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ABSTRACT The design problems of electric machines are actually treated as a kind of mixed-integer
problem, because the machine shapes are defined by some integer variables, such as number of slots, and
the other variables, such as the tooth width, which are here called the fundamental and shape variables,
respectively. To automatically solve these design problems, this article presents an automatic design
method by combining the reinforcement learning and evolutionary optimization. In the proposed method,
the decision process is modeled as a tree structure to seek for the fundamental variables, which are determined
as a result of the tree search depending on the value functions of the nodes. Then, the shape variables are
estimated from the function of the fundamental variables. These functions are constructed based on the
design data, to generate which the reinforcement learning and evolutionary optimization are employed. As a
result, the proposed method can automatically be adapted to unexperienced design problems through the data
generation and function learning. The proposed method is applied to a design problem of a linear induction
motor. It is shown that the machine designs with the prescribed performance for given specifications are
automatically obtained. Moreover, it is also shown that the acceptable candidate designs can immediately be
generated when the given specification is similar to the previously-solved problems by utilizing the design
data generated by the past explorations.

INDEX TERMS CMA-ES, design optimization, electric machine, evolutionary algorithms, reinforcement
learning, tree search.

I. INTRODUCTION
There is a major trend for electrification of various mobili-
ties and infrastructure systems, such as automobiles [1], [2],
public transports [3], [4], cooling, heating [5], [6], and so
on. In addition, renewable energy resources are playing an
important role in electric power systems [7]–[9]. For those
systems, electric machines and electromagnetic devices are
one of the key components. For example, permanent mag-
net motors are actively studied as drive systems of electric
vehicles [10]–[12]. Moreover, doubly-fed induction gener-
ators [13], [14] and permanent magnet synchronous gen-
erators [15], [16] are utilized as generators in wind power
systems. The electric machines should, therefore, carefully be
designed to realize the high-performance systems in reason-
able cost according to various design requirements. However,
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to obtain acceptable machine designs, designers have to take
much effort.

Numerical design optimizations are one of the effective
and helpful techniques to obtain acceptable designs with a
relatively little effort [17], [18]. Thus, various optimization
approaches for electric machines have been being studied
such as parameter optimizations [19]–[22] and topology opti-
mizations [23]–[27]. In these optimizations, design prob-
lems are generally expressed as the following optimization
problem:

Minimize F (x) ,

subject to Ḡi (x) = 0 i = 1, . . . ,N1,

G̃i (x) < 0 i = 1, . . . ,N2, (1)

where x is a vector of design variables, F(x) is an objec-
tive function. In addition, Ḡi (x) and G̃i (x) denote equality
and inequality constraints, respectively. In the real-world
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applications, the problem of (1) is generally black-box opti-
mization, that is, the value of F(x) itself can be evaluated
by some numerical approaches when x is given, but function
form of F(x) is generally unknown. Therefore, the problem
of (1) is sometimes solved by some heuristic optimization
algorithms, like the genetic algorithms, particle swarm opti-
mizations, and so on. For example, some evolutionary algo-
rithms have successfully been applied to the optimization of
the electric machines [21], [25], [26].

FIGURE 1. Example of design variables in electric machine, where
fundamental variables are number of poles and number of slots, and
shape variables are tooth width and core back.

Although the design optimizations are helpful for the
designers, there remain some problems. First, in case of the
electric machines, the optimization problem of (1) is actually
considered as a kind of the mixed-integer problem, because
there exist some fundamental integer variables which deter-
mine basic machine shapes, such as number of poles, number
of slots, as shown in Fig. 1. Namely, the design variables, x,
can be written as follows:

x =
[
xTfnd, x

T
var
]T
, (2)

where xfnd denotes the fundamental variables, and xvar is the
other variables like the tooth width shown in Fig. 1, which are
here called the shape variables. From this expression, it makes
clear that the appropriate values of xvar strongly depend on
xfnd, e.g., feasible interval of the tooth width is determined by
the number of slots. For this reason, the mixed-integer opti-
mization problems of electric machines are difficult to solve.
Thus, in general cases, xfnd is determined by the designers
in advance, and only xvar is optimized under the fixed xfnd.
Next, when a new design specification is given, we have to
solve the optimization problem of (1) in each case, even if the
given specification is similar to previously-solved problems.
This computational time is sometimes time-consuming when
the designers have to soon prepare various candidate designs.
Hence, for the further advancement of the optimization of
electric machines, we should overcome these issues.

In this paper, to overcome the above-mentioned problems
in the current optimizations, we present an automatic design
method by combining the reinforcement learning and evo-
lutionary optimization. In this method, to effectively treat
the mixed-integer problems, the decision process of xfnd is

modeled as a tree structure. The values of xfnd are determined
by visiting the nodes depending on the value function of
the nodes. Then, appropriate xvar for the determined xfnd is
determined using an estimator which is the function of xfnd
and specifications. The value functions and the estimator are
constructed from the design data, which are generated by the
explorations based on the reinforcement learning and evolu-
tionary optimizations. The designs produced by the expert
designers and those generated in the past explorations are also
utilized to construct the value functions and the estimator.
Thanks to the utilization of the stored design data, we can
immediately obtain appropriate candidate designs as a result
of the greedy tree search when the given specification is
similar to the past experience.

The proposed method is applied to a design problem of a
linear induction motor. It is shown that the machine designs
with prescribed performance can be obtained corresponding
to given specifications. Then, the design data generated in
these automatic designs are stored and utilized in the next
design problems. It is shown that the acceptable candidate
designs can immediately be obtained by the proposed method
when the given specifications are similar to the previously-
solved problems. Moreover, even if clearly-unexperienced
specifications are given, it is also shown that the proposed
method can be adapted to new specifications by performing
the additional data generations.

This paper is organized as follows. Section II introduces
the new automatic design method for electric machines, and
section III presents detailed implementation of the proposed
method. Section IV presents the automatic design results, and
the last section summarizes the results.

II. AUTOMATIC DESIGN METHOD FOR ELECTRIC
MACHINES
A. BASIC CONCEPT OF AUTOMATIC DESIGN
The purpose of this paper is to present the automatic design
method of electric machines for determining both xfnd and
xvar corresponding to any specifications. This ideally means
that we introduce the following inverse function:

xfnd, xvar = F−1
(
xspec

)
, (3)

where xspec ∈ RN0 denotes the specification. Obviously, it is
quite difficult to prepare such inverse function.

Instead of constructing the inverse function, let us con-
sider to treat a design flow as a kind of stochastic process.
We assume thatm-th component of xfnd depends on xspec and
the other components before m-th as follows:

xfnd,m ∼ p
(
xfnd,m

∣∣ xspec, xfnd,1, . . . , xfnd,m−1) , (4)

where xfnd,m is m-th component of xfnd, and p(x) denotes
probability function. Moreover, it is also assumed that xvar
stochastically depends on xfnd and xspec as follows:

xvar ∼ p
(
xvar| xfnd, xspec

)
. (5)

These stochastic modeling allow us to search prescribed
designs stochastically depending on the current probability

VOLUME 9, 2021 71285



T. Sato, M. Fujita: Data-Driven Automatic Design Method for Electric Machines

FIGURE 2. Design search tree, whose nodes are enumerated based on feasible combinations of fundamental variables.
By visiting a node in m-depth, m-th component of xfnd is determined.

functions, which can be updated using design data obtained
by the stochastic searches.Moreover, the designs produced by
the expert designers are also useful to update those probability
functions. Namely, the stochastic modeling makes it possible
to utilize past experience as well as the adaptation to unexpe-
rienced design problems through stochastic explorations.

The above-mentioned search and learning approach are
almost similar to the reinforcement learning [28]. Therefore,
we here propose a design method of the electric machines
by introducing reinforcement learning in addition to the
evolutionary optimizations. The reinforcement learning has
attracted recent attentions by collaborating the deep learning
[29]. Especially, the computer player for games of perfect
information has achieved super-human performance start-
ing from random play based on the reinforcement learning
approach [30], [31], in which a general-purpose Monte Carlo
tree search algorithm is effectively employed. In the proposed
method, thus, we refer to such tree-search-based learning
approach to model the decision processes of (4) and (5).

B. DESIGN SEARCH TREE
To stochastically generate the designs, the decision processes
of (4) and (5) are approximately modeled based on a tree
structure. In this work, we propose the tree structure shown
in Fig. 2, which is here called the design search tree. The
depth of the design search tree becomes Nfnd+ 1, where Nfnd
denotes the length of xfnd. The first layer receives the specifi-
cation, xspec, andm-th layer corresponds to the determination
of xfnd,m. In each layer, feasible numbers of the nodes are
enumerated depending on the previous node. This means that
the designers offer the feasible list of xfnd,m to the computer
through the tree structure.

To explore on the design search tree, the value function
is defined for each node. In the tree search, the next node
is stochastically selected based on the transient probability
determined from the value functions. After reaching a leaf
node, xvar are estimated as the output of an estimator fVAR
that is a function of xfnd and xspec. As a result, one candidate
design, i.e., the pair of (xfnd, xvar), is generated. Although
it is possible to adopt this design data as it is, evolutionary
optimizations are employed to refine this candidate design.

C. AUTOMATIC DESIGN METHOD USING DESIGN SEARCH
TREE
As a proposed automatic design method, the reinforcement
learning approach is applied to the adaptation of the design
search tree. Namely, the value functions and the estimator are
adapted using various design data, which are generated based
on the tree search and optimizations. The proposed automatic
design flow is shown in Fig. 3. Here after, the proposed
method is called the DEsign SEARch Tree-based Automatic
design Method: DeSearTAM. The data generation using the
design search tree is performed based on the value functions,
the estimator fVAR, and the optimizations. The data generation
flow is shown in Fig. 4.

Let us represent k-th node of m-depth with sk,m. The value
function of a node sk,m is defined as follows:

V
(
sk,m

)
= fV

(
xspec, x̄k,m

)
, (6)

where fV denotes a function approximator, x̄k,m is a vector of
the determined values of xfnd after visiting sk,m. For example,
if the transient path is (s0,0, s0,1, s3,2), x̄k,m = [x1(s0,1),
x2(s3,2)]T, where xm(sk,m) denotes the determined xfnd,m by
visiting sk,m. The transient probability, πm(k’, k), from sk,m
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FIGURE 3. Flow of automatic design.

to a next node sk ′,m+1 is obtained based on the value functions
as follows:

πm
(
k ′, k

)
=

V
(
sk′,m+1

)
T∑

j∈Sm(k)

V(sj,m+1)
T

, (7)

where Sm(k) is a set of the nodes reachable from the current
node sk,m, and T is a temperature parameter to control ran-
domness.

After reaching a leaf node, the estimator generates xvar
using xfnd and xspec as follows:

xvar ∼ fVAR
(
xspec, xfnd

)
, (8)

where fVAR: RN0+Nfnd → RNvar . It is possible to stochasti-
cally generate xvar by employing some probability density
functions as fVAR for the stochastic search of xvar. However,
for simplicity in this work, we treat fVAR as a deterministic
function, and the parameter optimization of xvar is performed
as an effective search of xvar.

It is here noted that we can take arbitrary implementations
of fV , fVAR, and the optimization of xvar. In the next section,
thus, our implementations are provided.

III. DETAILED IMPLEMENTATIONS
A. VALUE FUNCTION AND TRANSIENT PROBABILITY
The value function of the node is expressed by a function
approximator as described in (6). Although we can use any
approximators, it is a natural approach to prepare Nfnd dif-
ferent approximators because the input dimension of the
approximator is increased with the depth of the nodes. In this
work, we employ the Gaussian process regression (GPR)
[32], because it can be relatively easily constructed without
the heavy learning process if the learning dataset is not so
huge. Using GPR, the value function of the m-depth nodes
for the current dataset is expressed as follows:

V
(
sk,m

)
= ϕm

(
Dm, sk,m

)T
8−1m (Dm) y (Dm) , (9)

FIGURE 4. Flow of data generation using design search tree.

where Dm is the learning dataset for m-depth. Furthermore,

ϕm
(
Dm, sk,m

)
=

[
φ
(
x̃1m, x̃k,m

)
, · · · , φ

(
x̃Km, x̃k,m

)]T
, (10)

8m (Dm) =


φ
(
x̃1m, x̃

1
m

)
· · · φ

(
x̃1m, x̃

K
m

)
...

. . .
...

φ
(
x̃Km, x̃

1
m

)
· · · φ

(
x̃Km, x̃

K
m

)
 , (11)

y (Dm) =
[
y1 · · · yK

]T
, (12)

where x̃im and x̃k,m are the vector of [xTspec, xfnd,1, . . . , xfnd,m]
T

corresponding to the i-th learning data in Dm and the node
sk,m, respectively. Moreover, yi is the fitness of i-th learning
data in Dm for a given design problem. In addition, φ is a
kernel function, as which the radial basis function is adopted.

The use of GPR allows us to evaluate the uncertainness
of (9) as follows:

σ
(
sk,m

)
= φ

(
x̃k,m, x̃k,m

)
−ϕm

(
Dm, sk,m

)T
8−1m (Dm)ϕm

(
Dm, sk,m

)
. (13)

This information is effective to control the trade-off between
exploitation and exploration. For this reason, the transient
probability of (7) is modified as follows:

πm
(
k ′, k

)
=

U
(
sk′,m+1

)
T∑

j∈Sm(k)

U(sj,m+1)
T

, (14)

where U (sk,m) denotes the UCB acquisition function [34] in
the Bayesian optimization as follows:

U
(
sk,m

)
= V

(
sk,m

)
+ βσ

(
sk,m

)
, (15)
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where β is a user-defined hyper-parameter. When β > 0,
un-visited nodes are actively visited, and in case of β < 0,
the probability to visit them becomes small. By changing
β and T during the automatic design, the trade-off between
exploitation and exploration is controlled.

B. ESTIMATOR OF xvar

The GPR is also employed as the estimator, fVAR, described
in (8). Since all the components of xvar must be estimated,
we here simply apply GPR to the estimation of each compo-
nent. When the reached leaf node is sk,N fnd, j-th component
of xvar, which is expressed as xvar,j, is estimated as follows:

xvar,j = ϕNfnd

(
DNfnd , x̃k,Nfnd

)T
8−1Nfnd

(
DNfnd

)
yvar,j

(
DNfnd

)
,

(16)

where yvar,j = [x0var,j, . . ., x
K
var,j]

T, and xkvar,j denotes xvar,j
corresponding to the k-th design data in DN fnd.

C. PREPARATION OF LEARNING DATASET
The learning dataset, Dm, is prepared from the stored design
data. The design search tree is expanded corresponding to
the stored data. In each leaf node, the assigned data with
best fitness is adopted as a learning data. In one upper depth,
the child node with the best fitness is referred. This process is
repeated until the root node. This flow is summarized as the
following steps:

1. For each data, d , in the stored design dataset,
A. Expand the design search tree to find the correspond-

ing leaf node.
B. If the corresponding leaf node is not expanded, the data

d is assigned to the leaf node. Otherwise, if the fitness
of d is better than that of the current assigned data, d
is newly assigned to the leaf node.

2. The learning dataset for leaf nodes,DN fnd, is composed of
all the data assigned to the leaf nodes.

3. m← Nfnd − 1
(Repeat the following steps until m = 1)

4. For each node sk,m inm-depth, find its child node with the
best fitness value.

5. The fitness of sk,m is set to that of the best child.
6. The learning dataset for m-depth, Dm, is composed of all

the data for the nodes in m-depth.
7. m← m-1, and go back to the step 4.

D. PARAMETER OPTIMIZATION METHOD
As a parameter optimization method for xvar, we employ the
covariance matrix adaptation evolution strategy (CMA-ES)
[34]–[36] with the restart [37]. The CMA-ES uses the multi-
variate normal distribution as a sampling distribution of can-
didate solutions, and the distribution parameters of the normal
distribution are updated based on the objective ranking of the
candidate solutions.
In DeSearTAM, the initial mean vector of the normal dis-

tribution, m0, is set to xvar estimated as (16). Then, at the

algorithmic iteration t , the candidate solutions, Xi ∈ RNvar

(i = 1, . . . ,M ), are generated as follows:

X i = mt + σt
√
Ctzi, (17)

where σt and Ct are the other distribution parameters. More-
over,

zi ∼ N (0, I) , (18)

and I is identity matrix with the size of Nvar × Nvar. Then,
the candidate solutions are evaluated. In the evaluations, xfnd
determined by the tree search is employed, and the box-
constraint condition is considered:

max [(1− δ) xvar, ε] ≤ X i ≤ (1+ δ) xvar, (19)

where ε is a vector for the minimum values of xvar, and δ is
a hyper-parameter of DeSearTAM to control search interval.
After the evaluations of Xi, the ranking of the candidate
solutions is computed, where MCR-mod [38] is employed
to handle (19) and the constraints of the given design prob-
lem. Based on the rankings, the distribution parameters are
updated. Please see the references [34]–[36] for the detailed
update process. As a result of CMA-ES-based parameter
optimization, the best candidate solution is utilized as the
refined xvar.

IV. AUTOMATIC DESIGN OF LINER INDUCTION MOTOR
A. PROBLEM DEFINITION
In this work, we here define a design problem of a lin-
ear induction motor based on the references [39]–[41]. The
machine performance of the linear induction motor is sim-
ply evaluated based on the equivalent circuit whose cir-
cuit constants are derived from the geometric shape of the
machine. Hence, this design problem is suitable for the test
of the effectiveness of DeSearTAM. The main purpose of
this design problem is to find some machine designs which
realize prescribed rotor speed and thrust force with as small
volume as possible considering some constraint conditions.
The overview of the machine shape is shown in Fig. 5. The
specification, the fundamental and shape variables are sum-
marized in Table 1, 2, respectively. Note here that, although
nd and nc are integer variables, these are treated as the shape
variables, because the basic shape of the machine does not
strongly depend on them.

The design problem of the liner induction motor is formu-
lated as follows:

F
(
xfnd, xvar| xspec

)
= Vmotor→ min ., (20)

subject to

η > θη, (21)
Fx > θF1, (22)
Tc < θT , (23)

Bcore < θB, (24)
Bteeth < θB, (25)
Bgap < θB2, (26)
Fmax

Fx
> θF2, (27)
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FIGURE 5. Linear induction motor. a) x-y plane, b) y-z plane, c) cross-sectional area of coil.

smax − srated > 0, (28)
hc < δskin, (29)

where η is efficiency, and Vmotor denotes the total volume of
the iron cores and coils. Furthermore, Fx and Fmax are thrust
force in rated condition and maximum condition, respec-
tively. The temperature rise of the coils is expressed by Tc,
and Bcore, Bteeth, Bgap are flux density of the core back, tooth,
gap, respectively. Moreover, srated and smax denote the slip
for rated and the maximum force condition, respectively.
In addition, δskin is skin depth of the coil wire. The com-
putational processes for the above machine-performance are
summarized in the appendix.

The design search tree for the linear induction motor is
defined here. Because the number of fundamental variables
of the linear induction motor is 3, the total depth of the design
search tree becomes 4. In this work, the feasible numbers of
each fundamental variable are set as follows:

• Number of poles: 2, 4, 6, 8
• Number of slots per pole and phase: 1, 2, 3, 4,5, 6
• Coil pitch: integer values with interval of βc = [0.7, 1.0],
where βc = (#n-1)/(3Nper) is percent coil pitch.

For example, the design search tree is expanded as shown
in Fig. 6.

The value function V (s), which is to be maximized, is sim-
ply defined based on the death-penalty approach as follows:

V (s) = −α1Vmotor − αdeathNviol, (30)

where Nviol denotes the number of violated constraint con-
ditions, and αdeath = 106 is a penalty coefficient. In addi-
tion, α1 = 10−9 is a weighting coefficient to balance Vmotor
and penalty term. On the other hand, during the CMA-ES-
based parameter optimization, we employ the MCR-mod
[38], instead of the penalty-based approach.

TABLE 1. Specification for linear induction motor: xspec.

TABLE 2. Design variables for liner induction motor.

B. AUTOMATIC DESIGNS THROUGH EXPLORATION
The design problem of the linear induction motor is solved
using DeSearTAM from empty design dataset. We here set
six cases as summarized in Table 3. In each case, prescribed
designs are explored over 150 search iterations: θN = 150.
The hyper-parameters of DeSearTAM in each iteration are
summarized in Table 4 so that various designs are widely
explored in early stage and hopeful ones are intensively
searched in latter stage, respectively. The other thresholds for
the constraint conditions are set as summarized in Table 5.
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FIGURE 6. Example of expanded design search tree for linear induction
motor.

TABLE 3. Design cases.

TABLE 4. Hyper-parameter setting of DeSearTAM.

TABLE 5. Thresholds in design problems of linear induction motor.

As for the parameter optimization, the number of algorithmic
iterations and number of candidate solutions in CMA-ES are
set to 300 and 40, respectively. The other hyper-parameters
in CMA-ES are set to the default values [36].

The changes in the best value of (30) against the search
iterations for the Cases-A, D, F, for instance, are shown in
Fig. 7. We can see that the best value is gradually increased
with the search iterations. From about 50 to 100 iterations,
the best value is almost constant. This means that accept-
able designs are obtained by 100 iterations through the tree
search and optimizations. After 100 iterations, the best value
is again improved. This is because the greedy searches are
performed after 100 iterations, and as a result, currently-
obtained designs are well refined.

The resultant machine data are summarized in Table 6 in
detail, and the resultant cross-sectional machine shapes are
shown in Fig. 8. It can be seen that the integer values and

FIGURE 7. Changes in best value against search iterations.

Lz vary according to the specifications. In case of θF1 =
2000Nm, Lz is relatively short, while Lx becomes relatively
long due to larger p and Nper. This is because longer Lx is
effective to reduce Vmotor for producing smaller Fx . It is also
shown that p and Nper become larger when vr = 60km/h in
comparison with the cases when vr = 30km/h, because the
pole pitch should be set long to make the rotor speed higher.
On the other hand, in case of the Case-F, p and Nper are small
as the Cases-A, B, C, whereas wt is clearly larger than the
other cases. This is due to the fact that wt must be set long
to suppress Bteeth when prescribed vr and Fx are large. From
these resultant designs, it can be concluded that DeSearTAM
can effectively solve the mixed-integer problems correspond-
ing to the given specifications and constraints.

C. UTILIZATION OF STORED DESIGN DATA
Next, we try to solve other design problem by utilizing the
design data obtained by the automatic designs described in
the previous section. Hence, all the generated data are col-
lected and stored.

We here modify the design problem of the linear induction
motor as follows:

F
(
xfnd, xvar| xspec

)
= η→ max ., (31)

subject to

Lx < θX , (32)

Ly < θY , (33)

Lz < θZ , (34)

and the constraints of (22)-(29) are also considered. In short,
we next try to find high-efficiency machine designs under the
limited machine volume. In general optimization methods,
because the design problem is changed, we have to perform
optimization computations from zero-start. The DeSearTAM,
on the other hand, would find acceptable candidate designs
without the optimization by utilizing the stored design data.

First, we here consider two cases as follows:
Case-A2: vr = 30km/h, θF1 = 6000Nm
Case-B2: vr = 60km/h, θF1 = 6000Nm
The other specifications are the same as summarized

in Table 3, and θX , θY , θZ , are set to 3500mm, 50mm, 150mm,
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TABLE 6. Resultant design data.

FIGURE 8. Resultant cross-sectional machine shapes, a) Case-A, b) Case-B, c) Case-C, d) Case-D, e) Case-E, f) Case-F.

respectively. For these two cases, we generate design data
by the greedy search without the exploration and param-
eter optimization; T is set to 0.01 and CMA-ES is not
employed. These results are summarized in the left columns
of Table 7, from which we can see that the acceptable
designs with the prescribed performance are found only from
the tree search. It can be concluded from this result that
DeSearTAM can immediately generate the candidate designs
without any optimizations by utilizing the design data. More-
over, by applying the parameter optimization, these designs
can be refined. The right columns of Table 7 summarize
the refined designs. From this Table, it is shown that the
efficiency of the refined designs is improved. The resul-
tant machine shapes before and after the optimization are
shown in Fig. 9, which shows that the coil area is widened
by the optimization to reduce the copper loss. Like these
results, it can be seen that DeSearTAM can easily produce
some candidate designs if we have appropriate datasets, and
those are refined for more suitable ones by the parameter
optimizations.

Next, we set another design case as follows:
Case-C2: vr = 20km/h, θF1 = 6000Nm
The other specifications and settings are the same as the

previous ones. Again, the greedy search is performed to
produce one design data, to which parameter optimization is
also applied. The resultant machine designs are summarized
in the 1st and 2nd rows of Table 8. It is shown from this table
that both designs have too small Fx and η. This is because we
have no data for the given vr , and thus, appropriate integer
values cannot be found. For this reason, to adapt to this
new specification, we generate new design data through the
exploration using the design search tree and the optimization.
The search settings are the same as summarized in Table 4.
The resultant machine design is summarized in the 3rd row of
Table 8, which makes it clear that we can obtain the machine
data with the prescribed Fx and η. This machine design has
different p and Nper before the exploration, that is, the value
functions are adapted to the newly-given specification.

From these numerical results, it is shown that DeSearTAM
can be adapted to various specifications by repeating the
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TABLE 7. Resultant design data for Cases-A2 and -B2.

FIGURE 9. Resultant cross-sectional machine shapes for modified design
problem, a) Case-A2 before optimization, b) Case-A2 after optimization,
c) Case-B2 before optimization, d) Case-B2 after optimization.

exploration and learning, and it can be concluded that
DeSearTAM is effective for solving the mixed-inter design
problems of the electric machines.

V. CONCLUSION
For the automatic design of electric machines consider-
ing all the fundamental and shape variables, an automatic
designmethod namedDeSearTAMhas been proposed. In this
method, the design process for determining the fundamental
variables is modeled by the tree structure. Based on the rein-
forcement learning approach, the value functions of the nodes
and the estimator for the shape variables are constructed using
the various design data generated by the explorations.

TABLE 8. Resultant design data for Case-C2.

The DeSearTAM has been applied to the design problem
of the linear induction motor. It has been shown that machine
designs whose thrust force is larger than the given thresholds
are automatically obtained corresponding to the given spec-
ifications including the appropriate selection of the number
of poles and slots. Moreover, all the generated designs are
stored and utilized to solve other design problems. It has been
shown that the candidate designs whose efficiency is higher
than 80% can automatically and immediately be obtained
without any optimizations thanks to the utilization of the
various design data. Even if the given specification is unex-
perienced one, it has also been shown that DeSearTAM can
effectively be adapted to newly-given specifications through
the tree search and optimization. From these results, it has
been concluded that DeSearTAM is effective for solving
the design problems of electric machines considering all the
fundamental and shape variables.

For the future works, we will apply the proposed method
to various design problems of electric machines. Moreover,
the proposed method will be modified for the multi-objective
design problems.

APPENDIX
The design problem of the linear induction motor used in this
work is based on the references [39]-[41]. We here describe
the evaluation formula of the machine-performance based
on the equivalent circuit, provided that we do not consider
the end-region effect of the iron cores and the iron loss for
simplicity, because the purpose of this work is to present the
automatic design method, not to develop high-performance
linear motors. For the same reason, we do not evaluate the
machine-performance of the resultant motors by the finite
element method in detail. The difference between the finite
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TABLE 9. Symbols used in evaluations of linear induction motor.

element method and the equivalent circuit-based evaluation
has been discussed in the references [39], [40].

The thrust force and efficiency are evaluated based on
the equivalent circuit. The circuit constants of the equivalent
circuit are derived from the geometric shape of the machine.
The other features of the machine are also computed from
the machine shape analytically. The symbols used in the
evaluations are summarized in Table 9. The thrust force, Fx ,
and efficiency, η, are computed as follows:

Fx =
3I2R2(

1
s2G2 + 1

)
vss
, (35)

η =
Fxvs (1− s)
Fxvs + 3I2R1

, (36)

where

R1 =
N1lst
σcSwire

, (37)

R2 =
Xm
G
, (38)

X1 =
2πµ0

[{
λs

(
1+ 3

p

)
+ λd

}
Ws
Nper
+ λelce

]
N 2
1

p
, (39)

Xm =
24πµ0fWskwN 2

1 τ

π2pge
, (40)

G =
2πµ0f τ 2σphp

πge
. (41)

I =
V0∥∥∥R1 + jX1 + jsR2Xm

sR2+jXm

∥∥∥ , (42)

and

λs =
Hs
(
1+ 3kp

)
12Ws

, (43)

λe = 0.3
(
3kp − 1

)
, (44)

λd =
5
(
ge
Ws

)
5+ 4

(
g0
Ws

) . (45)

Moreover,

Vmotor = {wtHs (Nslot + 1)+ Lxhb}Leff
+Lx

(
hp + hb

)
Lz

+2 (Lz + 1.5τβc)wchcncNslot, (46)

Tc =
3I2R1
κSsurf

, (47)

Bteeth =
φ

Nslot
3 wtLeff

, (48)

Bcore =
φ

2hbLeff
, (49)

Bgap =
φ

τLzkg
, (50)

where

φ =
V0

√
2π fN1kw

, (51)

Ssurf = (2+ nd )LxHs + LxLz + 2HsLz. (52)

When one candidate design is generated, the rated slip is
calculated as follows:

srated =
vs − vr
vs

, (53)

and the machine-performance for the rated condition is com-
puted. In addition, the slip for the maximum force condition,
smax, is simply searched by increasing s in small increments
from 0.0 to 1.0. Then, the constraints of (27) and (28) are
evaluated.
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