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ABSTRACT At present, the disturbances like the voltage fluctuations, resulting from the grid’s com-
plexities and unbalanced load conditions, create severe power quality concerns like total harmonic distor-
tion (THD) and voltage unbalance factor (VUF) of the grid voltage. Though the custom power devices
such as distribution-static compensators (D-STATCOMs) improve these power quality concerns, however,
the accompanying controller plays the substantial role. Therefore, this paper proposes a fractional-order
sliding mode control (FOSMC) for a D-STATCOM to compensate the low power distribution system by
injecting/absorbing a specific extent of the reactive power under disturbances. FOSMC is a non-linear
robust control in which the sliding surface is designed by using the Riemann-Liouville (RL) function and
the chattering phenomenon is minimized by using the exponential reaching law. The stability of FOSMC is
evidenced by employing the Lyapunov stability criteria. Moreover, the performance of the proposed FOSMC
is further accessed while doing its parametric variations. The complete system is demonstrated with a model
of 400V, 180kVA radial distributor along with D-STATCOM under two test scenarios inMATLAB/Simulink
environment. The results of the proposed controller are compared with the fixed frequency sliding mode
control (FFSMC) and conventional proportional-integral (PI) control. The results validate the superiority of
the proposed controller in terms of rapid tracking, fast convergence, and overall damping with very low THD
and VUF.

INDEX TERMS Power quality, custom power devices, distribution static compensator, fractional order
sliding mode control, total harmonic distortion, voltage unbalance factor.
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D-STATCOM Distribution Static Compensator
DG Distribution Generation
DPC Direct Power Control
FCS Finite Control Set
FLC Fuzzy Logic Control
GOA Grasshopper’s Optimization Algorithm
HV High Voltage
IP Integral Proportional
LADRC Linear Active Disturbance Rejection
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LV Low voltage
MC Matrix Converter
MG Microgrid
MPC Model Predictive Control
NFC Neuro Fuzzy Control
PID Proportional Integral Derivative
PLL Phase Lock Loop
PR Proportional Resonant
PSO Particle Swarm Optimization
PV Photovoltaic
RL Riemann Liouville
SMC Sliding Mode Control
SDBC-MMC Single Delta Bridge Cell-Modular Multi-

level cascade converter
SRLMMN Sign Regressor Least Mean Mixed Norm
SVC Static VAR Compensator
SPWM Sinusoidal Pulse Width Modulation
THD Total Harmonic Distortion
TSA Tree Seed Algorithm
VSC Voltage Source Converter
VUF Voltage Unbalance Factor

I. INTRODUCTION
In the power distribution system, power quality implies to
keep the AC bus sinusoidal voltage waveform at themeasured
voltage and frequency [1]. The waveforms of voltage and
current must be purely sinusoidal and free from any interrup-
tions [2]. However, the grid transients and unbalanced loads
may distort the waveform and cause voltage instability [3].
These distortions may disseminate all over the power distri-
bution system [4]. Power quality concerns incorporate grid
transients (voltage sag/swell), voltage and current distortion,
voltage spike, voltage unbalance, noise, harmonics, and flick-
ers. These can initiate abnormal operation of the equipment
or assuredly trip the protection devices [5]. To cope with
these concerns, fixed and switch reactors/capacitors banks
and static VAR compensators (SVC) are established and exe-
cuted [6]. However, these kinds of standard facilities have a
few drawbacks such as large size, additional losses, inade-
quate bandwidth, and slow response time [7]. The two-level
converters can also be employed to compensate the low
power distribution system. However, the limited power rating
and switching losses of the two-level converters resulting
from high-frequency operation in the high power and high
voltage applications are considered constraints [8]. In recent
times, D-STATCOM has gained enough popularity with the
development of semiconductor devices due to its high-power
density, small size, minimal losses, fast response, and broad
compensation range [9]. D-STATCOM is a power quality
conditioner, and capable of supplying and absorbing reactive
power, and is integrated into the grid via a VSC as well [10].
D-STATCOM is linked in parallel with the load and can
operate uninterruptedly, attaining a power factor near the
unity and preventing operational concerns [11]. For reactive
power compensation, the D-STATCOM is one of the fastest

and most reliable device. By monitoring the magnitude of
voltage, the exchange of reactive power between the power
distribution system and D-STATCOM can be controlled
to alleviate the power quality concerns [12]. Furthermore,
an efficient control scheme is also required to rapidly achieve
the necessary compensation in a low power distribution
system [13].

In recent years, many scholars have accomplished a lot
of research work regarding D-STATCOM integration in the
power distribution system using linear control strategies. The
work in [14], has analyzed the execution of D-STATCOM
to reduce the undesirable effect generated by the DG linked
to a grid. The voltage profile is improved via the DPC
approach employing PI control during steady-state and volt-
age sag conditions. In [15], the authors have proposed
a D-STATCOM to compensate the unbalanced conditions
resulting in dc voltage oscillation via PR control. A PID
control is employed for SDBC-MMC to compensate the
single-phase load in a power distribution system for power
factor correction [16]. The authors in [17], have presented
a cascaded multi-level inverter-based D-STATCOM during
grid transients and load alterations via PI control for reac-
tive power compensation. In [18], the authors have pro-
posed a three-phase four-wire VSC based D-STATCOM
using PI control. The D-STATCOM model is utilized under
an unbalanced load condition to stabilize the voltage. In [19],
the authors have proposed a D-STATCOM for the distribution
system to mitigate voltage unbalanced effect created by U-V
or V-V winding of transformer employing PI control. In [20],
the authors have proposed a D-STATCOM for a renewable
energy-based distribution system. The PI control is applied to
alleviate the voltage sag/swell problem. The authors in [21],
have proposed a CSC-based D-STATCOMwhich utilizes the
minimum DC voltage for the reactive power compensation
to eliminate the harmonics and reduces the switching losses
using the PI control. In [22], the authors have proposed a
combined PV-STATCOM via IP and PID control under an
unbalanced non-linear load to reduce the harmonics, zero-
sequence component, and the THD. The dynamic response of
MG is enhanced by using the D-STATCOMwith an improved
PID control based on the application of GOA [23]. In [24],
the authors have proposed a D-STATCOM based on CSC to
enhance the power quality and consistency during step alter in
load utilizing PI control. The CHBMC based D-STATCOM
using PI control is proposed in [25] to enrich the DC voltage
and reactive power control. The control parameters of the PI
control are optimized by using the PSO. The authors in [26],
have proposed a D-STATCOM to enhance the power quality
problem resulted from an unbalanced load condition using
the PI control. In [27], the authors have proposed a PI control
for parallel operation among D-STATCOMs for the reactive
power-sharing, and to compensate the harmonics resulting
from the non-linear load. The authors in [28], have proposed a
PI control by utilizing the PLL algorithm for a D-STATCOM
to enhance the power factor and dc voltage regulation. In [29],
the authors have proposed a multi-level CHB D-STATCOM
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via PI control to enhance the power factor by eliminating
the harmonics and the switching losses. In [30], the authors
have investigated the execution of D-STATCOM for reac-
tive power compensation required by doubly-fed wind farm
linked to the grid. The power quality concerns alleviated by
D-STATCOM in [31] employing PR control and comb filter
during unbalanced and non-linear scenarios. Though, the lin-
ear control strategies have major limitations such as tuning
of control constraints, inadequate transient response [32], and
deficient reference tracking in the situation of challenging a
significant error [33].

In the context of non-linear control strategies, the authors
in [34] have investigated the performance of D-STATCOM
via dead-beat repetitive control to diminish the current pre-
diction error for improved reactive power compensation.
However, the control has few drawbacks such as parameter
variance and external disturbances [35]. The authors in [36]
have proposed a D-STATCOM to compensate the unbalanced
voltage condition via hysteresis current controller. Though,
in the digital platform, the modeling and implementation of
hysteresis control are complex and suffer from the variable
switching frequency [37]. A PI control based on fuzzy logic
is executed for the D-STATCOM to maintain the voltage
stability in the power distribution system [38]. Even though,
FLC has its limitations due to the fact that it cannot handle
situations outside its proposed fuzzy rules, and it is difficult
to prove the stability of FLC [39]. The authors in [40], have
proposed an NFC for a D-STATCOM during load varia-
tions. In [41], the authors have proposed a D-STATCOM
via CFNN-AMF controller for the dc voltage regulation and
power quality enrichment. However, the dynamic response
of the controller is moderate. In [42], a shunt connected
D-STATCOM is investigated in the power distribution system
to compensate the reactive power required for load balancing.
They proposed an SRLMMN control for fast convergence
and to reduce steady-state error. The authors in [43], have
proposed a cluster balancing control to alleviate the effect of
voltage sag from a single-phase, two-phase, and three-phase
power distribution system. Despite that, while acknowledg-
ing the learning algorithm, the controller needed additional
computational time [44]. In [45], the authors have proposed
an enhanced LADRC for D-STATCOM to competently con-
trol the DC voltage and the reference reactive power during
voltage sag and load variations. The authors in [46], have
proposed a capacitor-less D-STATCOM based on MC by
employing FCS-MPC for reactive power compensation under
non-linear load conditions. Though, the switching losses
reduce the system reliability due to high fidelity [47]. Thus,
an adaptive MPC-based capacitor less D-STATCOM is pro-
posed in [48] to diminish the switching frequency and THD.
However, to reach the desired accomplishment the MPC
necessitates precise control parameters. Moreover, the cost
function calculation requires more computation burden [49].
In [50], the authors have proposed a digital current control
for D-STATCOMduring unbalanced and non-linear load con-
ditions. The authors in [51], have investigated the execution

of D-STATCOM in a T-type configuration by utilizing a
simple carrier-based modulation control method to minimize
the voltage fluctuation and harmonics at dc link. The opti-
mum location and sizing of D-STATCOM are determined
in [52] by employing DCVSA to reduce the operational
cost. In [53], the authors have proposed a novel TSA-based
D-STATCOM to improve the execution and consistency dur-
ing normal and critical load conditions.

Sliding mode control is a well-known non-linear con-
trol that offers robustness, fast dynamic response, stabil-
ity, enhanced regulation properties, and highly compatible
with power converters [54]. An SMC is employed for a
D-STATCOM evaluation and design [55] to compensate
the power distribution system under voltage sag. Never-
theless, the control eliminates the chattering problem and
stabilizes the output voltage to some extent. Despite this,
the response time is very slow which may cause stability
issues. The authors in [56], have proposed a three-level four-
leg D-STATCOM for reactive power compensation using
second-order SMC during grid faults and unbalanced load
circumstances. Though, mathematical modeling and execu-
tion are quite complex. Moreover, during unbalanced load
conditions, the THD of the output is high as well. The authors
in [57], have proposed and investigate the performance of a
D-SATCOM based on wind farm DFIG via fractional-order
SMC. Nevertheless, the voltage unbalance factor (VUF) is
not taken into account under unbalanced load conditions.
In [58], a photovoltaic (PV) based D-STATCOM is inves-
tigated under harmonics and load variations while utilizing
SMC. Though, the robustness and tracking error of this con-
trol scheme is nearly degraded. An integral SMC is employed
for a D-STATCOM to compensate the load alterations [59].
Although, the control provides a good tracking response
under unbalanced load conditions. Nevertheless, the output
voltagewaveform indicates the chattering problem and stabil-
ity issue as well. In [60], the authors have proposed an SMC
for a cascaded STATCOM to compensate the voltage unbal-
ance and voltage sag problem. Although, the response time of
control to reach a steady-state is very slow. In [61], the authors
have investigated the performance of D-STATCOM by using
the input-output feedback linearization scheme. They have
proposed SMC to improve the three-phase voltage at LV AC
bus and dc side voltage of D-STATCOM. Though, the robust-
ness of the controller is lacking. In [62], the authors have
proposed an SMC for D-STATCOM under DC link voltage
variations to enrich the system stability. The authors in [63],
have proposed an SMC for the D-STATCOM to eliminate the
harmonics created by nonlinear load. Nevertheless, the size
and cost of the system is increase due to large values of
output filter selected to eliminate the harmonics. The authors
in [64] have proposed an enhanced D-STATCOM model
under voltage sag/swell using SMC. The authors claim that
the system efficiency increases, although its performance is
inadequate in terms of THD under voltage sag/swell.

After a comprehensive review of the literature survey, fol-
lowing conclusions could be drawn.
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• The key emphasis of the D-STATCOM based power
distribution system is to improve the power quality in
the low power distribution systems.

• As a result of the escalating number of power elec-
tronic devices, grid transients, and sensitive loads,
the future trend highly demands improved power quality
in the low power distribution systems by employing the
D-STATCOM. Consequently, more advanced controller
is required to tackle these problems. The application of
a non-linear robust controllers is found deficient in the
published literature.

• The FOSMC is not implemented in the literature stud-
ies for power quality problems such as grid transients
(voltage sag/swell) and unbalanced load conditions.

• Besides, the performance of the FOSMC under its para-
metric variations on a D-STATCOM is found missing.

• The stability analysis of the applied controllers, and the
phenomenon of chattering elimination is deficient as
well.

• The essential measure VUF for evaluating a controller
under unbalanced load conditions has been seen to
be lacking in published literature for this particular
problem.

In this paper, the authors have proposed the
FOSMC for D-STATCOM to compensate the low power
distribution system under disturbances. A model of radial
distributor along with D-STATCOM is examined under grid
transients (voltage sag/swell) and unbalanced load condi-
tions. The D-STATCOM injects/absorbs the specific amount
of reactive power at the LV AC bus depending upon the
disturbances. Besides, the performance of the FOSMC under
its parametric variations on a D-STATCOM is discussed as
well. In the aspect of robustness, the FOSMC is superior
by virtue of its additional design parameters comprising of
adjustable non-integer differentiator and integrator [65]. This
improves the dynamic response of the system, establishes
more degree of freedom, ensures the fast convergence, and
gives an adequate method to eliminate the chattering phe-
nomenon [66]. The conventional SMC has certain challenges
such as chattering phenomenon and inadequate convergence
whichmight result in unpredicted high-frequency oscillations
and diminish the system execution [67]. FOSMC strategy,
even though confirms to be competent of alleviating the
chattering intensity in the sliding surface and quickening
the reaching speed as well [68]. In this paper, the Riemann-
Liouville (RL) function is utilized to design the sliding sur-
face. Furthermore, the stability of the FOSMC is evidenced
by employing Lyapunov stability criteria. To summarize,
the authors’ key contributions include:

• The D-STATCOM integrated power system is proposed
to improve the power quality under disturbances.

• Two test scenarios have been established and examined.
The grid transients (voltage sag/swell) are considered at
the LV AC bus in the first scenario. Likewise, in second
scenario an unbalanced load conditions are considered

at the LV AC bus. D-STATCOM sustains the voltage
at LV AC bus by injecting/absorbing a certain extent of
reactive power in both cases.

• FOSMC is proposed to drive theD-STATCOMunder the
disturbances.

• Besides, performance of the FOSMC under its paramet-
ric variations on a D-STATCOM is discussed as well.

• The sliding surface of the proposed FOSMC is designed
by using the Riemann Liouville (RL) function. Addition-
ally, the chattering phenomenon is minimized by using
the exponential reaching law.

• The stability of the FOSMC is evidenced by employing
Lyapunov stability criteria.

• The THD and VUF of the output voltage have been
considered to evaluate the controller’s performance.

• Furthermore, the experimental results of the proposed
control are compared with FFSMC and PI control as
well.

• The performance of proposed FOSMC outperformed
the literature study reference [57] in terms of controller
robustness and limited scope of study.

Rest of the paper is arranged in the following
approach. Section II describes the model structure, design,
and control of D-STATCOM. Section III derives the mathe-
matical modelling of FOSMC for D-STATCOM. Section IV
proves the stability of proposed FOSMC. Section V made the
results and discussions. Section VI concludes the paper.

II. MODEL STRUCTURE, DESIGN, AND CONTROL
OF D-STATCOM
Fig. 1 shows the simplified model of D-STATCOM configu-
ration [69] which includes a Y-1 and1-1 distribution trans-
former, dynamic load (linear and unbalanced), main grid, and
a D-STATCOM.

FIGURE 1. Simplified model of D-STATCOM configuration.

The main grid is linked at the LV AC bus via 1-1 distri-
bution transformer. The 1500V D-STATCOM [70] is linked
in shunt with the main grid via Y-1 distribution transformer
at LV AC bus and connected to a capacitor by its dc bus. The
magnitude of the voltage generated by a D-STATCOM is not
the same as grid voltage, although have the same phase. The
compensation process of the D-STATCOM is altered on the
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divergence among voltage at LV AC bus and D-STATCOM
voltage. A D-STATCOM injects the reactive power
while considered uabcstat is higher than uabcLV . Likewise,
a D-STATCOM absorbs the reactive power while consid-
ered uabcstat is lower than uabcLV . To design the three-
phase D-STATCOM, the value of Cdc can be obtained by
using Eq. (1) [70]

Cdc =
3us1ILT

u2cmax − u
2
dc

(1)

where, Cdc, udc, ucmax , 1IL, us, and T denotes the dc capac-
itor, capacitor voltage, pre-set threshold of capacitor voltage,
5% of load current (current ripple ratio), D-STATCOM peak
phase voltage, and time period of one cycle, respectively.
The high harmonics that are multiples of switching frequency
are removed by using the three-phase filter. In the absence
of a filter, the noise will add in line with injected voltages.
To overcome this problem, an LC filter is utilized at the
secondary side of the distribution transformer. The value of
the filter inductor and capacitor is chosen appropriately by
using Eq. (2) [87] and Eq. (3) [88].

L =

√
3mudc

12fsa1IL
(2)

fs =
1

2π
√
LC

(3)

where, terms m, fs, a indicates modulation index, switching
frequency, and overloading factor, respectively. Fig. 2 shows
the proposed D-STATCOM control scheme. The three-phase
voltages and currents (uabcLV , iabcLV , uabcstat , iabcstat ) are
signified as the voltages and currents at LV AC bus and
D-STATCOM output. While the transformer and line param-
eters are characterized by R and L. The direct quadrature (dq)
approach is applied to both voltages and currents to enhanced
reference tracking for FOSMC loops and respective SPWM
gate signal generation. The transformation angle θ is sensed
at the LV AC bus by applying a PLL. Fig. 3 represents the
flowchart of the D-STATCOM compensation procedure.

FIGURE 2. Proposed D-STATCOM control scheme.

FIGURE 3. Flowchart of D-STATCOM compensation procedure.

III. MATHEMATICAL MODEL OF D-STATCOM USING
FRACTIONAL ORDER SLIDING MDOE CONTROL
The D-STATCOM dynamics in abc-stationary reference
frame is modelled as [72]

diabcLV
dx

=
−RiabcLV

L
+
uabcstat
L
−
uabcLV
L

(4)

In synchronous reference frame (dq structure) along
with addition of D-STATCOM modulating signal (ustat =
udc/2)m, and ω = dθ /dt, Eq. (4) can be modified as

didLV
dt
=
−RidLV
L
+ ωiqLV +

udcm
2L
−
udLV
L

(5)

diqLV
dt
=
−RiqLV
L
− ωidLV +

udcm
2L
−
uqLV
L

(6)

With the addition of model uncertainty terms (ρd , ρq) [65],
Eq. (5) and Eq. (6) can be modified as

didLV
dt
= fd (udLV , uqLV , idLV , iqLV )+ xmd + ρd (7)

diqLV
dt
= fq(udLV , uqLV , idLV , iqLV )+ xmq + ρq (8)

where,

x =
udc
2L

(9)

The most significant cause of model uncertainties includes
variation in system parameters such as mechanical stresses,
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expansion, self-thermal alterations, load demand, a fail-
ure rate of transmission lines, generation output, line out-
age and generator outage [83] can significantly disrupt the
system stability and reduces the system performance [84].
The influence of uncertain parameters is usually not sub-
stantial for unstressed systems. When the stability margin
declines, though, system behavior becomes considerably
additional sensitive to parameter perturbations [85]. In this
aspect, the robust FOSMC is designed against external dis-
turbance and parameter uncertainties. Besides, the utiliza-
tion of fractional-order differentiator and integrator offers an
extra degree of freedom and enhances the system convergent
properties [86].

The non-linear functions terms fd (.) and fq(.) are described
as

fd =
didLV
dt
=
−RidLV
L
+ ωiqLV −

udLV
L

(10)

fq =
diqLV
dt
=
−RiqLV
L
− ωidLV −

uqLV
L

(11)

The proposed FOSMC non-integer sliding surface for d
and q control loops are described as [69]

Sd = ed + λDα−1(sig(ed )γ ) (12)

Sq = eq + λDα−1(sig(eq)γ ) (13)

where,

ed = idref − idLV (14)

eq = iqref − iqLV (15)

The ed and eq terms are related to signify current reference
tracking error, Dα−1 signifies the fractional integral term of
(α − 1) order, and α, γ , λ signifies the positive parameters
along design choices of (α < 1 and γ < 1).

The well-known sig(.)γ function is described as [65]

sig(x)γ = |x|γ sgn(x) (16)

where, sgn(.) signifies the sign function described as

sgn(x) =


x
|x|
, if x 6= 0

0, if x = 0
(17)

Now taking the derivative of Eq. (12) and Eq. (13) and sub-
stituting the Eq. (14) and Eq. (15) into Eq. (12) and Eq. (13),
the proposed sliding surface equation with the inclusion of
RL function [73] is written as

S•d = i•dref − i
•
dLV + λRLD

α(sig(ed )γ ) (18)

S•q = i•qref − i
•
qLV + λRLD

α(sig(eq)γ ) (19)

By substituting Eq. (10) and Eq. (11) into Eq. (18) and
Eq. (19), the modified equation can be written as

S•d = fd (.)+ xmd + ρd + λRLDα(sig(ed )γ ) (20)

S•q = fq(.)+ xmq + ρq + λRLDα(sig(eq)γ ) (21)

Based on Eq. (20) and Eq. (21), the proposed control law
ensures the current reference tracking error convergence and

generate the modulating signalsmd andmq for SPWM can be
written as

md =
−[fd (.)+ λRLDα(sig(ed )γ )+ kd sgn(sd )]

x
(22)

mq =
−[fq(.)+ λRLDα(sig(eq)γ )+ kqsgn(sq)]

x
(23)

where, terms kd and kq signifies the FOSMC sliding
gains. Fig. 4 shows the control diagram of FOSMC for
D-STATCOM in q-axis. Likewise, same methodology is
adopter for d-axis. Fg. 5 shows the flowchart of proposed
FOSMC strategy.

FIGURE 4. Control diagram of FOSMC for D-STATCOM in q-axis.

FIGURE 5. Flowchart of FOSMC strategy.

IV. STABILITY ANALYSIS
Considering the definition of Lyapunov function for the sta-
bility of proposed FOSMC is described as [74]

V (t) =
1
2
(S2d + S

2
q ) (24)

By taking the time derivative of Eq. (24) one obtains

V •(t) = SdS•d + SqS
•
q (25)
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Based on Eq. (7) and Eq. (8), and Eq. (25) the time deriva-
tive Lyapunov function signified as

V •(t) = Sd (fd (.)+ xmd + ρd + λRLDα(sig(ed )γ )

+ Sq(fq(.)+ xmq + ρq + λRLDα(sig(eq)γ ) (26)

By substituting md and mq from Eq. (22) and Eq. (23) into
Eq. (26), the modified equation is written as

V •(t) = Sd (ρd − kd sgn(Sd ))+ Sq(ρq − kqsgn(Sq)) (27)

Considering sgn(Sd ) = |Sd |/Sd and sgn(Sq) = |Sq|/Sq

V •(t) = (Sdρd − kd |Sd |)+ (Sqρq − kq
∣∣Sq∣∣) (28)

Now selecting (kd = |ρd |+ξd ) and (kq = |ρq|+ξq), where
ξd and ξq signify as positive parameters. Eq. (28) one finds

V •(t) ≤ −ξd |Sd | − ξq
∣∣Sq∣∣ ≤ −min(ξd .ξq)(|Sd | +

∣∣Sq∣∣)
= −min(ξd .ξq) ‖S‖1 (29)

The minimum value of ξd and ξq represents minimum
(ξd , ξq). Eq. (29) verifies the stability condition and finite time
convergence of proposed FOSMC sliding surface Sd and Sq.
Consequently, V .(t) is negative, and the proposed
FOSMC system is asymptotic stable [69].
Remarks:
Afterwards the reaching condition is guaranteed, the

Lemma (Lyapunov stability theorem) can be conferred to
examine the system stability during the sliding phase.
Lemma 1: The system is asymptotic stable approaching 0

when the positive definite functionV (t) > 0 exists and satisfy
V .(t) < 0, and V (t) is negative definite [81].
Lemma 2: The system is unstable approaching 0 when

the positive definite function V (t) > 0 exists and satisfy
V .(t) > 0, and V (t) is positive definite [82].

V. SYSTEM BASED ANALYSIS AND RESULT DISCUSSIONS
In this section, a detailed model of D-STATCOM, based
on Fig. 1 [69] has been developed and accomplished in
MATLAB Simulink environment to validate the performance
of the proposed FOSMC under two test scenarios. Besides,
the performance of the FOSMC under its parametric varia-
tions on a D-STATCOM is discussed as well. The implemen-
tation of the proposed FOSMC is compared with FFSMC
and PI control. In the first test scenario, the main grid
signified by a power generator resulting in grid transients
(voltage sag/swell) at the LV AC bus. In the second test sce-
nario, the voltage and current are unbalanced, resulting from
unbalanced load conditions at the LV AC bus. D-STATCOM
injects/absorbs the required reactive power to keep the con-
stant voltage at the LV AC bus in both scenarios. The param-
eters of the proposed power distribution system are presented
in TABLE 1 [69]. The control parameters of the proposed
FOSMC and FFSMC are presented in TABLE 2 [69] and
TABLE 3 [75], respectively. The parameters of PI control are
chosen according to the optimal setting to achieve fast output
stabilization and are presented in TABLE 4 [76].

TABLE 1. Parameters of proposed electrical power distribution system.

TABLE 2. Parameters of fractional order SMC.

TABLE 3. Parameters of fixed frequency SMC.

TABLE 4. Parameters of PI control.

A. STEADY STATE PERFORMANCE AND FOSMC
PARAMETERS SELECTION
The proposed FOSMC accomplishment is based on its con-
trol parameter variations [77]. Besides, the resemblance
between proposed FOSMC, FFSMC, and PI control strategies
required a steady-state test to evaluate the execution. The
foremost concerns of the execution assessment are the chat-
tering phenomenon and amplitude of the error signal [78].
The chattering phenomenon ruins the system stability and
is accounted as a low order noise in the power distribution
system [73]. Due to the instability of error signals among
error boundaries, the chattering problem is created [77]. The
conventional SMC does not have any control on chattering
phenomena however the FOSMC is competent to diminish
the error signal and convergence within the fraction of chat-
tering time interval via choosing the suitable value of frac-
tional coefficient α [65]. The fractional-order can be selected
by examining the complete realization of control outcomes
with varied control parameters. The increase of fractional
coefficient α reduces the effect of the (Dα−1(sig(ed )γ )) inte-
gral term on the FOSMC sliding surface, and simultaneously
increases the signal tracking error [65], and reduces the con-
vergence time [69]. Similarly, due to the presence of model
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uncertainties and external disturbances, the fractional order
sliding gains kd and kq are chosen to satisfy the reaching
condition [79].

B. PERFORMANCE EVALUATION UNDER VOLTAGE
SAG/SWELL OF MAIN GRID
In this test scenario, the proposed D-STATCOM model
employing FOSMC is evaluated under voltage sag/swell in
an entire simulation of 0.2s. Initially, the nominal voltage
of 312V is maintained at LV AC bus under normal condi-
tions. The voltage sag initiates at 0.05s results in a voltage
decline of 10% at LV ac bus. Similarly, voltage swell initiates
at 0.1sec results in a voltage rise of 10% at LV AC bus. The
system returns to normal condition in the simulation time
of 0.15s. Fig. 6(a) shows the three-phase voltage waveform at
LVACbus during voltage sag/swell. Fig. 6(b) shows the RMS
voltage waveform at LV AC bus during voltage sag/swell.
Fig. 6(c) shows the load active and reactive power waveform
under voltage sag/swell.

FIGURE 6. (a) Three-phase voltage at LV AC bus under voltage sag/swell
of Main Grid (b) RMS Voltage at LV AC bus under voltage sag/swell of
Main Grid (c) Load Active and Reactive power under voltage sag/swell of
main grid.

Besides the operation of the proposed D-STATCOM,
the voltage at the LV AC bus is made constant under voltage
sag/swell. The D-STATCOMmaintains the voltage at the LV
AC bus while injects/absorbs the reactive power required.
Fig. 7(a) and Fig. 7(b) shows the three-phase and RMS
voltage waveform at LV AC bus during voltage sag/swell
with D-STATCOMwhile employing PI control. Fig. 7(c) and
Fig. 7(d) shows the three-phase and RMS voltage waveform
at LV AC bus during voltage sag/swell with D-STATCOM
while employing FFSMC. Fig. 7(e) and Fig. 7(f) shows
the three-phase and RMS voltage waveform at LV AC bus
during voltage sag/swell with D-STATCOM while employ-
ing FOSMC. Nevertheless, the execution of the proposed
FOSMC is extremely exceptional regarding rapid reference

FIGURE 7. (a) Three-phase Voltage at LV AC bus under voltage sag/swell
of main Grid with D-STATCOM while employing PI control (b) RMS Voltage
at LV AC bus under voltage sag/swell of main Grid with D-STATCOM while
employing PI control (c) Three-phase Voltage at LV AC bus under voltage
sag/swell of main Grid with D-STATCOM while employing FFSMC (d) RMS
Voltage at LV AC bus under voltage sag/swell of main Grid with
D-STATCOM while employing FFSMC (e) Three-phase Voltage at LV AC bus
under voltage sag/swell of main Grid with D-STATCOM while employing
FOSMC (f) RMS Voltage at LV AC bus under voltage sag/swell of main Grid
with D-STATCOM while employing FOSMC.

tracking and fast convergence in contrast to FFSMC and PI
control. The assessment of voltage THD at LV AC bus during
voltage sag/swell is listed in TABLE 5. It is evident that the
voltage THD of proposed FOSMC during voltage sag/swell
results in 0.52% in contrast to FFSMC and PI control and are
well under the IEEE standards which verifies the competency
and exceptional performance of proposed control.

Fig. 8(a) shows the load active and reactive power under
voltage sag/swell with D-STATCOM at LV AC bus while
employing PI control. Similarly, Fig. 8(b) shows the load
active and reactive power under voltage sag/swell with
D-STATCOM at LV AC bus while employing FFSMC.
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TABLE 5. Assessment of voltage THD at LV AC bus during voltage
Sag/Swell.

FIGURE 8. (a) Load Active and Reactive power under voltage sag/swell
with D-STATCOM while employing PI control (b) Load active and reactive
power under voltage sag/swell with D-STATCOM while employing FFSMC
(c) Load active and reactive power under voltage sag/swell with
D-STATCOM while employing FOSMC.

Fig. 8(c) shows the load active and reactive power under
voltage sag/swell with D-STATCOM at LV AC bus while
employing FOSMC. The execution of the proposed FOSMC
can be seen exceptional in terms of fast convergence, upright
damping, and instant tracking, in distinction to PI control
and FFSMC.

Fig. 9(a) shows the injected/absorbed reactive power
by D-STATCOM under voltage sag/swell while employing
PI control. Fig. 9(b) shows the injected/absorbed reactive

FIGURE 9. (a) Injected/absorbed Reactive power by D-STATCOM under
voltage sag/swell while employing PI control (b) Injected/absorbed
Reactive power by D-STATCOM under voltage sag/swell while
employing FFSMC.

power by D-STATCOM under voltage sag/swell while
employing FFSMC. Fig. 10 shows the variation of α, kd
and kq, and its influence on rise time, convergence time,
tracking error, and time to reach the steady-state under volt-
age sag/swell. The optimum value of α can be retrieved by
varying it from 0 to 0.9. Initially, the value of the fractional
coefficient α is chosen from [65]. From Fig. 10(a), it can be
observed that the increase of α = 0.8 increases the tracking
error and chattering. Likewise, the decrease of α = 0.2
increases the overshoot, rise time, and time to reach the
steady-state, can be seen in Fig. 10(c). In the context of kd
and kq, the initial values are selected from [69]. The decrease
in the values of kd and kq results in the increase of tracking
error and the time to reach the steady-state and it can be seen
in Fig. 10(d). Meanwhile, the increase of kd and kq results in
the decrease of tracking error and the time to reach the steady-
state. Therefore, the value of FOSMC parameters must be
selected in such a way that a compromise is achieved among
the rise time, overshoot, convergence time, tracking error, and
chattering free smooth output. The reference reactive power
value is admirable tracked by the controlled trajectories when
α is selected to be 0.5, and kd , kq are selected to be 5× 106,
evidenced in Fig. 10(b). The peak overshoot and convergence

FIGURE 10. (a) Injected/absorbed reactive power by D-STATCOM under
voltage sag/swell while employing FOSMC with α = 0.2 and kd ,
kq = 5× 106 (b) Injected/absorbed reactive power by D-STATCOM under
voltage sag/swell while employing FOSMC with α = 0.5 and
kd ,kq = 5× 106 (c) Injected/absorbed reactive power by D-STATCOM
under voltage sag/swell while employing FOSMC with α = 0.8 and kd ,
kq = 5× 106 (d) Injected/absorbed reactive power by D-STATCOM under
voltage sag/swell while employing FOSMC with α = 0.5 and kd ,
kq = 3× 104.
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time are enhanced because of non-integer order instantaneous
error as per the major characteristic of FOSMC. It can be
noted that the proposed FOSMC illustrates the exceptional
execution over the FFSMC and PI control in the reactive
power tracking, due to the fact that the proposed FOSMC is
competent of precisely tracking the reference value with the
lowest chattering.

Fig. 11(a) shows the dc voltage of D-STATCOM under
voltage sag/swell while employing PI control. Fig. 11(b)
shows the dc voltage of D-STATCOM under voltage
sag/swell while employing FFSMC. Fig. 11(c) shows the
dc voltage of D-STATCOM under voltage sag/swell while
employing the proposed FOSMC. It can be noted that the
execution of the proposed FOSMC is superior to FFSMC and
PI control regarding fast convergence and fast-tracking.

FIGURE 11. (a) dc voltage of D-STATCOM under voltage sag/swell while
employing PI Control (b) dc voltage of D-STATCOM under voltage
sag/swell while employing FFSMC (c) dc voltage of D-STATCOM under
voltage sag/swell while employing FOSMC.

C. PERFORMANCE EVALUATION UNDER UNBALANCED
LOAD CONDITIONS
In this test scenario, the proposed D-STATCOM model
employing FOSMC is evaluated under unbalanced load con-
ditions in an entire simulation of 0.2s. Initially, the balanced
load of P = 30 kW and Q = 20 kVAR is applied to the
system. At 0.07sec, a balanced load is disconnected from
the system and an unbalanced load of (P = 31 kW and
Q = 18 kVAR for phase a, P = 29 kW and Q = 17 kVAR
for phase b, P = 32 kW and Q = 22 kVAR for phase c)
is imposed on the system, results in distorted current wave-
form at LV AC bus, and subsequently, the voltage also got
distorted. At 0.15s, the unbalanced load is switch off and a
normal load is again imposed on the system. Fig. 12(a) and
Fig. 12(b) shows the three-phase and RMS current at the LV
AC bus under unbalanced load conditions. Fig. 12(c) and
Fig. 12(d) shows the three-phase and RMS distorted voltage
at the LV AC bus resulting from an unbalanced current.

FIGURE 12. (a) Three-phase Current at LV AC bus under unbalanced load
condition (b) RMS Current at LV AC bus under unbalanced load condition
(c) Three-phase Voltage at LV AC bus under unbalanced load condition
(d) RMS Voltage at LV AC bus under unbalanced load condition.

Besides the operation of the proposed D-STATCOM,
the voltage at the LV AC bus is made constant under unbal-
anced load conditions. The D-STATCOMmaintains the volt-
age at the LV AC bus while injecting the reactive power
required. Fig. 13(a) and Fig. 13(b) shows the three-phase and
RMS voltage at LVAC bus under unbalanced load conditions
with D-STATCOM while employing PI control. Fig. 13(c)
and Fig. 13(d) shows the three-phase and RMS voltage at LV
AC bus under unbalanced load conditions with D-STATCOM
while employing FFSMC. Fig. 13(e) and Fig. 13(f) shows
the three-phase and RMS voltage at LV AC bus under unbal-
anced load conditions with D-STATCOM while employing
FOSMC. However, the execution of the proposed FOSMC
is extremely exceptional regarding rapid reference tracking
and fast convergence in contrast to FFSMC and PI control.
The assessment of voltage THD and VUF at LV AC bus
during unbalanced load conditions is reported in TABLE 6.
It can be observed that the voltage THD andVUF of proposed
FOSMC during unbalanced load conditions result in 0.97%
and 0.0014% in contrast to FFSMC and PI control and are
well under the IEEE standards which verifies the competency
and exceptional performance of FOSMC.

Fig. 14(a) shows the load active and reactive power under
unbalanced load conditions with D-STATCOM at LV AC
bus while employing PI control. Similarly, Fig. 14(b) shows
the load active and reactive power under unbalanced load
conditions with D-STATCOMat LVAC bus while employing
FFSMC. Fig. 14(c) shows the load active and reactive power
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FIGURE 13. (a) Three-phase Voltage at LV AC bus under unbalanced load
condition with D-STATCOM while employing PI control (b) RMS Voltage at
LV AC bus under unbalanced load condition with D-STATCOM while
employing PI control (c) Three-phase Voltage at LV AC bus under
unbalanced load condition with D-STATCOM while employing FFSMC
(d) RMS Voltage at LV AC bus under unbalanced load condition with
D-STATCOM while employing FFSMC (e) Three-phase Voltage at LV AC bus
under unbalanced load condition with D-STATCOM while employing
FOSMC (f) RMS Voltage at LV AC bus under unbalanced load condition
with D-STATCOM while employing FOSMC.

TABLE 6. Assessment of voltage THD at LV AC bus during unbalanced
load conditions.

under unbalanced load conditions with D-STATCOM at LV
AC bus while employing FOSMC. The execution of the
proposed FOSMC can be seen exceptional in terms of fast
convergence, upright damping, and instant tracking, in dis-
tinction to PI control and FFSMC.

FIGURE 14. (a) Load Active and Reactive power under unbalanced load
conditions with D-STATCOM while employing PI control (b) Load Active
and Reactive power under unbalanced load conditions with D-STATCOM
while employing FFSMC (c) Load Active and Reactive power under
unbalanced load conditions with D-STATCOM while employing FOSMC.

Fig. 15(a) shows the reactive power injected by
D-STATCOM under unbalanced load conditions while
employing PI control. Fig. 15(b) shows the reactive power
injected by D-STATCOM under unbalanced load conditions
while employing FFSMC. Fig. 16 shows the variation of
α, kd and kq, and its influence on rise time, convergence
time, tracking error, and time to reach the steady-state under
unbalanced load conditions. The optimum value of α can be
retrieved by varying it from 0 to 0.9. Initially, the value of the
fractional coefficient α is chosen from [65]. From Fig. 16(a),
it can be observed that the increase of α = 0.8 increases
the tracking error and chattering. Likewise, the decrease of
α = 0.2 increases the overshoot, rise time, and time to reach
the steady-state, can be seen in Fig. 16(c). In the context
of kd and kq, the initial values are selected from [69]. The
decrease in the values of kd and kq results in the increase

FIGURE 15. (a) Injected Reactive power by D-STATCOM under voltage
sag/swell while employing PI control (b) Injected Reactive power by
D-STATCOM under voltage sag/swell while employing FFSMC.
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FIGURE 16. (a) Injected reactive power by D-STATCOM under unbalanced
load conditions while employing FOSMC with α = 0.2 and kd ,
kq = 5× 106 (b) Injected reactive power by D-STATCOM under
Unbalanced load conditions while employing FOSMC α = 0.5 and kd ,
kq = 5× 106 (c) Injected reactive power by D-STATCOM under unbalanced
load conditions while employing FOSMC α = 0.8 and kd , kq = 5× 106

(d) Injected reactive power by D-STATCOM under unbalanced load
conditions while employing FOSMC α = 0.5 and kd , kq = 3× 104.

of tracking error and the time to reach the steady-state and
it can be seen in Fig. 16(d). Meanwhile, the increase of kd
and kq results in the decrease of tracking error and the time
to reach the steady-state. Therefore, the value of FOSMC
parameters must be selected in such a way that a compromise
is achieved among the rise time, overshoot, convergence time,
tracking error, overall damping along with chattering free
smooth output. Therefore, the reference reactive power value
is admirable tracked by the controlled trajectories when α
is selected to be 0.5 and kd , kq are selected to be 5 × 106,
evidenced in Fig. 16(b). The peak overshoot and convergence
time are enhanced because of non-integer order instantaneous
error as per the major characteristic of FOSMC. It can be
noted that the proposed FOSMC illustrates the exceptional
execution over the FFSMC and PI control in the reactive
power tracking, due to the fact that the proposed FOSMC is
competent of precisely tracking the reference value with the
lowest chattering.

Fig. 17(a) shows the dc voltage of D-STATCOM under
unbalanced load conditions while employing PI control.
Fig. 17(b) shows the dc voltage of D-STATCOMunder unbal-
anced load conditions while employing FFSMC. Fig. 17(c)
shows the dc voltage of D-STATCOM under unbalanced load
conditions while employing the proposed FOSMC. It can be

FIGURE 17. (a) dc voltage of D-STATCOM under unbalanced load
conditions while employing PI Control (b) dc voltage of D-STATCOM under
unbalanced load conditions while employing FFSMC (c) dc voltage of
D-STATCOM under unbalanced load conditions while employing FOSMC.

noted that the execution of the proposed FOSMC is excep-
tional to FFSMC and PI control regarding fast convergence
and fast-tracking.

Table 7 shows the assessment of different control strategies
present in the studywith the proposed FOSMC. Table 8 shows
the assessment of the proposed FOSMC with existing SMC
strategies while enhancing power quality. The assessment
is made in terms of response time, accuracy, robustness,

TABLE 7. Comparison with different control strategies.

TABLE 8. X-tics comparison of proposed FOSMC with current SMC
strategies.
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chattering, THD, and steady-state time. The performance
of the proposed control is excellent in all performance
parameters.

VI. CONCLUSION
In this paper, the authors have proposed a FOSMC based D-
STATCOM to compensate the low power distribution system
under disturbances such as voltage sag/swell and unbalanced
load conditions. Besides, the performance of the FOSMC
under its parametric variations is discussed as well. The
complete system is demonstrated with a model of 400V,
180kVA radial distributor along with D-STATCOM under
two test scenarios in MATLAB/Simulink environment. In the
first test scenario, the grid transients (voltage sag/swell) are
considered at the LV AC bus. Likewise, in the second test
scenario, the unbalanced load conditions are considered at
the LV AC bus. D-STATCOM sustains the voltage at LV AC
bus by injecting/absorbing a certain extent of reactive power
under voltage sag/swell and unbalanced load conditions.

The results of the proposed controller are compared with
fixed frequency sliding mode control (FFSMC) and conven-
tional proportional-integral (PI) control. The results validate
the superiority of the proposed controller in terms of rapid
tracking, fast convergence, and overall damping with very
low THD, and VUF. In the first test scenario, the volt-
age THD of proposed FOSMC during voltage sag/swell
results in 0.52% in contrast to FFSMC and PI control which
have THD of 0.84% and 2.17% respectively. In the second
test scenario, the voltage THD of proposed FOSMC during
unbalanced load conditions results in 0.97% in contrast to
FFSMC and PI control which have THDof 1.96% and 3.63%.
Likewise, the VUF under unbalanced load conditions with
proposed FOSMC is 0.0014% in contrast to FFSMC and
PI control which have VUF of 0.02% and 0.71%.

In terms of assessment with existing SMC schemes,
the proposed FOSMC has a very high response time, very
high accuracy, very high robustness, lowest chattering along
with low THD and VUF. The proposed model could be
realized on the hardware platform for real-time verification
purposes in future applications.
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