IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 30, 2021, accepted May 3, 2021, date of publication May 10, 2021, date of current version May 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3078724

Decision tree-based Design Defects Detection

MOHAMED MADDEH !, SARRA AYOUNI“2, SULTAN ALYAHYA“', AND FAHIMA HAJJEJ -2

! Department of Information Systems, King Saud University, Riyadh 11451, Saudi Arabia
2Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia

Corresponding author: Sarra Ayouni (saayouni @pnu.edu.sa)

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track
Research Funding Program.

ABSTRACT Design defects affect project quality and hinder development and maintenance. Consequently,
experts need to minimize these defects in software systems. A promising approach is to apply the concepts
of refactoring at higher level of abstraction based on UML diagrams instead of code level. Unfortunately,
we find in literature many defects that are described textually and there is no consensus on how to decide if
a particular design violates model quality. Defects could be quantified as metrics based rules that represent a
combination of software metrics. However, it is difficult to find manually the best threshold values for these
metrics. In this paper, we propose a new approach to identify design defects at the model level using the ID3
decision tree algorithm. We aim to create a decision tree for each defect. We experimented our approach on
four design defects: The Blob, Data class, Lazy class and Feature Envy defect, using 15 Object-Oriented
metrics. The rules generated using decision tree give a very promising detection results for the four open
source projects tested in this paper. In Lucene 1.4 project, we found that the precision is 67% for a recall

of 100%. In general, the accuracy varies from 49%, reaching for Lucene 1.4 project 80%.

INDEX TERMS Anti-patterns, bad smells, decision tree, model refactoring, object oriented metrics.

I. INTRODUCTION

It is difficult and very expensive to identify and correct soft-
ware defects especially those corresponding to large projects.
The majority of researches dealing with this issue focus on
code defects identification by analyzing the software source
code [1], [2]. These code defects are usually, the consequence
of design defects that was propagated to the code. Detecting
design defects at earlier stage in the system development life
cycle is a promising way to improve the process of software
maintenance [3]-[6]. This will reduce the time, effort and
maintenance cost.

Design defects refers to design solutions that negatively
impact the development of a software like anti-patterns [7]
and bad smells [8], [9]. The purpose of anti-patterns is to
avoid or fix errors before writing any code by documenting
common bad practices in software design. Bad smells repre-
sent symptoms of poor design and implementation choices.
There is a gap between the textual defects description and
the defect identification. Each designer can give his own
interpretation for the same defect. For example, for a well-

The associate editor coordinating the review of this manuscript and

approving it for publication was Imran Sarwar Bajwa

71606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

defined defect like Feature Envy referring to a method that
belongs to other class, instead of the class in which it is
defined. It is confusing to decide which classes are Feature
Envy candidates because this depends on the designer’s inter-
pretation. In fact, the detection of such defect needs informa-
tion like “how many times does the message communicate
with a given class?”. This information can be considered
high in a given context and could be considered medium
in another. Furthermore, a “Log™ class that maintains the
archive of events, used by a many classes, is a common
and acceptable practice. However, referring to the definition,
it can be considered as a class with abnormally high coupling.
Thus, we find several techniques to detect design defects [10].
In general, authors use rules in the form of metric/threshold
combinations to evaluate and identify design defects. Some
studies propose to use rules-based methods that are manually
identified [11]-[14]. Others propose algorithms to generate
these rules [15]-[17]. Both approaches face two major diffi-
culties. The first one is the large number of possible metrics
combinations needed to find the best suitable rule. The second
issue is how to find the best threshold for each metric.

In this article, we propose a method to find the best
metrics’ combination with the most appropriate threshold.
We focus on how to define detection rules in presence of
quantitative information and then how to provide a standard

VOLUME 9, 2021

https://orcid.org/0000-0002-5802-1715
https://orcid.org/0000-0001-5662-6238
https://orcid.org/0000-0002-3870-7613
https://orcid.org/0000-0003-1709-5790
https://orcid.org/0000-0002-5161-6441

M. Maddeh et al.:Decision tree-based Design Defects Detection

IEEE Access

representation of defects’ specification. In the context of our
research, we use decision tree technique to formalize design
defects. It is a predictive model, which maps observations
about defects from the set of examples to detection rules.
More specifically, we address the following questions:

(1) How to choose the best detection rules?

(2) How to find the best metrics threshold?

The remainder of the paper is structured as follows.
Section 2 presents the related works. Section 3 gives an
overview on design defects and object oriented metrics.
Section 4 presents the details of our application of deci-
sion tree algorithm to the problem of detecting design
defects at the model level. Section 5 validates the proposed
approach. Sections 6 and 7 outline the discussion and the
conclusion.

Il. RELATED WORKS

In this section, we present the most relevant studies on model
refactoring. We exclude works focusing on design defect
detection in the code level [18]-[22]. A few existing works are
based on UML model to predict defects before the implemen-
tation phase. These works could be classified into two broad
categories: manual rules identification and automated rules
generation. In [23], the authors used Software Architecture
Analysis Tool to calculate metrics for UML diagrams. These
metrics are then used to identify the flaws or the anti-patterns.
The authors represented the structure and the behavior of the
system using the class diagram and the state chart diagram,
respectively. After that, they examined the metrics to identify
the centralized control structure and refactor them into one
that employs more delegation. This work is limited to central-
ized control structure. It is also based on a manual detection
that is very difficult to generalize for large projects. In our cur-
rent study, we overcome this problem and we propose generic
detection process that can be applied for any design defect.
Marinescu in [12], [24], [25] defined a list of metrics rules to
detect design flaws. The limitation of his approach is that it is
difficulty to identify manually the metrics thresholds. In [26],
the authors proposed an automated based-approach to detect
model-refactoring opportunities related to various types of
design defects. Their approach uses genetic programming
based on the similarity/distance measures between the stud-
ied system and a set of defect examples without defining rules
for the detection. In [27], Maddeh et al. proposed a framework
(M-RAFACTOR) to detect and correct design defects based
on object oriented metrics. In this study, authors generate
manually the detection rules. In [28], the authors generated
rules to detect design defects at the model level using grad-
ual rules and proposed a measurement of tendency instead
of metrics thresholds. In [29], Mohamed et al. proposed
a multi-view integrated approach to model-driven refactor-
ing using UML models. They propose an integrated meta-
model based on one model selected from each UML view,
at the metamodel level. In [30], Cortellessa et al. proposed a
model-driven solution to help designers improve the avail-
ability of their software through refactoring opportunities.

VOLUME 9, 2021

They tried to improve the software availability of the sys-
tem through model refactoring and model transformation.
Tanhaei [31] presented a model refactoring by transform-
ing Software Architecture (SA) to a pivot-model on which
he applied the refactoring process. However, there is no
automated detection of refactoring opportunities since it is
based on stakeholders refactoring goals and recommenda-
tions. In [32], the authors use the machine learning approach
to refactor a UML class diagram suffering from a functional
decomposition problem. This solution is not generic; this
work focuses on one specific problem and tries to transform
the UML class diagram into a new version more compliant
with the Object Oriented paradigm. In [33] Alshayeb et al.
proposed an approach for improving sequence diagrams’
security through the application of refactoring based on bad
smells defect. The detection of these bad smells is based
on Genetic Algorithms. In this work the authors focused on
one specific refactoring problem; the security in a sequence
diagram.

We note that the majority of studies related to the detection
of design defects are based on the code analysis. It is more
difficult to predict defects before the implementation stage,
because of the lack of information comparing to the code.
Some existing works defines detection rules manually; it is
then difficult to find the best thresholds of metrics. Some
other works are dealing with a specific refactoring or ten-
dency evaluation.

1Il. DESIGN DEFECTS AND OBIJECT ORIENTED METRICS
In this study, we aim to define a predictive model refactoring
based on the detection of design defects, (i.e. design anoma-
lies); namely bad smells and anti-patterns. Fowler et al.
proposed the bad smells. They defined a set of 22 symptoms
of common defects. Brown et al. introduced the anti-patterns.

In this study, we consider four different design defects:

The Blob anti-pattern also called God class [34]: this
defect corresponds to a big controller class that uses and
accesses data stored in other surrounded classes. A big
class encompasses many attributes and methods with a low
cohesion.

Data class bad smell: this defect corresponds to classes
containing attributes without methods operating on them.
They might belong to another class.

Lazy class bad smell: this defect occurs when a class is
used in few number of scenario (i.e., represented by sequence
diagrams). Such classes should be merged or deleted reducing
the project complexity.

Feature Envy bad smell: this defect occurs when a method
defined in a class C1 makes extensive use of attributes or/and
methods defined in another class C2. Such method should
move to the class C2.

Each defect is evaluated using a combination of metrics.
Object oriented metrics are used to measure the software
quality and predict design defects occurrence. In fact, we try
to detect defects at an earlier stage of the software develop-
ment process.

71607

IEEE Access

M. Maddeh et al.:Decision tree-based Design Defects Detection

TABLE 1. Object oriented metrics.

begin

value;

records of S;

metric D;

end ID3;

Algorithm ID3 for defect detection
function ID3 (R: set of metrics, C: target defect, S: set of examples) return a decision tree;

1: If S is empty, return Failure;
2: If S consists of records with the same value for the target defect, return a single node with that

3: If R is empty, return a single node with the most frequent value of the target defect that are found
4: Let D be the metric with minimal entropy (D,S) among metrics in R;

5: Let {dj| j=1,2,...m} be the values of metric D;

6: Let {Sj| j=1,2,... m) be the subsets of S consisting respectively of records with value dj for the

7: return a tree with root labeled D and arcs labeled d1,d2.... dm
8: ID3(R-{D}, C, S1), ID3(R-{D}, C, S2),...., ID3(R-{D}, C, Sm);

FIGURE 1. The ID3 algorithm for defect detection.

Metric Name Description
NC Number of Classes Number of classes in the project
PS Package Size Number of classes in the package
NOA Number Of Attributes Number of attributes in the class
NOM Number Of Methods Number of methods in the class
NOD Number of Descendent Number of classes descendent
(inheritance)
NODD | Number Of Direct Number of direct class descendent (direct
Descendent inheritance)
NMSC | Number of Messages in Number of messages send from a class to
the Same Class itself (internal-messages)
NOC Number of messages Number of messages sent for other classes
sent for Other Classes
NCC Number of Connected Number of classes connected to the
Classes measured class
ATFD Access To Foreigner Number of classes connected with the
Data measured class
NOP Number Of Parameters Number of parameters in a method
NIC Number of Number of classes affected by the
Interconnected Classes measured method
CM Changing Methods Number of methods affected by the
measured method
NOPM | Number Of Packages in Number of packages in the model
the Model
PUC Package Used Classes Number of classes used outside the
measured package

This work is inspired from metrics defined in litera-
ture [35]-[37]. In our experimentation, we use fifteen metrics
useful for software measurement and design flaw detection,
as shown in Table 1. The measurement of metrics is based
on static and dynamic diagrams. For static metrics, we use
class diagram and for behavioral metrics, we use the sequence
diagrams.

IV. DECISION TREE ALGORITHM FOR DETECTING DESIGN
DEFECTS

A decision tree is a graphical model of potential solutions to a
decision under conditional control statements. It is a method
of supervised machine learning [38]. It aims to classify a
set of data features into homogeneous groups in terms of
the predicted variable. It takes as input a set of classified
data, and its outputs is a tree that resembles to an orientation

71608

diagram. It represents a course of action that gives a possible
decision represented by the tree branches. Each solution is
mutually exclusive. In this work, we base our results on
training examples. In fact, to predict defects we study defects
occurred in older projects.

To create the design defects decision tree, we use the
ID3 algorithm [39]. As presented in Figure 1, the ID3 algo-
rithm is based on the following:

« Each non-leaf node of the decision tree corresponds to
an input metric, and each arc corresponds to a possible
value of that metric. A leaf node corresponds to the
expected value (i.e.; Defect, No defect) of the output
attribute where the input attributes are described by the
path from the root node to that leaf node.

o For one problem, we can create many decision trees
depending on metrics and nodes. In ID3 algorithm,
the construction of the tree starts by the most informative
metrics.

e Metrics information are evaluated using the Shannon
Entropy described in section C.

Once the ID3 tree is constructed, designer can filter the
extracted rules by fixing the heuristic N representing the
minimal number of metrics in rules detection. Depending on
the project and the detection strategy, the designer specifies
the value of N. This value avoids the selection of rules
containing a few/huge number of metrics. In fact, a small
value, leads to an over detection and a high number of false
positive, the number of detected defects exceeds the real
existent defects. However, a high N value gives the opposite
result, a high number of false negative. We detect a very small
part of existent defects. The maximum value of N is the depth
of the ID3 tree.

A. ADAPTATION OF DECISION TREE TO DESIGN DEFECT
DETECTION

The expected rules we aim to extract using ID3 are of the
form:

VOLUME 9, 2021

M. Maddeh et al.:Decision tree-based Design Defects Detection

IEEE Access

First quartile = 4.75

Medium quartile =16.5

Third quartile =27.5

Y Y T Y N Y N N

*—@ —@ @ —@ o @ ——>

0z 04 05 11 22 25 35 63

C1 c2 C3 C4
==4.75 | =4.75 | Toial ==16.5 | =16.5 | Toial ==27.5 | #27.5 | Toial

Defect Y 2 3 5 Defect Y 4 1 5 Defect Y 3 0 5
Defect N 0 3 3 Defect N 0 3 3 Defect N 1 2 3
Total 2 1] g Total 4 4 8 Total [2 g
Contingency table for cut point 4.73 Contingency table for cut point 16.3 Contingency table for cut point 27.5

FIGURE 2. Cut point example.

For a defect D: “IF metric| is higher/lower than thresh-
old | AND metric o higher/lower than threshold 5 AND
metric, higher/lower than threshold, THEN defect D is
suspected”.

ID3 is a recursive algorithm; lines 1-3 in Figure 1 encode
the termination criteria. The algorithm stops when the set of
examples is empty or when all metrics are classified. For an
intermediate node, ID3 measures each metric gain based on
Shannon entropy, in the line 4. ID3 chooses the metrics with
the best gain as a root node; this metric is deleted from the set
of metrics. For each value of the root metrics, ID3 is called
with the rest of metrics and the new set of example related to
the arc values, lines 5-6.

B. CHOOSING THE BEST CUT POINT
To choose the best cut point, we first discretize the metrics
threshold in the set of examples. The discretization consists
of transforming values into a finite number of intervals. After
that we re-encode, each value for the selected attribute by
associating it with its corresponding interval. It is a powerful
heuristic to classify a set of training examples using the best
decision tree. It is a good method to determine the most
relevant attributes for the classification task. Each metric
value is compared to the cut point. The idea is to transform
the continuous interval into two intervals according to the cut
point. We illustrate how we adapted the set of examples based
on Table 2. It represents the list of observations in the set of
example for the defect “Data Class”, in different projects.

In this example, we have two projects P1 and P2. Let’s
consider the first metrics Access To Foreigner Data (ATFD).
Metrics thresholds must be classified into two classes depend-
ing on the existence of a defect. Indeed, we have to make a
supervised discretization. In this work, we adopted a bottom-
up hierarchical clustering. Each item is placed in its own
cluster; the next partition is created by merging the two
nearest clusters.

In Figure 2, we give a cut point example. Each continuous
interval is divided into three parts; first quartile, medium
quartile and third quartile. We choose the cut point intervals

VOLUME 9, 2021

TABLE 2. Data class metrics.

ATFD | NOM | NOA | NC Data Class
P1 0Ol 22 15 08 57 NO
02 35 10 05 57 NO
03 04 08 10 113 YES
04 11 13 07 113 YES
p2 | O5 05 14 08 113 YES
06 63 09 11 113 NO
07 25 16 13 113 YES
08 02 13 12 368 YES

giving the best degree of association. We use the number of
phi coefficient defined in (1) to assess the degree of associa-
tion between the two variables.

1)@ ,/’% Where x2 is derived from Pearson’s
chi-squared test and N is the total of observations.

As presented in Figure 3, 2 is the best value and the best
cut point is 16.5. In Table 3, we present the final discretiza-
tion of the observations related to the defect “Data Class”.
We evaluate the phi coefficient for all metrics. Therefore,
the node ATFD will have two arcs one with values <=
16.5 and the other with values > 16.5.

C. CHOOSING THE BEST ROOT NODE

When constructing a decision tree, we have to solve the
problem of choosing the best splitting attribute at each node.
In fact, many decision trees could be created depending on
a splitting point. If we limit our example to the four metrics
presented in section 3, the question is: which metric will be
the root? Moreover, we have to answer the same question
recursively.

For each program iteration, ID3 uses information Shannon
entropy to decide the root metric. It is a measure of the amount
of uncertainty in a data set. We have to select the attribute that
has the smallest entropy value giving the largest information
gain. Each branch starts from the most informative metric and
each leaf node represents a decision taken after computing
all the attributes. The path from the root to a leaf represents

71609

IEEE Access

M. Maddeh et al.:Decision tree-based Design Defects Detection

16.5
Y Y Y Y N Y N N
0z 04 03 11 22 25 35 63
C1 C2 C3 C4
@1:\/% =0447 _|p2= 2| 0774 |93 = || =0.74]]

FIGURE 3. Data class metrics discrete values.

TABLE 3. Discretization of metrics values.

ATFD NOM NOA NC Data

Class

P1| Ol | >165 >1425 | <=1125 | <=251 NO
02| >165 <=1425 | <=1125 | <=251 NO

03 | <=165 <=1425 | <=1125 | <=251 YES

04 | <=165 <=1425 | <=11.5 | <=251 YES

P2 05| <=165 <=14.25 | <=11.25 | <=251 YES
06 | >165 <=14.25 | <=11.25 | <=251 NO

07 >16.5 >14.25 >11.25 | <=251 YES

08 | <=165 <=1425 | >1125 | >251 YES

the design defect detection rules. The Shannon entropy (E)
formula for a set of examples (BE) defined in (2) is:

(2) E(BE/c)=—) p(c)log, p(c)

Cc=C.l
where,

BE is the set of examples
Cl is the set of classes in BE (Defect, Not Defect)
P(c) is the proportion of the number of defect

values in a class ¢ to the number of elements in the set BE

In Figure 4, we present the decision tree for the example
presented in Table 3. We measure the Shannon entropy for
each metric.

E(Yes/ATFD) = — P(>16.5) x (P(Yes/>16.5) x
log P(Yes/>16.5) + P(No/>16.5) x log P(No/>16.5)) -
P(<=16.5) x (P(Yes/<=16.5) x log P(Yes/<=16.5) +
P(No/<=16.5) x log P(No/<=16.5)) = 0.11

E(Yes/NOM) = 0.27

E(Yes/NOA) = 0.22

E(Yes/NC) = 0.25

ID3 selects ATFD as the root metric as it has the lowest
entropy. All values for ATFD <= 16.5 belong to the class Yes,
so it is a leaf node. For ATFD > 16.5 we have to re-evaluate
the entropy for the rest of metrics using the updated set of
examples (BE excluding the metric ATFD). At the NC node,
all attributes are classified so ID3 stops. The final tree is
shows in Figure 4.

In this example, three rules are extracted:

R1: IF ATFD <= 16.5 THEN Data class = Yes

71610

FIGURE 4. Final decision tree.

R2: TIFATFD > 16.5 AND NOA > 11.25 THEN Data class
= Yes

R3: IF ATFD > 16.5 AND NOA <= 11.25 AND NC >
251 THEN Data class = Yes.

It is clear that R1 and R2 combine a few numbers of
metrics and will generate a huge number of suspect classes.
Furthermore, if the number of metrics (N) is fixed to 3 then
we can extract only the rule R3, which seems to be the most
appropriate rule for this illustrative example.

V. VALIDATION

The experiments concern four defects: Lazy Class (LC),
Blob, Data Class (DC), and Feature Envy (FE). The validation
of the results is based on two well-known indicators: the
precision and recall. The precision (3) is the fraction of true
design defects among the set of all detected defects. It eval-
uates the correctness of the approach. The precision assesses
the number of true identified defects. The recall (4) indicates
the fraction of correctly detected design defects among the
set of expected defects. It evaluates the completeness of the
approach. The number of true defects missed by ID3 algo-
rithm is measured using the Recall.

Detected defects N Expected defects
Detected defects

(3) Precision =

VOLUME 9, 2021

M. Maddeh et al.:Decision tree-based Design Defects Detection

IEEE Access

120

100 o

80 |
|

60

== Recall P1 (53 classes)
= Recall P2 (112 classes)

40 -

== Recall P3 (223 classes)
== Precision P1 (53 classes)

== Precision P2 (112 classes)

Precision P3 (223 classes)

4 5 6 7 8

9 10| 11 12 13 14 15 16 17

PN
Tag TN TR

FIGURE 5. Variation of recall and precision depending on N.

Detected defects N Expected defects
Expected defects

(4) Recall =

We want to validate the following assumptions:

« We detect the majority of existent defects. This assump-
tion is validated by a high recall value. A recall
of 100 percent means that we identified all existent
defects.

o We generate a reasonable number of defects. Indeed,
detecting a large set of defects is inconvenient for the
validation process. Even if we detect all existent defects.
We must guaranty a good trade-off between recall and
precision. In this work, we assume that a precision over
than 60 percent is acceptable regarding a recall over
80 percent.

We used the Eclipse plug-in to implement our approach.
It takes as input the UML class diagram, sequences class
diagrams and N the minimal number of metrics composing
a detection rule. Static metrics are evaluated using class
diagram while behavioral metrics are evaluated using all
sequence diagrams. It generates as output a set of suspect
elements in the model based on the generated detection rules.
In fact, one fundamental hypothesis in this work is that we
base our analysis on complete and final design. The quality
of rules detection depends heavily on the completeness of
sequence diagram models. Designers must ensure that they
modeled all software scenarios and captured all messages
between classes.

The validation is based on the reverse engineered designs
of five open-source Java systems. We have tested our
approach on: Xerces v2.7, ArgoUML 0.19.8, Lucene 1.4,
Log4j 1.2.1 and GanttProject v1.10.2. Table 4 resumes the
important information related to these projects. The choice
of these projects was motivated by:

o The size, we selected a medium project and large-sized
project.
« They are open-source projects.

VOLUME 9, 2021

TABLE 4. Projects information.

Project Number of classes Number of Blob Number of LC Number of DC Number of FE
Xerces v2.7 683 29 B 17 58
ArgoUML 0.19.8 1244 15 29 15 78
Lucene 14 189 7 § 2 B
Logj 121 209 11 6 5 3
GanttProject v1.10.2 1l n 12 10 46

They are studied and results are available (even that they
are based on code level while we are working on model
level).

We used PMD 5.4.3 (433 classes) and Nutch 1.12 (247
classes) projects for the construction of the set of examples.
We entered manually the design defects we intend to detect.
The validation process was performed within two iterations.
In the first, the set of examples is created using only PMD
project. For the second, the set of examples is enhanced using
Nutch project and hence, the number of defects is increased.
Results are then compared in order to evaluate the impact of
the number of defects in the set of examples on the detection
quality.

The choice of N value influences the recall and precision.
Minimizing this value increases the recall and decreases the
precision and vice versa. It also depends on project size.
N must be optimized giving the best trade-off between preci-
sion and recall. Figure 5 provides the variation of recall and
precision depending on N. We tested three projects, the first
two projects was implemented by four engineers specialized
in software engineering and the last project was a part form
an information system for the Ministry of Social Affairs. For
each project we have 53, 112 and 223 classes respectively
and containing 18, 25 and 34 design defects to predict the
best interval of N threshold.

71611

IEEE Access

M. Maddeh et al.:Decision tree-based Design Defects Detection

120%
100%
80% -
60%
40%
20%
0% -
A N ¥
& {aﬁb N v Y
: & Y \a
& ~ & q?'\ 3
4¢ ooé\ & N é\él uRecall 4
+ 5{'3 uRecall 5
2
© Recall 9

120%
100%
80%
60%
0% -
20%
0%
A N v
K S N
& v & $ A
+ef‘ S & & ,‘6@' B Precision 4
$ 8 isi
W é\é HPredision 5
Precision 9

FIGURE 6. Precisions and recall results.

‘We found that for N between four and ten we have the best
trade-off. Therefore, the best thresholds of N is 4, 5 and 7 for
P1, P2 and P3 respectively.

Finding the best value for N is difficult, but using our
experiment, we predict acceptable results. In general, based
on our experiments, we suggest that the minimum value for
N is 4 and the maximum value is 9 which is 1/3 of the number
of metrics. Nevertheless, depending on the project designers
may try other values for N if the results are not satisfying.

We perform all computations on a desktop computer (Intel
i5 CPU running at 2.53 GHz with 4 GB of RAM). The
execution time is less than 30 sec. It does not include the
reverse engineered designs.

VI. RESULTS AND DISCUSSION

Figure 6 reports the precisions and recall values for the three
executions using deferent values of N (4, 5 and 9). The
best precision values are 62%, 59%, 74%, 100%, 100% for
Xerces v2.7, ArgoUML 0.19.8, Lucene 1.4, Log4j 1.2.1 and
GanttProject v1.10.2., respectively. The best recall value is
100% for all projects.

‘We notice that for Lucene 1.4, when assigning 9 to N, the
generated rules do not detect any defect. In fact, the more the
number of metrics in rule increases, the more the number of
detection decreases. The recall value is inversely proportional
to the precision. When N increases, the precision tends to
increase (from 12% to 100%) and the recall tends to decrease
(from 100 % to 3%). The best trade-off between recall
and precision vary from one project to another as reported
in Table 5. In our work, we assume that the precision has to
be over than 50% reducing the number of false positive errors.

We have excellent results for the two projects: Lucene
1.4 and Log4j 1.2.1. Indeed, we found all expected defects
having a recall value over than 50%. For the rest of the
projects, expected ArgoUML 0.19.8, results are over than
50%, which is a good detection rate. For ArgoUML 0.19.8 we
detect 47% percent of defects, it is an acceptable result giving
a precision of 59%.

In Table 6, we detail the number of detection for each
project and each defect. It shows that even if the detection

71612

TABLE 5. Best precision and recall values.

Project Precision Recall N
Xerces v2.7 62% 53% 9
ArgoUML 0.19.8 59% 47% 9
Lucene 1.4 67% 100% 4
Log4j 1.2.1 51% 100% 4
GanttProject v1.10.2 54% 79% 5

TABLE 6. The number of detection for each project and each defect.

Project Number of Blob Number of LC Number of DC Number of FE
Xerces v2.7 55% 47% 52% 51%
ArgoUML (0.19.8 60% 51% 3% 38%
Lucene 1.4 100% 100% 100% 100%
Logdj 1.2.1 100% 100% 100% 100%
GanttProject v1.10.2 54% 5% 90% 58%
120%
100%
601t
0% B Precision It1
20%
0% B Recall It1
Precision 112
+Q}&" B Recall 112

FIGURE 7. Variation of recall and precision.

rate is under 50% for ArgoUML 0.19.8, it is due to the low
detection rate for FE defect (0.38). For the defects LC, Blob
and DC, the recall is higher than 50% varying within 0.51,
0.6 and 0.73 respectively. We can conclude that the proposed
approach is able to detect the majority of defects.

VOLUME 9, 2021

M. Maddeh et al.:Decision tree-based Design Defects Detection

IEEE Access

TABLE 7. F1 score.

Project F1 Score N
Xerces v2.7 49% 9
ArgoUML 0.19.8 52% 9
Lucene 1.4 80% 4
Log4j 1.2.1 67% 4
GanttProject v1.10.2 64% 5
100%
80%
60%
40%
20%
0%
A\ % 0 N &
N A v &%
& Q- & \\/ QS
& > N 002‘ &
X %00 N NS 1%
&

FIGURE 8. Variation of F1 score.

Figure 7 presents the variation of the recall and precision
according to the size of the set of examples. Results show
that the quality of the detection increases with the number of
defects examples. In this work, we limit the set of examples
to two open source projects that give results varying from
excellent to satisfying. However, finding the optimal size of
the set of examples needs further investigations, that will be
discussed in future research.

Finally, results show that the use of decision tree technique
is a promising way to investigate the detection of design
defects at the model level. We demonstrated that the rules
generated using decision tree give a good detection results
(recall of 100% and Precision > 50%), as shown in Figure 8.
The accuracy rate of the detection is about 80%.

Giving the number of metrics combined with their respec-
tive continuous range of threshold, it is impossible for experts
to find manually the best metric-based rules. Results prove
that our proposed rule generation method; helps the experts
to cope with time and effort waste.

As shown in table 7, F1 score (5) is the weighted average
of Precision and Recall. It considers both the precision and
the recall of the test to compute the score; it is a measure of
the test accuracy:

Precision * Recall
5) Fl=2x

Precision + Recall

Furthermore, results shown in Figure 8 prove that it is pos-
sible to detect design defects at model level by only analyzing
class and sequence diagrams and avoiding the propagation of
defects to code. The accuracy of the detection vary from one
project to another but still acceptable reaching the 80%, this

VOLUME 9, 2021

is a very promising results for a predictive detection less time
and effort consuming.

VII. CONCLUSION

In this paper, we presented a new approach for the design
defects detection at the model level. This work leads to define
a standard way for model quality quantification. We intro-
duced an adaptation of ID3 decision tree algorithm to iden-
tify anti-patterns and bad smells in object-oriented design.
We tested and evaluated our approach on five open source
projects by measuring the precision and the recall. We showed
that the efficiency and the precision of the detection vary from
satisfying to excellent with a recall that reaches 100 percent.
We proved that using our approach we detect the majority of
design anomalies at the model level based on analyzing the
class and sequence diagrams.

As future work, we plan to eliminate these defects avoid-
ing their propagation to code. We plan also to extend the
detection to other defects. Finally, we plan to implement a
model-refactoring framework, integrating the detection and
correction approaches.

REFERENCES

[1] M. Misbhauddin and M. Alshayeb, “UML model refactoring: A systematic
literature review,” Empirical Softw. Eng., vol. 20, no. 1, pp. 206-251,
Feb. 2015.

[2] R. Panigrahi, L. Kumar, and S. Kuanar, “An empirical study to investigate
different SMOTE data sampling techniques for improving software refac-
toring prediction,” in Proc. ICONIP, 2020, pp. 23-31.

[3] K. Czanecki and S. Helsen, “Classification of model transformation
approaches,” in Proc. OOPSLA Workshop Generative Techn. Context
(MDA), 2003, pp. 1-7.

[4] M. Mohamed, R. Mohamed, and G. Khaled, “Classification of model
refactoring approaches,” J. Object Technol., vol. 8, no. 6, pp. 121-126,
2009.

[5] J. Zhang, Y. Lin, and J. Gray, “Generic and domain-specific model
refactoring using a model transformation engine,” in Model-Driven Softw.
Develop. Berlin, Germany: Springer, 2005.

[6] S. Freire, A. Passos, M. Mendonca, C. Sant’Anna, and R. O. Spinola,
“On the influence of UML class diagrams refactoring on code debt: A
family of replicated empirical studies,” in Proc. 46th Euromicro Conf.
Softw. Eng. Adv. Appl. (SEAA), Aug. 2020, pp. 346-353.

[7] W. 1. R. C. Brown Malyeau, H. W. S. Mccormick, and T. J. Mowbray,
AntiPatterns : Refactoring Software, Architecture and Projects in Crisis.
Hoboken, NJ, USA: Wiley, 1998.

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring

: Improving the Design of Existing Code. Reading, MA, USA: Addison-

Wesley, 1999.

M. Zhang, T. Hall, and N. Baddoo, ““Code bad smells: A review of current

knowledge,” J. Softw. Maintenance Evol., Res. Pract., vol. 23, no. 3,

pp. 179-202, Oct. 2010.

[10] H. Mumtaz, M. Alshayeb, S. Mahmood, and M. Niazi, “A survey
onUMLmodel smells detection techniques for software refactoring,”
J. Softw., Evol. Process, vol. 31, no. 3, Mar. 2019, Art. no. e2154.

[11] F B. e Abreu and W. Melo, “Evaluating the impact of object-oriented
design on software quality,” in Proc. 3rd Int. Softw. Metrics Symp.,
Mar. 1996, pp. 90-99.

[12] R. Marinescu, “Detection strategies: Metrics-based rules for detect-
ing design flaws,” in Proc. 20th IEEE Int. Conf. Softw. Maintenance,
Sep. 2004, pp. 350-359.

[13] M. Alzahrani, “Measuring class cohesion based on client similarities
between method pairs: An improved approach that supports refactoring,”
IEEE Access, vol. 8, pp. 227901-227914, 2020.

[14] S. Mikeld and V. Leppinen, “Client-based cohesion metrics for java pro-
grams,” Sci. Comput. Program., vol. 74, nos. 5-6, pp. 355-378, Mar. 2009.

[15] K. Erni and C. Lewerentz, “Applying design-metrics to object-oriented
frameworks,” in Proc. 3rd Int. Softw. Metrics Symp., Mar. 1996, pp. 64-74.

[9

—

71613

IEEE Access

M. Maddeh et al.:Decision tree-based Design Defects Detection

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni,
“Design defects detection and correction by example,” in Proc. IEEE 19th
Int. Conf. Program Comprehension, Jun. 2011, pp. 81-90.

P. Tianual and A. Pohthong, ““‘Defects detection technique of use case views
during requirements engineering,” in Proc. 8th Int. Conf. Softw. Comput.
Appl., Feb. 2019, pp. 277-281.

F. Arcelli Fontana, M. V. Mintyld, M. Zanoni, and A. Marino, “Comparing
and experimenting machine learning techniques for code smell detection,”
Empirical Softw. Eng., vol. 21, no. 3, pp. 1143-1191, Jun. 2016.

N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, “DECOR:
A method for the specification and detection of code and design smells,”
IEEE Trans. Softw. Eng., vol. 36, no. 1, pp. 20-36, Jan. 2010.

A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, ‘‘Maintain-
ability defects detection and correction: A multi-objective approach,”
Automated Softw. Eng., vol. 20, no. 1, pp. 47-79, Mar. 2013.

F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using change history
information,” in Proc. 28th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Nov. 2013, pp. 268-278.

M. Alenezi, M. Akour, and O. Al Qasem, “Harnessing deep learning
algorithms to predict software refactoring,” TELKOMNIKA (Telecommun.
Comput. Electron. Control), vol. 18, no. 6, p. 2977, Dec. 2020.

M. V. Kempen, C. Michel, K. Derrick, and B. Andrew, “Towards proving
preservation of behaviour of refactoring of UML models,” Proc. SAICSIT,
2005, p. 252.

M. Raul, “Analysis and definition of a language independent refactoring
catalog,” in Proc. 17th Conf. Adv. Inf. Syst. Eng. (CAiSE), Jun. 2005, p. 8.
M. Raul and C. Yani, “Towards a language independent refactoring frame-
work,” in Proc. Ist Int. Conf. Softw. Data Technol. (ICSOFT), Setubal,
Portugal, 2006, pp. 165-170.

A. Ghannem, G. El Boussaidi, and M. Kessentini, “On the use of design
defect examples to detect model refactoring opportunities,” Softw. Qual.
J., vol. 24, no. 4, pp. 947-965, Dec. 2016.

M. Mohamed, R. Mohamed, and G. Khaled, “M-REFACTOR: A new
approach and tool for model refactoring,” ARPN J. Syst. Softw., vol. 1,
no. 4, pp. 117-122, Jul. 2011.

M. Mohamed and A. Sarra, “Extracting and modeling design defects using
gradual rules and UML profile,” in Proc. 5th Int. Conf. Comput. Sci. Appl.
(CIIA), 2015, pp. 574-583.

M. Misbhauddin and M. Alshayeb, “An integrated metamodel-based
approach to software model refactoring,” Softw. Syst. Model., vol. 18, no. 3,
pp. 2013-2050, Jun. 2019.

V. Cortellessa, R. Eramo, and M. Tucci, “From software architecture to
analysis models and back: Model-driven refactoring aimed at availability
improvement,” Inf. Softw. Technol., vol. 127, Nov. 2020, Art. no. 106362.
M. Tanhaei, “A model transformation approach to perform refactoring
on software architecture using refactoring patterns based on stakeholder
requirements,” AUT J. Math. Comput., vol. 1, pp. 179-216, Oct. 2020.

B. K. Sidhu, K. Singh, and N. Sharma, “A machine learning approach to
software model refactoring,” Int. J. Comput. Appl., pp. 1-12, Jan. 2020.
M. Alshayeb, H. Mumtaz, S. Mahmood, and M. Niazi, “Improving
the security of UML sequence diagram using genetic algorithm,” IEEE
Access, vol. 8, pp. 62738-62761, 2020.

A. J. Riel, Object-Oriented Design Heuristics. Reading, MA, USA:
Addison-Wesley, 1996.

B. A. Kitchenham, Software Metrics: Measurement for Software Process
Improvement. Hoboken, NJ, USA: NCC Blackwell Publishers, 1996.

N. E. Feton and A. S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, 2nd ed. Boston, MA, USA: PWS Publishing Co, 1998,
p. 656.

A. AbuHassan and M. Alshayeb, “A metrics suite for UML model stabil-
ity,” Softw. Syst. Model., vol. 18, no. 1, pp. 557-583, Dec. 2016.

D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lucia,
“Detecting code smells using machine learning techniques: Are we there
yet?” in Proc. IEEE 25th Int. Conf. Softw. Anal., Evol. Reengineering
(SANER), Mar. 2018, pp. 612-621.

J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81-106, Mar. 1986.

71614

MOHAMED MADDEH received the Ph.D.
degree in computer science from the National
School of Computer Sciences of Tunis (ENSI),
in 2012/2013. He was an Assistant Professor in
computer science with the Higher Institute of
Finance and Taxation of Sousse (ISFF). He wor
ked as an Analyst and Data Base Administrator
at the Ministry of Social Affairs, from 2003 to
2009. He served in many administrative positions
with King Saud University. He was a Coordinator
of the Web and computer certification (moodle) in collaboration with the
Virtual University of Tunis (UVT). He was the Head of the Department of
Law and Finance at ISFF, in 2014. He is currently an Assistant Professor
with King Saud University. His main research interests include the fields of
software engineering and model driven engineering. He was a member of
the Scientific Committee of ISFF, in 2011. He was also a Treasurer of the
Tunisian Association of Artificial intelligence (ATIA).

SARRA AYOUNI received the M.S. degree from
the Faculty of Sciences of Tunis (FST) and the
Ph.D. degree in computer science from the Uni-
versity of Montpellier 2, France. She is currently
an Assistant Professor with the Department of
Information Systems, College of Computer and
Information Sciences (CCIS), Princess Nourah
Bint Abdulrahman University (PNU). She is also
the Coordinator of Distance Education at CCIS.
Her main research interests include data science,
artificial intelligence, fuzzy datamining, and e-learning.

SULTAN ALYAHYA received the B.Sc. degree
(Hons.) in information systems from King Saud
University, the M.Sc. degree in information sys-
tems engineering from Cardiff University, U.K.,
and the Ph.D. degree in computer science from
Cardiff University, in 2013. From 2013 to 2016,
he was the Vice-Chair of the Department of Infor-
mation Systems, and the Head of the College of
Applied Computer Science, from 2016 to 2019.
He served in many administrative positions at King
Saud University. He is currently an Associate Professor with the Col-
lege of Computer and Information Sciences, King Saud University. His
main research interests include the fields of global software development,
co-ordination in software engineering, and computer supported co-operative
work (CSCW).

FAHIMA HAIJJE) received the Ph.D. degree in
computer science from the Faculty of Sciences
of Sfax, in 2016/2017. She is currently an Assis-
tant Professor with the Department of Information
Systems, College of Computer and Information
Sciences at PNU, Saudi Arabia. She is also a mem-
ber of the Research Laboratory in Technologies
of Information and Communication and Electri-
cal Engineering (LaTICE). Her research interests
include the modeling concepts of e-learning,
e-assessment, integration of formal and semi-formal methods, data science,
and big data.

VOLUME 9, 2021

