrix, the diffusion matrix can
be acquired. Finally, DM utilizes n numbers of the most
dominant eigenvectors from the diffusion matrix to project
the dataset from the original data space to n-dimensional
diffusion space [88].
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iz WINDOW SLIDING WITH DE-DUPLICATION (WSDD)
WSDD is used to mine patterns from system events sorted in
chronological order [89]. WSDD utilizes a sliding window
over the training dataset to learn patterns in a brute force
approach. The algorithm is capable of detecting both frequent
sequential patterns and periodic sequential patterns [89].
To increase efficiency, the algorithm stores mined patterns
in a hashmap and avoided mining duplicate patterns. The
pattern itself is stored as the key in the hashmap, and the count
of the pattern is stored as the value. Finally, only patterns
detected over a minimum count are returned as the output of
WSDD [89].

j: AUTOENCODERS (AE)

The AE is a neural network consisting of the encoder, code,
and decoder components [90]. The encoder maps the raw
input to the output of the code component, and the decoder
reconstructs the raw input from the output of the code com-
ponent. AEs can be used for feature reduction as the output
of the code component from a trained AE holds near lossless
information of the raw input [90].

k: HOPFIELD NEURAL NETWORK (HNN)

The HNN is a type of RNN for solving optimization prob-
lems [91]. Each neuron provides non-linear outputs through
a sigmoid function. All neurons are interconnected with each
other to restrict and revise the outputs of each other. Each
connection includes an interconnection weight. Each neuron
contains a user adjustable input bias [91]. The neurons update
according to the energy function (Equation (21)), where T;j
is the weight of the connection between neurons i and j, V is
the output of a neuron [92]. The HNN neurons evolve until a
local minimum of the energy function is reached [92].

1
E = -3 Z T;ViV; (21)
i#j

I: SELF-ORGANIZING MAP (SOM)

The SOM is a type of neural network that can perform cluster-
ing similar to the K-means [77]. In each iteration, the neuron
closest to a randomly selected data point moves towards the
data point by a preset learning rate [93]. Neurons within the
preset neighbor range of the first neuron also move towards
the data point. The learning rate and the neighboring radius
delays over the number of iterations [93].

3) REINFORCEMENT LEARNING ALGORITHMS

The goal of reinforcement learning is to solve the problem
of Markov decision processes (MDP). MDP is a sequen-
tial decision problem. As demonstrated in Figure 12, any
action made by the agent will influence the environment and
generate a reward. The goal of reinforcement learning is to
maximize long-term rewards [41]. Q-learning, a type of rein-
forcement learning, is used to solve routing problems in IoT
networks. Unfortunately, most of these algorithms are based
on wired networks [94]. In WSNSs, energy, processing power,
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and storage might become a bottleneck for distributed rein-
forcement learning routing algorithms [37]. Reinforcement
learning algorithms aim to provide high-level intelligence to
IoT applications.

a: TEMPORAL-DIFFERENCE (TD)

TD learning includes various model-free reinforcement learn-
ing algorithms, which require no model of the environment
[95]. TD algorithms bootstrap or update the estimates based
on current estimations. The value function is updated at
every step of TD [95]. There are three fundamental types
of TD-based learning algorithms mentioned in the sections
after. The on-policy TD algorithm SARSA learns the action
values from the current policy, while the off-policy algorithm
Q-learning learns from the optimal policy [95]. Finally,
a third type of TD learning, the Actor-critic learning
learns both a policy (Actor) and value function (critic) [96].
Actor-critic learning is always on-policy as the ““critic’’ needs
to learn from and correct the TD errors from the “actor” or
the policy.

b: LEAST-SQUARES POLICY ITERATION (LSPI)

LSPI is a model-free off-policy reinforcement algorithm [97].
LSPI s also an approximate policy-iteration algorithm, where
the value function and policy representation are approxi-
mated. Therefore, compared to tabular methods, the policy
search process is more efficient for LSPI [97]. Also, LSPI
is based on least squares temporal difference learning [97].
Thus, as TD learning methods update incrementally, data
efficiency of LSPI can be preserved [95].

4) OTHER RELEVANT MACHINE LEARNING TECHNIQUES

a: TRANSFER LEARNING

By adopting transfer learning techniques, a model trained
to solve one problem can be transferred and adapted to
solve a different problem [98]. This prevents time-consuming
labeling processes. Transfer learning can be categorized into
inductive transfer learning, transductive transfer learning, and
unsupervised transfer learning [98]. In the inductive transfer
learning setting, the domains can be the same or different,
but the tasks are different for the two problems. Whereas
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in transductive transfer learning, the tasks are the same, and
the domains are different. Finally, in unsupervised transfer
learning, similar to inductive transfer learning, the tasks are
different. However, unsupervised transfer learning performs
unsupervised learning tasks in the target problem [98].

b: FEDERATED LEARNING

Federated learning is a technique of multiple users training a
common machine learning model without leaking their local
dataset to other users [99]. There is the horizontal federated
learning technique, where different datasets share the same
features, but different sample cases [99]. On the other hand,
vertical federated learning can be applied to datasets with
more overlapping sample cases and different features [99].
Finally, federated transfer learning is suitable for datasets
with different sample cases and features [99].

B. PHYSICAL LAYER APPLICATIONS

One major application of machine learning influencing IoT
end devices is communication control. The authors in [100]
used Q-learning for transmission power control to reduce the
unnecessary waste of power due to interference. This model
is only tested under the scenario of one-to-one transmission.
A scenario of multiple sources toward multiple receivers
should be tested.

The authors of [101] explored the usages of deep learning
in end-to-end communication systems. The authors adopted
the AE to replace different compensation techniques during
the transmission of data. Data is encoded between transmis-
sion and decoded after transmission to protect the payload
during transmission. Another application is the implementa-
tion of CNN for modulation classification. This is a prereq-
uisite for developing an intelligent receiver.

Machine learning algorithms increase the energy consump-
tion of IoT devices. Therefore, it is important to apply energy
preservation techniques. The authors of [102] concluded that
the two major energy preservation methods are energy saving
and energy harvesting. Most of the energy saving techniques
are implemented through the estimate and control of the
uptime of end devices [100], [103]-[108]. The rest of this
subsection focuses on machine learning-based energy saving
techniques. The authors of [103] established ARIIMA or
A Real IoT Implementation of a Machine-Learning Archi-
tecture for reducing energy consumption. This is an IoT
architecture that uses machine learning to forecast end device
usage to control the up and downtime of IoT end devices. The
aim is to reduce energy consumption. The authors compared
different methods of calculating the loss of the predicted
outcome. However, the authors did not link energy efficiency
improvement to any specific machine learning algorithms.

The authors of [105] utilized the Naive Bayes Classifier for
calculating the optimized uplink period for IoT data collec-
tors. The goal of this work is to optimize the uplink time for
power efficiency and preserve the accuracy of data.

The authors from [107] used a single hidden layer feed-
forward neural network to predict the power usage based
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on smart meters. With these predictions, the power suppli-
ers can balance the power production with consumption to
avoid power wastages. Also, individual home devices can be
controlled to relieve the grid pressure at power peaks.

The authors of [106] used logistic regression, KNN, and
Naive Bayes algorithm to increase the power efficiency of
smart buildings. Light, temperature, and motion data of a
room are fed into the models to determine whether if people
are present in a room. In conclusion, this work only deter-
mines the existence of people. Nevertheless, further work
needs to be done on the development of an energy efficient
device control scheme based on the predictions of these
machine learning models.

The authors of [108] extended the model for predicting
human presence in smart buildings. A random neural network
model is applied with inputs of carbon dioxide level and
temperature readings to predict the number of occupants in
aroom. This model is used to control the heating, ventilation,
and air conditioning (HVAC) systems. HVAC devices will be
turned off to save power if no occupants are detected in the
room.

The authors from [104] pointed out that the manual
labeling of training data is time consuming in supervised
learning algorithms. Therefore, the authors proposed an
energy saving scheme based on unsupervised learning. The
WSDD algorithm is used to extract patterns of device behav-
ior from historical data.

C. NETWORK LAYER APPLICATIONS

The authors of [109], [110] summarized existing network
layer applications using machine learning algorithms. These
applications are IoT device identification, network rout-
ing, traffic profiling, traffic prediction, traffic classification,
congestion control, resource management, fault manage-
ment, QoS and Quality of Experience (QoE) management,
and network security. Table 1 links these applications to
implemented machine learning algorithms. However, these
applications alone might not be feasible to deal with the
complexity of networks such as 5G, Tactile Internet, and
Industry 4.0 requirements. Furthermore, an autonomous net-
work structure is required.

1) SELF-ORGANIZING NETWORKS

The increasing network complexity and device numbers for
5G and beyond networks are inducing conflicting demand
over network resources and routing decisions. Therefore,
self-organizing networks (SON) are required to reduce the
complexity of managing these networks [111]. Management
functionality of SONs consists of self-configuration, self-
optimization, and self-healing. Self-configuration processes
automate network design, network planning, and network
deployment. After that, the self-optimization functionalities
maintain the network performance and conduct routine net-
work operations [112]. Finally, self-healing functionalities
focus on fault detection and recovery [113].
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TABLE 1. Network applications and related machine learning algorithms
[109], [110].

TABLE 2. Machine learning applications in self-configuration [115].

Applications Machine Learning Algorithms
IoT Device Iden- | KNN, SVM, GMM, decision tree,
tification ensemble learning, random forest

Network Routing

LSPI,
SARSA

Q-Learning, n-step TD,

Traffic Profiling

K-means, Clustering

Traffic Prediction

FFNN, SVR, KBR, LSTM, GPR

Traffic Classifica-
tion

SVM, NB, HCA, KNN, DT, K-
means, Random Forest, FFNN, DB-
SCAN

Congestion Con-
trol

EM, DT, Random forest, KNN,
FFNN

Applications Description Machine
Learning
Algorithm
Operational Configuration SOM
Parameters of the  base
Configuration station for basic
operations.
Neighbor Neighbor N/A (Control-
Cell List | discovery, Self- | based
Configuration advertisement algorithms)
Radio Parameters | Transmission Q-Learning
Configuration power, radio
angle, topology
configuration.

Resource FFNN, RandNN, SVM, HNN, RNN,
Management Q-Learning, TD, BN

Fault BN, FFNN, DT, SVM, Ensemble
Management Learning, Linear Regression, Au-

toencoders, K-means, EM, RNN,
SOM

FFNN, DT, Random Forest, NB,
SVM, KNN, SVR, Q-learning

FFNN, Ensemble Learning, DT, BN,
NB, SVM, KNN, Linear Regression

QoS and QoE
Management

Network Security

The authors of [114] organized machine learning in SON's
into four modules: sensing, mining, prediction, and reason-
ing. Sensing involves the detection of network anomalies
and routine events. Therefore it contains functionalities of
self-optimization and self-healing. Mining aims to classify
services to help the network to optimize its performance.
Moreover, mining belongs to the self-configuration function-
alities. Finally, reasoning could apply to the offline parameter
tuning during self-configuration and the online parameter
tuning for self-optimization during network runtime.

The authors of [115] categorized machine learning appli-
cations on SONs according to the three functionalities.
In Table 2, the self-configuration applications are operational
parameters configuration, neighbor cell list configuration
and radio parameters configuration. In Table 3, the self-
optimization applications consist of backhaul, caching, cov-
erage and capacity, mobility, handover, load balancing,
resource optimization, and coordination. In Table 4, the
self-healing applications include fault detection, fault clas-
sification and outage management. Table 2, 3 and 4 only
include the algorithms that are relevant to supervised
learning, unsupervised learning and reinforcement learning.
Therefore, controller models, Markov models, and heuristics
algorithms are out of the scope of this article.

The authors from [116] promoted self coordination as a
fourth functionality group of SONs. Their work demonstrates
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that the current design of standalone management functional-
ities of SONs could lead to conflicting parameter adjustment
between distinct functions. This work also concludes that DT,
Q-learning, actor-critic learning, and SVM can be solutions
for self-coordination.

The authors from [117] proposed another method to avoid
collision between different functionality results. Their dis-
tributed Q-learning model considers both base station power
allocation and user quality of service. Q-learning consists of
a list of actions, a list of states, and a list of rewards. The
actions are the power allocation for the base stations. The
states are the ring that the agent is covered with current power
allocation. Finally, the rewards are calculated considering the
higher capacity of the base station and better user quality of
service.

The network applications for traditional networks
in Table 1 could be applied to support the SON function-
alities. The authors of [118] emphasized that the result of
traffic forecasting and prediction can increase the perfor-
mance and accuracy of all other SON functionalities. The
authors tested three types of machine learning models for
traffic forecasting. The first type of model is autoregressive
algorithms. This includes linear or polynomial regression.
The second type of model is neural networks and finally,
the authors used GPR for traffic forecasting. The authors
also mentioned that this application can be further extended
for QoS management and congestion control, providing
possible use cases for models in the traditional networks.
To improve the current management scheme in 5G and
beyond networks, the implementation of SDN and Network
Function virtualization (NFV) architectures in SONSs fulfills
the intelligence, automation, management, and optimization
requirements [119]. In this architecture, machine learning
works at the core to enable intelligent network management.
This work also demonstrates that traffic classification as an
essential application provides results affecting consecutive
decision making processes.
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TABLE 3. Machine learning applications in self-optimization [115].

TABLE 4. Machine learning applications in self-healing [115].

Applications| Description Machine
Learning
Algorithm
Backhaul Connection  between | Q-Learning
user, base station and
the core network.
Caching Temporarily storing | CF, K-
functions and services | means,
on the base stations Game
Theory,
Q-learning,
Transfer
Learning
Coverage Managing tradeoff be- | SOM,
and tween network coverage | Q-learning
Capacity and network capacity
Mobility Locate and predict the | Naive
location of the user. Bayes
classifier,
FFNN,
SVM, DT,
K-means
Handover Realtime change of | FFNN,
channel parameters | SOM,
when the user is using | Game
the channel. Often | Theory,
associated with mobility | Q-learning,
management when
users move between
cells.
Load Intelligently balancing | Q-learning
Balancing network load
Resource Allocation and predic- | FFNN,
optimiza- tion of network resource | K-means,
tion usage. SOM,
Game
Theory,
Q-learning,
Transfer
Learning
Coordination| Minimizing the interfer- | DT
ence between two dif-
ferent functionalities.

D. EDGE COMPUTING APPLICATIONS

1) EDGE COMPUTING HARDWARE

The development of edge computing hardware enables
machine learning on the edge level. Table 5 includes some of
the representative edge computing devices. These devices can
be classified into three device types. The first type is the board
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Applications Description Machine
Learning
Algorithm
Fault Detection Detect and locate | Naive Bayes
the fault classifier,
SVM, K-
means, SOM,
PCA
Fault Determining Naive Bayes
Classification source of the | classifier,
fault, Classifying | DT, Transfer
the fault Learning
Outage Manage- | Detection of out- | KNN, FFNN,
ment age, Outage com- | SVM, DT,
pensation CF, K-means,
SOM, Q-
learning, PCA,
MCA, DM,
MDS

devices. Board devices are standalone embedded computers
that run machine learning algorithms independent of external
devices. The second type is the accelerator devices. These
devices cannot operate alone. Accelerator devices often act
as an add-on to provide extra machine learning capabilities
to embedded boards, personal computers, and other devices.
The final type is smartphone chips. Smartphone chip manu-
facturers like Qualcomm, Hisilicon, Samsung, and MediaTek
are pushing machine learning processing to mobile devices.
Most of these chips rely on an Al accelerator to provide
real-time machine learning processing capabilities.

2) MACHINE LEARNING ON THE EDGE

Machine learning applications on the edge layer can be sep-
arated into two major types. The first type aims to offload
part or all of the existing functionality to the edge layer.
This type of application is defined in this article as process
offloading applications [46], [130]-[132]. The second type of
application is referred to as sole functionality applications in
this article. Sole functionality machine learning models often
perform subtasks, which assist the main task on the cloud.
The machine learning model of these subtasks is different
from the model of the main tasks [133]-[136]. Table 6 sum-
marizes all the works with different motivations for applying
edge computing.

The motivation for process offloading applications is the
limited resources of devices. The authors from [130] pointed
out that low latency is essential for vehicle-to-everything
applications. This work classifies vehicle-related applications
into critical applications, high priority applications, and low
priority applications. Critical applications include vehicle
control systems, system monitoring, and accident prevention.
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TABLE 5. Machine learning edge computing hardware.

Reference Hardware Series Recent Model Al Proces- Al Perfor- | Device
sor/Accelerator mance Type
[120] Nvidia Jetson Jetson AGX Xavier 512-core NVIDIA 32 TOPs Board
Volta GPU with 512
Tensor Cores
[121, 122] | Intel Neural Compute | Intel Neural Compute | Intel Movidius 4 TOPs Accelerator
Stick Stick 2 Myriad X Vision
Processing Unit
[123, 124] | Coral Dev Board Coral Dev Board Google Edge TPU 4 TOPs Board
ML accelerator
coprocessor
[124, 125] | Coral USB Accelera- | Coral USB Accelera- | Google Edge TPU 4 TOPs Accelerator
tor tor ML accelerator
coprocessor
[126] Qualcomm Qualcomm Snap- Using CPU, GPU and | Undisclosed | Smartphone
Snapdragon dragon 855 Mobile DSP Chip
Platform
[127] HiSilicon Kirin HiSilicon Kirin 980 Dual Neural Process- | Undisclosed | Smartphone
ing Unit Chip
[128] Samsung Exynos Samsung Exynos Neural Processing Undisclosed | Smartphone
9820 Unit Chip
[129] MediaTek Helio P Se- | MediaTek Helio P90 MediaTek APU 2.0 Undisclosed | Smartphone
ries Chip

These applications must be deployed on the very edge to
the vehicle for a near-instant response. High and low prior-
ity applications include navigation and entertainment. These
applications should be deployed on edge servers to enhance
the computational capability of end user devices. This also
ensures a relatively low latency.

The authors of [131] applied a similar offloading scheme
to general machine learning web applications. The aim
of this work is to offload computation power demanding
machine learning tasks from embedded devices to an edge
server. To achieve this, the edge device transmits a snapshot
of the execution state before processing a machine learning
task to the edge server. This method is independent of the
type and model of the machine learning algorithm. However,
the size of a snapshot is still enormous for embedded devices.

The authors from [46] further revealed that edge computing
could also be used to protect user privacy. Their application
uses a neural network to recognize certain objects from live
streaming video. To protect user privacy, the first few layers
of the neural network are offloaded to the edge servers. This
also reduces energy consumption for the whole system, since
processing is distributed among the network. However, as the
users still need to send raw information to edge servers to
be processed, privacy leakage remains an issue. This issue
can be solved by directly deploying these first layers of the
neural network to the end device. As a result, users only
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send processed intermediate data to the network. All the
works above only use edge computing primitively to offload
computation requirements. However, machine learning by
edge computing should leverage some unique properties
of edge devices. The authors of [132] proposed a collabora-
tive edge-centric learning method to train machine learning
models. Each sensor contains a model that is trained locally
using only data from that sensor. Training locally allows
sensors to utilize contextual parameters to improve model
accuracy. After training the local models, only the parameters
of the models are sent to the sink from the sensors. This
method reduces network overhead and energy consumption
during training.

Different from the previous process offloading applica-
tions, sole functionality applications improve the perfor-
mance of the system by performing a different subtask of the
major task in the cloud. Earlier motivations are also related to
the limited resources of devices. The authors of [135] utilized
multiple filters, including CNN and SVM, to drop blurry and
unwanted image data at the edge layer. The usage of filters
reduces the processing power required on upper layers to
create a training dataset for other applications.

Similarly, The authors from [133] also applied data cleans-
ing on the edge layer to filter blurry images. Data cleans-
ing is done by K-means in their food recognition system.
Image segmentation is further applied as a data preprocessing
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TABLE 6. Motivation of edge computing.

Reference| Application

Edge Motivation

Application Type

[130] Vehicle-to-Everything

ties

Enhance computational capabili-

Reduce latency

Process Offloading

[46] Video Recognition

Process offloading
Reduce latency
Reduce energy consumption

Protect privacy

Process Offloading

[131] Machine Learning Web App

Process offloading

Process Offloading

[132] Smart IoT Application

Reduce network overhead

Reduce energy consumption

Process Offloading

[133] Food Recognition

Data preprocessing

Data cleansing

Reduce latency

Reduce energy consumption

Location awareness

Sole Functionality

[134] Traffic Control

Reduce network Traffic
Increase scalability
Ensure mobility

Reduce latency

Sole Functionality

[135] Graphical Expert System

Process offloading
Data preprocessing

Data cleansing

Sole Functionality

[136] Healthcare System

Reduce latency
Reduce network traffic
Increase reliability

Increase security

Sole Functionality

method to reduce the load of the cloud server. However,
the significance of this work is the utilization of locational
data as a unique data type provided by edge devices. Fur-
thermore, the authors used the locational data as a basis for
collaborative recognition on the cloud layer.

To enhance localized service, the authors of [136] imple-
mented network traffic prediction via LSTM on the edge
cloudlets of a healthcare system. The purpose of this machine
learning model is to predict bidirectional traffic between the
cloud and the cloudlet to control data transmission rate and
data caching frequency. These improve the quality of service
and the reliability of data. As the LSTM model is deployed
locally on cloudlets, the control decisions of the model are
different between different cloudlets due to the different local
network traffic.

Similarly, the authors from [134] also used machine
learning to predict future sensor data. This is based on
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multi-variable regression and LSTM in their traffic moni-
toring system. These models are implemented on the edge
servers to provide parameters for determining the quality of
the video to be sent from the edge servers to the cloud. There-
fore, this application aims to reduce network traffic by con-
trol data transmission from edge servers during non-critical
events. The origin of these advantages is the increase of
connectivity by introducing more edge servers to the system.

As machine learning applications on the edge attract
much attention, the emergence of TinyML provides fur-
ther advancement of these applications. TinyML combines
embedded IoT technologies with machine learning [137].
It has the advantage of low bandwidth usage and latency like
other edge computing applications [30]. On the other hand,
TinyML applications aim to minimize energy consumption
(below 1 mW). To deploy a machine learning model on
such a low consumption device, model size also needs to be
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minimized. Balancing between model size and accuracy is a
challenge for implementing TinyML applications [137].

E. EDGE-CLOUD COLLABORATION

In the traditional IoT architecture, machine learning algo-
rithms on the cloud layer usually perform analytical tasks.
However, novel applications are proposed utilizing the col-
laboration between edge and cloud layers. Table 7 includes
some edge-cloud collaboration methods.

TABLE 7. Applications involving edge-cloud collaboration.

Reference Application Collaboration
Method
[46] Video Recognition Process  offloading
decisions.
[140] 5G Mobile Network | Process offloading
decisions.
[141] General IoT Applica- | Process  offloading
tion decisions.
[135] Graphical Expert | Data cleansing to aid
System training.

[138] Anomaly Detection Training using Fed-

erated Learning.

[139] Indoor
Prediction

[136] Healthcare System

Condition | Dynamic model se-

lection.

Collaborating  the
results of different
subtasks on different
layers.

A most common type of edge-cloud collaboration is the
sole functionality applications from the subsection above.
The healthcare system from [136] is an example. The system
aims to classify and store data at different nodes of the cloud
server. Data is collected from mobile devices and passed to
the cloudlet layer. In the cloudlet layer, LSTM is implemented
to predict network traffic. The prediction results are used for
data transmission rate control and caching frequency control.
Then, data is transmitted to an upper network layer. This layer
utilizes a FFNN to classify traffic. Finally, these data are
stored on the cloud according to the classified traffic types.
In this application, the edge layers support upper cloud layers
by completing subtasks. The result of the subtasks helps the
cloud layer to perform the main task.

Edge assisted training is another type of edge-cloud col-
laboration. The authors from [135] used CNN and SVM to
filter out images on the edge layer. This filter is to prevent
corruption of the training on the cloud. Hence, it decreases
the time required for an expert to create a training set.

The authors from [138] used federated learning to create an
AE model for anomaly detection. A local version of the AE
model is trained on every edge device using its local datasets.
Then, the weights of these local models are transmitted to
the cloud server and aggregated to form one AE model. This
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cloud level AE model is redistributed to the edge devices
for local anomaly detection. As less data is sent from the
edge to the cloud, this method reduces bandwidth demand
during training and ensures that the training dataset is not
corrupted due to data transmission. However, this method
only considers one model across the system.

The authors of [139] extended training to multiple models.
This is achieved with a machine learning model management
module on the cloud server. This module accepts sensor data
from the edge layer and uses these data to train different
machine learning models. Then, the machine learning model
selector selects and distributes a suitable model for every edge
platform based on device performance and characteristics.
This method optimizes network performance as the most
suitable model is deployed for every device.

Another edge-cloud collaboration method is process
offloading scheduling. The authors from [46] addressed that
edge servers have limited bandwidth. Thus, scheduling of
cloud process offloading should be implemented to avoid
network congestion. The authors of [140] implemented a
similar scheduling method on 5G networks. They use deep
Q-learning to schedule server app migration on mobile edge
servers. This method aims to provide users with an opti-
mal quality of service. The authors from [141] incorporated
cross-layer communication into process offloading decisions.
In this work, end IoT devices can communicate both with
Unmanned Aerial Vehicle (UAV) edge servers and satellite
cloud servers. If the IoT devices loose connection with UAV
edge servers, the IoT devices could offload their computa-
tion tasks to the satellite cloud. A deep actor-critic learning
method is proposed considering energy consumption and
network delay to solve this scheduling problem.

This section summarizes many machine learning algo-
rithms, hardware and applications. The usage of machine
learning from a network perspective are described. Machine
learning applications in the physical layer and network layer
are elaborated. Scheduling and management of different net-
work resources and process are major applications of machine
learning on these two layers. Then, for the cloud layer,
the applications of machine learning that enable edge-cloud
collaboration are illustrated. Edge computing aids cloud
applications through process offloading and edge-only func-
tions (sole functionality). However, this only shows collab-
oration in the application layer (Edge-Cloud). Collaboration
between lower layers or cross-layer machine learning appli-
cations are still limited. The need of cross-layer machine
learning models and other limitations of current applications
are further discussed in Section XIII.

V. MISSION CRITICAL COMMUNICATION

An important dimension of IoT 2.0 is the mission critical
communication based systems, which address the situations
where human life and any form of infrastructure can be
at risk. Mission critical communication currently takes the
form of mission critical machine-to-machine (M2M) com-
munication, or machine type communication (MC-MTC),
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where machines need to communicate with each other to
perform various tasks such as coordination, sensing, and actu-
ation. Mission critical communication systems put stringent
requirements of ultra-reliable and low-latency communica-
tions (URLLC) and system availability [142]. The M2M
communication systems which do not involve the mission
critical element are referred to as low-cost M2M or massive
MTC (mMTC) with low-power consumption and massive
connectivity [143]. In this section, we review important use
cases of mission critical communication systems and recently
proposed physical (PHY) and higher-layer mechanisms to
meet the desired requirements of URLLC in these mission
critical communication networks.

A. IMPORTANT APPLICATIONS OF MISSION CRITICAL
COMMUNICATION NETWORKS
In order to protect citizens and infrastructure during disasters
and emergencies, different public safety organizations are
put in place [144], [145]. The emergency first responder
is the most important entity in all emergency management
agencies. Public safety communication (PSC) systems used
by these agencies for coordinating teams and providing quick
emergency-response are regarded as mission critical because
they need to be ultra-reliable, resilient, and secure while
meeting other stringent network functionalities [146]. Public
warning systems (PWS) also come under the umbrella of PSC
systems as they share many of the characteristics of mission
critical communications. An important use case of PWS is the
earthquake and tsunami warning system. During the last few
years, there has been a significant increase in the interest of
advancing the PSC systems. The authors of [144] presented a
detailed survey on wireless communication technology while
covering the different aspects related to regulatory, standard-
ization, and research activities in PSC systems. The main
focus in this work is on Europe and the USA. In [145] a
comparative analysis of legacy and emerging technologies
for PSC is presented. The authors of [146] discussed the
use of broadband technologies for public safety, considering
existing LTE specifications. The authors from [147] proposed
a software architecture design as well as a set of distributed
protocols to meet the strict requirements of PSC networks.
The use of wireless networks in the mining industry for
mobility support, rapid deployment, and scalability within
dynamic environments is another use case of the PSC system.
The authors of [148] discussed the mission critical require-
ments of PSC systems for open-pit mining, and a framework
is proposed that integrates mine and radio network planning.
Automated transportation systems are meant to provide
mission critical services to self-driving vehicles, connected
cars, road safety, and traffic management systems. These
intelligent transportation systems can increase the efficiency
of traffic management agencies and provide numerous bene-
fits, including a considerable reduction in the road-accidents
rate. However, to get these systems realizable, the stringent
requirements of MC-MTC networks should be fulfilled.
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Vehicular connectivity or Vehicle-to-everything (V2X),
is another important use case of MC-MTC in which
time-critical data exchange takes place under three
different scenarios: vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), and vehicle-to-personal device moving
at pedestrian speeds (V2P) [149]. UAVs, also known as
drones, have potential usages in many mission critical com-
munication systems due to their inherent features of mobility,
flexibility, and adaptive altitude [150]. Such UAVs assisted
MC-MTC networks can be used in the transportation of
important goods in emergency situations being handled by the
public safety and rescue systems. UAVs can be part of exist-
ing cellular networks as new types of user equipment (UE)
and flying base stations. UAVs as flying base stations can
help increase the coverage, spectral efficiency, and QoS in
the MC-MTC supported cellular networks [150]. The authors
of [151] presented a comprehensive survey of different types
of promising solutions for the smooth integration of UAVs
into cellular networks.

Industrial automation involving time-critical processes
requires highly reliable data transfer links between sensors,
actuators, and controllers, and thus is an important applica-
tion of MC-MTC networks. Detailed performance require-
ments of different MC-MTC network applications are listed
in [152]. Health monitoring systems for remote patients
and remote robots for surgeries are potential applications of
MC-MTC networks. Similarly, both augmented reality (AR)
and virtual reality (VR) systems require very low end-to-
end latency. Another important use case of mission critical
communication networks is found in the smart grid, which
is an advanced form of conventional power grid having
capabilities of automation, monitoring, and communication.
The key features that distinguish smart grids from the con-
ventional electrical power grid are two-way communication,
demand-side management, and real-time billing. All these
features require mission critical communication infrastruc-
ture for smart grids [153].

1) PHY LAYER CONSIDERATIONS FOR MISSION CRITICAL
COMMUNICATION NETWORKS

Table 8 summarizes works related to PHY layer considera-
tions for mission critical communication networks. For both
licensed and unlicensed bands employing URLLC, many
promising PHY and medium access control (MAC) layer
techniques are discussed in [154]. The following techniques
are among the PHY layer mechanisms proposed specifi-
cally for MC-MTC networks to meet the associated URLLC
requirements.

a: SHORT PACKET TRANSMISSION

In contrast to the conventional wireless communication sys-
tems, the traffic in MC-MTC networks generated by different
types of devices and sensors contains short packets where
the size of metadata (control information) is comparable with
that of the actual information payload. Thus, new principles
are required to design wireless protocols supporting short
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TABLE 8. Summary of recent works addressing mission critical communication.

Reference| Communication Scenario Challenges Addressed | Reliability and Latency Improvement
Mechanism
[155] Point to point, downlink | Short packet transmis- | Tradeoff between coding rate and packet
multiuser, and uplink mul- | sion length, data concatenation for multiple users,
tiuser tradeoff between the probability of collision
and packet error probability
[156] D2D and cellular modes | Network availability | Available range improvement by optimizing
with single antenna users | for short  packet | transmission duration
and multiple antenna base | transmission
stations
[157] Point to point Physical layer security | Clustering based upon channel estimates
[158] Uplink transmission: single | Physical layer security | Feature based physical layer authentication
antenna users and multiple while considering the associated delays
antennas base stations over a
line of sight path
[159] Downlink transmission: sin- | Physical layer security | Blocklength optimization to maximize the se-
gle and multiple antenna | for short packet trans- | crecy throughput for different cases
base stations, single antenna | mission
actuator and multiple an-
tenna eavesdropper
[163] Vehicle to everything com- | Slicing the RAN and | End-to-end network slicing for different sce-
munication core network for V2X | narios of V2X communication use cases
communication
[164] Uplink multiuser RAN resource manage- | Non-orthogonal slicing of the RAN resources
ment for heterogenous
services for 5G
[166] Mission critical communica- | End-to-end reliability | Software-based framework prioritizing mis-
tion between a server and a | for high data rate sion critical traffic
mobile user

packets. The authors of [155] reviewed information-theoretic
principles developed for communication systems generating
short packets. These principles are applied in different com-
munication scenarios such that the control information is
optimized for short packet transmission.

The probability that a network provides the required level
of QoS is called the network availability, and in the context
of MC-MTC networks, QoS is the set of desired reliability
and latency levels [156]. To meet the stringent requirements
of URLLC in MC-MTC networks, high SNR is required
at the receiver, and SNR of the received signal depends
upon the range between the transmitter and the receiver. The
authors of [156] proposed a framework to optimize the avail-
able range and transmission duration in MC-MTC networks
employing short packet transmission. To enhance network
availability, the base station is equipped with multiple anten-
nas, while the end nodes have only one antenna. This
framework can be used in different transmission modes,
including device-to-device, amplify and forward, and decode
and forward.
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b: PHYSICAL LAYER AUTHENTICATION (PLA)

Although, the use of short packets in mission critical commu-
nications systems can lead to the satisfaction of the stringent
requirements of URLLC; the impact of finite block-length
coding can cause serious physical-layer security issues. PLA
is another promising way of meeting the reliability require-
ment in MC-MTC systems employing short packet trans-
mission without using cryptographic methods. A common
model considered in this regard is composed of three nodes.
One node called Bob needs to exchange information with
the other node called Alice in a secure way. There is a third
node called Eve, physically distanced in the network which
can sniff information being exchanged between Bob and
Alice, and thus can send wrong information to the commu-
nicating parties. PLA aims to provide information security
at the physical layer such that the interference from the
undesired nodes can be avoided. A PLA based mechanism
is proposed in [157] as a lightweight authentication in reli-
able MC-MTC systems. In this work, the receiver employs
a GMM to make two clusters of the channel estimates, and
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based upon this clustering, it predicts the actual transmit-
ter. The authors of [158] presented a queuing theory based
detection and delay performance analysis of a PLA protocol
for single-input multiple output (SIMO) MC-MTC networks.
This protocol is investigated under different possible attack
cases. The authors of [159] analyzed the secrecy throughput
of MC-MTC networks while considering single and multiple
antenna access points (AP) in the presence of an eaves-
dropper equipped with multiple antennas, and presented the
corresponding latency-reliability tradeoff analysis.

2) PROGRAMMABLE MISSION CRITICAL COMMUNICATION
NETWORKS

5G is envisioned to provide many heterogeneous services.
By using network slicing, we divide a single physical
network into multiple isolated virtual networks such that
each virtual network takes care of a specific service [160].
Network slicing help manage these diverse network services
efficiently. Thus, the design and implementation of MC-MTC
networks supported by 5G can take advantages offered by
the network slicing techniques. In [160], different aspects of
network slicing are discussed in the context of 5G. A network
slicing based logical network architecture for 5G systems is
presented in [161], which covers all the fundamental aspects
of a cellular communication system. The authors of [162]
presented a mathematical model of network slicing for three
main service groups of 5G, such that each group of services
is provided with a dedicated set of policies. The authors
of [163] proposed a network slicing design customized for
different time mission critical vehicle-to-everything services.
The authors of [164] discussed non-orthogonal slicing of
the radio access network (RAN) resources among enhanced
Mobile Broadband (eMBB), mMTC, and URLLC devices
communicating in the uplink to a common base station.
Because of the heterogeneous services being addressed, this
RAN slicing is termed as non-orthogonal multiple access
(H-NOMA), which is different from the conventional NOMA
techniques which share radio resources among devices of the
same type with homogeneous requirements.

SDN and NFV are promising techniques to implement net-
work slicing. SDN opens new ways to implement MC-MTC
networks, and some recent studies provide insight regarding
the potential usage of SDN in the design of future MC-MTC
networks. In [165] an SDN and NFV based solution is pre-
sented and evaluated for critical infrastructure use cases.
The authors of [166] presented a software-based framework
for 5G systems and its hardware implementation MC-MTC
networks. The authors also presented a practical framework
for an experimental study that uses different types of network
traffic to prioritize mission critical traffic. This framework
is used to evaluate the end-to-end performance of the pro-
posed systems. The authors of [167] proposed an SDN based
architecture for 5G to address critical communications. Two
important switching paradigms named Bare-Metal and fully
virtualized switching, are used to evaluate the performance
of the proposed system. The authors of [168] proposed a
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multi-controller architecture that provides a dynamic load
balancing scheme for SDN based MC-MTC networks. This
mechanism reduces the communication overheads by allow-
ing the controller to send the load status to the load balancer
only when the load exceeds a prescribed threshold. This helps
reduce the communication overheads in MC-MTC networks
employing SDN. Communication in smart grid systems is
an important use case of MC-MTC networks. In this regard,
the authors of [169] presented a comprehensive survey on the
utilization of SDN architectures in smart grid systems.

While addressing the mission critical communication
design challenges at the PHY and MAC layers, it can be
observed that the current approaches are primarily base
station-centric and lead towards centralized decision-making
strategies. Although these works aim to reduce latency and
target to achieve ultra-reliability, the centralized control
strategies may cause additional latency, which might not be
avoided in these methods [170]. This triggers the need to
design new solutions that involve less control signalling and
employ distributed decision-making approaches. Moreover,
in the current literature, mission critical communication net-
work design considers the heterogeneity caused by three pri-
mary services of 5G, namely: URLLC, eMBB, and mMTC.
However, different mission critical applications may have
different latency-reliability criteria, and this type of variation
in the QoS requirement creates another level of design com-
plexity that needs to be addressed accordingly. Hence, these
gaps in the literature can open new avenues for the research
community.

VL. loT SCALABILITY

Universal scalability is discussed in this section. Universal
scalability is separated into hardware scalability, network
scalability and service scalability. Table 9 defines these dif-
ferent scalability concepts.

TABLE 9. Applications involving edge-cloud collaboration.

Reference Type of | Definition
Scalability
[171, 172] Hardware The ability of a piece of
Scalability hardware to be extended
to cope with different en-
vironmental, network and
service requirements.
[173, 174, | Network The ability to dynamically
175] Scalability scale resources up and
down to process the
incoming IoT traffic.
[179] Service The ability to incorporate
Scalability new services into the exist-
ing IoT system.

Hardware scalability is the ability of a piece of hardware to
be extended to cope with different environmental, network,
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and service requirements. A common method for imple-
menting hardware scalability is offloading part of the device
functionality to a server [171], [172]. The authors of [171]
proposed an architecture that extends device functionality
through device virtualization. Additionally, this work demon-
strates device virtualization in the case of a multi-protocol
scenario. As a solution, virtual gateways are deployed on fog
servers to process the packets received by the end devices.
However, adding functions of another functionality group
(for example, adding image sensors to a transceiver device)
still requires modification from the hardware level. To avoid
modification from the hardware level, the concept of syn-
thetic sensors is proposed [172]. Synthetic sensors can be
separated into the device level and the server level. The
device level is assembled by sensor tags capable of sens-
ing data from multiple sensing dimensions. These sensing
dimensions are low-level data types include vibration, audio,
camera, temperature, humidity, air pressure, illumination,
color, motion, magnetic field, and Received Signal Strength
Indicator (RSSI). Then, low-level data is transmitted to the
server level. On the server level, machine learning algorithms
process these low-level data and convert them into valuable
results to users. In conclusion, synthetic sensors create a plat-
form with all the raw data types required and extend its func-
tionalities through server-based machine learning analytics.

Network scalability is the ability to dynamically scale
resources up and down to process the incoming IoT traffic.
A common method to ensure network scalability in wireless
sensor networks is clustering. The authors of [173] reviewed
common clustering algorithms. Their work outlines cluster-
ing into processes of cluster head election and cluster forma-
tion. Cluster head election is the process of choosing cluster
heads from wireless devices, and these cluster heads gather
data from other members of its cluster and transmit it towards
the base station [173]. After the cluster heads are elected,
other wireless devices advertise themselves to the cluster
heads and form clusters around these cluster heads to join
the network [173]. Therefore, new devices can easily join
the network with the cluster formation process. As a result,
scalability is achieved with clustering.

The clustering techniques assume devices in the network
are homogeneous. However, in an IoT scenario, devices are
heterogeneous [173]. As a solution, intermediate fog devices
are utilized [174]. Similar to the cluster heads, these fog
devices gather information from the end IoT devices and
transmit it towards a centralized server. Different to the wire-
less sensor network scenario, fog devices are not chosen by
algorithms. These devices are specialized as an intermediate
server. The authors of [174] pointed out that as a new IoT
device joins the network, the device drivers and services can
be distributed on the fog devices to achieve a simpler integra-
tion process. Therefore, fog servers increase the scalability of
IoT networks.

The extensibility of network coverage affects the availabil-
ity of network services to mobile users. The authors of [175]
explored antenna-based coverage and capacity optimization
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in cellular networks. Their work is based on two major phe-
nomena. The first phenomenon is that the tilting of mobile
network antennas affects network coverage and capacity.
The second phenomenon is that there is a tradeoff between
coverage and capacity. These phenomena are caused by an
increase in the power of the received useful signal in a cell and
the reduction of signal coverage due to antenna tilting. On the
other hand, the authors of [176] addressed energy efficient
parent selection of mobile IoT nodes.

To ensure further coverage, scalability induced by antenna
tilting, online and dynamic antenna configuration using rein-
forcement learning can be applied to cellular networks [177].
This method also belongs to the SON self-optimization func-
tionalities [115]. Finally, to further extend network cover-
age, satellites are incorporated to provide network backhaul
for IoT networks. The usage of satellite backhauls provides
advantages of cost efficient, ease of deployment, avoidance
of damage from natural disasters, seamless coverage, and
reliability [178]. This could be part of the universal coverage
solution.

Service scalability emphasizes the ability to incorporate
new services into the existing IoT system. The authors
of [179] defined scalability requirements of IoT applications
as explicit control flow, decentralized interactions, the sep-
aration between control and computation, and service loca-
tion transparency. This work also categorized IoT service
interaction types into direct interactions, indirect interac-
tions, event-driven interactions, and exogenous interactions.
After the evaluation of the service interaction types with
the scalability requirements, exogenous interactions are the
only service interaction type, which satisfies all scalability
requirements.

Exogenous interactions incorporate a coordinator to
manage all service interactions with different devices and ser-
vices. Therefore control is always managed by coordinators
and is separated from service computation. From [179], this
type of interaction is controlled with explicit control flow as
the control flow is defined by the coordinators. Also, as a
definition of exogenous interaction, the control is always
separated from service computation. Furthermore, exoge-
nous can be decentralized in a hierarchical manner. Finally,
location transparency is provided by exogenous interaction
because coordinators are controlling the service interactions,
and location data is encapsulated during the process.

A. SDN INDUCED SCALABILITY
SDNs bring programmability into traditional networks.
Forwarding devices such as switches and routers can be vir-
tualized in SDNs. This is achieved through the separation of
control plane and data plane. As a result, SDNs simplify net-
work management, minimize the limitation from hardware,
and are easier to extend network functionality [180]. The
advantages of SDNs could also be beneficial to manage D2D
communication in 5G networks [181].

From Figure 13, an SDN architecture consists of the
application layer, the control layer, and the data-plane layer.
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The application layer consists of software applications com-
municating with the control layer, the control layer process
requests from the application layer and manage network
devices, and the data-plane layer is network infrastructure
such as switches and routers [180]. NFV is another tech-
nique that leverages service virtualization to increase net-
work scalability. European Telecommunications Standards
Institute (ETSI) defines a standard for NFV architecture
(Figure 14) [182]. This architecture is assembled by the
virtualized network functions (VNFs), the NFV infrastructure
(NFVI), and NFV management and orchestration. NFVI
includes the physical resource, which hosts VNFs as virtu-
alized software implementations of network functionalities.
Both NFVI and VNF are all managed by the NFV manage-
ment and orchestration module. The advantages of the NFV
architecture are reduction of hardware implementation costs,
increasing flexibility and scalability by hosting VNFs on
hardware, faster service modification due to software-based
deployment, improved operational efficiency due to pos-
sible automation and operating procedures, improved
power efficiency by planning and offloading workloads.
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NFV architecture is also able to create software interfaces
to associate elements from different vendors.

The authors of [183] pointed out that SDN and NFV can
benefit each other. SDN controllers can be treated as a VNF
on the cloud providing flexibility to controller distribution.
On the other hand, SDN provides its programmability to NFV,
allowing communication between different VNFs. The com-
bination of SDN and NFV further increases scalability. The
authors of [183] also provided a software-defined NFC archi-
tecture that consists of the forwarding devices, the controller
module, and the NFV Platform. From Figure 15, the forward-
ing devices are switches and routers from the data-plane layer
of SDNs. These forwarding devices store forwarding tables
to process a particular data packet. The forwarding tables
are defined by the SDN controller. The SDN controller also
controls NFV orchestration on the control module. Another
function of NFV orchestration is to assign functions to the
NFV platform, where servers host hypervisors supporting
virtual machines running with the network functions [183].
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NFV Management

: Northbound
N . Virtual Virtual Virtual
Communication jE Machines Machines Machines

SDN Network Controller
Southbound
Communication

Forwarding Devices

Forward
Control Server Server Server
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FIGURE 15. Software defined NFV architecture [183].

The authors from [184] identified that in the environ-
ment of SDN and NFV, connecting and modification of vir-
tual functions are complex due to multiple heterogeneous
end-user demands and network parameters. Service function
chaining could be a solution to reduce this complexity and
optimize the use of resources. The authors from [184] also
categorized existing service function chaining models into
six optimization types as follows: network latency mini-
mization, resource utilization optimization, cost minimiza-
tion, power/energy minimization, service level agreement
based optimization and quality of service based optimization.
Finally, the authors of [183] provided a vision of implement-
ing service function chaining on the software-defined NFV
Architecture. The optimal path of service chains is coordi-
nated with the SDN controller fulfilling user requirements
and resource constraints. Then, service chains are created
from multiple VNFs, and data packets flow through the path
of the service chains.

In this section, network and service scalability achieved
with SDN and NVF are reviewed. The authors of [185]
indicated the emerging network scalability issues trig-
ger by the network management overhead in current net-
works with increasing size and dynamism. Autonomic or
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self-management of the networks (SONs) [185] could be
a solution for these issues. On the other hand, IoT inter-
operability could be another solution to resolve scalability
issues [186].

VIL. loT SECURITY

The diversified and ubiquitous use of IoT systems in fore-
seeable future necessitate the need of evaluating security
and privacy requirements for various IoT technologies and
applications. In this context, due to constrained resources of
IoT end-devices, lack of host-based security measures, and
data-enabled services, numerous threats emerge at different
layers of IoT architecture.

A. PHYSICAL LAYER
Some of the noteworthy threats at physical layer include:

1) Eavesdropping: Attackers can introduce devices similar
to the end nodes in an IoT system to sniff wireless traffic
and capture sensitive user data.

2) Hardware Failure: IoT device hardware may fail due
to manufacturing faults or as a result of a cyber-attack.
This failure may lead to substantial damage to the IoT
system as a whole or it may cause physical impairment
to the users [187]. An example of such a successful
cyber-attack is Stuxnet [188], that caused physical dam-
age to a critical equipment installed at Iranian Nuclear
Enrichment Facility.

3) Malicious Data Injection: Any persistent attacker can
introduce a forged device to eavesdrop on the radio traf-
fic, inject fabricated messages or flood the radio chan-
nels with fake messages to render the system unavailable
to the legitimate users [189].

4) Man-in-the-Middle Attack (MITM): There is always
a possibility that an attacker can tap and listen to
the unprotected communications links between the end
users and the network/applications servers. Such an
attack is often called as (MITM) attack. A successful
MITM attack may enable the attacker to eavesdrop the
communication channel or to inject forged malicious
data.

5) Sybil Attack: In this attack, a malicious node may
present multiple identities by generating fake new iden-
tities or by impersonating other nodes. In the worst case
scenario, multiple identities may be generated using a
single physical device [190]. The attacker has the option
to present all the Sybil identities simultaneously or one
by one at different instances. A Sybil attack may affect
the outcome of a voting-based fault tolerance system or
a routing protocol.

6) Loss of Power: In order to abnormally drain the battery
of an IoT device an attacker can bombard the node with
a large no of requests (mostly legal) thus preventing it
from going to sleep or energy saving mode.

7) Disclosure of Critical Information: It is not always the
case that a communications channel is unprotected. Cur-
rently, most of the communications protocols especially
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8)

9)

the wireless protocols such as 802.15.4, LoRaWAN,
SigFox, ZigBee, and WiFi, encrypt data during transmis-
sion. However, still a smart attacker may continuously
monitor the wireless sensors traffic, for example, of a
smart home and analyze the pattern of data traffic to
differentiate between an idle mode or when an event
occurs. Hence, even if the data is encrypted, the fre-
quency of data traffic may infer critical information to
the attacker that the house is empty. Therefore, he can
plan a robbery.

Side-Channel Attacks: Other than intercepting the plain
text or cipher text messages, attackers may resort to
gather and analyze side-channel information about the
IoT device hardware components. This information may
include, data about processing time or power consump-
tion while encrypting or decrypting data packets of
varying lengths generated from different sensors/end
nodes [191]. Such an analysis may help the attacker to
identify the duty cycle of various IoT devices based on
the frequency of particular messages being transmitted.
Device Compromise. Most of the IoT devices designed
for a particular application such as environmental mon-
itoring, temperature, and pressure sensing, etc., are not
security hardened, thus have weak authentication mech-
anisms or open debugging ports. Hence, these devices
can easily be compromised by the malicious attackers.
In an effort to demonstrate such an attack, security
researchers in [192] exploited an open Universal Asyn-
chronous Receiver/Transmitter (UART) interface of a
home automation system controller. The sequence of
actions adopted by the researchers to compromise an
IoT device is shown in Figure 16. Once the attacker
gains access to the device, he is able to view the start-up
sequence. Hence, he can modify the boot parameters and
gain low-level access to the device. Attacker may also
brute force the root password and launch network layer
attacks such as port scanning. In addition, the attacker
may perform network traffic analysis. Attackers also
have the option to fetch and analyze device firmware,
find weaknesses and launch further attacks.

In another endeavor, security researchers compromised
a smart meter device through an unsecured Joint Test
Action Group (JTAG) interface and modified the iden-
tity of the device. The researchers also modified write
permissions to an Electrically Erasable Programmable
Read-only Memory (EEPROM) that stored the device
ID. As a result of such a successful attack in real-world
malicious users can use the spoofed device identity
to feed altered power consumption data to the con-
troller/gateway device [193]. Similarly, researchers also
successfully compromised a Google Nest Learning
Thermostat and Nike+ Fuelband SE fitness tracker by
exploiting vulnerabilities in the boot process and some
weaknesses in the physical design. The attack was suc-
cessful despite the availability of secure transmission
protocols such as Wi-Fi Protected Access II (WAP2)
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and Transport Layer Security (TLS) 1.2. In addition,
the smart devices also had fairly strong authentication
mechanism in terms of OAuth authentication tokens
and Public Key Cryptography Standards VII (PKCS 7)
certificates.
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10) Node Cloning: Due to cost-effective solutions most IoT
devices are developed without any hardware tamper-
proofing. Therefore, it is very easy for a persistent
attacker to forge and replicate these devices for mali-
cious objectives. Such a replication is called “node
cloning” [194]. An attacker can clone the devices either
in manufacturing phase, or during the operational phase.
During device manufacturing, an inside attacker can
target and substitute a particular legitimate device with a
similar, pre-programmed one for unauthorized purposes.
Whereas, during the operational phase attacker has to
resort to a carefully planned attack to compromise and
clone an IoT device.

11) Invasive/Semi-invasive Intrusions: Invasive and semi-
invasive intrusions are significant threats to IoT devices.
By using invasive intrusion methods, attackers can steal
the cryptographic primitives stored on the chip and may
compromise any protocol utilizing that secret informa-
tion. In a practical manifestation of such an attack,
security researches in [195], successfully extracted the
Advanced Encryption Standard (AES) Key from the
internal memory of Actel ProASIC3 FPGA, by launch-
ing “Bumping Attacks’ [196].

B. NETWORK LAYER

Most of the attacks are anticipated at network layer because
it not only links multiple Local Area Networks (LANs)
but also enables a connection to the Internet. Some of the
threats that affect data security at this layer include unfairness,
impersonation, Sybil, and interrogation attacks [197]-[199].
Similarly, numerous Denial-of-Service (DoS) attacks that
threaten the availability of network services include; channel
congestion, collision and battery exhaustion attacks [200],
[201]. The battery congestion attack may be launched by
increasing the frame counter value and spoofing of acknowl-
edgment frames [202], [203]. Correspondingly, hello flood
attack, selective forwarding, wormhole attack, blackhole
attack [200] and storage attacks [187] also threaten availabil-
ity of network services. Some other DoS attacks may include
exploitation of Carrier Sense Multiple Access (CSMA) proto-
col by transmitting on multiple channels [201], [202] and ini-
tiation of fake Previous Access Network Identifier (PANId)
conflicts. DoS Attacks can also be launched by sending
fake/false messages to a node, server [204] or a gateway
device [205].

In addition, some of the threats to the security and integrity
of the system include MITM, eavesdropping [189], spoofing
[200], message fabrication/modification/replay attacks [189],
unauthorized access to network, compromise of a device
(done remotely using malware) [187], node replication [197]
and insertion of rogue devices [206].

C. FOG/EDGE LAYER

The introduction of fog/edge computing with IoT to reduce
latency, decrease bandwidth, enhance computing power,
increase storage and augment security is a paradigm shift
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from centralized cloud-based infrastructure [207], [208].
However, as fog/edge is believed to be a nontrivial extension
of the cloud, hence certain new security and privacy issues
have been identified in addition to the existing ones. Some of
the significant security and privacy challenges include:
1) IoT device authentication.
2) Lack of trust measurement mechanism.
3) Absence of IoT device integrity check technique and
detection of rogue devices.
4) IoT device security and user data security and privacy.
5) Non-availability of IoT-centric access control and intru-
sion detection system to avoid insider and external
attacks.
6) Key management at end devices.

D. SECURITY AND PRIVACY ISSUES DURING DATA
STORAGE AND ANALYTICS ON CLOUD
Today, the reliance on Big Data analytics to provide valuable
business intelligence has paved the way for the integration
of IoT and cloud computing. No doubt, cloud infrastructure
has relieved IoT systems from issues involving scalability,
constrained processing power, limited memory and power to
run heavy applications [209]. However, like other IoT layers,
the vulnerabilities in cloud interfaces can also become attack
vectors. Therefore, the cloud gateways should be equipped
with requisite security controls to restrict malicious actors
from compromising security and privacy of user data [210].
Some of the major security issues in cloud-supported IoT
systems include: Cloud services are provided under the cen-
tralized control of one trusted entity. Hence, the cloud is
vulnerable to the single point of failure concerning security
and privacy issues [189] including data manipulation [211],
[212], and the availability of cloud services. Moreover, cloud
also has trust issues, as the users have to put their trust in the
entity that is providing cloud services and handling their data.
Hence, users have no control over their data assets. Further
concerns for user data include: Users do not know where their
data is stored and what is happening to it. Who has access to
it, and is there any unauthorized disclosure to the third parties.
In regard to data manipulation, the cloud service provider has
to be a trusted party as it has control over the data stored in
the cloud and related services. Therefore, the cloud provider
can manipulate user data [212]. Correspondingly, single point
of failure also concerns the availability of services when the
cloud servers are down because of software bugs, cyber-
attacks, power problems, cooling and other issues, users find
it difficult to access the cloud services [211]. Cloud is also
vulnerable to un-authorized data sharing. For example, in the
recent past, private data of 87 million users was provided by
Facebook to a British political consulting firm ‘“‘Cambridge
Analytica” without user permission [213], [214]. Such a data
breach results in irreversible data security and privacy issues.

E. APPLICATION LAYER
Most application developers focus more on efficiency and
service delivery rather than security. As a result, applications
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remain vulnerable to numerous threats. Lack of application
security, and weak authentication and authorization mech-
anisms enable attackers to compromise IoT devices using
various attack vectors such as malicious code, and brute force
attacks to guess the hard coded login credentials. The device
compromise can then result in unwanted disclosure of sensi-
tive information, elevation of privileges and data tampering.
The attacker can also turn the infected devices into bots to
launch further attacks on other end devices or network appli-
cations [187]. Moreover, once an adversary gains an initial
foothold on the IoT device through an insecure application
he can also do the exploitation via binary patching, code
substitution or code extension [215]. Correspondingly, some
significant security risks to web-based IoT systems have been
ranked by OWASP (Open Web Application Security Project)
[216]. These risks include:

a) Injection flaws in SQL/noSQL Databases, Operating
Systems (OS) and Lightweight Directory Access Pro-
tocol (LDAP). This vulnerability not only affects tra-
ditional Information Technology (IT) systems but also
poses an equal threat to the IoT applications and
database servers. In a practical manifestation of such
an attack, researchers in [217] successfully compro-
mised a smart home device, i.e., a Belkin WeMo
Switch. As shown in Figure 17 firstly, the attacker
discovers an SQL injection vulnerability in the IoT
device. The adversary also discovers that the data is
not encrypted during transmission between the Belkin
WeMo Android Application and the Belikn device.
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He also finds that the authentication mechanism is lack-
ing. The attacker then sends a malicious SQLite file to
the device and resultantly gets root level access. Once
inside, the attacker can alter the functionality of the
device or he has the option of launching a DDoS attack.
For example, The lamp is kept on for a long time irre-
spective of the rules defined by the user. It is imperative
to mention here that once an attacker gains root level
access to the device; he can even kill the firmware
update process initiated remotely by the vendor. Hence,
the device can be kept in the compromised state for as
long as desired by the attacker or until the device is
updated on site [218].

b) Malicious actors can steal user identities and compro-
mise passwords, cryptographic keys, and session tokens
due to incorrect session management and incorrect
implementation of authentication in applications. For
example, a user does not change the default username
and password or the wireless router has hardcoded cre-
dentials for the admin account. Hence, researchers in
[219] were able to hijack the session using ARP poison-
ing and gain access to the camera feed of the Withings
Smart baby Monitor.

¢) Security misconfiguration is one of the most common
weaknesses. It implies insecure default configurations,
open cloud storage, mis-configured Hyper Text Transfer
Protocol (HTTP) headers, and overblown error mes-
sages that may contain sensitive information. An IoT
device is insecure without secure configuration and
timely upgrades of its OS and applications [218].

d) XSS (Cross Site Scripting): By exploiting this vulnera-
bility, attackers can run an arbitrary JavaScript code in
the browser of target systems [217], [220]. Resultantly,
it can lead to the hacking of the smart devices and
ultimately the theft of private data.

e) Security Issues in Application Layer Protocols: Secu-
rity researchers have shown concern over the security
issues in various application layer protocols such as
HTTP, Message Queuing Telemetry Transport (MQTT),
Advanced Message Queuing Protocol (AMQP), and
Extensible Messaging and Presence Protocol (XMPP)
[221]. These protocols rely on TLS and Datagram Trans-
port Layer Security (DTLS) for the security during com-
munication especially in a client-server environment.
However, these protocols are vulnerable to plain-text
recovery attacks, as demonstrated by the researchers
in [221]. Moreover, another significant issue with these
protocols is that they were not designed to be used for
resource constrained IoT devices. Subsequently, these
protocols add additional traffic overheads with every
connection establishment that ultimately drain the com-
puting and power resources of IoT devices [222].

F. BUSINESS LAYER
Data received from IoT devices through web/application
servers is stored and processed mostly in the cloud. The
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processed data is then used to provide various data-enabled
services to the users, and third parties. This big data analytics
is no doubt beneficial, but at the same time various security
and privacy issues emerge. Users that are basically the data
owners do not know where their data is stored and who has
access to it. Moreover, cloud service providers may share
some private information of the users with third parties with-
out de-anonymization. Most of the tools currently being used
to store and compute big data, such as Hadoop Distributed
File System (HDFS) and MapReduce framework lack ade-
quate security to protect sensitive user data [223]. Hence,
there is a need to develop a comprehensive defense strategy to
protect IoT systems from various security and privacy threats.

G. APPLICATION SPECIFIC SECURITY REQUIREMENTS
There are myriad of IoT applications that have significant
impact concerning safety, security and privacy of people,
in case of any security breach. All of these applications cannot
be discussed here; however some of the critical ones are
highlighted in the subsequent paragraphs.

1) loT IN HEALTHCARE
IoT has revolutionized healthcare domain by connecting
wearable healthcare devices, smart homes, hospitals, med-
ical staff, and other processes. Such an integration is
no doubt beneficial. However, being interconnected and
remotely accessible, these services are vulnerable to major
cyber-physical security risks [224]. Some of the significant
security and privacy issues concerning Healthcare IoT infras-
tructure, and services include:
« Weaknesses in network access control mechanisms and
threats to data authentication, integrity and availabil-
ity [225].
¢ Due to the interconnections, a failure in one infrastruc-
ture can cause cascading failures among its dependent
systems/processes [226].
« Unauthorized access to user data by third parties.
« Lack of role-based controlled access to patient data.
« Existing single party owned centralized systems to store
and process user data provide single point of failure.
o Vulnerability to ransomware attacks [227].

2) INDUSTRIAL loT

The development of first Programmable Logic
Controller (PLC) in 1968 by Modicon laid the foundations
of classical industrial automation. This automation pyramid
comprise of Enterprise Resource Planning (ERP) layer, Man-
ufacturing Execution System (MES), Supervisory Control
and Data Acquisition (SCADA) layer, PLC layer and sensing
layer comprising sensors and actuators [228]. For a longtime
the security of industrial systems was based on the principle
of obscurity, i.e., by hiding the details about internal net-
work and related technologies. However, with the increase
in the level of automation, and reliance on remote access for
ease in monitoring and control, the industrial systems have
become a lucrative target for the cyber-attackers/hackers.
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In this context, Stuxnet was the game changer, that made
the world realized that the security of critical infrastructure
is a necessity [218]. Stuxnet is believed to be a targeted
computer worm that was designed to sabotage CPS installed
in Iranian Nuclear Enrichment Facility. It exploited four
zero-day vulnerabilities in Windows-based systems to gain an
initial foothold [229]. Stuxnet specifically targeted personal
computers running WinCC/PCS-7 control software used for
programming the PLCs [230]. It could act as a MITM attacker
and mask the malicious code execution by replaying twenty
one seconds of legitimate process input signals. The malware
payload comprised rootkits which could hide its presence
and was also equipped with stolen digital certificates to
appear legitimate. The payload altered the speed of frequency
converter drives (from specific vendors Fararo Paya from
Iran and Vacon from Finland) to cause physical damage
to over 900 centrifuges [188]. Other than malware attacks,
the industrial systems are also vulnerable to numerous threats
including: DoS, DDoS, ransomware, message spoofing, data
integrity and non-repudiation, information disclosure, and
elevation of privileges.

3) SMART CITY SECURITY REQUIREMENTS

The advances in IoT technologies and related smart gadgets
have given birth to a new paradigm called “Smart Cities.”
That aims to dynamically optimize the use and availability
of numerous tangible and intangible resources. However,
due to reliance on IoT devices for sensing and initial pro-
cessing of perceived data, and vulnerability of IoT devices
to numerous cyber attacks, the attack surface for a smart
city also increases. Hence, authors in [231] highlight cer-
tain necessary requirements to design a secure smart city.
These requirements include: secure communication [232],
secure booting of IoT devices [233], security monitoring and
incident response strategy [231], secure software/firmware
update and patching [234], authentication, identification, and
access control [235]-[237], and data and application security.

VIil. SECURITY MEASURES
Figure 18 shows a defense-in-depth approach that acts as
a guideline to protect [oT systems against threats at all the
layers of IoT architecture. Not all the IoT applications may
require all these measures. Depending upon the nature of IoT
application, a combination of these guidelines may suffice.
a) Risk Assessment and Threat Modelling: For the devel-
opment of an effective defense mechanism firstly, there
is a requirement of carrying out the risk assessment
for all processes, equipment (both hardware and soft-
ware), stakeholders and information assets at each
layer of IoT architecture. The aim of such an assess-
ment is to identify the assets that are deemed crit-
ical for the business. Failure of any of which may
cause significant security, privacy, financial and safety
issues. It is followed by an appropriate risk treat-
ment/mitigation process to minimize the damage of
such events. Correspondingly, most of the information
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security standards such as International Standards

Organization (ISO)-27001 [238], and National Insti-

tute of Standards and Technology (NIST) publication

800-30 [239] enforce risk management as an integral

part of the overall controls. Any such standard can be

followed until there are some IoT specific standards on
board.

Preventive Measures: The primary objective of pre-

ventive measures is to mitigate the weaknesses which

attackers can exploit to initiate a security breach. These
measures include:

e Security by design: IoT solution architects should
consider a non-zero likelihood of security breaches
while planning, designing and developing an IoT
system. It is very important that security should
be enabled by design and users should have the
option to change the security settings as per their
personal requirements [240], [241]. Certain practices
that help achieving security by design are: trusted
environment for secure computing, security of all
open/debugging ports, preserving integrity of the
firmware/code, multi-factor authentication, and by
default block all traffic at the ingress.

e Identity Management: An effective identity manage-
ment mechanism not only protects against identity
spoofing, and device replication attacks but also com-
pliments network layer security protocols such as
Transmission Layer Security (TLS), and IPSec [242].

e Tamper-Proofing: IoT device tamper-proofing is con-
sidered to be a potent defense against physical device
compromise, unauthorized access, firmware modifi-
cations and device cloning [243], [244]. Moreover,
complimented by a secure execution environment,
it can protect against code modification and malicious
payload execution attacks [242].

e Use of Pseudonymous Identities: Use of pseudonyms
protects the users against most of the privacy threats
by de-linking user identities from the Personally Iden-
tifiable Information (PII). It can be achieved by using
Public Key Infrastructure (PKI), i.e., by issuing public
keys to the users of an [oT system for authentication
and authorization of various services. These public
keys can be issued in the form of X.509 certificates
by a trusted Certificate Authority (CA) [245].

e Identity-based Authenticated Encryption and Mutual
Authentication Scheme: Such an authentication and
data security technique not only protects against
impersonation, MITM, and eavesdropping threats but
also from data forgery, data modification, and mes-
sage replay attacks [246]-[248].

¢ Homomorphic Encryption: To avoid privacy issues in
a cloud environment where user data is processed,
analyzed and shared with third parties, homomorphic
encryption is considered to be an effective tool [249].

e Blockchain Technology: Since the success of Bitcoin,
a cryptocurrency [250], blockchain has disrupted
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FIGURE 18. Defense-in-depth approach.

conventional IT industry. The inherent cryptographic
security of blockchain protects against most of the
data forgery, modification, replay and authentication
threats. It also provides a transparent log of events that
facilitates system audit at any time [251].
Role-based Access Control: Issues related to the secu-
rity and privacy of data and unauthorized access to
the network services can be prevented by deploying
role-based access controls [206].

Secure Remote Access: Not only in private sector but
in public organizations as well, sometimes the users
are required to work from home. Hence, there should
be a mechanism of remotely connecting users at their
homes with the organization networks and systems.
For example, use of a Virtual Private Network (VPN)
service can protect against attacks on corporate net-
works and threats to sensitive Business Intelligence
(BI) [252].

Key Management: Secure management of cryp-
tographic keys including generation, distribution,
storage, revocation, and update is an essential require-
ment to protect against masquerading attacks and
exposure of critical information.

Network Segmentation: To curtail the effects of
network or a node compromise using network
segmentation is recommended to be an effective
approach. Network segmentation can be achieved
by defining de-militarized zones, physical isolation,
VLAN:Ss, software-defined perimeter, application fire-
walls, and content-based filtering [253].
Software-defined Networking (SDN) based Virtual
Security: Network Virtualization using SDN can aug-
ment IoT device-level protection by implementing
security at the network level, hence, reducing cost and
add-ons for low-end devices [254].

Use of self-encrypting drives/devices: Data privacy is
one of the fundamental issues in this age of internet
and smart technologies. Therefore, it is believed that
use of self-encrypting drives and on-chip flash mem-
ories may provide requisite security by design against
unauthorized disclosure of private user data [243].
Security Awareness: In the tech savvy world, it is
very crucial that organizations should invest in
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educating their employees on security concerns. It can
be achieved through various workshops, seminars and
periodic lectures on cyber threats and requisite pre-
cautionary measures.

c) Detective Measures: As the name suggests, even if an
attacker is successful in gaining an initial foothold into
any loT system, the detective measures will help in iden-
tifying any malicious activity. Some of these measures
may include:

d)

Secure Log Management: Most of the attack-
ers/hackers try to wipe off their footprints after an
unauthorized intrusion into a critical system. Hence,
keeping a secure log of all activities in the network
helps to expose any unusual activity or a security
breach.

Network Security Analysis: CISCO [255], and
IBM [256] have developed various network security
analysis tools that are helpful in detecting numerous
anomalies, malfunctions and security breaches.

Edge Security Analysis: In addition to the network
security analysis, edge security analytics facilitates
isolation of security events at the source and limit
attack spectrum [242].

Network-level Security Measures: Network-level
security measures to enforce cross-device security
policies can easily detect manipulation of actu-
ator actions based on malicious/modified sensors
data [257].

Device Attestation: If possible, there should be some
mechanism of performing runtime IoT device code
attestation to check for the presence of any malicious
payload or modification in the original code. The
successful code verification is expected to shrink the
attack surface [258].

Penetration Testing and Vulnerability Assessment:
Periodic network penetration testing is always helpful
in detecting weaknesses in all the layers of IoT archi-
tecture, web UI/APIs, and servers to initiate respec-
tive counter/response measures.

Responsive Measures: The best way an organization
can respond to a cyber security incident is by preparing
an effective incident response plan. Mostly, these plans
are rolled out by a team usually called as Computer
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Emergency Response Team (CERT). These teams com-

prise skilled professionals including cyber security

experts, information security auditors, legal experts,

IT administrators and other specialized members. The

primary objective of CERT is to develop and practice

a diligent response plan against any security breach so

that all the team members are clear about their respon-

sibilities. The response measures are often termed as
after-incident reactive measures, which include:

e Disconnect the affected system from the Internet.

e Isolation of the compromised devices/parts of the
system allowing rest of the system to continue unin-
terrupted operation.

e Revocation and blacklisting of malicious nodes.

e Initiation of anti-tamper mechanism, in which,
as soon as the hardware of the node is interfered
with, the memory of the node that contains firmware
and code should immediately be wiped off, and
the node should only join the network after being
physically activated instead of OTAA (Over-The-Air-
Activation).

e Recover important business and personal data from
the backup.

e) Corrective Measures: Once a security event has occurred
and the compromised devices/parts of the system are
identified and isolated, they need to be recovered to
operational condition. There are two known meth-
ods of node restoration, i.e., self-recovery and remote
attestation. In self-recovery, the faulty device performs
integrity check of the code running on it and the last
best configuration stored in read-only memory. If the
validation fails, the device deletes the current code
and re-installs the last best configuration. The device
then restarts and performs validation of all its modules.
Whereas, in the later method, the compromised/faulty
device sends integrity report to the controller/gateway
device for remote validation [243]. If the validation fails,
a secure firmware update process is initiated by the
verifier.

To conclude, Table 10 summarizes threats at different layers
of IoT architecture, including physical, network, fog/edge,
data orchestration/cloud, application, and business layer.
Similarly, Table 11 highlights the essentials of defense-in-
depth approach to secure IoT systems.

IX. loT SUSTAINABILITY

While IoT technology has gone through a significant level
of advancements in recent years, there are still a number of
constraints associated with battery dependency, limited life-
time, and environmental pollution of these portable devices.
Until now, energy has been one of the barriers to large-scale
adoption and deployments in IoT devices. Integrating EH sys-
tems with IoT devices extend their lifetime, decrease energy
costs, and reduce environmental pollution by using green
energy sources [259]. Hence, self-powered IoT devices that
can operate autonomously are an emerging topic of interest
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among researchers [260], [261]. Energy harvesting is a sus-
tainable, cost-effective, green energy solution to provide an
alternative energy source for remotely deployed IoT devices
and sensors. Energy harvesting or scavenging is the process of
collecting energy from freely available ambient sources, and
EH is a device that converts ambient energy into DC power
to supply Wireless Sensor Networks (WSNs), biosensors and
IoT devices [262]-[266].

Depending on the type of energy available, there are a
number of techniques for energy scavenging from ambient
sources such as solar, thermal, mechanical sources (for exam-
ple, wind, kinetic, vibration) and radio frequency (RF) waves.
These sustainable sources are all in abundance and are pro-
duced in a pure form on our planet [266]. Harvested energy is
often used for WSN, wearable electronics, and portable IoT
devices [259], [267]. However, not all ambient sources are
appropriate for energy harvesting in IoT applications.

Basically, the energy harvester (EH) integrated with IoT
devices should produce at least milliwatts of power from the
environment. Figure 19 shows generated DC power of differ-
ent energy harvesting technologies and the power consump-
tion of different electronic devices to demonstrate the useful-
ness of energy harvesting techniques for these devices [259].

A. ENERGY HARVESTER SYSTEMS IN IoT DEVICES

EH system converts ambient energy, such as solar energy,
thermal, vibrational, or RF energy into usable electri-
cal energy. According to Figure 20, an EH consists of
three main components: power transducer, storage (battery/
supercapacitor), and power management unit (inter-
face) [268].

Transducers convert ambient energy into electrical DC
power and commonly referred to an “‘energy harvester.”
In addition, the battery/supercapacitor collects cumulative
DC power over a period of time, and the power man-
agement unit transfers maximum energy from the battery/
supercapacitor to the IoT device.

Since energy supply and demand may come at different
times, in practice, a temporary energy buffer (for example,
supercapacitor) and power management unit are necessary to
deliver harvested energy to the IoT device effectively. There-
fore, the power interface (power management unit) makes the
produced energy feasible to the load using various adjust-
ments such as voltage regulation (DC/DC convertor) and
power management functions [269]. Supercapacitors have
been investigated as an alternative green energy storage due
to their advantages compared to batteries [270]. They have
quicker charge time (~1000 times over batteries), larger oper-
ating temperature range (—40~4-85°C), ability to withstand
millions of charge/discharge cycles, nearly infinite shelf life
and lack of toxic heavy metals [271]. Although nearly perfect
for IoT applications, a supercapacitor has its own disadvan-
tages such as lower energy density (10 times smaller than
batteries) and unstable output voltage over long time-span.
To address the quick charging and long-lasting requirements
of IoT systems, and to overcome the inherent disadvantages
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TABLE 10. Threats to loT.

Network layer

Sybil attack

Interrogation attacks

IoT Layer Threats References
Eavesdropping [218]
Hardware failure [187, 188]
Malicious data injection [189]
MITM [218]

Physical layer Sybil attack [190]
Loss of power [218]
Information disclosure
Side-channel attacks [191]
Device compromise and node cloning [192, 193, 194]
Invasive/semi-invasive intrusions [195]
Unfairness and impersonation attacks [197, 198, 199]

Channel congestion and collision attacks

Battery exhaustion attacks

[200, 201, 202, 203]

Hello flood attacks

Selective forwarding attack

Wormbhole and blackhole attacks

Storage attacks

[200, 187]

CSMA attack

PANId conflicts

[202, 201]

MITM, eavesdropping and spoofing attacks

204, 205, 189, 200]

Remote device compromise

Node replication

[
[
[197]
[
[

Business layer

Threats to user privacy

Insertion of rogue devices 206]
Issues concerning device authentication 207, 208]
Fog/Edge layer Lack of trust mechanism
Threats to IoT device integrity
Vulnerability to insider and external attacks
Single point of failure [189]
Cloud layer Data manipulatior? _ . [211, 212]
Threats to the availability of cloud services
Risk of unauthorized data sharing
Information disclosure [187]
Elevation of privileges and data tampering
Threat of botnets
Code substitution or code extension attacks [215]
.. Injection flaws in SQL/noSQL Databases, OS and LDAP [217]
Application layer - —
Session hijacking [219]
Security misconfiguration [218]
XSS [217,220]
Plain-text recovery attacks [221]
Resource constraints [222]
Unauthorized sharing of data/information [223]

of supercapacitors, an overall power management solution
is proposed using supercapacitor management integrated cir-

cuits (ICs) [272], [273].
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TABLE 11. loT defense-in-depth approach.

EH Technology

1 1 1 1 1 1 1 1 1 1 L 1

Defense Category Security Measures References
Identify critical assets [238, 239]
Risk assessment Vulnerability assessment
Risk treatment and mitigation strategy
Security by design [240, 241]
Identity management [242]
Tamper-proofing [243, 244]
Use of pseudonymous identities [245]
Identity-based authenticated encryption and mutual authentication [246, 247, 248]
Homomorphic encryption [249]
Protective measures Blockchain technology [250, 251, 206]
Role-based access control [206]
Secure remote access [252]
Key management [218]
Network segmentation [253]
SDN [254]
Self-encrypting devices [243]
Security training and awareness
Secure log management
Network security analysis [255, 256]
Detective measures Edge security analysis [242]
Network-level security measures [257]
Device attestation [258]
Penetration testing and vulnerability assessment [218]
Responsive measures Establishment of CERT [218]
Preparation of incident response plan
Self recovery of nodes
. Remote attestation [243]
Corrective measures
Device replacement/reconfiguration
Review and updating security policies
A tDevices

Laptop/ Tablet

Organic Light-Emitting

7| Diode (OLED) display

MP3/Bluetooth transceiver
Low power wireless network
Active RFID/FM Receiver
Hearing aid

RFID tag

Electronic watch

Quartz oscillator

0.1pyW  1pW

10uW

100uW  ImW 10mW  100mW  1W ow 100W  1kW 10kW

Generated/Consumption DC Power

FIGURE 19. Generated power using various energy harvesting technologies and typical power consumption of devices.

range of —40° to 85°C [274]. Further, they can be discharged
at high current level up to 10 A which make them a suitable
candidate for IoT applications and large-scale WSNs in pre-
cision agriculture (for example, plant and soil sensors) [275].
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100kW 1MW

In addition, supercapacitor has an excellent reliability in
comparison with battery in the market. High durability guar-
antees less degradation and a longer working time under high
temperature condition [274]. Table 12 exhibits key benefits of

VOLUME 9, 2021




I. Zhou et al.: 10T 2.0: Concepts, Applications, and Future Directions

IEEE Access

Energy Source
' Power ' Battery/ ' Power ' loT
(Rg,a':'ar:'el:gal, Transducer i Sensor

FIGURE 20. General block diagram of an energy harvesting system.

TABLE 12. Comparison table of supercapacitor vs. battery.

Parameter Battery Supercapacitor
Energy Density | 100 10

(Wh/Kg)

Power Density | 1 10

(KW/Kg)

Efficiency (%) <80 >90
Cyclability 400-2500 | 1000000
Calendar Life (Years) 4-6 >15

Low Temperature (°C) -20 -40

High Temperature (°C) | +60 +85 to +100
Death Sudden Predictable
Cost (3/KWh/Cycle) 0.07-0.2 0.006

supercapacitor relative to battery. The application of superca-
pacitors in micro-satellites has been also investigated [276]
as supercapacitor cells are capable of surviving in harsh
environments (for example, space applications).

Finally, supercapacitors are ideal storage candidate when a
quick charge is required to address a short-term power need;
whereas batteries are chosen to provide long-term energy
storage. Therefore, combining supercapacitors with batteries
in a hybrid mode provide an optimum solution which satisfies
both requirements. This reduces battery stress, resulting in a
longer service life [277].

EH systems for IoT devices should fulfill certain require-
ments, such as power range, cost, and dimension. A low
profile, compact, maintenance-free, low-cost, and highly

TABLE 13. Overview of different sensor types and their power demand.

efficient EH is suitable for IoT devices. Recent advancements
in integrated circuit architecture have created the potential to
integrate multiple features into one chip (for example, mono-
lithic microwave integrated circuit technologies). Hence, IoT
size is not a bottleneck anymore. Moreover, employing RF
technologies has allowed for size and cost reductions in inte-
grated IoT devices with EH [278]. Sustainable IoT devices
driven by EH have been attracting significant interest from
different sectors such as smart cities, health care, and pre-
cision agriculture [259]. Table 13 presents an overview of
different sensor types and their maximum power demand.
Moreover, in each sensor type, a typical sensor and its power
consumption are presented. Table 14 and 15 present some
examples of industrial IoT devices powered by integrated EH
systems.

1) RF ENERGY HARVESTING

RF energy scavenging has experienced rapid development
recently due to the increasing number of RF transmitter
sources, which are producing an abundant ambient electro-
magnetic energy [267]. A prominent advantage of RF har-
vesting is the capability to transform dissipated microwave
energy into usable electrical power during day and night, both
indoor and outdoor. Further, penetrations of RF signals inside
structures (for example, walls, bridges, tunnels) and under-
ground allow for RF energy harvesting and wireless power
charging where other energy sources (for example, solar,
wind) are not available [268], [278], [301]. RF energy har-
vesting offers a novel approach to develop environmentally
sustainable IoT devices by employing ambient energy and
converting electromagnetic resources to electricity. To this
end, receiving antennas is integrated with rectifying circuits
(rectifying antenna or rectenna) to harvest RF energy from
a focused beam (Wireless Power Transfer/ WPT) and other
freely available sources in the environment (Ambient RF
Energy Scavenging).

Sensor Type Max Power Con- Typical Sensor Company Typical Sensor
sumption Model Power Consumption

Pressure 20 mW BMP280 Bosch 100 pW
ADXL345 Analog Devices 100 uW

Acceleration 35mW MPU-6050 InvenSense 1650 W
LIS2DS12TR STMicroelectronics 270 pW

Temperature 3.5 MV TMP006 Texas Instruments 792 W
D6T-44L-06 Omron 25 pW

Humidity 3mW HDC1000 Texas Instruments 246 uW

Gas 800 mW Grove - Gas Sensor Seeed Studio 800 mW
MQ2)

Displacement I mW SP1-50 TE Connectivity 0.5 mW
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TABLE 14. Overview of embedded energy harvester used in loT applications.

Ref. | Product Company Energy Source | EH Country
Technology
Thermostat Kieback&Peter | Thermal TEG Germany
[279]
Wireless Magnet Contact EnOcean Light/Solar Photovoltaic Germany/USA
[280]
Wireless Light Switch EnOcean Kinetic Energy | Electrodynamic/ | Germany/USA
[281] (pressure) Piezoelectric
Key Card Switch EnOcean Kinetic Energy | Electrodynamic/| Germany/USA
[282] (pressure) Piezoelectric
Occupancy Sensor EnOcean Indoor Light Photovoltaic Germany/USA
[283]
Room Thermmostat Peha- Indoor Light Photovoltaic Germany/USA
[284] Honeywell
Remote Control Arveni Kinetic Energy | Piezoelectricity | France
[285] (pressure)
Smart Charging at Home Energous Corp. | RF Energy RF to DC USA
[286]
Fleet Tracking Perpetuum Kinetic Energy | Piezoelectricity | England
[287] (Vibration)
Roads/Sidewalks Pavegen Kinetic Energy | Piezoelectricity/ | USA
[288] (Vibration) Induction
Street Lights EnGoPlanet Kinetic Energy | Solar: Day, | USA
[289] (Pressure) Piezo: Night
Outdoor Temperature Sensor Thermokon Light/Solar Photovoltaic Germany
[290]
Pipeline/Industry Monitoring Perpetua Thermal TEG USA
[291] Energy
Sewer Level Monitoring System | NTT Data Thermal TEG Japan
[292] Energy
Smart Watch Matrix Ind. Thermal TEG USA
[293] Energy
Solar Lamp Ningbo Solar Photovoltaic China
[294] Yongjiang
Shenzhou
Photovoltaic
Co., Ltd.

RF energy harvesting system eliminates the need for
returning IoT devices to base for recharging. These devices
could be powered through ambient energy sources or wireless
power transmission. This is of paramount importance for
autonomous systems in remote or harsh areas where acces-
sibility is a problem [262]. From a practical perspective,
efficiency, sensitivity, and compactness are key factors of EH,
as RF energy harvesting in free space suffers from a large
propagation loss [302]. Enabling simultaneous multi-band
and multi-tone signals in the input of an EH system and taking
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advantage of the RF combining method, the rectifier sensi-
tivity and generated output power can be enhanced [261],
[262], [303]. Further, RF technology allows for size reduction
using metamaterials in applications where miniaturization is
required [303]-[305].

2) SPACEBORNE ENERGY HARVESTING

Another method of generating an alternative energy source
for ground-based IoT devices is using Sun-synchronous
satellites. Sun-synchronous orbit (SSO) is a particular kind
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TABLE 15. Overview of external mounted energy harvester used in loT applications.

Ref. Product Company Energy EH Country
Source Technology
[295] Solar Harvester KCF Light/Solar Photovoltaic USA
Technologies Energy

[296] | Libelium Waspmote Plug and | Libelium Solar Photovoltaic Spain
Sense

[297] | Vibration Energy Harvester Perpetuum Vibration Piezoelectric England

[298] Powerharvester Powercast RF RF to DC USA

[299] | Ultra low power energy harvester | STMicroelectronics| Thermal TEG USA
and battery charger

[300] Marlow EHAL37L37-R0O1-L1 Marlow Thermal TEG USA

of polar orbit. Satellites in SSO, traveling over the Polar
Regions, are synchronous with the Sun. This means they
are synchronized to always be in the same ‘““fixed” position
relative to the Sun. Hence, the satellite will always observe a
point on the Earth at the same time of the day, which creates
a number of applications [306]. One of the key applications
of this system is providing DC power for ground-based IoT
devices, as depicted in Figure 21.

Space satellites collect sunlight using solar cells which
transform the absorbed energy into DC power (Figure 21).
Subsequently, the high voltage DC power is supplied to RF
generators, i.e., magnetron generates RF power which can be
transferred to a ground station or IoT devices, directly [307].
The receiving ground-based antenna integrated with rectifier
(RF to DC convertor) regenerates DC power from RF power.
In this method, energy is directed from space to the Earth to
support large-scale WSNs with sufficient power sources.

B. SIMULTANEOUS WIRELESS INFORMATION AND RF
POWER TRANSFER

High data rate, small dimension, and low-cost are important
metrics in the next generation IoT devices and communica-
tion technologies. Hence, the use of simultaneous wireless
information and power transfer (SWIPT) is investigated to
improve energy efficiency as well as information transfer of
the network [308], [309].

It has been proven that RF power transfer allows wireless
nodes to recharge their batteries from receiving RF signals,
leading to the fifth-generation green communication tech-
nologies [259], [310].

Moreover, conventional forms of SWIPT systems such as
time splitting, power splitting, antenna switching, and partial
switching are suitable for IoT networks [308].

In [311], a new concept and design of a three-dimensional
antenna array is addressed. The purpose of this paper is to
enhance efficiency of SWIPT systems when integrated into
WSN architectures. Using 3D antenna, an omnidirectional
radiation pattern can be achieved with considerable gain and
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low power losses [312]. Consequently, 3D arrays prove to be
a reliable solution to feed low power WSNs that are placed
over the 360 azimuth angles in a smart grid farm. Moreover,
several pioneers working on SWIPT have attempted to focus
the energy of the electromagnetic wave as much as possible
in order to increase the efficiency of power and data transfer
[313], [314]. Nevertheless, the most interesting aspect regard-
ing the architecture of SWIPT is how to concentrate electro-
magnetic power based on the location of the sensor. Simple
beam scanning approach is suggested to identify the loca-
tion of wireless sensors and concentrating microwave power
using beam-steering method according to a preset look-up
table [315]. Recently, a novel analog real-time spectrum ana-
lyzer (RTSA) was suggested and experimentally tested on the
basis of the spectral-spatial decomposition property of the
composite right and left handed (CRLH) leaky wave antenna
(LWA) [316]-[318] which can be used as a beam-steering
configuration to feed sensors in a smart grid field (for exam-
ple, large-scale farms). According to Figure 22, a leaky wave
antenna array is used to feed a variety of agriculture sensors
in each beam direction.

X. loT INTEROPERABILITY

A. INTEROPERABILITY BETWEEN STANDARDS

IoT networks are created with massive heterogeneous
devices. The communication of these different devices is a
key problem. To solve this problem, different standards are
created to standardize the information exchanging process
within IoT networks. The authors of [319] summarized all
these standards and categorize them into communication,
RFID, Data content and encoding, electronic product code,
sensor, network management, middle, and quality of ser-
vice. Apart from these protocols, there are also standards
designed to fit the [oT use cases, such as, [0T6 [320]. With
all these standards and protocols aiming for different sce-
narios, inter-communication between standards is an issue.
This introduces interoperability problems of IoT. In Table 16,
the authors of [186] classified interoperability problem into
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FIGURE 21. Block diagram of an energy harvesting system.

device interoperability, network interoperability, syntactical
interoperability, semantic interoperability, and platform inter-
operability. The authors from [186] also aggregated different
works and form seven approaches tackling the problem of
interoperability. As the first approach, adapters and gate-
ways are utilized as an intermediate bridge between different
standards and specifications [186]. The intermediate device
is compatible with multiple standards and specifications.
Therefore, such a device can communicate with different
IoT devices by converting messages between different pro-
tocols. However, this method assumes TCP/IP support on
devices and does not account for the limitation of resources
of IoT devices. Also, scalability is a problem as the message
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FIGURE 22. Beam-steering configuration for feeding sensors (SWIPT
application) in a smart grid field.

TABLE 16. Types of loT interoperability [186].

Type of Definition

Interoper-

ability

Device The exchange of information between

Interop- heterogeneous devices and heterogenous

erability communication protocols;The ability to in-
tegrate new devices into different IoT plat-
forms.

Network Interact between different system account-

Interoper- ing routing, resource optimization, secu-

ability rity, quality of service and mobility.

Syntactical | Interoperation of data structure in ex-

Interoper- changed information.

ability

Semantic Descriptions or understandings of re-

Interoper- source, operational procedures, data mod-

ability els and information models between differ-
ent entities.

Platform Interoperability required for barriers cre-

Interoper- ated by different IoT stacks consist of

ability different operating systems, programming
languages, data structures, architectures
and access mechanisms for things and
data.

conversion process needs to be defined between all IoT
protocols. The second approach is using a virtualized net-
work overlay layer above physical networks. This approach
supports end-to-end communication using different proto-
cols. Unfortunately, scalability issues induced by different
protocols persist.
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The third approach in [186] consists of four different
network technologies. The first technology is TCP/IP. Inter-
operability is implemented by embedding the TCP/IP stack
on smart devices. Therefore, these devices can communi-
cate with standard network protocols. The second technology
is SDN. This programmable network technology provides
intelligence, efficiency, security, and scalability to IoT net-
works. This can also be achieved with NFV, where vir-
tual networks separate network functions with the physical
equipment. Furthermore, physical equipment can be shared
between different network functions. The final technology
is fog computing. Fog computing relies on fog servers to
preprocess raw data from the end devices and preparing these
data to be interoperable for other applications [186].

The fourth approach is using open APIs [186]. A com-
monly used example is the REST API. Open APIs provide
standard methods to access data or services. This provides
cross-platform and cross-domain interoperability. A future
direction is a generic API for uniform resource access.

A service-oriented architecture is implemented above the
network layer as the fifth approach to achieve interoperability.
The aim of this architecture is to package the IoT device
resource as standard services. Therefore, device data can
be standardized into services, providing syntactic interop-
erability [186]. The IoT6 standard is an example of this
approach. IoT6 is an IPv6-based service-oriented architecture
that provides interoperability between heterogeneous system
components [320].

The last two approaches to achieving IoT interoperability
are semantic web technologies and open standards. Both of
these approaches require a recognized organization to pro-
vide common definitions [186]. Semantic web technologies
define a common understanding of the various entities. Once
a common vocabulary of standard, data and format is agreed,
semantic interoperability can be achieved. The final approach
is the establishment of open standards. These standards are
provided by recognized organizations to achieve interop-
erability with IoT networks implementing these standards.
An example is the AllSeen Alliance, defining the AllJoyn
for device interoperability and the oneM2M for platform
interoperability [186]. The ISO also developed a framework
(ISO/IEC NP 21823) for IoT interoperability [321]. They
established standards on semantic interoperability and net-
work connectivity.

XI. USER FRIENDLY loT

This section provides insights into the usability of IoT 2.0.
The purpose is to create a vision of future IoT that aims to
lower the entry barrier of IoT services for non-expert users.
This vision starts with exploring the previous technologies of
lowering entry barriers for non-expert users. These technolo-
gies are cloud computing-based services, which are infras-
tructure as a service (IaaS), platform as a service (PaaS), and
software as a service (SaaS). The usability of these technolo-
gies is created by increasing accessibility, increasing scala-
bility and flexibility, the use of virtualization, reducing cost
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on maintenance, and standardization [322], [323]. Accessi-
bility is created by the feature of the cloud, where users can
easily access the services through the Internet. Scalability
and flexibility are induced by the virtualization of hard-
ware and software resources [323]. Therefore, users do not
need to directly configure these resources, as a standardized
interface can reduce the complexity of resource configura-
tion [322]. Finally, as maintenance is mostly done by the
service providers, the cost of maintenance is reduced on the
user side [322].

The authors of [324] offered the five features to ensure
the usability of IoT systems. These features are Plug & Play,
interoperability, the ability for remote control and monitor,
cost effectiveness, and open source, open architecture. Also,
by deduction from the cloud computing services, a stan-
dardized interface can increase the usability of systems and
fulfill the features of remote control and interoperability.
However, due to the heterogeneity of IoT devices, a solution
is to adopt modularization. The authors from [325] proposed
Internet of Things as a service (iTaaS). iTaaS utilizes ser-
vice oriented architecture, which is built with modular and
reusable service modules. Thus, this architecture reduces the
time of service development, service deployment, and service
configuration.

iTaaS only reduces complexity and interoperability issues
for software deployment. Different from cloud computing
services, IoT devices are heterogeneous and deployed in
complex environments. Therefore, the customization of IoT
devices is important to support different use cases [326].
The authors from [326] also emphasized that the modular-
ization of IoT devices can reduce cost and complexity for
non-technical personnel. Therefore, modularization increases
the cost effectiveness and usability of IoT systems.

To reduce the cost of maintenance, IoT devices must
operate in a self-organized, secure manner and avoid extra
human intervention. The authors of [327] mentioned that
self-organized IoT networks should contain the follow-
ing features: cooperative communication model to sup-
port communication across different layers with suitable
resource control, situational awareness to monitor neigh-
bor devices and faults, and automated load-balancing to
extend the overall lifetime of the whole system. A possi-
ble solution is the SONs mentioned in the sections above.
SONs provide machine learning-driven self-configuration,
self-optimization, and self-healing functionalities [111].

Finally, as a vision towards the future, industry level
standardization and efficient device deployment method is
required for IoT systems. The authors from [328] pointed
out that standardization drives standard testing and man-
ufacturing procedures. Thus, this provides end users with
more trust and confidence in IoT products. Another prob-
lem with current IoT systems is device deployment. Most
work on IoT deployment focuses on software deployment
and topology [324]. However, most devices are still deployed
by humans. Novel device deployment methods should be
invented to automate this process.
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XIl. loT APPLICATIONS

This section starts with presenting some existing applica-
tions of 10T systems. These applications are categorized into
smart home applications, smart city applications, healthcare
applications, and smart farm applications. Then, a vision of
possible applications of Industry 4.0 and Tactile Internet is
revealed.

A. SMART HOME APPLICATIONS

Smart home applications leverage IoT devices and sensors
to provide people convenience. The majority of smart home
applications are home automation systems, which use the
result of analyzing sensor data to automate a certain activ-
ity [329]. In [329] Healthcare system for elders and peo-
ple with disabilities is a type of home automation system.
These systems collect data from CCTV, motion sensors, and
body sensor networks to perform analytics and push med-
ical reminders. Another application is the pet care system.
Temperature sensors are attached to a pet dog to monitor its
body temperature. When the temperature sensor detects any
anomaly, the air conditioner is automatically switched on to
comfort the pet.

The authors of [330] explored the smart grid as another
major field of smart home applications. This field of appli-
cations leverages smart meters, smart appliances, and smart
power outlets. The aim of smart grid applications is to
monitor and control power production and consumption to
achieve a balance between production and consumption.
Furthermore, it reduces the waste of power induced by
overproduction. Applications under the smart grid field are
real-time generation monitoring, power plants controlling,
alternative energy source controlling, and residential produc-
tion controlling [330].

B. SMART CITY APPLICATIONS

Smart city applications solve problems and issues in the
public sector. The authors of [331] and [332] both sum-
marized smart city applications in their works (Table 17).
In their work, smart home applications are viewed as a part
of the smart city applications. Other applications include
smart parking, augments maps, logistics, smart water supply,
smart cars, smart grid, weather monitor, pollution monitor,
surveillance systems, traffic monitor, and healthcare.

C. HEALTHCARE APPLICATIONS

=Compared to traditional and manual health monitoring sys-
tems, [oT healthcare systems have a few advantages [333].
First, IoT devices are relatively portable. These devices
can be worn by the patients to provide constant monitor-
ing [333]. Also, with IoT devices, voluminous data can be
accessed remotely in a quicker pack compared to the tradi-
tional methods [333]. These advantages attracted the devel-
opment of different IoT healthcare applications. The authors
of [334] classified IoT healthcare applications into home
healthcare, mobile health and electronic health, and hospital
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TABLE 17. loT smart city applications [331], [332].

Application | Description

Smart Using sensors to monitor the environment

Home and control environmental parameters us-
ing heaters, air conditioners, fans, etc.

Smart park- | Using sensors to monitor arrival and de-

ing parture of cars providing information of
available spaces.

Augments Near field communication tags provides

maps tourists information by connecting phones
to web services.

Logistics Leverage Radio Frequency Integrated Cir-

cuit (RFIC) to monitoring and track every
step of the inventory.

Smart water

Pipe leakage detection and water quality

supply monitoring.

Smart cars Driverless cars

Smart grid Prediction and scheduling of power sup-
plying and production. Also self-healing
functionality induced by defect detection.

Weather Monitoring temperature, rain, wind speed,

monitor and pressure.

Pollution Environmental monitoring and report for

monitor human health.

Surveillance | Video camera systems for security and

systems crime detection.

Traffic Congestion monitoring. Providing analyt-

monitor ics for arrival time Prediction.

Healthcare | Remote health monitoring.

management. Home healthcare [oT applications move the
setting from a hospital to the homes of people. It is achieved
through remote monitoring through IoT devices [334]. Simi-
larly, mobile health and electronic health also rely on remote
monitoring of patients. However, it focuses more on wearable
sensors [334]. The above two types of applications involve
single condition applications such as diabetes glucose level
sensing designed for specific diseases; and cluster condition
applications such as rehabilitation systems that can help treat
different diseases together [335]. As the final type of IoT
healthcare applications, hospital management applications
are responsible for the management and improvement of var-
ious hospital services [334]. For example, safety and violence
detection systems using cameras and biometric sensors could
track staff, patients, and visitors, and detect signs of aggres-
sion or stress [336]. Equipment tracking and maintenance
systems can manage scarce shared equipment, and remind
staff for requirements of equipment refill or calibration [336].

D. SMART FARM APPLICATIONS
The two major types of smart farm applications are crop
monitoring and animal monitoring. The authors of [337]
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reviewed several different crop monitoring systems. These
monitoring systems usually trigger actuator actions. In [337],
one example is the irrigation system. Humidity, temperature,
and weather data are collected to make the decision of irriga-
tion. Another example is weed detection. In the application
of weed detection, images are passed through a CNN model
to detect weed. If weed is detected, a smart herbicide sprayer
robot is activated to spray herbicide.

Animal monitoring applications aim to use sensors data
to monitor and predict animal behavior. The authors from
[337] described a smart beehive application. The smart bee-
hive monitors oxygen, carbon dioxide, pollutant levels, tem-
perature, and humidity to determine the health status of
the bee colony. The authors of [338] reviewed machine
learning-based animal monitoring applications. This work
focuses on animal welfare. The first application of this work
detects dietary changes and mating periods of cattle using
ensemble learning based on data from magnetometers and
three-axis accelerometers. The second application identifies
and classifies chewing patterns in calves with DT leverag-
ing optical sensor data. The authors from [339] created a
full system of smart animal farm. This smart animal farm
consists of four major applications. The first application
detects biogases with a gas sensor. When the gas reaches a
certain level, it emits the gas to prevent harm to the animals.
The second application is auto-feeding. This application uses
ultrasonic sensors to detect the level of food in storage and
automatically add food using a valve. The third application
is water level detection. Similar to auto-feeding, a water
level sensor is used to open the water pump if the water is
below a certain level. Finally, the incubator control system
reads data from the humidity sensor and temperature sensor
to control environmental parameters using a heater and a
fan [339].

E. INDUSTRY 4.0 APPLICATIONS

Industry 4.0 applications focus on CPSs in production and
manufacture. The authors of [340] determined three impor-
tant characteristics of industrial applications. The first char-
acteristic is cycle time determined by the round-trip time
between the control center and end device. The second char-
acteristic is the number of nodes determined by the size of the
system. The final characteristic is reliability determined by
the quality of information transmission. The authors of [340]
also separated Industry 4.0 applications into process automa-
tion and factory automation. Process automation is charac-
terized by an industrial process operated by sensors for data
collection, controllers for controlling, and actuators for actu-
ating the controller decision. The cycle time of process
automation should be 100 ms with medium quality of infor-
mation transmission. A more critical scenario is factory
automation, which is the automation of the manufacturing
process [340]. Therefore, it requires frequent collaboration
between multiple robotics and assembly line machinery.
Hence, a short latency of 1 ms with high reliability is
required [340].
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F. TACTILE INTERNET APPLICATIONS

The feature of low latency and ultra-high reliability of Tac-
tile Internet attract applications like self-driving vehicles
and industrial automation. For example, V2X communica-
tion requires real-time communication with latency less than
10 ms, and CPSs with mobile robot collaboration requires
high reliability and real-time communication in manufactur-
ing applications [341]. However, the core of Tactile Internet
application should be based on haptic communications.

The authors from [342] defined haptic architecture into the
master domain, the network domain, and the slave domain.
The master domain is usually a haptic device controlled by
a human. The haptic device can control the slave domain
through the network domain. Then, the slave domain returns
environmental data and responds through the network domain
back to the haptic device. Finally, the haptic device receives
the data and simulate a virtual environment of the slave
domain for the human to touch and feel.

The authors of [341] explored four domains of haptic com-
munication applications. The first domain is Tele-medicine.
Robust and reliable networks allow physicians to perform
telesurgery and tele-diagnostic using a remote slave robot.
The second domain is AR and VR. Haptic communications
could provide extra reality with the sense of touch. The third
domain is serious gaming. This requires real-world simu-
lations to solve a certain problem. Haptic communications
could induce real-world experiences for problem solving
within serious gaming. Finally, unmanned autonomous and
remotely controlled systems provide safety for operations in
dangerous and difficult-to-reach environments. These oper-
ations usually involve high precision. Utilizing Haptic com-
munications could perform these operations remotely without
any delays.

Xill. RESEARCH CHALLENGES OF loT 2.0

This section summarizes the possible future development of
IoT 2.0. Some of these development are IoT global con-
nectivity, IoT security architecture, ubiquitous IoT devices,
energy harvesting-based energy efficiency, IoT reliability,
and considerations in usability.

A. IoT GLOBAL CONNECTIVITY

As current IoT architectures evolved with edge computing
layers, future IoT architectures focus with IoT global con-
nectivity. We believe that the development of 6G networks
provides a platform for IoT global connectivity. In [343],
the 6G networks evolve in the space, time, and frequency
dimensions. In the space dimension, more transceivers will
be deployed to increase multipath communication [343].
In the time dimension, there will be more fine-grained
time slot units to satisfy latency-sensitive applications [343].
Finally, in the frequency dimension, 6G will operate in a
higher frequency spectrum to fulfill higher data rate require-
ments [343]. Also, the increase of frequency range is a basis
of integrating the satellite system into mobile networks to
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TABLE 18. Space-air-ground-underwater networks tiers [344].

TABLE 19. 6G network performance requirements [344].

Tier Base Sta- Communication
tion/Devices Method

Space Low-Earth orbit, mm-wave and laser
medium-Earth-orbit, | communication be-
and geostationary tween satellites.
satellites

Air Flying base stations Low frequency, mi-
(UAV), floating base | crowave, and mm-
stations wave bands.

Terrestrial | Ultra-dense network | Low frequency,

with small base microwave, mm-

stations wave, and THz
bands.
Underwater] Underwater military | Acoustic and laser
and commercial communications.

devices

create a space-air-ground integrated architecture [343].
As completion of a network providing full coverage,
the authors of [344] extended the space-air-ground architec-
ture with the vision of underwater networks and specified
four tiers within the space-air-ground-underwater networks
(Table 18). On the commercial side, ground to satellite
communications widening the system coverage have already
emerged. IoT devices can communicate with Low Earth
orbit (LEO) satellites through VHF and UHF transmissions
[345]. However, there are latencies up to three hours due to
coverage gaps between LEO movements [345], [346]. Com-
pared to LEO satellites, [oT data transmissions to Geosyn-
chronous Earth orbit (GEO) satellites have a lower latency
around two minutes [346]. These satellite systems initiate the
exploration of the future space tier IoT network. Previous
network coverage, network types, wireless spectrums, com-
munication mediums, interactive functions, core services,
and layers will be integrated to support the 6G architec-
ture [347]. The 6G networks will be providing services to new
mobile terminals such as smart cars and robots with disruptive
communication technologies and distributed, intelligent base
stations [348].

Table 19 outlines the network performance requirements as
a foundation of the 6G vision and future applications. Despite
the performance requirements, there are also various service
requirements. These services requirements are high security,
secrecy and privacy, high affordability and customization,
and finally, high intelligence [349].

To fulfill the 6G requirements, the relevant technologies
will evolve with three different directions: communication
technology, network architecture, and network intelligence
integration [350]. The authors of [348] promoted two can-
didates for 6G communication technology improvement. The
first is photonic-defined radio. As a vision, 6G could leverage
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Network Property Requirement
Wireless backhaul fronthaul data | 1-107b/s
rate
User experienced data rate 1-10GY/s
Over-the-air latency 10 - 100 ps
Support high mobility >1000 km/h
Connectivity density 107devices/km?
Area traffic capacity 1 Gb/s/m?>
Energy efficiency 10 - 100 times
of 5G
Spectrum efficiency 5 - 10 times of
5G

photonic technology to create a multipurpose network, con-
verging different previous network types with full-spectral
support [348]. The second candidate is laser mm wave. This
technology supports 100 Gb/s communication for commu-
nication between space and terrestrial networks [348]. The
authors of [343] also provided two higher spectrum tech-
nologies as an extension to the current 5G paradigm. These
technologies are terahertz communications and visible light
communications. To support communication in higher fre-
quency spectrum, full-duplex communication stack enabling
simultaneous signal transmission and reception, and novel
channel estimation technologies to improve bandwidth effi-
ciency are required to handle the high usage demands of 6G
networks [350].

With the novel communication technologies and limita-
tions of 5G networks, new network architectures need to be
established to support 6G communications and applications.
In [348], there are four 6G network architectures, includ-
ing the hyperspectral space-terrestrial integration network
discussed above as part of the 6G vision. Subsequently,
an all-photonic radio access network leveraging photonic
engines with all-photonic arrayed antenna units to break
through the bandwidth and latency limitations of 5G net-
works [348]. The third architecture, holographic radio, and
photodiode-coupled antenna arrays exploiting interference
to improve the spectrum efficiency and enhance the service
quality [348]. Finally, the cognitive radio based on Al and
photonics aims to further strengthen the current network
performance with all-photonic arrayed antenna units, and Al
is optimizing the network layers and services [348]. The
evolution of Al in 6G will be discussed next.

As discussed in section IV above, Al and machine learn-
ing can be embedded in most layers of the communication
network. In [351], applying Al in 6G networks is inevitable
as the vast and complex network topology cannot simply be
managed by humans. Also, Al simplifies the network model
and portraits the unknown non-linearity [351]. Moreover,
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in [348], AI and machine learning can be combined with
photonics-based cognitive radio to form a novel 6G network
architecture. In this architecture, Al is used for network
deployment tasks such as precise capacity forecasts, coverage
auto-optimization, network resource scheduling, and network
slicing [348]. To optimize the AI models for these tasks,
cross-layer models providing intralayer and interlayer func-
tions are more suitable than the current layered designs [344].

B. MACHINE LEARNING MODELS

This article reviewed machine learning implementations from
the physical layer to the cloud layer. On the physical layer,
the development of end-to-end machine learning models
could reduce operation complexity. Thus, improving the
physical layer efficiency [344]. The network layer applica-
tions provide services such as routing, traffic analytics and
control, network management, network security, and network
configuration. These services lead to the achievement of
SONs. However, the generalization of these machine learning
models is questionable, as most of these models are con-
structed using data generated from only one or a few net-
works. The generalization of network layer machine learning
models on IoT networks could be a future direction. Further-
more, each implementation of machine learning in IoT pre-
sented in Section IV is only providing services within a single
layer of the IoT network architecture. From [344], compared
to current layered designs, cross-layer models are necessary
to provide optimal performance. Therefore, cross-layer mod-
els should be investigated for future IoT networks.

C. IoT SECURITY ARCHITECTURE

Due to diverse IoT applications supporting heterogeneous
IoT devices, there are numerous security challenges that
require further investigation. Some of these significant issues
are discussed here.

1) VULNERABILITY OF MACHINE LEARNING AND Al
TECHNOLOGIES

Since machine learning and Al are dominant technologies
in future networks [350], it is essential to provide extra
security on the data. Therefore, federated learning should
be promoted to preserve the privacy of multiple edge and
end devices [351], [352]. On the other hand, if cross-layer
machine learning models are the mainstream of future IoT
networks, future 10T security architectures could also evolve
towards cross-layer security and benefit from cross-layer
machine learning models to ensure safer network services.
However, machine learning and deep learning based IoT
systems are susceptible to ‘““Butterfly Effect.”” Where a
minute change in the data being input to the learning system
adversely affects the output (learned model). Hence, attackers
can maliciously change the input data to make the system
unstable [353]. Such attacks are difficult to protect against
since the attackers do not need access to the system itself.
Correspondingly, there is a need to devise a mechanism to
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ensure data integrity for different machine learning-based IoT
applications.

2) POST-QUANTUM loT SECURITY

As we are near the beginning of the era of quantum
computing, research into the application of post-quantum
cryptography on IoT is necessary. In this regard, classi-
cal cryptography could be vulnerable to quantum com-
puters [354]. Moreover, quantum computing threatens the
asymmetric encryption algorithms, including RSA, ECDSA,
elliptic Curve DH (ECDH), and Digital Signature Algo-
rithm (DSA). Most of which can be solved swiftly with Shor’s
algorithm [355], [356] on a powerful quantum computer.
Similarly, quantum computers can also speed up the brute
force attacks on symmetric encryption ciphers by a quadratic
factor using Grover’s algorithm [357]. However, irrespective
of the recent research efforts in post-quantum cryptography
by PQCrypto and SAFECrypto projects, very little focus
has been on addressing the challenges in implementing the
post-quantum schemes on resource-constrained (especially
low power) IoT devices [356].

3) REAL-TIME UPDATES

The estimated increase in the use of IoT devices to a Billion
devices in the near future, affirms the need for a secure
software/firmware update mechanism. However, it seems
challenging since not all the devices support OTA (Over The
Air) updates. Consequently, IoT devices are to be manually
updated, which is not feasible for real-time IoT applications
[358]. Therefore, there is a requirement of developing an
intelligent and secure protocol to enable IoT devices to peri-
odically poll for software/firmware updates so that they are
protected against the latest threats/attacks.

D. UBIQUITOUS IoT DEVICES

Ubiquitous IoT refers to the coverage of different [oT services
in different scale of management [359]. This includes local
IoT maintained by regional management platforms, industrial
IoT managed by particular industries, national IoT controlled
by national level management unit, and global application
IoT coordinated by a global coordinator. With this massive
number of devices interacting with each others on these
different scales, energy consumption and management could
be issues [359]. To address the issues of energy consumption
and management, in a future vision, ubiquitous IoT devices
should conduct autonomous operations with no human inter-
vention or maintenance and able to adapt to different scales of
operations [360]. To achieve such autonomy, Al and machine
learning models could be a vehicle automating many manage-
ment and communication operations [361]. This automation
can also be achieved from the SON methods mentioned in
Section IV. On the other hand, energy harvesting methods are
also an important solution reducing energy consumption and
management costs. Other than these two important aspects
of IoT, the authors of [360] concluded some major directions
of ubiquitous IoT devices. One direction is multiservice IoT,
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which extends the idea of single service on single nodes
towards multiple services on single nodes. This aims to
increase the value of single IoT nodes. Another important
direction is the ability of devices to deal with extreme con-
ditions. This includes the prediction of energy consumption
(and harvesting). Also, low energy communication methods
technologies will support the development of battery-less
devices with the aid of energy harvesting methods [360].
Finally, as energy harvesting methods are also an important
aspect of ubiquitous IoT, the limitations and future develop-
ment of energy harvesting techniques are presented in the
next subsection.

E. ENERGY HARVESTING-BASED ENERGY EFFICIENCY
Sensors and IoT devices have now become an integral part of
the tool-set used to ensure effective monitoring and to main-
tain safety in societies. However, the dependency of these
portable devices on batteries limits their operation time and
range. Energy harvesting is a promising solution to provide
a sustainable and cost-effective alternative energy source to
extend the lifetime of IoT devices and reduce energy costs
[362], [363]. As the number of IoT devices grows, deploy-
ing environmentally sustainable IoT devices integrated with
EHs will lead to the long-term conservation of the environ-
ment and the global economy. Further, EH techniques can
introduce more robust and trusted autonomous monitoring
systems in the future [364].

The main challenge of implementing EHs in IoT networks
is the low produced output power (for example, RF and
piezo), which can be improved through well-designed struc-
tures and also applying hybrid techniques. Further, ambi-
ent sources may always not be available, hence, using
Sun-synchronous satellites is a key solution to develop the
next generation of sustainable [oT.

Moreover, WPT concept is extended to the simultaneous
wireless information and power transfer (SWIPT), which
allows data and RF power to be transmitted via the same
electromagnetic (EM) wave. However, the low efficiency of
a SWIPT system is the main drawback in SWIPT system and
can be improved by using novel solutions, such as 3D printed
antenna array and beam steering based on the LWA. In the
former, the radiation pattern of the antenna array is optimized
on behalf of the efficiency and in the later, the beam direction
of the antenna is managed according to the sensor location.

In addition, many recent dispersion-engineered analog sig-
nal processing (ASP) systems have been introduced based on
CRLH Transmission Line (CRLH TL) metamaterial-inspired
structures [365]. Dispersion engineering involves manipulat-
ing the electromagnetic wave pathway to handle signals in an
analog manner, contributing to applications such as real-time
Fourier transformers, pulse shapers, and etc. Furthermore,
several new dispersion-engineered CRLH TL metamaterial
analog signal processing systems, exploiting the wideband
dispersive features and design flexibility of CRLH TLs, have
been presented [366].
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This approach is particularly useful in applications where
low-cost and low profile systems are needed or digital solu-
tions are not available, as for instance in very high frequency
and high speed ultra-wideband microwave systems, such
as 6G technology [367]. These new methods will support
large-scale WSNs and IoT devices in next generation smart
grid field applications (for example, smart cities, and preci-
sion agriculture).

F. IoT RELIABILITY

The reliability in mission critical applications are discussed in
Section V of this article. The integration of SDN and NFV in
mission critical communication networks are also discussed.
Other than these aspects, IoT communication reliability can
also be enhanced through advance error coding schemes, and
network coding [368]. Advance error coding schemes such
as polar codes can ensure communication reliability due to
its ability of error correction [369]. This error correction
functionality can operate with low computational complexity
and decoding latency. Network coding gives intermediate
nodes within a network processing ability to encode com-
ing traffic [370]. With such ability, there are less packet
re-transmissions and thus improving the reliability of IoT
networks. Finally, IoT fault tolerance methods leveraging the
concept of graceful degradation could also be enhanced for
IoT reliability [368].

Achieving the desired requirements of mission critical
communication in a dynamic environment is very challeng-
ing. In this regard, the knowledge available at the device level
can also be utilized to reduce the computation burden at the
base station, resulting in overall latency reduction [170]. The
intelligence at the edge devices can enable them to adapt to
the network dynamics without relying much upon the base
station. Promising theoretical enablers for intelligence at the
edge devices are presented in [371], which can be used to
design mission critical communication systems.

G. TRADEOFF IN USABILITY

As future IoT networks promote full coverage and integration
[348], [372], 10T scalability and interoperability between dif-
ferent devices and protocols should also be promoted to con-
nect IoT as part of the network ecosystem. Using 6G networks
as a platform, IoT system performance can be enhanced by
6G infrastructures, such as the coverage enhancement from
satellites to provide better accessibility [372]. With the aid of
machine learning and Al, managing these network connec-
tions and autonomous devices should not require much user
attention and labor [351]. Therefore, this increases the usabil-
ity of the system. On the other hand, the authors of [349]
pointed out that the usage of Al reduces the magnitude of
system customization. Thus, Al could decrease the usability
for users with special requirements and preferences. In con-
clusion, the degree of system intelligence should be carefully
designed in the future to satisfy general users and users with
other system preferences.
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XIV. CONCLUSION

The definition of IoT remains unchanged since the birth of
the concept. As we are on the brink of the 5G era, the concept
of IoT should follow this evolution towards IoT 2.0. This
article summarizes the recent advancement of IoT technolo-
gies and defines it as IoT 2.0. First, a general architecture
of IoT 2.0 is compared with previous architectures. From
these architectures, edge computing is the driving force of
architectural evolution. Current IoT technology is then dis-
cussed in seven dimensions as machine learning intelligence,
mission critical communication, IoT scalability, IoT security,
IoT sustainability, IoT interoperability, and user friendly IoT.
The usage of machine learning algorithms is revealed in
different layers of IoT applications. Then, mission critical
communication systems are introduced, focusing on physi-
cal layer considerations and programmable mission critical
communication networks. After that, hardware, network and
service scalability is explored and lead to the discussion of
SDN induced scalability. Security is an important aspect of
IoT systems. In this article, security at different layers is
analyzed. Followed by security, sustainability of IoT systems
is also an essential component. Therefore, energy harvesting
technologies providing longer lifetimes are evaluated. After
that, due to the increase of device types and standards, inter-
operability and usability of IoT components are covered. The
discussion of recent advancements ends with the outline of
existing IoT applications. This whole discussion leads to the
future directions of 10T, portrayed by the vision of future 6G
networks.
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