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ABSTRACT In this paper, a global nonsingular sliding mode controller is developed for a second order
system with unknown control direction. A novel terminal sliding mode hypersurface is presented to
compensate for the sign uncertainty in the control input and avoid the singularity issue present in the
traditional terminal sliding mode control. In contrast to the Nussbaum gain approach where the equilibrium
point is reached asymptotically in the presence of input sign uncertainty, the proposed controller guarantees
that the equilibrium point can be reached from any initial state in finite time. Simulation results are provided
to validate the proposed controller.

INDEX TERMS Finite-time sliding mode control, unknown control direction.

I. INTRODUCTION
Sliding mode control (SMC) is a well known control
technique due to its insensitivity to parameter variations and
exogenous disturbances [1]. The crucial aspect of SMC is in
the sliding surface design that restricts the motion of the sys-
tem states to a sliding manifold. Typically, the system states
converge to an equilibrium point asymptotically or exponen-
tially using linear surface design. Approaches using terminal
sliding mode (TSM) offers finite time convergence and supe-
rior performance compared to linear sliding surfaces [2]–[6].
Although TSM has been widely accepted due to finite time
convergence for systems with model uncertainties and distur-
bances, the existing TSM solutions do not take into account
the unknown control direction, i.e., the sign uncertainty in the
input matrix. The input sign uncertainty may arise in scenar-
ios such as when a control signal is sent to a system over an
unassured and possibly hostile communication channel and
even due to manufacturing defects when a large number of
systems (e.g., quadrotors) are manufactured in batches [7].
This work is particularly motivated to consider sliding mode
control of systems with input sign uncertainties.

The challenges in control design due to input sign
uncertainty have led to some creative ways to circumvent
the problem. One of the widely used techniques employs
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Nussbaum-type gain functions to compensate for the sign
uncertainty. In [8], the Nussbaum and reference type func-
tions were used to design a global adaptive controller for
an n-order system. In [9], Yang et al. divided the state into
convergent and non-convergent sets to analyze the Nussbaum
gain when the sign switching occurs in the intervals between
the switchings. Learning-based control methods are also used
in conjunction with Nussbaum functions to compensate for
the lack of knowledge in the control direction [10], [11].
Recently, Nussbaum function is used in consensus of
multi-agent systemswith unknown control direction [7], [12].
A practical application is addressed in [13] for hypersonic
missiles, when the transformed system yield unknown con-
trol direction due to uncertainty in the original dynamics.
However, Nussbaum-based controllers can only guarantee
asymptotic convergence and exhibit peaking phenomenon
due to the high-gain feature of these controllers [14], [15],
which may pose practical challenges. Apart from the
Nussbaum-type gain, monitoring functions have also been
used to detect sign changes in the control direction [16], [17].
In [18], the monitoring function is used to overcome uncer-
tainties in camera orientation angle. In [19], Scheinker and
Krstić designed minimum seeking control Lyapunov func-
tions for the systems with unknown control direction. Other
representative works include fuzzy adaptive control [20],
Nussbaum-based control for actuator failures [21], and
adaptive neural control [22].
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Robust control methods are alternatives to compensate
for the unknown control direction. In [23], a continuous
robust controller with an online algorithm to identify changes
in the control direction is designed to guarantee uniformly
ultimately bounded stability in the presence of unknown
time-varying control direction. In [15], Bartolini et al. used
SMC to compensate for the sign of the input matrix with
an observer designed to estimate the drift terms to ensure
asymptotic stability of the origin. In [24], Bartolini et al.
designed a so called ‘‘suboptimal’’ second order slidingmode
control algorithm in the presence of constant unknown con-
trol direction. Drakunov et al. divided the system state space
into cells with smooth boundaries [25]. The inside of each
of these cells contains a fixed control direction. The control
direction alternates between the cells, which results in a set of
stability points where the input matrix is nonsingular. In con-
trast to standard SMC where the sliding mode occurs when
the sliding surface is near zero, this method allows the sliding
motion to occur when the sliding surface is at a constant.
The sliding surface can be driven to origin by removing the
steady state error using dynamic compensator. The controller
design in [25] is based on periodic switching function and
the fact that the cells have smooth sliding manifolds as their
boundaries. Although it allows the system to go from one
manifold to another reaching the equilibrium point, it only
yields local stability result.

The contribution of this paper is multifold. First, compared
to the work of [26], the sliding surface design is nonsingular,
and there is no singularity as the state reaches the origin in the
presence of unknown control direction. Second, leveraging
on the works of [25] and [27], the sliding surface design
allows the control input to remain bounded, yielding globally
finite time result. Third, this work considers time-varying
unknown control direction. As opposed to Nussbaum-based
controllers (e.g., in [8], [28], [29]) that yield asymptotic
stability, and the super-twisting control algorithm in [30]
that only guarantees exponential stability, the controller in
this paper guarantees finite time convergence of the system
states to the origin in the presence of non-vanishing dis-
turbance. In addition, the developed controller compensates
for unknown non-vanishing state-dependent exogenous dis-
turbances and unknown time-varying control direction. The
presented controller does not employ logic tests [15], [24],
[31], [32] or monitoring functions [16] to determine the
hard uncertainty in the control input. Simulations results are
provided to validate the effectiveness of the proposed control
structure.

II. BACKGROUND
The basic principles of finite time convergence and controller
design in the presence of unknown control direction, used in
this paper, can be briefly summarized in the lemmas given
below.
Lemma 1 [6]: Consider the first order system given as

ẋ = −βxγ1/γ2 , where β ∈ R+, 0 < γ1/γ2 < 1, γ1 and
γ2 are odd integers. The state x (t)→ 0 in finite time.

Lemma 2 [27]: Let the first order system be given by

ẋ = f (x, t)+ bu(t)

where f (x, t) ∈ R is the disturbance, b ∈ R is the input gain
with unknown sign, and the control input u(t) is designed as

u = Msgn
(
sin

π

ε
s̃
)

where sgn(·) denotes the sign of (·), ε ∈ R+ is a constant,M ∈
R+ is a constant or a positive function, and the hypersurface
s̃(t) is defined as

s̃ = s+ λ
∫
sgn(s)dt

with s(t) = x(t) as the sliding surface and λ ∈ R+. When the
gain M is designed to satisfy the inequality |Mb| > |f | + λ,
the surface s (t)→ 0 in finite time.

III. PROBLEM FORMULATION
Consider an uncertain system modeled as a double integrator
and subjected to nonvanishing disturbances as

ẋ1 = x2
ẋ2 = f (x, t)+ b(x, t)u (1)

where x1(t), x2(t) ∈ R are the states and let x = [x1 x2]T , b =
b(x, t) ∈ R be the control gain with unknown sign, f (x, t) ∈
R is the nonvanishing disturbance, and u(t) ∈ R is the control
input.
Assumption 1 [15]: The nonvanishing disturbance f (x, t)

is upper bounded by a constant f̄ ∈ R+ as

|f (x, t)| ≤ f̄ ∀(x, t).

Assumption 2 [30]: The control gain b(x, t) can be
bounded as b ≤ |b(x, t)| ≤ b̄, where b, b̄ ∈ R+. The sign
of b(x, t) is unknown, i.e., the control direction is unknown.
Assumption 3 [33]: The rate of sign changes of b(x, t) is

slow.
To facilitate the subsequent analysis, four quadrants

Qi ∀i = 1, 2, 3, 4 are defined using the following inequalities:

Q1: {x1 ≥ 0, x2 ≥ 0} Q2: {x1 < 0, x2 > 0}

Q3: {x1 ≤ 0, x2 ≤ 0} Q4: {x1 > 0, x2 < 0}

The objective of this paper is to design a robust controller
that ensures finite time convergence of the system in (1)
in the presence of sign uncertainty in the control input and
nonvanishing disturbances.

IV. SLIDING SURFACE DESIGN
Based on the nonsingular terminal slidingmode control in [6],
the surface s(t) can be modified as

s = ec2x
2
2/2xm2/m1

2 + cx1 (2)

where m1,m2 ∈ Z+ are odd integers, 1 < m2/m1 < 2,
(m2 + m1)/m1 > 1, (m2 − m1)/m1 < 1, and c, c2 ∈ R+ are
constants. When s = 0 : x2 = (−cx1)m1/m2e−m1c2x22/(2m2),
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x1 and x2 go to the equilibrium point in finite time. To com-
pensate for the sign uncertainty in b, the augmented sliding
surface s̃(t) is designed as

s̃ = s+ λ
∫
σ p1/p2 (s(τ ))dτ (3)

where λ ∈ R+ is a constant, p1, p2 ∈ Z+ are odd integers
that satisfy 0 < p1/p2 < 1, and σ (s) is a saturation function
with the maximum magnitude of Ms ∈ R+ and σ (s) = s(t)
for |s(t)| ≤ Ls ∈ R+. The constants Ls,Ms are designed
parameters chosen based on the user requirements. Taking
time derivative of (2) and (3) along (1), the rate of change
of the surfaces s(t) and s̃(t) can be obtained as

ṡ = gẋ2 + cx2 (4)
˙̃s = ṡ+ λσ p1/p2 (s) (5)

g =
(
c2x

(m1+m2)/m1
2 +

m2

m1
x(m2−m1)/m1
2

)
ec2x

2
2/2 (6)

where g(x) ∈ R is a positive semi-definite function due
to the fact that m2 + m1 and m2 − m1 yield even integers.
Substituting (1) and (4) into (5), the open-loop system can be
expressed as

˙̃s = g (f + bu)+ cx2 + λσ p1/p2 (s). (7)

The surface in ˙̃s(t) is partitioned into four parts, and the
control is designed to compensate for each of the terms
in (7).
Remark 1: The sliding surface in (2) is different from the

classical nonsingular terminal sliding surface. The function
ec2x

2
2/2 in (2) behaves similar to a saturation function of x1(t)

without the nonsmooth derivative at the boundary in the sense
that it increases the magnitude of ec2x

2
2/2xm2/m1

2 to dominate
cx1. Thus, the surface s(t) in (2) has the benefit of allowing
the control gain in u(t) to be multiplied by the function g(x2)
in (7) to be larger than the terms λσ p1/p2 (s) and cx2 without
the need to increase the magnitude of u(t). This is significant
in the sense that it aids the system in (1) to slide on the surface
s̃(t) and enables global finite time stability rather than local
stability as in [27]. This will become clear in the subsequent
analysis.

V. CONTROLLER DEVELOPMENT
To facilitate the subsequent analysis, the control input u(t)
in (1) is segregated into four terms as

u = u1 + u2 + u3 + u4, (8)

which are designed separately in (14)-(17). Substituting (8)
into (7), the open-loop error dynamics can also be subdivided
into four parts

˙̃s = P1(x)+ P2(x)+ P3(x)+ P4(x) (9)

where the functions P1(x),P2(x),P3(x),P4(x) ∈ R are given
as

P1(x) = gbu1 + cx2 (10)

P2(x) = g (f + bu2) (11)

P3(x) = gbu3 + λσ p1/p2 (s) (12)

P4(x) = gbu4. (13)

For notational simplicity, consider the auxiliary functions
9(s̃) and 9s(s̃) defined as

9 , sgn
(
sin

π

ε
s̃
)

9s , sgn(b9)

where ε ∈ R+ is the constant spacing betweenmanifolds s̃(t).
Based on the subsequent analysis, the control input u(t) can

be designed as

u1 = M19 (14)

u2 = M29 (15)

u3 = |σ (s)|p1/p2M39. (16)

u4 =
m1

m2
|σ (s)|q1/q2M49 (17)

where M1,M2,M3,M4, q1, q2 ∈ R+ are constants.
Substituting (14)-(17) into (7), the closed-loop system can be
expressed as

˙̃s = gbM19 + cx2 + g (f + bM29)+ gb|σ (s)|p1/p2M39

+ gb
m1

m2
|σ (s)|q1/q2M49 + λσ

p1/p2 (s). (18)

The following lemmas demonstrate the magnitude of the
control input u(t) dominates the disturbance and the terms
that are not canceled due to the unknown control direction.
Each lemma addresses the control design in (14)-(17) such
that9(s̃) is dominant in (10)-(13). According to [6] and [27],
when the terms containing 9(s̃) dominate the expression
in (18), sliding mode occurs and9(t) converges to a constant,
resulting in that s(t), x(t)→ 0 in finite time.
Lemma 3: The control input u1(t) and u2(t) designed

in (14) and (15 ), respectively, allow the sign of 9(s̃) to
dominate in (10) and (11).

Proof: The proof is in Appendix A.
In (12), as x2(t) → 0, the function g(x2) also decreases,

which causes the magnitude of u3(t) unable to dominate in
(12). The following Lemma finds the region where g(x2) is
large enough to help u3(t) dominate in (12). As x2(t) → 0,
there must be a value of x2(t) where |x2(t)| = x2m ∈ R+ such
that the magnitude of |gbu3| = λMp1/p2

s . When |x2| ≥ x2m,
|gbu3| ≥ λMp1/p2

s and sliding mode occurs. The following
Lemma summarizes the above discussion.
Lemma 4: Define the set x2a ⊂ R as

x2a =
{
x2 | g(x2)−

λMs

bM3
= 0, x2 6= 0

}
(19)

where g(x2) is defined in (6). For the region defined by
|s(t)| > Ls and |x2(t)| ≥ x2m, the sign of 9s is dominant
in P3(x), where x2m can be defined as

x2m , maxima(x2a), (20)
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and it can be selected by varying control gain M3.
Proof: The proof is in Appendix B.

To facilitate the controller development, four regions Ri
for i = 1, 2, 3, 4 are defined as

R1 , {(x2, s) | |x2| < x2m, |s| > Ls}

R2 , {(x2, s) | |x2| ≤ x2m, |s| ≤ Ls}

R3 , {x2 | |x2| ≤ x2m}

R4 , {x2 | |x2| > x2m} .

It can be seen that R2 ⊂ R3, and R2 contains the origin
of (1). Using the definition of the surface s(t) in (2), the set
R2 implies that |ec2x

2
2m/2xm2/m1

2m + cx1| ≤ Ls.
Figure 1 shows the boundary x2m defined in (20), such

that R4 ⊂ R2 is defined to be the region outside the green
lines, i.e., |x2(t)| > x2m. Consider the case when x(t) ∈
Q1 ∩ R4 and suppose sliding mode has not occurred, and
the control input u(t) causes x2(t) to increase. Using (1) and
the fact that x2(t) > 0 in x(t) ∈ Q1 ∩ R4, x1(t) increases
monotonically. However, since x2(t) ∈ R4, according to
Lemmas 3 and 4, the terms containing 9(s̃) dominate in (9),
and x(t) is attracted to one of the manifolds s̃(t) = β, where
β ∈ R, in finite time. Therefore, from (1) and (2), |x2(t)|
decreases until x2(t) enters the regionR3. Similar arguments
can be made when x(t) ∈ Q3 ∩ R4 to show that x2(t) starts
in R4 and enters R3.
Figure 1 and Figure 2 show the direction of bu(t) with

respect to the sliding manifold s̃ = β = kε for k =
±1,±3,±5, · · · . As shown in Figure 2, 9s = +1 is on the
left and 9s = −1 is on the right of s̃ = β.
From (7), as x2(t) approaches zero, the function g(x2) also

approaches zero. Since the control input u(t) is multiplied by
g(x2) in (7), the surface s̃(t) becomes uncontrollable when
g(x2) = 0 and (x1, x2) can get stuck in R1. The following
lemma addresses this issue by proving that the line x2 = 0

FIGURE 1. Multiple equilibrium surface s̃ = kε, and the boundary x2m
shown in dotted green line. ‘+’ and ‘−’ represent the signs of bu(t) such
that ↑ indicates sgn(bu) = +1 and ↓ indicates sgn(bu) = −1 for the
control input acting on s̃.

FIGURE 2. Plot of 9s(t) showing 9s = +1 on the left and 9s = −1 on the
right with respect to a sliding manifold s̃ = β = kε for
k = ±1,±3,±5, · · · . The arrow→ indicates sgn(bu) = +1 and←
indicates sgn(bu) = −1.

and the set x2(t) ∈ R1 is an unattractive set, i.e., (x1, x2) does
not get stuck at x1 6= 0 and x2 = 0. In fact, the following
lemma demonstrates that (x1, x2) escapes the neighborhood
of x2 = 0 in finite.
Lemma 5: Let the sliding mode occur before x(t) enters

R3, and let x2(t) enter R3 with 9s = −1 and |s(t)| > Ls.
When M3 is designed to satisfy the inequality

M3 >
4x2m

b
(
ε − 2Mp1/p2

s εs̃

) (21)

x2(t) leavesR3 and entersR4 in finite time, where ε̄s̃ ∈ R+.
Proof: The proof is in Appendix C.

In Lemma 5, x2(t) can also enter R3 with 9s = +1,
and let s(t) be positive. Since sgn(s) = sgn(9s), the func-
tion σ p1/p2 (s) is an aiding term, forcing the state x(t) to be
attractive to the manifold s̃(t) = β. This pushes x(t) to the
other side of the manifold with 9s = −1, where sliding
mode no longer occurs because |ṡ| < λσ p1/p2 (s) and the
terms containing 9s no longer dominate in (29). Thereafter,
Lemma 5 can be used to conclude that x2(t) leaves R3.

Similar to [6], Lemma 5 above proves that x2(t) crosses
the boundary layer |x2| ≤ x2m, which includes x2 = 0. If the
initial conditions are x2(t) = 0 and 9s = 0 with s(t) 6= 0,
then the surface in (7) is not zero, and, by definition, 9s
will change to ±1. Then, the velocity x2(t), in the worst case
scenario, leaves R3, attaches itself to a sliding manifold and
re-enters R3. Once x2(t) ∈ R3, using Lemmas 3-5, it can be
shown that the velocity crosses the boundary layer |x2| ≤ x2m
in finite time, and |x2| ≤ x2m is not an attractive set.

As x2(t) leaves the boundary layer |x2(t)| ≤ x2m and the
magnitude of x2(t) increases, x1(t) approaches the origin and
x2(t) approaches a constant. The following lemma illustrates
this point.
Lemma 6: Let the slidingmode occur on s̃(t) = β, |s(t)| >

Ls, x2(t) ∈ R4, and x(t) ∈ Q2 or x(t) ∈ Q4, then x1(t)
approaches the origin with an average constant velocity of
x2avg = −λM

p1/p2
s sgn(s)/c.

Proof: The proof is in Appendix D
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Lemmas 3-5 show that sliding mode occurs in R4 and
x2(t) enters and exits R3 from Q1 to Q4 or from Q3 to Q2.
However, for x(t) to reach the origin in finite time, sliding
mode must also occur in R2. If sliding mode does not occur
as x2(t) enters R2, then x(t) is not attached to a manifold.
If this is the case, then x2(t) either stays in R2 or exits R2
until it attaches itself to an attractive manifold. The follow-
ing lemma demonstrates that when sliding mode occurs as
x2(t) enters R2 then sliding mode continues to occur for
x2(t) ∈ R2.
The need for the following lemma is motivated by the fact

that the magnitude of the term g(x2)bu(t) in (7) has to be
larger than λσ p1/p2 (s) in order for sliding mode to occur.
Since the control input scalar b(x, t) is uncertain, exactly
cancellation of σ p1/p2 (s) is not possible, thus, it is desirable to
design the hypersurface in (7) such that λ|σ p1/p2 (s)| is smaller
than |g(x2)bu(t)|. The lemma below establishes inequali-
ties that force λ|σ p1/p2 (s)| to be smaller than |g(x2)bu(t)|
as ˙̃s(t)→ 0.
Lemma 7: When sliding mode occurs as x(t) enters R2,

the control input u4(t) designed in (17) allows the sign of 9s
to be dominant in (29) and sliding mode continues to occur
in R2.

Proof: The proof is in Appendix E.
From (1), when sliding mode occurs on one of the man-

ifolds in Q2 or Q4, it is possible that x(t) stays in Q2 or
Q4, respectively, while converging to the origin. Additional
analysis for x(t) ∈ Q2 and x(t) ∈ Q4 is trivial if x(t) remains
in Q2 or Q4 until x(t) reaches the origin since, according to
Lemma 6, x2(t) will not enter R3 until it reaches R2. If the
initial velocity x2(t0) is in Q2 or Q4 and crosses over to Q1
or Q3, respectively, then Lemma 3-7 can be used to show
finite time convergence of x(t). Moreover, from Lemma 6,
once sliding mode occurs in Q2 or Q4, the velocity x2(t)
approaches the origin with an average velocity of x2avg =
−λMp1/p2

s sgn(s)/c for |s(t)| > Ls. If the constants λ,Ms, and
c are designed such that the inequality

λ
Mp1/p2
s

c
> x2m

is satisfied, then it can be ensured that x2(t) does not re-enter
R3 until x2(t) ∈ R2.
Lemma 7 shows that when sliding mode occurs before

x2(t) enters R2, then the sliding mode continues to occur as
x(t) ∈ R2. One possible trajectory of x(t) is that x(t) starts in
Q1, enters and exits R3 to the set {Q4\R3}, travels with an
average constant velocity of x2avg = −λM

p1/p2
s sgn(s)/c, then

enters R2 and converges to the origin as shown in Figure 3.
Similarly, if x(0) starts in Q3, it enters and exits R3 to the
set {Q2\R3}, travels with an average constant velocity of
x2avg = −λM

p1/p2
s sgn(s)/c, then enters R2 and converges

to the origin.
Theorem 1: For the system modeled in (1), where the sign

of the uncertain input gain b(x, t) is unknown, the control
input u(t) in (14)-(17) ensures that the surface s̃(t) is reached

FIGURE 3. The phase plot of the system showing the trajectories of the
system starting in Q1 ∩R4 and Q3 ∩R4 and converging to the origin
in R2.

in finite time, s(t) reaches zero in finite time, and the state
x(t) reaches the origin in finite time.

Proof: Consider the multi-equilibrium Lyapunov
candidate function

V = |sin
π s̃
ε
| (22)

Taking the time derivative along (1),

V̇ =
π

ε
9

(
cos

π s̃
ε

)
˙̃s (23)

where ˙̃s is expressed in (7). From (23), it is obvious that
when |g(x2)b(x, t)u(t)| dominates in (10)-(13), the Lyapunov
derivative in (23) becomes

V̇ =
π

ε

(
cos

π s̃
ε

)
|˙̃s|sgn(b) (24)

Based on Lemma 3-7, x2(t) crosses the boundary layer
|x2| ≤ x2m in (9), and the sign of 9s is dominant everywhere
except in the non-attractive set R1. This implies that 9 ˙̃s is
sign definite for some of the points. When cos π s̃

ε
is ±1 and

V = 0, every other point guarantees that V̇ < 0. Thus,
V (t) → 0 in finite time, s̃(t) → β ∈ R in finite time in
(24), s(t) → 0 in finite time in (5), and (x1, x2) → (0, 0) in
finite time in (4).

A more detailed proof of finite time analysis is similar
to [6] and [27] and is omitted here for brevity.
The lemmas above have been provided to prove that the

control input u(t) dominates in (10)-(13), and they are used
in Theorem 1 to prove stability. These lemmas have been
used to prove three main parts. The first part considers
where (x1, x2) ∈ R4 is outside the neighborhood of the line
x2(t) = 0 in Lemma 3-4. It is shown that outside this region,
the control u(t) dominates the disturbance and the extra terms
that cannot be canceled due to the uncertainty in the scalar
input. The second part considers when (x1, x2) ∈ R1 is
near the line x2 = 0 in Lemma 5. This analysis is similar
to nonsingular terminal sliding mode control in [6], where
it is shown that the line x2(t) = 0 is not attractive. This
analysis is crucial due to the fact that the term x2(t) multiplies
the control input in the hyper sliding surface ˙̃s(t) in (7) and
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the control becomes ineffective when g(x2 = 0) = 0. It is
shown that the state does cross the line x2(t) = 0 and the set
R1 is unattractive. The third part considers the case where
(x1, x2) is near the origin in Lemma 7. Since the control input
u(t) is multiplied by the function g(x2) in (7) and |x2(t)| is
decreasing as (x1, x2) approaches the origin, the magnitude
of g(x2)b(x, t)u(t) decreases as well. It is shown that in the
worst case scenario, the term |s(t)| decreases faster than
|g(x2)b(x, t)u(t)|, which allows sliding mode and the state
(x1, x2) to reach and remain at the origin in finite time.

Lemma 6 shows the effect of convergence rate due to the
added term ec2x

2
2/2 on the surface s(t) in (2). The term ec2x

2
2/2

effectively magnifies the control input u(t) via g(x2) in (4) to
dominate cx2 without increasing u(t). However, this comes at
the cost of restricting the upper limit on the velocity x2(t) as
it approaches the origin.
Remark 2: The control gain selection is based on the

user performance requirement. Control parameters such as
M1,M2,M3,M4 are chosen based on the inequalities in (26),
M2b > f̄ , (21), and (47), respectively. To make the system
converge faster, there are several variables that can be tuned.
The constants c,Ms and λ can be increased to make s(t) go to
zero faster as s̃(t) approaches a constant. This comes with a
cost of increasing the control gain to dominate the increased
magnitude in the extra terms. The variable ε can also be
decreased to improve convergence time. Due to the fact that
s(t) is designed with the term ec2x

2
2/2 that acts similar to the

saturation function, there is performance trade off in the speed
of convergence and control magnitude.

VI. SIMULATION RESULTS
Simulation results are presented for a second order system
given in (1). The simulation parameters were chosen to be

M1 = 1 M2 = .25 M3 = .26

M4 = 2.76 Ls = 1 Ms = .25

m1 = 3 p1 = 3 q1 = 0.8

m2 = 5 p2 = 5 q2 = 5.0

λ = 7 c = 2 d = 0.1

c2 = 1 ε = 3.

The uncertain input scalar

b(x, t) = cos(t)+ sin(x1) cos(x2)+ 4sgn(sin
t
2
)

was used in the simulation, but the controller development did
not assume the knowledge of the sign of b(x, t). The lower
bound on b(x, t) was considered to be b = 2. The unknown
non-vanishing disturbance f (x, t) was considered as

f (x, t) = x2 cos(x1)+ 0.5 sin(t).

The initial conditions were chosen to be

x1(0) = −4 x2(0) = −1.5.

Figure 4 shows the time-varying position x1(t) and veloc-
ity x2(t), Figure 5 shows the time-varying hypersurface s̃(t)

FIGURE 4. Plot of the time-varying position x1(t) and velocity x2(t).
x1(t)→ 0 and x2(t)→ 0 in finite time.

FIGURE 5. Plot of the hypersurface s̃(t) and surface s(t). s̃(t)→ β and
remains constant and s(t)→ 0.

FIGURE 6. Plot of the control input u(t) remains bounded at all times.

and surface s(t), and Figure 6 shows the control input u(t).
In Figure 5, it can be seen that s̃(t) = −15 after a brief
moment of time. This implies that the control direction b(x, t)
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has been identified, and the system in (1) is sliding on
s̃(t) = −15. This causes the surface s(t) to approach zero and
s(5 < t < 6) = 0. Note that the sliding surface reaches
s(t = 5) = 0 before (x1, x2) = (0, 0).

In Figure 4, it can be seen that x(t) begins in Q3 since
sgn(x1(0)) = sgn(x2(0)) = −1. The velocity x2(t) decreases
intoR3 and leavesR3 between t = 1 sec and t = 2 sec. As a
result, x(t) enters Q2, and the velocity of x2 approaches an
average velocity until it reaches the set R2. Around t = 2π ,
the sign of b(x, t) changes, and s̃(t) attaches itself to a
new manifold s̃(t) = −12. Consequently, s(t) → 0, and
(x1, x2) → (0, 0) in finite time. Around t = 4π , the sign
of b(x, t) changes and the pattern repeats again. The control
input remains bounded at all times while the sign of the scalar
input changes in time.

VII. CONCLUSION
This paper presents a nonsingular terminal sliding mode con-
troller for a second order system without a priori knowl-
edge of the control direction and in the presence unknown
non-vanishing state-dependent disturbances. The proposed
approach achieves finite time convergence, and ensures that
the control signals remain bounded at all times. Simulation
results are provided to show the efficacy of the developed
controller. Since the current method is developed for second
order systems, future research will consider extending the
current approach to higher order systems.

APPENDIX A
PROOF OF LEMMA 3
Substituting (14) into (10) and using 9s = sgn(b9) yields

P1(x) = g|b|M19s + cx2. (25)

Consider the positive semi-definite function g(x) in (6),
where ec2x

2
2/2 ≥ 1 ∀x2(t). Also, it can be shown that

x(m2+m1)/m1
2 ≥ x2 for |x2| ≥ 1 and x(m2−m1)/m1

2 ≥ x2 for
|x2| ≤ 1. Therefore, M1 can be chosen as

M1 > max
(

c
c2b

,
cm1

m2b

)
(26)

to ensure that M1c2 > c and M1m2/m1 > c. In (26), the fact
that b ≤ |b| is used. It follows from (25) and (26) that the sign
of 9s is dominant in (25) for x2(t) ∈ R.

Substituting (15) into (11), P2(x) can be obtained as P2 =
g(f + |b|M29s). Since g(x) ≥ 0,M2 can be designed follow-
ing the inequality |M2b| > f̄ to ensure that the sign of 9s
dominates in P2(x), where |f (x, t)| ≤ f̄ and b ≤ b are used.

Thus, the control inputs in (14) and (15) guarantee that the
sign of 9s dominates in (10) and (11).

APPENDIX B
PROOF OF LEMMA 4
Substituting (16) into (12) and, using 9s = sgn(b9), yields

P3(x) = |σ (s)|p1/p2g|b|M39s + λσ
p1/p2 (s). (27)

In (6), ec2x
2
2/2 > 1 ∀x2(t) 6= 0. Therefore, using the set

definition in (19) and (20), it is clear that ||σ (s)|p1/p2gbM3| >

|λσ p1/p2 (s)| for |x2(t)| ≥ x2m in (27). Thus, the sign of 9s
dominates in (12).

APPENDIX C
PROOF OF LEMMA 5
Without loss of generality, let x(t) ∈ Q1, i.e., s(t) is positive.
At any t = t0, x2(t) is in Q1 ∩ R3, i.e., 0 < x2(t) ≤ x2m,
and, according to Lemma 3-4, (M1+M2)9s is sign dominant
in (4). Therefore, using (1), the expression in (5) can be
rewritten as

sgn(ẋ2) = 9s (28)
˙̃s = |ṡ|9s + λσ

p1/p2 (s). (29)

Let x2(t) enter the boundary of R3 with 9s = −1 and
|ṡ| < λσ p1/p2 (s) in (29), such that the sliding mode does not
continue to occur. From (28) and the facts that x1(t) > 0 and
9s = −1, it can be concluded that x(t) moves towards Q4.
Since the term |ṡ|9s is dominated by λσ p1/p2 (s) > 0, s̃(t)

goes from s̃(t) = β to s̃(t) = β + ε (see Figure 2) with the
maximum rate of

˙̃s = λMp1/p2
s

where ṡ = 0 is used to obtain the maximum rate of change
of s̃(t). When s̃(t) goes from s̃(t) = β to s̃(t) = β + ε,
9s = −1 switches to 9s = +1. If this switching occurs
while x2 ∈ R3 then x2(t) could remain in R3 because the
average acceleration could be zero or positive, the sliding
mode does not occur, and x(t) does not converge to the origin.
Consider the conservative scenario where s̃(t) switches from
s̃(t0) = β+ε/2 to s̃(ts̃) = β+ε. The minimum time ts̃ ∈ R in
which s̃(t) changes from β+ε/2 to β+ε, i.e.,9s(s̃) switches
in sign, can be obtained from (29) as

ts̃ =
ε

2Mp1/p2
s

− εs̃ (30)

where the average acceleration ¨̃s(t) is considered zero, and εs̃,
defined in (21), has a known upper bound ε̄s̃ ∈ R+ that offsets
for the chattering region along the manifold s̃(t) = β.
To prevent the sign switching from occurring within R3,

the velocity x2(t) has to cross the boundary from x2(t0) = x2m
to x2(tx2) = −x2m before 9s changes in sign, which implies
that the velocity has to exit the setR3 with a time interval less
than ts̃. To obtain the time required for x2(t) to travel from x2m
to−x2m, consider the worst case scenario where x2(t) reduces
with minimum acceleration ẋ2(t) due to contribution of u2(t)
and u3(t) alone in (1) and u2(t) is designed to compensate for
f (t). The minimum acceleration ẋ2(t) can then be obtained as

ẋ2 = bMp1/p2
s M39s (31)

where b ≤ |b| is used. Given the minimal acceleration in (31),
the maximum time interval to leave the set R3 can be given
by

tx2 =
2x2m

bMp1/p2
s M3

. (32)
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Comparing (30) and (32), the control gain M3 can be
designed as in (21) to guarantee ts̃ > tx2, i.e., x2(t) will
exit R3 and enter R4 before 9s(t) switches from −1 to +1.
In x(t) ∈ Q4 and x2(t) ∈ R4, according to Lemmas 3
and 4 and the fact that ts̃ > tx2, x(t) remains attractive
to the same manifold s̃(t) = β that it was before entering
R3. When x2(t) ∈ R3, s̃(t) increases from β to β + ε2,
where ε2 < ε ∈ R+. Consequently, sliding mode does not
occur immediately after x2(t) exitsR3, and the velocity x2(t)
continues to increase in magnitude.

When x(t) ∈ Q3, the analysis is similar to above, and hence
is omitted for brevity. In this case, sgn(s(t)) = −1 and x2(t)
crosses the boundary from −x2m to x2m. As opposed to the
case above where the surface s̃(t) increases from β to β +
ε2 when x2(t) crosses R3 from Q1 to Q4, in this case s̃(t)
decreases from β to β − ε2 when x2(t) crosses R3 from Q3
to Q2. It can be shown that, when the inequality in (21) is
satisfied, the gainM3 ensures thatR3 for |s(t)| > Ls, i.e.,R1
is not an attractive set.

APPENDIX D
PROOF OF LEMMA 6
When sliding mode occurs on s̃(t) = β, ˙̃s(t) = 0. Therefore,
the expressions in (4) and (5) yield

gẋ2 + cx2 = −λσ p1/p2 (s).

Using the fact that |s(t)| > Ls, the acceleration ẋ2(t) can
be obtained as

ẋ2 =
−cx2 − λM

p1/p2
s sgn(s)
g

. (33)

As |x2(t)| decreases or increases, depending on whether
x(t) ∈ Q2 or x(t) ∈ Q4, respectively, and x1(t)
approaches the origin, there exists a moment when cx2 =
−λMp1/p2

s sgn(s) such that ẋ2(t) = 0. Since ẋ2(t) = 0 also
satisfies ˙̃s(t) = 0, x1(t) approaches the origin with a constant
speed of λMp1/p2

s /c until x2(t) enters R2.

APPENDIX E
PROOF OF LEMMA 7
Lemmas 3-5 guarantee that the sign of the terms containing
9s dominate the closed-loop dynamics in (18) such that
sliding mode occurs on s̃(t) = β. When x2(t) enters R2,
the inequality |x2(t)| ≥ x2m in Lemma 4 is not satisfied.
However, within R2, a more relaxed condition can be estab-
lished by analyzing the control input u4(t) in (17) with the
term λσ p1/p2 (s) in (12) to ensure that the sign of9s dominates
in (7).

Let P5(x) = P3(x)+P4(x) and consider the contribution of
control input u4(t) alone. Note that sgn(u3) = sgn(u4) = 9.
Using (6), (12), (13), and (17), P5(x) can be obtained as

P5(x) = |σ (s)|q1/q2ec2x
2
2/2x(m2−m1)/m1

2 |b|M49s

+
m1

m2
|σ (s)|q1/q2ec2x

2
2/2c2x

(m1+m2)/m1
2 |b|M49s

+ λσ p1/p2 (s). (34)

To maintain the sign dominance of 9s(s̃) in (34), the fol-
lowing inequality must be satisfied:

bM4|σ (s)|q1/q2ec2x
2
2/2x(m2−m1)/m1

2

+ bM4
m1

m2
|σ (s)|q1/q2ec2x

2
2/2c2x

(m1+m2)/m1
2

≥
∣∣λσ p1/p2 (s)∣∣ (35)

where b ≤ |b| is used. Since both the terms on the left in (35)
are positive semi-definite, a conservative condition for the
sign dominance of 9s(s̃) can be obtained as

bM4x
(m2−m1)/m1
2 ≥

∣∣∣∣λ σ p1/p2 (s)|σ (s)|q1/q2

∣∣∣∣ (36)

In (36), the fact that ec2x
2
2/2 ≥ 1 is used.

In order for the sliding mode to continue to occur in R2,
the inequality in (36) must be satisfied at all times, which can
be assured if (36) is satisfied at the initial time when x2(t)
enters R2 and s(t) converges to zero faster than x2(t) goes to
the origin.

To simplify the subsequent analysis, the constants q1 and
q2 in (17) are designed as

d =
p2

p2 − p1

(
p1
p2
−
q1
q2

)
− 1

q1
q2
=

p1 − (1+ d)(p2 − p1)
p2

(37)

where 0 < q1/q2 < 1, 0 < d < 1, and q1/q2 < p1/p2.
Without loss of generality, let t0 be the time when sliding

mode occurs, i.e., x(t) slides on a constant manifold s̃(t) = β.
Using (5), ṡ = −λsp1/p2 , where the fact that, in R2, |s(t)| ≤
Ls or σ (s) = s(t) is used. The solution of the differential
equation for ṡ(t) can be obtained as

s(p2−p1)/p2 (t) = −
p2 − p1
p2

λt + s(p2−p1)/p2 (t0). (38)

From (38), since s(p2−p1)/p2 (t) > 0 everywhere except
s(t) = 0, s(t) goes to zero in finite time ts given by

ts =
p2s

(p2−p1)/p2 (t0)
λ(p2 − p1)

. (39)

When s(t) = 0, x(t) approaches the origin and, for some
tx1 > t0, x1(tx1) = x2(tx1) = 0 as shown in Figure 3. The
velocity x2(t) with which x1(t) decays can be obtained by
substituting s(t) = 0 in (2) as

xm2/m1
2 = ẋm2/m1

1 = −
cx1

ec2x
2
2/2
. (40)

In the following analysis, an expression for tx1 is obtained
and compared with (39) to obtain necessary gain conditions
to ensure that s(t) goes to zero faster than x2(t) or x1(t) goes to
the origin. In (40), ec2x

2
2/2 ≥ 1 ∀x2(t). Therefore, the largest

decay rate of x1(t) can be obtained by considering ec2x
2
2/2 = 1

as ẋ1 = (−cx1)m1/m2 . The solution of the differential equation
for ẋ1(t) can be obtained as

x(m2−m1)/m2
1 = −

m2 − m1

m2
c1t + x

(m2−m1)/m2
1 (t0) (41)
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where c1 = cm1/m2 ∈ R+. Using the fact that x(m2−m1)/m2
1 >

0 everywhere except x1(t) = 0, the time required for
x(t)→ 0 once s(t) = 0 can be given as

tx1 =
m2x

(m2−m1)/m2
1 (t0)

c1(m2 − m1)
. (42)

The total estimated time tx for x(t)→ 0 is the sum of the
time required for s(t)→ 0 and the time required for x(t)→ 0
on s(t) = 0, i.e., tx = tx1 + ts.
In general, when sliding mode occurs in s̃(t) = β, the sur-

face s(t) → 0, and then (x1, x2) → 0 in a cascading
manner, as shown above. This generally implies that s(t) = 0
before (x1, x2) reaches the origin. Since s(t) = 0 before
(x1, x2)→ 0, the term λσ p1/p2 (s) in (7) vanishes, and no
further analysis is necessary since g(x2)bu(t) is dominating.
In the worst case scenario when s(t) 6= 0 as x(t)→ 0,

the surface s(t) needs to be designed such that when
x(t) ∈ R2, the magnitude of s(t) decays faster than the mag-
nitude of g(x2)bu(t) to guarantee the occurrence of sliding
mode. Hence, the following analysis considers the worst case
scenario that assumes g(x2) decays as fast as possible by
letting x2(t) decay as fast as possible, while taking in the
slowest decay of the magnitude of s(t) by setting the time
that s(ts) = x(tx) = 0, i.e., tx = ts.
Let x(t) slide on s̃(t) = β such that |s(t)| ≤ Ls and s(t) 6= 0,

and consider the limiting case when s(t) approaches zero at
the same time that x(t) approaches the origin, i.e., tx = ts.
Using (39) and (42), tx = ts implies that the initial conditions
s(0) and x1(0) can be related as

p2s
(p2−p1)/p2 (t0)
p2 − p1

=
m2λ

c1(m2 − m1)
x
(m2−m1)/m2
1 (t0). (43)

Substituting (41) into ẋ1 = x2 = (−cx1)m1/m2 yields

x(m2−m1)/m1
2 =−c3

(
−
m2−m1

m2
c1t+x

(m2−m1)/m2
1 (t0)

)
(44)

where c3 = (−c)(m2−m1)/m1 > 0.
Substituting (37), (38), (43), and (44) into (36) yields a time

and state dependent inequality that can be written as

c3bM4ζ ≥ λζ
d+1 (45)

where the positive semi-definite function ζ (t) is defined as

ζ ,

−
c1(m2 − m1)

m2
t + x(m2−m1)/m2

1 (t0) ∀ t0 ≤ t < ts

0 ∀ ts ≤ t

where ζ = 0 ∀ts ≤ t since s(ts) = x(tx) = 0 and ts = tx . For
simplicity, designing c1 = λ, p1 = m1, p2 = m2. Using (43)
and the fact that |s(t)| ≤ Ls or |σ (s)| ≤ Ms, ζ (t) can be upper
bounded by a known constant ζ (t) < ζ̄ ∈ R+. The inequality
in (45) can then be written as

c3bM4 > λζ̄ d (46)

where the gain M4 is chosen such that

M4 >
λ

bc3
ζ̄ d . (47)

Thus, by selecting M4 based on (47), inequality (46) is satis-
fied and s(t)→ 0 faster than x(t)→ 0 thus guaranteeing that
the sliding mode continues to occur in R2.
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