
Received April 6, 2021, accepted May 5, 2021, date of publication May 10, 2021, date of current version June 11, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3078773

A Self-Adapting Task Scheduling Algorithm for
Container Cloud Using Learning Automata
LILU ZHU 1,2,3, KAI HUANG2,3, YANFENG HU2,3, AND XIANQING TAI2
1School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
2Institute of Electronics, Chinese Academy of Sciences, Suzhou 215123, China
3Key Laboratory of Intelligent Aerospace Big Data Application Technology, Suzhou 215123, China

Corresponding author: Lilu Zhu (zhull@aircas.ac.cn)

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant XDA19080201.

ABSTRACT With the rapid development of cloud computing and container technology, more and more
applications are deployed to the cloud, and the scale of cloud platform is expanding. Due to the large number
of container instances running in the platform, complex dependency relationship, fast version iteration
and other characteristics, the update of business can often cause the change of the whole cloud resource
environment, which triggers the repetitive scheduling problem of related tasks and affects stability of the
business. In this paper, we propose a self-adapting task scheduling algorithm (ADATSA) using learning
automata to solve these problems. Firstly, we design a learning automata model and objective function
for the system on task scheduling problem. Then, we realize an effective reward-penalty mechanism for
scheduling actions in combination with the idle state of resources and the running state of tasks in the current
environment. Meanwhile, the environment is modeled by cluster, node and task, and the probability of action
selected is optimized by scheduling execution, thus enhancing the adaptability to the cloud environment of
the scheduling and accelerating convergence. Finally, we construct a framework of task load monitoring
with buffer queue to achieve dynamic scheduling based on priority. The experimental part verifies the
effectiveness of proposed algorithm with different angles such as resource imbalance degree, resource
residual degree and QoS. Compared with other learning automata scheduling models such as LAEAS,
non-automata technology based algorithms such as PSOS and K8S scheduling engine, ADATSA shows
the better performance of environment adaptability, resource optimization efficiency and QoS in dynamic
scheduling. The theoretical analysis was consistent with the experimental results.

INDEX TERMS Container cloud, learning automata, self-adapting scheduling, reward-penalty strategy.

I. INTRODUCTION
As an important supporting technology of cloud computing,
container cloud [1] has further absorbed the essence of dis-
tributed computing theory and technology such as parallel
computing and grid computing. Relying on the lightweight,
low resource consumption and fast start up advantages of
containers, container cloud has gained rapid development
and application in the internet field in recent years. Mean-
while, with the rise of container orchestration engines such
as Kubernetes [2], Mesosphere [3] and Docker Swarm [4],
more and more applications are virtualized and deployed to
cloud, hosting the whole runtime environment and resource
management of software to the container cloud platform.

The associate editor coordinating the review of this manuscript and

approving it for publication was Taehong Kim .

Container cloud technology has changed the traditional
resource management of data center and improved the effi-
ciency of business collaboration. However, how to improve
comprehensive utilization of basic resources through simple
and reasonable task scheduling is still a key issue of container
in the cloud platform research. In particular, in the face of
massive tasks access and data processing scenarios, reason-
able resource allocation of task is very important, which
directly affects the performance of the task and even the
availability of the business.

The traditional task scheduling method of container cloud
is static scheduling [5], [6]. Once the task is scheduled
successfully, the container and node will maintain a strong
binding relationship for a long time until the task is unloaded
and deleted, and the resources occupied by the container
can be recovered and reused. With the continuous updating,

81236 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-3922-5632
https://orcid.org/0000-0001-6246-6218

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

going online and offline of all kinds of applications, the con-
tainer cloud environment becomes more stochastic and com-
plex, it is prone to the phenomenon of extreme imbalance
of node resources, which leads to the problem of business
stability and even availability. In this case, static scheduling
requires the operators to be involved in unloading some of the
high-load tasks and then rebalancing the cluster resources.
This is not only a heavy task, but also sometimes problems
cannot be solved in a timely and effective manner, result-
ing in huge losses. Therefore, dynamic scheduling [7]–[9]
appears, which releases resource pressure on the nodes with
high load by dynamically migrating some runtime containers,
and finally achieves global resource balance. Significantly,
most of existing researches on the technology of dynamic
scheduling focus on optimization of scheduling strategy
to achieve the best match between tasks and resources.
However, due to the differences of basic resources, user
needs and operation strategies, it is difficult to achieve the
ideal requirements of business initialization and operation.
At the same time, for some application links with complex
relationships, the change of a single service node will cause
the resource reorganization of the whole link. Therefore,
it is necessary to improve the perception and adaptability of
tasks to different environments of container cloud. Through
the continuous attempt-feedbackmechanism, the relationship
between task and environment can be established as soon as
possible to maximize the revenue of task scheduling.

Reinforcement Learning (RL) [10] is one of the paradigms
and methodologies of machine learning. It is used to describe
and solve the problem, which agents achieve the maximum
return or specific objective through learning strategies in
the process of interaction with the environment. Learning
Automata (LA) [11] is a kind of technology for reinforcement
learning. It runs in probability space, is not affected by the
imbalance of samples, and has good noise robustness and
global optimization ability. Since the concept of learning
automata was put forward, it has experienced decades of
development, and the convergence speed of its algorithm has
been greatly improved. The study of learning automata is not
only to improve the algorithm, but also involves how to apply
learning automata to solve various practical problems [12].
Research shows that learning automata is suitable for the
analysis and modeling of random environment, and widely
used in the fields of distributed computing, image processing,
wireless sensor network and artificial intelligence. It also
has relevant research results in static scheduling of container
cloud tasks [30]–[33]. However, it is lack of the application
research in dynamic scheduling of container cloud tasks.
In fact, the self-adapting learning ability of learning automata
to random environment is also suitable for whole running
process of container task, that means, for the scenario of
dynamic scheduling, interactive learning with running envi-
ronment is realized through execution of scheduling actions,
and cumulative rewards and penalties of different scheduling
action probabilities are realized through feedback of schedul-
ing results. Finally, the optimal or near optimal dynamic

scheduling strategy of a certain kind of task is outputted in
the current environment.

In this paper, we use a reinforcement learning method to
model tasks and environment. Aiming at the environmen-
tal uncertainty of container cloud platform in the process
of practical application, we introduce the learning automata
theory, construct the task scheduling model through contin-
uous interaction between task and environment, decouple
strong dependence of traditional scheduling algorithm on
the environment, and design a kind of portable self-adapting
scheduling scheme. The main contributions of this paper are
as follows:
• Based on the traditional learning automata the-
ory, we design a Task Scheduling Oriented Learn-
ing Automaton Model (TSOLAM). and propose a
model-based self-ADApting Task Scheduling Algo-
rithm (ADATSA). The algorithm changes the depen-
dence of traditional dynamic scheduling strategy on the
infrastructure environment of container cloud, enhances
the correlation between tasks and running environment
through scheduling experience accumulation, and opti-
mizes the scheduling strategy.

• We extend ADATSA algorithm from the perspective of
engineering application, design an Environment-based
task Load Monitoring framework (ELM), which is used
for real-time monitoring of resource environment and
scheduling evaluation feedback, realize an automatic
scheduling learningmethod, and improve execution effi-
ciency of the algorithm.

• By simulating different scheduling scenarios, the effec-
tiveness of algorithm is proved. Compared with other
earlier learning automaton models and scheduling algo-
rithms, ADATSA has a better performance in resource
utilization, resource imbalance degree and quality of
service.

The rest of this paper is organized as follows. In Section II,
we summarize the related work. Section III gives the related
concepts and theoretical knowledge involved in this paper.
In Section IV, we present task-oriented learning automa-
ton model TSOLAM and self-adapting scheduling algo-
rithm ADATSA in detail. Section V evaluates the proposed
algorithm by real environment experiments. In Section VI,
we conclude this paper and look for future work.

II. RELATED WORK
As a highly practical technology, container cloud task
scheduling has been widely studied in academic and indus-
trial fields in recent years. From the perspective of opti-
mization objective, these studies focus on the scheduling
optimization of single or multi-objective, such as optimiza-
tion of resource utilization [13], scheduling efficiency [14],
task completion time [15], QoS [16] and so on. From the
perspective of scheduling algorithm, the scheduling opti-
mization based on heuristic algorithm [17]–[22], mathemat-
ical model [23]–[25], automata theory [26]–[32], and other
algorithms are studied. This paper summarizes the research

VOLUME 9, 2021 81237

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

progress of task scheduling from the perspective of algorithm
classification.

The scheduling optimization based on heuristic
algorithm is mainly aimed at improvement of ant colony
algorithm, particle swarm algorithm and genetic algorithm,
and makes them to meet requirements of the task scheduling
scenarios in cloud environment. Ref. [5] proposed a multi-
objective optimal scheduling method based on ant colony
algorithm, which considers the utilization of node computing
and storage resources, as well as the number of microservice
requests and failure rate. This method uses quality evalua-
tion function of feasible solution to ensure the effectiveness
of pheromone update, and combines with multi-objective
heuristic information to improve selection probability of
optimal path. In Ref. [17], a multi-objective optimization
scheduling method by establishing a resource cost model is
proposed. This method takes manufacturing cycle and user
budget cost as constraints of the optimization problem, and
achieves dual objective optimization of performance and cost
through ant colony algorithm. According to Ref. [18], in view
of the large number of data communication and collaborative
computing scenarios in application of cloud computing envi-
ronment, based on particle swarm optimization algorithm,
the multi-objective optimization model of resource utiliza-
tion, resource imbalance and service access delay is estab-
lished to achieve the comprehensive optimization of cluster
resources and service performance. For the diversified, highly
complex and massive task scheduling in cloud environment.
Ref. [19] proposed a new adapting genetic algorithm. It can
maximize the retention of excellent individuals and greatly
reduce the probability of the algorithm falling into the local
optimal solution by improving crossover mutation genetic
operator. Ref. [20] proposed an improved multi-objective
genetic algorithm based on elitist archiving and K-means
method. This algorithm is used to solve the problem of
complex resource allocation in multi-tenant computing envi-
ronment. In addition, Ref. [21]–[23] based on bat algorithm
and other methods optimized resource utilization and reduced
total time of task execution. Heuristic scheduling algorithm
searches optimal solution from the whole solution space,
which can obtain better optimization effect, however, it takes
much optimization time, and brings scheduling complexity.
What’s more, it is difficult to adapt to some high real-time
scheduling scenarios. For example, in the network fluctuation
environment, the application is prone to failure. In order
to ensure continuity of the service, it is necessary to pull
up the failure container quickly, which puts forward higher
requirements for the real-time scheduling algorithm.

The scheduling optimization based on mathematical
model, through mathematical modeling of scheduling
problem, obtains the optimal solution of the scheduling
problem by solving themodel. Ref. [24] proposed an effective
adapting scheduling algorithm by modeling the schedul-
ing problem as integer linear programming. Ref [25] pro-
posed a linear scheduling model for application scenarios of
5G edge computing based on resource utilization to calculate

TABLE 1. Cloud resource scheduling algorithm comparison.

metric weight, so as to avoid the scheduling applications to
edge nodes with disk and bandwidth saturation. In Ref. [16],
a resource scheduling algorithm based on Markov prediction
model is proposed to realize task migration decision in case
of node failure. Ref. [6] described the relationship among
host, virtual machine, and container through UML model,
established a calculation model of service reliability through
mean failure time and mean failure recovery time, and real-
ized the placement of containers to virtual machine node with
the highest reliability. In Ref. [26], a utility maximization
model is established, and a simplified gradient algorithm is
designed to solve the Lagrangian dual problem. The simula-
tion results show that the algorithm has good convergence
and can realize hierarchical allocation of basic resources.
The task scheduling method based on mathematical model
often needs strict mathematical derivation, which has high

81238 VOLUME 9, 2021

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

computational complexity, and the scheduling model based
on ideal assumption has low adaptability to environmental
changes, so it is difficult to reach a consistent scheduling
result.

The scheduling optimization based on automata theory
mainly uses learning automata, cellular automata, and other
theories to solve the task scheduling problem. In Ref. [27],
bat algorithm and cellular automata theory were combined
to establish the optimization objective of minimizing cost
and task completion time. And ROV coding technology was
applied to bat algorithm to encode and decode individual
position vector and velocity vector to optimize the objective.
Aiming at the problem that ant colony algorithm is easy to
fall into local optimal solution, Ref. [28] improved ant colony
algorithm based on cellular automata model. Through evo-
lution mechanism of cellular automata, the optimal solution
obtained by ants looking for food is reallocated, and the
convergence speed of the algorithm is optimized. Ref. [29]
proposed a scheduling algorithm based on sand heap cellular
automata, which improves fairness of concurrent jobs by
minimizing running speed of applications and dynamically
scheduling and allocating resources. Ref. [30] proposed a
dynamic fault-tolerant task scheduling algorithm using learn-
ing automata, which establishes a dynamic task runtime
model based on normal distribution to optimize QoS and
energy consumption. In Ref. [31], a new cloud task schedul-
ing algorithm based on learning automata is proposed to
solve dual objective minimization problem of energy con-
sumption and task completion time. Ref. [32] proposed a
random learning machine scheme, which is based on random
learning paradigm of two-time scales to achieve dynamic load
balancing in the cloud environment. In Ref. [33], for the task
scheduling problem of distributed system, aiming at slow
convergence of genetic algorithm solution space, learning
automata is used for local search, which is superior to the
existing methods based on genetic algorithm in terms of com-
munication cost, CPU utilization and task completion time.
The task scheduling based on automata theory effectively
integrates the scheduling algorithm and automata theory.
It has a complete theoretical basis, combined with multi-party
advantages, and has a good performance in resource balanced
scheduling. In particular, the scheduling based on learning
automata theory has good noise robustness and global opti-
mization ability in random environment, which is especially
suitable for large-scale task scheduling optimization scenar-
ios in relatively resource constrained environment. However,
the existing task scheduling algorithms based on learning
automata using RP (reward-penalty) probabilistic updating
strategy (such as Ref. [31]) lack of difference in the prob-
ability reward granularity of different scheduling actions,
which leads to the problems of large randomness and weak
directivity when searching for the optimal solution in the
solution space, so there is still a large room for improvement.

To sum up, the scheduling based on heuristic algo-
rithm gains scheduling performance through time cost. The
scheduling based on model is difficult to achieve optimal

scheduling due to low environmental adaptability. And the
scheduling based on automata theory performs better in effi-
ciency and performance. Based on the theory of learning
automata, we propose a dynamic task scheduling solution for
container cloud. It realizes dynamic optimal scheduling of
large-scale tasks and improves resource utilization efficiency
of container cloud cluster.

III. RELATED CONCEPTS OF ADATSA
In order to help understand, this paper gives the related
concepts and theories, including container cloud, cloud task,
learning automata and so on.
• Container cloud [1]. Taking container as basic unit of
resource partition and scheduling, it encapsulates the
whole runtime environment of software and provides
a platform for developers and system administrators to
build, publish and run distributed applications.

• Cloud task. This paper refers to the container scheduling
task, which encapsulates executable business program,
such as web application.

• Resource Residual Degree (RRD) [34]. The ratio of
remaining amount of resources to the total amount
of resources, which indicates the utilization of system
resources.

• Resource Imbalance Degree (RID) [35]. The degree of
imbalance in the use of various resources is expressed
by root mean square error of the RRD in cluster
environment.

• Node resource priority. In this paper, the advantages and
disadvantages of node resources are determined by RRD
and RID of node resources. The higher the node resource
priority is, the better the node resource status is.

• Steady-state time. This paper refers to the time when
tasks run stably on the nodes, that is, the tasks do not
migrate to other nodes during this period.

• Node stability degree. In this paper, the stability of a
node is expressed by the average steady-state time of all
tasks carried by the node.

• Task stability degree. In this paper, the stability of a task
is expressed by the average steady-state time of the task
on all its migrating nodes.

• Quality of Service (QoS) [36]. It is a kind of network
security mechanism and technology used to solve prob-
lems of network delay and blocking. The goal of QoS
is to provide guarantees on the ability of a network to
deliver predictable results. Elements of network perfor-
mance within the scope of QoS often include availability
(uptime), bandwidth (throughput), latency (delay), and
error rate.

• Learning automata (LA) [11], [12]. LA is a kind of
algorithm in machine learning, which runs in prob-
ability space and learns the optimal value through
constant interaction with unknown environment.
As shown in Fig. 1, the learning automata adjusts prob-
ability distribution of each action selected according
to the environment feedback (reward or penalty), and

VOLUME 9, 2021 81239

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

FIGURE 1. A learning automata and its stochastic environment.

makes probability value converge to the best action.
A typical LA is defined by a four tuple 〈α,β, pr,R〉,
while its environment is a three tuple 〈α,β,D〉. The
definitions of related symbols are shown in Table 2.
Through reinforcement learning based on environment
feedback, LA constantly adjusts the probability distri-
bution of selected actions, and finally converges to one
of them. The environment feedback values are different
for different environment types, in which P-type envi-
ronment and Q-type environment are discrete values,
and S-type environment is a continuous value between
0 and 1. The probability updating strategy mainly
includes RP (reward-penalty), RI (reward-inaction) and
IP (inaction-penalty). RP is the reward penalty strategy,
that is, increase probability of selecting the action when
it is rewarded by the environment. On the contrary,
reduce probability of selecting the action when it is
penalized. RI is the reward inaction strategy, that is,
increase probability of selecting the action when it is
rewarded by environment. on the contrary, it will not
take any action. IP is the inaction penalty strategy, that
is, reduce probability of selecting this action when it is
penalized by environment. on the contrary, it will not
take any action.

TABLE 2. Symbol definition.

IV. SELF-ADAPTING TASK SCHEDULING ALGORITHM
This section mainly introduces our self-adaptive scheduling
algorithmADATSA for container cloud tasks. Firstly, the task
scheduling problem of container cloud is described to further
clarify the problem to be solved in this paper. Secondly,
a task-oriented learning automaton model TSOLAM is pro-
posed, and the corresponding adaptive scheduling algorithm

ADATSA is introduced in detail. Finally, the framework of
task load monitoring named ELM is designed, and the buffer
queue is constructed to realize dynamic priority scheduling

A. PROBLEM DESCRIPTION
In container cloud platform, applications need to be imaged
and encapsulated before they are deployed to the cloud.
Container is the smallest unit of task scheduling in the plat-
form. The goal of task scheduling is to distribute container
instances to the best node, to realize rational use of various
resources. The task scheduling in container cloud can be
described as the problem of mapping relationship between
containers and nodes. There are NM kinds of mapping rela-
tionship between M containers and N nodes. To find the
optimal mapping is a NP-hard [37], [38] problem recognized
by the industry. As mentioned above, the traditional static
task scheduling method is difficult to meet requirements of
users in terms of QoS and resource utilization under dynamic
change of environment. The emergence of dynamic schedul-
ing, especially the dynamic scheduling based on container
technology, provides an opportunity to solve the problem.
Container creates a good condition for dynamic migration
of tasks with its advantages of lightweight, easy resource
quota, fast start-up/shutdown and so on. Scheduler can real-
ize the service capability’s senseless handoff by pulling up
a new container at the target node quickly, and recycling
resources of the emigrating node after applications run stably.
However, due to the large number of container cloud tasks,
fast version iteration, complex business relationships, and the
uncertainty of environmental factors, the update of one kind
of task can often cause the change of whole cloud resource
environment, which may trigger the repetitive scheduling
problem of related tasks, and the unreasonable dynamic
scheduling schememay affect stability of the business. There-
fore, it is necessary to improve perception ability of plat-
form’s scheduling mechanism to resource environment, and
make it adapt to changing applications scenarios of cloud
platform.

Learning automata (LA) runs in probability space and
iterates the optimal scheduling scheme through continuous
interaction with environment. It has good noise robustness
and global optimization ability. Based on LA theory, we con-
struct a learning automata model for container cloud tasks,
and present a self-adapting scheduling algorithm ADATSA
to solve the dynamic scheduling problem of container cloud
tasks.

B. TASK SCHEDULING ORIENTED LEARNING
AUTOMATON MODEL
Fig. 2 shows the structure of Task Scheduling Oriented
Learning Automaton Model (TSOLAM), which is composed
of four parts: Learning Automata (LA), Scheduling Actu-
ator (SA), Container Cloud Environment (CCE) and Envi-
ronment and Load Monitor (ELM). Among them, LA is
the core of TSOLAM, which is defined as four tuples〈
αsi (t) ,βsi (t) , psi (t) ,R

〉
. A scheduling task si corresponds

81240 VOLUME 9, 2021

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

FIGURE 2. Task scheduling oriented learning automaton model.

to a LA. Through interactive learning with CCE, LA outputs
the optimal scheduling scheme in current environment. SA is
the executor of scheduling task. It is responsible for the
implementation of the optimal scheduling scheme submitted
by LA. CCE is the container cloud environment composed
of multiple physical host nodes in multiple centers, which is
defined as a triple

〈
αsi (t) ,βsi (t) ,D

〉
. ELM is the monitor

of environment state and task load, including Environment
Monitor (EM) and Load Monitor (LM), which is used for
resource and environment monitoring and scheduling evalua-
tion feedback. TSOLAM adjusts the probability of task allo-
cation to nodes through continuous interaction with random
environment, to obtain the optimal scheduling in current envi-
ronment. The related parameters are described as follows:

(1) αsi (t) is a set of scheduling actions that assign task
si(i = 1, 2, . . . ,M) to node nj(j = 1, 2, . . . ,N) at time t .
(2) βsi (t) is possible feedback information of the envi-

ronment at time t , which is the input of TSOLAM.
TSOLAM uses P-type environment binary combination
parameter {0,1}, 0 means that the scheduling is not conducive
to system objective G, 1 is the opposite. G is described in
detail below.

(3) psi (t) is the probability set {psin1 (t), p
si
n2 (t), · · · , p

si
nN (t)}

of assigning tasks si to node nj at time t . TSOLAM dynami-
cally adjusts the probability distribution psi (t) of the selected
action αsi (t) according to the environment feedback βsi (t)
(reward or penalty).

(4) R is the probability update rule of TSOLAM, including
RP, RI, and IP. The mapping relationship is psini (t + 1) =
R
[
αsi (t) , βsi (t) , psini (t)

]
. This paper adopts RP strategy,

namely reward-penalty strategy. Ref. [39] first proposed an
implementation method of RP strategy for energy consump-
tion optimization of sensor scheduling in the field of wire-
less sensor networks, And Ref. [31] used it to solve the
task scheduling problem in container cloud. In this strategy,

Formula (1) is used to update the probability of favorable
scheduling actions, otherwise Formula (2) is used.{

pi (t + 1) = pi (t)+ λ1 (1− pi (t))
pj (t + 1) = (1− λ1) pj (t) j 6= i

(1){
pi (t + 1) = (1− λ2) pi (n)
pj (t + 1) = λ2/(r − 1)+ (1− λ2) pj (n) j 6= i

(2)

In the above Formula, λ1 and λ2 are reward factor and
penalty factor respectively, r is the number of actions, and
pi(t) is the probability of action i being selected at time t . The
reward-penalty strategy can obtain the approximate optimal
solution of scheduling problems through repeated iterations.
However, its probability update randomness is strong. And its
probability reward granularity is lack of difference between
different actions. These leads to the problems of large ran-
domness and weak directivity in the solution space searching
for the optimal solution, and then affects the convergence
speed of the algorithm. According to the characteristics of
container cloud task scheduling, a reward base probability f
(si, nj) related to nodes and tasks is added to each scheduling
task to enhance the optimization ability of the algorithm.

For scheduling action that is conducive to the system objec-
tive, Formula (3) is used to update the scheduling action
probability.

psinj (t + 1) = psinj (t)+ λ1f
(
si, nj

)
psink (t + 1) = psink (t)+ λ1

(
f (si, nk)− 1

N−1

)
1 ≤ k ≤ N & nk 6= nj

(3)

where N is the total number of nodes, λ1 is reward factor,
f (si, nj) is the reward base probability attached to task si,
and psinj (t) is the probability of task si scheduling to node nj
at time t . For the selected scheduling action, Formula (3)
(upper) is used to update the scheduling action probability,

VOLUME 9, 2021 81241

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

otherwise Formula (3) (lower) is used. Formula (3) normal-
izes the probabilities of all scheduling actions, namely

N∑
l=1

psinl (t + 1) = 1.

For scheduling action that is not conducive to the system
objective, Formula (4) is used to update the scheduling action
probability.

psinj (t + 1) = psinj (t)− λ2p
si
nj (t)

psink (t + 1) = psink (t)+ λ2
(

1
N−1 − p

si
nk (t)

)
,

1 ≤ k ≤ N & nk 6= nj

(4)

where λ2 is penalty factor, and other notations are the same as
Formula (3). For the selected scheduling action. Formula (4)
(upper) is used to update the scheduling action probability,
otherwise Formula (4) (lower) is used.

The optimized reward-penalty strategy of scheduling
action can make more reasonable probability reward and
penalty behavior according to the latest state of resource envi-
ronment, which significantly improves the adapting ability
of learning automata in the dynamic scheduling scenario of
container cloud tasks.

C. IMPLEMENTATION OF THE ADATSA
1) SYSTEM OBJECTIVE
Asmentioned earlier, TSOLAM strengthens learning through
whether environmental feedback is conducive to system
objective. The probability is enhanced when the schedul-
ing actions conducive to the system objective, otherwise,
the probability is weakened. Through continuous reinforce-
ment learning, the optimal scheduling decision is obtained.
In this section, we model the system objective, and mainly
involves resource imbalance degree and resource residual
degree.

The imbalance degree of resource utilization directly
reflects the resource allocation state of container cloud envi-
ronment, so resource imbalance degree can be used as an
aspect of scheduling rationality evaluation. In addition, on the
premise of meeting QoS requirements, reducing resource
supply and releasing redundant resources as much as possible
can effectively reduce resource waste and improve resource
utilization. Therefore, resource residual degree can be used as
another aspect of scheduling rationality evaluation. Assum-
ing that R = {r1, r2, . . . , rK } is the set of node resources,
rk (1 ≤ k ≤ K) represents the k-th resource of the node,
whereK is the number of resource types. In addition, defining
that E(nj, rk) and U (nj, rk) represent the quota and usage of
resource rk on node nj respectively, then node resource resid-
ual degree and resource imbalance degree can be expressed
by Formulas (6) and (7) respectively, and the system objective
can be expressed by Formula (8).

S
(
nj, rk

)
=

E(nj, rk)− U
(
nj, rk

)
E(nj, rk)

(5)

Algorithm 1 SO
INPUT: node list L, node resource collection R
OUTPUT: system target value G

1: for each node nj in L do
2: for each resource rk in R do
3: calculate E(nj, rk)− U

(
nj, rk

)
4: calculate S

(
nj, rk

)
using Formula (5)

5: end for
6: calculate node resource residual degree S

(
nj
)

using Formular (6)
7: for each resource rk in R do
8: cumulative

(
S
(
nj, rk

)
− S

(
nj
))2

9: end for
10: calculate node resource imbalance degree L

(
nj
)

using Formula (7)
11: cumulative

(
1− S

(
nj
))
+ L

(
nj
)

12: end for
13: compute system objective G using Formula (8) and

return

S
(
nj
)
=

1
K

K∑
k=1

S
(
nj, rk

)
(6)

L
(
nj
)
=

√√√√ K∑
k=1

(
S
(
nj, rk

)
− S

(
nj
))2/K (7)

G =
N∑
j=1

(
1− S

(
nj
)
+ L

(
nj
))/

2 (8)

Node resource residual degree S(nj) is defined as the mean
value of various resource residual degrees S(nj, rk) on the
node, obviously 0 ≤ S(nj) ≤ 1. Node resource imbalance
degree L(nj) is expressed as the root mean square error of
S(nj, rk), here L(nj) is normalized. System objective G is
defined as the sum of resource residual degree and imbalance
degree of all nodes in container cloud environment. The
smaller theG, the more reasonable the allocation of resources
in container cloud environment is, and vice versa.

The system objective G is used to evaluate the rationality
of task scheduling and is run in environment monitor EM.
Algorithm SO gives the calculation method of G in current
environment. Among them, line 1 loops through all nodes.
Lines 2-5 calculate the residual degree S(nj, rk) of all kinds
of resources on node nj. Line 6 calculates the average residual
degree S(nj) of node resources. Lines 7-10 calculate the node
resource imbalance degree. Line 11 calculates the cumulative
sum of resource residual degree and imbalance degree on
nodes. Line 12 ends the node loop. Line 13 calculates system
objective.

2) REWARD BASE PROBABILITY
The correct updating of scheduling action probability is the
key to reinforcement learning of ADATSA. The container
cloud environment is an unstable random environment, so the

81242 VOLUME 9, 2021

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

probability of reward for different scheduling actions should
be different. In addition, the probability of reward for the
same scheduling action should be different with the change
of resource environment. In this paper, a reward base proba-
bility associated with resource and environment is used for
each task to update the reward probability of scheduling
action. In this way, the adaptability to environment of learning
automata can be enhanced.

Mainly considering the priority of resources, the stability
of nodes and tasks, we model the reward base probability
from two levels of nodes and tasks in this section. Through
analysis of node resource usage and task state transfer topol-
ogy, the reward probability of scheduling action is quantified.

(1) Node resource priority
Node resource priority is expressed as a linear combination

of node resource residual degree and node resource imbalance
degree, as shown in Formula (9)

O
(
nj
)
=
(
1− L

(
nj
)
+ S

(
nj
))/

2, 0 ≤ O
(
nj
)
≤ 1 (9)

where the definitions of S(nj) and L(nj) are shown in Formu-
las (6) and (7). The larger the O(nj), the better the state of
node resources is, and the more conducive to stable operation
of tasks.

(2) Node stability degree
Node stability degree is the relative stability of node in a

cluster environment, which can be measured by the average
steady-state time of all tasks on it. The running status of tasks
on nodes can reflect the stability of nodes to a certain extent.
We think that the longer the average stable running time of
all tasks on the node, the higher the stability of the node is.

The triple qi,j,t = (si, nj, t) is defined as the position state
of task si during the t-th transition, which indicates that si is
scheduled to node nj during the t-th transition. Fig. 3 shows
the topology of task state transition, showing the migration
path between tasks. Define T (qi,j,t) = T (si, nj, t) as the stable
running time of si in state qi,j,t , then the node stability degree
can be expressed by Formula (10).

B
(
nj
)
=

T
(
nj
)

N∑
k=1

T (nk)

, 0 ≤ B
(
nj
)
≤ 1 (10)

T
(
nj
)
=

1∣∣IN (nj)∣∣ ∑
si∈IN(nj)

 1∣∣∣Qsinj ∣∣∣
∑
q∈Q

si
nj

T (q)

 (11)

where Qsinj =
{
qi,j,1, qi,j,2, · · ·

}
is the collection of historical

transition states of si on node nj,
∣∣∣Qsinj ∣∣∣ is the length of the

collection, IN
(
nj
)
is the collection ofmigrating tasks on node

nj, and
∣∣IN (nj)∣∣ is the length of collection IN. For example,

in Fig. 3, IN (n1) = {s1, s2, s3}, then |IN (n1)| = 3. T
(
nj
)
is

the average steady-state time of all tasks on node nj. B(nj) is
normalized result of T

(
nj
)
.

(3) Task stability degree
Task stability is relative to nodes. By analyzing the topol-

ogy of task state transition, we can see that the less the number

FIGURE 3. Topology of task state transition.

of task state transition, and the longer the average stable
running time of task on all transition nodes, then the more
reliable the task is. Task stability degree can be expressed by
Formula (12).

H (si) =

1−

∣∣Qsi ∣∣
M∑
i=1

∣∣Qsi ∣∣
 T (si)

M∑
i=1

T (si)

(12)

T (si) =
1∣∣Qsi ∣∣ ∑

q∈Qsi

T (q) (13)

where Qsi is historical collection of tasks si transition states,
M is the number of tasks, and

∣∣Qsi ∣∣ is the length of
collection Qsi . Obviously 0 ≤ H (si) ≤ 1, The larger H (si)
is, the more stable the task si is.

To sum up, the reward base probability f (si, nj) can
be expressed as the weighted average of node priority,
node stability degree and task stability degree, as shown in
Formula (14).

f
(
si, nj

)
= αijO

(
nj
)
+ βijB

(
nj
)
+ γijH (si) (14)

where, αij, βij, γij is the combination coefficient, which
is used to adjust the proportion of the three, and
αij + βij + γij = 1.
The RBP algorithm gives the calculationmethod of f (si, nj)

in the current environment. Lines 1-4 calculate node resource
priority of the current scheduling node nj. Line 5 calculates
migration task collection. Lines 6-15 calculate cumulative
sum of steady-state time of all tasks on node nj and the
cumulative sum of steady-state time of task si on all nodes.
Lines 16-18 calculate the node stability degree. Lines 19-20
calculate task stability degree. Line 21 calculates reward base
probability and return.

3) ADATSA ALGORITHM
The input of ADATSA scheduling algorithm mainly includes
the list of tasks to be scheduledD = {s1, s2,. . . , sM} and node
list L = {n1, n2, . . . , nN }. The output of the algorithm is the
optimal scheduling in current environment. The running flow
of ADATSA is shown in Fig. 4. The pseudo code is shown in
Algorithm 3, which includes the following steps:

VOLUME 9, 2021 81243

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

Algorithm 2 RBP
INPUT: node list L, node resource collection R, target task
sI and target node nJ , task history transition state collection
Q, combination coefficient αij, βij, γij
OUTPUT: reward base probability f (sI , nJ)

1: calculate the resource utilization S (nJ , rk) of
each resource on nJ using Formula (5)

2: calculate the node resource utilization S (nJ) using
Formula (6)

3: calculate the resource imbalance degree L (nJ) using
Formula (7)

4: calculate node resource priority O (nJ) using
Formula (9)

5: calculate migration task collection IN (nJ) on nJ
6: for each task si in IN (nJ) do
7: for each state q in Qsi do
8: if (q.node==nJ) do
9: cumulative T (q) as SUM1

10: end if
11: if (q.task = sI) do
12: cumulative T (q) as SUM2
13: end if
14: end for
15: end for
16: calculate the size of IN (nJ)
17: calculate the node average steady-state time T (nJ)

by SUM1 using Formula (11)
18: calculate node stability degree B (nJ) using

Formula (10)
19: calculate task average steady-state time T (sI) by

SUM2 using
Formula (13)

20: calculate task stability degree H (sI) using
Formula (12)

21: calculate reward base probability f (sI , nJ) using
Formula (14) and return

Step 1: Initialization of algorithm parameters: including
the initialization of reward factor λ1, penalty factor λ2,
scheduling action probability psinj and so on. λ1 and λ2
are usually initialized to be any value between 0.2∼0.4,
which is determined according to the actual circumstances
of resources and environment. psinj (1 ≤ i ≤ M , 1 ≤ j ≤ N)
is initialized as the reward base probability, that is, psinj =
f
(
si, nj

)
. Corresponding to pseudo code line 1 - line 2.

Step 2:Generation of scheduling scheme: LA generates the
optimal scheduling scheme for current environment accord-
ing to the latest scheduling action probability. For initial
scheduling, the scheduling task is initial task queue D.
For dynamic scheduling, the scheduling task is a subset
of D, which is composed of high load tasks filtered by LM
according to the load of nodes and tasks in current environ-
ment. The scheduling scheme is the mapping relationship
between scheduling task and the optimal scheduling node.

FIGURE 4. The flow of the proposed ADATSA.

Corresponding to pseudo code line 3 - line 5. Among them,
line 3 waits for the dynamic scheduling signal to be triggered.
Line 4 establishes a high load task queue based on load of the
cluster environment. Line 5 generates the optimal scheduling
scheme according to the probability of scheduling action.
Step 3: Execution of scheduling scheme: SA is respon-

sible for specific execution of the scheduling scheme, that
is, according to the binding relationship between task and
node, the target container is pulled up on the target node.
Buffer queue is set in SA to relieve the peak pressure in high
concurrency scheduling scenario. Corresponding to pseudo
code line 7.
Step 4: Scheduling evaluation and probability update: LA

requests EM to calculate the prescheduling system objec-
tive G(t) (Algorithm 1) before requesting SA to execute the
scheduling scheme. And then requests EM to calculate the
post scheduling system objective G(t + 1) after receiving
the successful feedback of SA scheduling execution, and
compares the two system objectives. if G(t + 1) < G(t),
LA thinks that the scheduling is beneficial to the system
environment, requests EM to calculate the reward base prob-
ability (Algorithm 2), and uses Formula (3) to update the
scheduling action probability. Otherwise, LA thinks that the
scheduling is unfavorable to the system environment, and
uses Formula (4) to update the scheduling action probability.
Corresponding to pseudo code line 6 - line 14. Among them,
lines 6 and 8 calculate the system objective before and after
scheduling. Lines 9-11 reward scheduling actions that benefit
the environment. Lines 12-14 penalize scheduling actions that
are not conducive to the environment.
Step 5: Trigger of dynamic scheduling: This paper pro-

vides five trigger modes of dynamic scheduling, including
node threshold trigger, timing trigger, etc. see Part 4) of this
section for details. LMmonitors triggering events of dynamic
scheduling. When the triggering event is coming, a high load
task queue is established according to the node and task
load in current environment, and LA is requested to generate

81244 VOLUME 9, 2021

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

FIGURE 5. The framework of environment and load monitoring.

Algorithm 3 ADATSA
INPUT: task list D, node list L, reward factor λ1, penalty
factor λ2
OUTPUT: optimal scheduling

1: initialize parameters λ1, λ2;
2: initialize all action probabilities psinj = f

(
si, nj

)
and perform initial scheduling;

3: waiting to trigger dynamic scheduling
4: LM establishes high load task queue
5: LA generate scheduling scheme according to psinj
6: EM computes system objective G(t) by Algorithm 1
7: SA execution scheduling scheme
8: EM computes system objective G(t+1) by

Algorithm 1
9: if G(t + 1) < G(t) do

10: EM compute reward benchmark probability
f (si, nj) of all selected actions by Algorithm 2

11: LA reward the selected actions of all tasks using
Formula (3)

12: else
13: LA penalize the selected actions of all tasks using

Formula (4)
14: end if
15: waiting to trigger the next dynamic scheduling

optimization scheme for rescheduling. Corresponding to
pseudo code line 3.

ADATSA continuously optimizes the probability of the
scheduled action selected through dynamic scheduling exe-
cution, thereby enhancing the adaptability of the scheduling
mechanism to resource and environment. Through a cer-
tain number of iterative learning, the optimal or near opti-
mal scheduling in the current environment can be realized.
In addition, the introduction of the reward base probability
enhances the ability of the algorithm to optimize the global
optimization and realizes the fast convergence of the resource
utilization state.

The time consumption of ADATSA mainly lies in the
calculation of system objective by Algorithm 1 and reward
benchmark probability by algorithm 2. Suppose that the

number of nodes in the cluster is N , the resource category
is K , the average number of inbound tasks on nodes is M ,
and the average number of state transitions of tasks is S. Then
the time complexity of Algorithm 1 is O (N × K), it mainly
lies in the dual for loop to calculate the node resource residual
and imbalance degree. The time complexity of Algorithm 2 is
O (M × S), it mainly lies in the dual for loop to calculate
the steady-state time of tasks. So, the time complexity of
ADATSA is O (N × K)+ O (M × S). Because line 1 for
loop in Algorithm 1 and line 6 for loop in Algorithm 2 can
be calculated in parallel, the time complexity of the whole
algorithm is not high. The proposed ADATSA algorithm can
fully meet the needs of large-scale task scheduling.

4) FRAMEWORK OF ENVIRONMENT AND LOAD
MONITORING
As mentioned above, the main functions of ELM in
TSOLAM are scheduling evaluation and load monitoring
for nodes, which are described in detail in this section.
Fig. 5 shows the framework of ELM proposed in this paper,
which is composed of Environment Monitor (EM) and Load
Monitor (LM). EM is composed of System Objective calcu-
lation module (SO) and Reward Base Probability calculation
module (RBP). LM consists of High load Node Filter (HNF),
High load Task Filter (HTF) and Buffer Queue (BQ). The
SO module of EM implements Algorithm 1, its function is
to evaluate the state of environment before and after task
scheduling. RBP module implements Algorithm 2, which
is used to calculate the reward base probability. The EM
implementation feeds back the results of SO and RBP to LA,
which supports the reinforcement learning of LA. LM mon-
itors the resource load of nodes and tasks, and presses the
tasks with high load that meet certain filtering conditions
into the BQ, providing LA with dynamic scheduling can-
didate task sources. The following mainly introduces LM
in detail.

The dynamic scheduling of tasks needs to meet certain
trigger conditions. This paper summarizes several feasible
trigger methods in container cloud environment: (1) cluster
node scaling: when cluster nodes are added or deleted, trigger
tasks to migrate dynamically. (2) Node threshold: when the

VOLUME 9, 2021 81245

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

utilization rate of some resources of cluster nodes reaches
the threshold (for example, the CPU utilization rate exceeds
90%), trigger tasks to migrate dynamically. (3) Timing
mechanism: regularly trigger tasks for dynamic migration.
(4) Task or node exception: task exception or node failure trig-
gers dynamic migration of tasks. (5) External control com-
mand: external control actively triggers the task for dynamic
migration.

When the trigger event arrives, it is not desirable to
migrate all tasks. For example, when the node resource uti-
lization rate reaches the threshold, it only wants to trans-
fer some tasks with high resource consumption to nodes
with relatively abundant resources, thereby reducing node
pressure and improving service performance. The key of
task dynamic migration needs to solve two problems: one
is what tasks to be migrated, and the other is how to
transfer tasks. ADATSA algorithm has solved the prob-
lem of how to migrate tasks. Here, LM is used to solve
the problem of which tasks to be migrated. Specifically,
LM filters the task to be migrated through the following
steps:

(1) Filter out applications that cannot be rescheduled. The
application with state and state information stored in the local
node cannot be rescheduled, because the state information
will be lost when the application is rescheduled to other
nodes. When the business is sensitive to data, rescheduling of
the application is not allowed. Therefore, non-reschedulable
applications need to be identified in the cloud platform. For
example, the non-reschedulable POD restart policy in K8S
cloud platform is usually set to ‘‘never’’, so it can be filtered
according to the restart policy.

(2) The remaining tasks are prioritized by workload.
Define NRU (nj) and SRU (si) as the resource utilization rate
of nj and task si respectively. The calculation method is as
follows: Formulas (17), (19). Among them, U (nj, rk) and
P(nj, rk) are the resource usage and quota of node nj respec-
tively; U (si, nj, rk) and P(si, nj, rk) are the resource usage
and requests of task si on node nj respectively. The scoring
mechanism shown in formula (15) is established to score
the resource load of nodes and tasks comprehensively. The
migration tasks are prioritized according to the score from
large to small. Among them, NSC(nj) and SSC(si) repre-
sent the resource load score of node nj and task si respec-
tively. And NSC(nj) indicates that the resource load of nodes
exceeds the average level of cluster resource load. Similarly,
SSC(si) > 0 indicates that the task resource load exceeds the
average level of cluster tasks.

SC = NSC
(
nj
)
+ SSC (si) ,NSC

(
nj
)
> 0&SSC (si)

> 0 (15)

NSC
(
nj
)
= ln

(
NRU (ni)

/
1
N

N∑
i=1

NRU (ni)

)
(16)

NRU
(
nj
)
=

1
K

K∑
k=1

U
(
nj, rk

)
P
(
nj, rk

) (17)

SSC (si) = ln

(
SRU (si)

/
1
M

M∑
i=1

SRU (si)

)
(18)

SRU (si) =
1
K

K∑
k=1

U (si, rk)
P (si, rk)

(19)

As shown in Fig. 5, HNF filters out the nodes whose load
higher than the average resource load level of cluster nodes
by Formula (16), namely NSC

(
nj
)
> 0. And it passes the

results to HTF. HTF further filters out the tasks whose load
is higher than the average load level of cluster tasks on the
node. It uses Formula (15) to score and sorts tasks according
to the score. After sorting, the tasks with high load are pushed
into the buffer queue (BQ), waiting for secondary scheduling.
LA generates the optimal scheduling scheme for the sec-
ondary scheduling task and entrusts SA to execute it. Through
a certain number of dynamic scheduling, the cluster resources
are finally stable to a relatively balanced level, to improve the
global resource utilization and quality of service (QoS).

V. EXPERIMENTAL SIMULATION AND ANALYSIS
In this section, we design experiments to verify the
performance of the proposed ADATSA algorithm in task
static and dynamic scheduling of container cloud, and
compare with other learning automata based scheduling
algorithms, non-automata based scheduling algorithms, and
K8S scheduling engine.

A. EXPERIMENT SETTING
In the experimental environment, Kubernetes (v1.16.2) clus-
ter was built on 53 servers with the same specifications as
the experimental platform, including 3 Master nodes and
50 Slave nodes. The resource information of cluster is shown
in Table 3. In addition, we use a self-developed container
cloud management platform as an application deployment
tool and Apache JMeter (v5.4.0) as the QoS testing tool.
In terms of experimental data, tasks are divided into five
types: CPU oriented (type A), memory oriented (type B),
disk oriented (type C), bandwidth oriented (type D), and
resource non-oriented (type E). Where resource non-oriented
applications are those in which the resource requirements
of the applications are balanced and there is no particular
preference for resources. Task partition and resource require-
ment of task are shown in Table 4. Some applications provide
HTTP access interfaces for QoS testing. Due to the lack
of applications, we used repeated deployments to simulate
large-scale application deployment. The initial number of
applications used in the experiment was 100, with 20 for each
type of application.

TABLE 3. 3 node resource.

81246 VOLUME 9, 2021

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

TABLE 4. Resource requirement of task.

In the evaluation of cluster resource scheduling, RID
(resource imbalance degree) [37] and RRD (resource residual
degree) [36] are two widely used metrics. RID can reflect
the balance of cluster resource utilization, while RRD reflects
the comprehensive utilization of resources. On this basis, this
paper increases RT (response time) and TH (throughput) for
service quality evaluation. Details of relevant metrics are as
follows:

RID =
∑N

j=1
L
(
nj
)/
N (20)

where L(nj) is shown in Formula (7). The smaller the RID is,
the more balanced the cluster resource utilization is, and vice
versa.

RRD =
∑N

j=1
S
(
nj
)/
N (21)

where S(nj) is shown in Formula (6). The larger the RRD is,
the more applications the cluster can deploy and the higher
the cluster resource utilization is.

RT =
1
M

∑M

i=1
RT (si) (22)

where RT (si) is the response delay of application si (usually
Web service application) under certain concurrent requests,
and M is the number of applications. The average response
time of a certain number of applications in cluster environ-
ment can be used as an aspect of cluster QoS evaluation.

TH =
1
M

∑M

i=1
TH (si) (23)

TH (si) =
Nreq (si)

Tend (si)− Tstart (si)
(24)

where Nreq (si) is the total number of requests for application
si,Tstart (si) is start time of the test, Tend (si) is end time of the
test, and TH (si) is the throughput. The average throughput of
a certain number of applications can be used as another aspect
of cluster QoS evaluation.

B. EXPERIMENTTAL RESULTS
In experiment A, static task scheduling is simulated, and
the dynamic adjustment switch of ADATSA is closed. The
impact of the number of tasks on static scheduling perfor-
mance of ADATSA with that of LAEAS [31], PSOS [18]
and K8S is compared. The motivation of choosing these
comparison algorithms is that LAEAS is a representative
scheduling algorithm using learning automata, PSOS is an

excellent heuristic scheduling algorithm using non-automata
based technique, and Kubernetes (K8S) platform has a strong
ability of task scheduling. The experimental results are
shown in Fig. 6 (a) and (b), in which ∗-S represents the
static scheduling curve of algorithm ∗ (ADATSA, LAEAS,
PSOS, K8S). It can be seen that the performance of ADATSA
and K8S in static scheduling is close, better than LAEAS, and
slightly less than PSOS. From the RID curve, all algorithms
show a trend of rapid decline at first and then stable con-
vergence. Although ADATSA has certain advantages when
the number of tasks is between 1.3 × 103 and 2.9 × 103,
with the increasing number of tasks, ADATSA converge to
almost the same level as PSOS and K8S, even PSOS and K8S
convergence more smoothly. From the RRD curve, ADATSA
decreases more smoothly than K8S, but it still resides under
PSOS and K8S, which indicate that the resource utilization
rate of PSOS and K8S is better than that of ADATSA. This
is because PSOS adopts scheduling technology using parti-
cle swarm optimization, the optimal scheduling is achieved
through multiple iterations, and the scheduling performance
is obtained through time. K8S framework has a complete
set of basic resource optimization scheduling scheme, and
achieves the optimal convergence of resource state through
two stages of predicate and priority. ADATSA still has a
certain gap in static scheduling compared with PSOS and
K8S scheduling algorithm.

In experiment B, dynamic task scheduling scenario is
simulated, and the dynamic scheduling mode of ADATSA is
set as node threshold trigger. When the resource utilization
rate of nodes exceeds 80%, tasks with high load were be
migration automatically. Since LAEAS and PSOS can’t be
directly applied to the dynamic scheduling scenario in this
paper, we modify them. For LAEAS, we simulate its random
probability update mode, that is, we use its probability update
method (Formula (1), (2)) to replace the probability update
method of ADATSA (Formula (3), (4)), and other places are
consistent with ADATSA. For PSOS, we regard its dynamic
scheduling as static rescheduling, and dynamic scheduling
performs the same scheduling process as static
scheduling. In addition, because K8S has no special dynamic
scheduling mechanism, we use its POD eviction function to
replace (resource threshold is set to 80%). We compare the
impact of the number of tasks on the dynamic scheduling
performance of ADATSA and 3 comparison algorithms.
The experimental results are shown in Fig. 6 (c) and (d),
in which ∗-D represents the dynamic scheduling curve of
algorithm ∗ (ADATSA, LAEAS, PSOS, K8S). From the
convergence results of dynamic scheduling, ADATSA is
better than all comparison algorithms on RID and RRD.
and the performance order is ADATSA > LAEAS > PSOS
> K8S. From the RID curve, after the number of tasks
exceeds 2.5 × 103, the RID metric of ADATSA continues
to decline and finally converges to about 0.065. Compared
with the initial state of the cluster (the number of tasks
is 0), the performance of RID is improved by about 59.61%.
Compared with the convergence result of its static scheduling

VOLUME 9, 2021 81247

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

FIGURE 6. Impact of the number of tasks on static(-S) and dynamic(-D) task scheduling.

(Fig. 6 (a) ADATSA-S curve), RID performance is improved
by about 24.01%. Compared with the convergence results
of LAEAS, PSOS and K8S dynamic scheduling, the RID
performance is improved by 19.56%, 20.17%, and 23.24%
respectively. In addition, the RRD curve of ADATSA in Fig. 6
(d) is generally above comparison algorithms, which shows
better resource utilization efficiency. This is mainly due to
the effective adaptive learning ability of ADATSA, through
the scheduling feedback results to adjust the scheduling
behavior continuously, accumulate scheduling experience,
and finally achieve a better scheduling effect. However,
PSOS and K8S simply perform task scheduling, lack of rein-
forcement learning process for resource environment. Their
dynamic scheduling process is equivalent to the repetition
of static scheduling process, so the improvement of resource
environment state is not particularly obvious.

In experiment C, we fix the number of tasks and verify the
effect of time on the convergence performance of ADATSA
and comparison algorithms. Randomly select five types of
applications, create 1×103, 2×103, 5×103 tasks respectively,
and record the resource usage every 30s. The experimental
results are shown in Fig. 7 (a) to (f), in which ∗-S-1, ∗-S-2 and
∗-S-5 correspond to the static scheduling curves of algorithm
∗ (ADATSA, LAEAS, PSOS, K8S) with task numbers of
1 × 103, 2 × 103 and 5 × 103 respectively. We can see that
when the number of tasks is small, the resources converge
speed of ADATSA is lower than that of PSOS and K8S on
RID and RRD, but significantly better than that of LAEAS.
However, when the number of tasks is large, the convergence
performance of ADATSA is improved to a certain extent.

This is mainly because ADATSA uses the reward base prob-
ability f (si, nj) to initialize the scheduling action probabil-
ity. f (si, nj) fully considers the current resource imbalance
degree, resource residual degree and information of nodes,
and prioritizes node resources to achieve resource priority
scheduling. LAEAS algorithm uses equal probability to ini-
tialize the probability of scheduling action selection, which
is random and affects the convergence performance of static
scheduling.

In experiment D, we add a dynamic scheduling mechanism
based on experiment C, set dynamic scheduling mode of
ADATSA as timing trigger, and dynamically migrated high
load tasks every 10 minutes. The impact of time on the
convergence performance of ADATSA and its comparison
algorithms is studied. The experimental results are shown
in Fig. 7 (g) to (l), in which ∗-D-1, ∗-D-2 and ∗-D-5 cor-
respond to the dynamic scheduling curves of algorithm ∗
(ADATSA, LAEAS, PSOS, K8S) with task numbers of 1 ×
103, 2 × 103 and 5 × 103 respectively. We can see that
ADATSA and comparison algorithms dynamically migrate
and adjust tasks according to the load of the current resource
environment, and achieve different degrees of resource con-
vergence improvement. However, ADATSA is superior to all
comparison algorithms in terms of convergence speed and
final convergence result. In the dynamic scheduling scenario
with 1 × 103 tasks, the RID performance improvement of
LAEAS is weak, and there is a small divergence trend.
The RID of PSOS is almost the same as that of K8S with
medium performance. However, the RID curve of ADATSA
decreases rapidly and converges, and it is stable at about 0.14

81248 VOLUME 9, 2021

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

FIGURE 7. Impact of the time on convergence performance of static(-S) and dynamic(-D) scheduling under different number of tasks. Where −1,−2
and −5 represent the curves of 1 × 103, 2 × 103 and 5 × 103 tasks respectively.

after 15 minutes. In the dynamic scheduling scenario with
2×103 tasks, both ADATSA and LAEAS converge in 45min,
but ADATSA’s RID convergence value is even smaller. The
convergence time of PSOS and K8S is about 50min. What’s
more, their RID convergence value is larger. Compared with
LAEAS with the best performance and K8S with the worst
performance, ADATSA achieves about 6.73% and 19.01% of
RID performance improvement respectively. In the dynamic
scheduling scenario with 5× 103 tasks, the RID performance
of ADATSA starts to be significantly better than all compar-
ison algorithms after 50 minutes, and finally converges to
about 0.067. In addition, we can see from Fig. 7 (j) to (l)
that the RRD curve of ADATSA is generally above all the

comparison algorithms, it shows better resource utilization
efficiency. To sum up, for different number of dynamic
scheduling scenarios, ADATSA has better resource uti-
lization efficiency than LAEAS, PSOS and K8S, which
can achieve balanced and convergent utilization of various
resources in a short time. Thanks to ADATSA’s accurate
update mechanism of scheduling action, the current state of
node resources and the historical migration state of tasks are
effectively used to adjust the selection probability of schedul-
ing action, which improves the convergence performance
of the algorithm. Due to the defect of probability update,
LAEAS algorithm needs to spend more time scheduling
optimization. And PSOS searches optimal solution from the

VOLUME 9, 2021 81249

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

FIGURE 8. Impact of resource environment state on quality of service.

whole solution space, which not only takes much optimiza-
tion time but also brings scheduling complexity.

In experiment E, we verify the impact of resource
environment state on service access quality. Based on exper-
iment D (the number of tasks is 5 × 103), a certain num-
ber of webservice applications was selected on each node
for QoS testing. Specifically, 5 minutes after the end of
task dynamic migration (to ensure the stable running of
the application). The client uses Apache JMeter to make
concurrent calls to the working nodes at regular intervals
and makes QoS records. The number of concurrent requests
for each application is set to 1000. The whole process
is carried out by automatic script. Verify performance of
ADATSA and comparison algorithms under four metrics of
RT, TH, RID and RRD. The experimental results are shown
in Fig. 8 (a) to (d). The experimental results show that
ADATSA is better than LAEAS, PSOS and K8S on RT,
TH, RID and RRD by and large. As the scheduling con-
tinues, the RT metric of ADATSA has a downward trend,
and TH has been improved accordingly. However, the RT
metric of LAEAS, PSOS and K8S fluctuated significantly,
especially the RT metric of K8S peaked in different degrees
from 65min to 85min. This is mainly due to the resource
fluctuation caused by the dynamic eviction of K8S. It can
be seen from Fig. 8 (a) that in the range of 60min to 80min,
the resource utilization of K8S is unbalanced, which affects
the application performance to a certain extent. Data anal-
ysis shows that compared with LAEAS, PSOS and K8S,
the RT metric of ADATSA has improved by about 2.05%,
2.10% and 4.72% performance, the TH metric has also

FIGURE 9. Impact of reward and penalty factors on RID.

improved the performance by about 4.07%, 4.04% and 6.37%
respectively. This is mainly because ADATSA establishes
reasonable probability reward-penalty rules based on learn-
ing automata for container cloud task scheduling scenarios.
Through high load task screening and secondary scheduling
adjustment, ADATSA realizes the balanced utilization of
cluster resources and improves the quality of service to a
certain extent.

In experiment F, we verify the impact of reward factor
λ1 and penalty factor λ2 on the final scheduling results.
Fig. 9 shows the impact of reward and penalty factors on
RID. The three-dimensional graph is concave in front and
convex in back, which indicates that too small or too large
reward and penalty factors are not conducive to the final
convergence of resource state. If the parameters are too small,

81250 VOLUME 9, 2021

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

the granularity of reward-penalty for scheduling action is not
enough, and the algorithm needs a long time to converge;
otherwise, the granularity of reward-penalty for scheduling
action is too large, the algorithm is easy to fall into local
optimum, and it is difficult to obtain the optimal scheduling.
In the current experimental environment, good scheduling
results can be obtained when the reward and penalty factors
are set between 0.2 and 0.4.

VI. SUMMARY AND FUTURE EXPECTATION
In this paper, we present a self-adapting task scheduling
algorithm (ADATSA) based on learning automata. The algo-
rithm effectively utilizes the reinforcement learning ability of
learning automata, and realizes an effective reward-penalty
mechanism for scheduling actions in combination with the
idle state of resources and the running state of tasks in the
current environment. Meanwhile, we design a framework of
task load monitoring for real-time monitoring of environment
and scheduling evaluation feedback, and establish a buffer
queue to achieve priority scheduling. Finally, we design
comparative experiment on Kubernetes platform to simulate
different scheduling scenarios, and make a comprehensive
evaluation of the proposed ADATSA algorithm with learn-
ing automata based algorithm LAEAS, non-automata tech-
nology based algorithm PSOS and K8S scheduling engine
in terms of resource imbalance degree, resource residual
degree and QoS. Experimental results show that the proposed
ADATSA algorithm has a static scheduling capability close to
that of Kubernetes scheduling engine, and slightly less than
heuristic scheduling optimization algorithms such as PSOS.
Especially in the aspect of dynamic scheduling, compared
with LAEAS, PSOS and K8S, ADATSA shows better envi-
ronment adaptability, resource optimization efficiency and
QoS performance.

However, there still exists some challenges that need
to be overcome in the future work. For example, we use
the experimental method to determine the best combi-
nation of reward-penalty factors in the container cloud
environment as a reference for initialization parameters
of ADATSA. However, the container cloud environment
is a highly variable stochastic environment, and the envi-
ronment model learned from the fixed reward-penalty
factors may not be optimal. In addition, our algorithm
does not consider the heterogeneity of cloud resources.
Generally, users’ requests for cloud resources are differ-
ent, and the completion of user tasks is usually realized
by multiple heterogeneous cloud resources. Therefore, the
difference between heterogeneous cloud resources has a cer-
tain reference value in cloud resource optimization schedul-
ing. In the following research, we will not only consider
adding deep reinforcement learningmethod to further decom-
pose and refine the model parameters to improve engi-
neering practice ability of the algorithm, but also consider
the heterogeneity of cloud resources to expand the applica-
tion scenarios of the algorithm and meet different business
need.

REFERENCES
[1] S. Singh and N. Singh, ‘‘Containers & docker: Emerging roles &

future of cloud technology,’’ in Proc. 2nd Int. Conf. Appl. Theor. Com-
put. Commun. Technol. (iCATccT), 2016, pp. 804–807, doi: 10.1109/
ICATCCT.2016.7912109.

[2] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, ‘‘Borg,
omega, and kubernetes,’’ Commun. ACM, vol. 59, no. 5, pp. 50–57,
Apr. 2016.

[3] S, Pankaj, M. Govindaraju, S. Marru, and M. Pierce, ‘‘Integrating apache
airavata with docker, marathon, and Mesos,’’ Concurrency Comput. Pract.
Exper., vol. 28, no. 7, pp. 1952–1959, 2016.

[4] E. Casalicchio, ‘‘Autonomic orchestration of containers: Problem defini-
tion and research challenges,’’ in Proc. 10th EAI Int. Conf. Perform. Eval.
Methodologies Tools, 2017, pp. 1–4.

[5] M. Lin, J. Xi, W. Bai, and J. Wu, ‘‘Ant colony algorithm for multi-objective
optimization of container-based microservice scheduling in cloud,’’ IEEE
Access, vol. 7, pp. 83088–83100, 2019.

[6] Y. Alahmad, T. Daradkeh, and A. Agarwal, ‘‘Availability-aware container
scheduler for application services in cloud,’’ in Proc. IEEE 37th Int.
Perform. Comput. Commun. Conf. (IPCCC), Nov. 2018, pp. 1–6, doi:
10.1109/PCCC.2018.8711295.

[7] P. F. Yang, ‘‘Research and implementation of dynamic resource scheduling
based on Kubernetes,’’ M.S. thesis, Dept. CST, Zhe Jiang Univ., Zhe Jiang,
China, 2017.

[8] R. Tang, ‘‘Research on resources scheduling strategy of container cloud
platform based on Kubernetes,’’ M.S. thesis, Dept. Elect. Eng., UESTC
Univ., Si Chuan, China, 2017.

[9] P. Y. Zhang and M. C. Zhou, ‘‘Dynamic cloud task scheduling based
on a two-stage strategy,’’ IEEE Trans. Autom. Sci. Eng., vol. 13, no. 1,
pp. 11–23, Jan. 1995.

[10] R. S. Sutton and A. G. Barto, ‘‘Barto, reinforcement learning,’’ A Bradford
Book, vol. 15, no. 7, pp. 665–685, 1998.

[11] K. S. Narendra andM. A. L. Thathachar, ‘‘Learning automata—A survey,’’
IEEE Trans. Syst. Man Cybern., vol. SMC-4, no. 4, pp. 323–334, Jul. 1974.

[12] T. T. Cheng, ‘‘Learning automata and its application in stochastic point
location problem,’’ M.S. thesis, Dept. Elect. Eng., SJT Univ., Shang Hai,
China, 2014.

[13] K. Gong, Y. W. Wu, and K. Chen, ‘‘Container cloud multi-dimensional
resource utilization balanced scheduling,’’ Appl. Res. Comput., vol. 37,
no. 4, pp. 148–152, 2020.

[14] X. L. Xie and Q. Wang, ‘‘A scheduling algorithm based on multi-objective
container cloud task,’’ J. Shandong Univ. (Eng. Sci.), vol. 50, no. 4,
pp. 14–21, 2020.

[15] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, ‘‘A particle swarm
optimization-based heuristic for schedulingworkflow applications in cloud
computing environments,’’ in Proc. 24th IEEE Int. Conf. Adv. Inf. Netw.
Appl., Apr. 2010, pp. 400–407, doi: 10.1109/AINA.2010.31.

[16] P. Zhou, B. Yin, X. S. Qiu, S. Y. Guo, and L. M. Meng, ‘‘Service reliability
oriented cloud resource scheduling method,’’ Acta Electronica Sinica,
vol. 47, no. 5, pp. 1036–1043, 2019.

[17] L. Zuo, L. Shu, S. Dong, C. Zhu, and T. Hara, ‘‘A multi-objective opti-
mization scheduling method based on the ant colony algorithm in cloud
computing,’’ IEEE Access, vol. 3, pp. 2687–2699, 2015.

[18] H. Li, X. Wang, S. Gao, and N. Tong, ‘‘A service performance aware
scheduling approach in containerized cloud,’’ in Proc. IEEE 3rd Int. Conf.
Comput. Commun. Eng. Technol. (CCET), Aug. 2020, pp. 194–198.

[19] S. Liu and N. Wang, ‘‘Collaborative optimization scheduling of cloud
service resources based on improved genetic algorithm,’’ IEEE Access,
vol. 8, pp. 150878–150890, 2020.

[20] Q. Liu, J. Li, and H. Lv, ‘‘Edge-cloud collaborative optimization schedul-
ing with micro-service architecture,’’ J. Comput. Commun., vol. 7, no. 10,
pp. 1036–1043, 2019.

[21] C. Y. Li, Y. Song, and J. T. Ma, ‘‘RIOPSO algorithm for fuzzy cloud
resource scheduling problem,’’ J. Frontiers Comput. Sci. Technol., vol. 40,
no. 4, pp. 1–14, 2020.

[22] C. F. Jian, J. W. Chen, and M. Y. Zhang, ‘‘Improved chaotic bat swarm
cooperative scheduling algorithm for edge computing,’’ J. Chin. Comput.
Syst., vol. 40, no. 11, pp. 2424–2430, 2019.

[23] J. Chang, Z. Hu, Y. Tao, and Z. Zhou, ‘‘Task scheduling based on dynamic
non-linear PSO in cloud environment,’’ in Proc. IEEE 9th Int. Conf. Softw.
Eng. Service Sci. (ICSESS), Beijing, China, Nov. 2018, pp. 877–880, doi:
10.1109/ICSESS.2018.8663825.

VOLUME 9, 2021 81251

http://dx.doi.org/10.1109/ICATCCT.2016.7912109
http://dx.doi.org/10.1109/ICATCCT.2016.7912109
http://dx.doi.org/10.1109/PCCC.2018.8711295
http://dx.doi.org/10.1109/AINA.2010.31
http://dx.doi.org/10.1109/ICSESS.2018.8663825

L. Zhu et al.: Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata

[24] R. Xu, W. D. Wang, X. Y. Gong, and X. R. , ‘‘Delay-aware resource
scheduling optimization in network function virtualization,’’ J. Comput.
Res. Develop., vol. 55, no. 4, pp. 738–747, 2018.

[25] D. J. Kong, ‘‘Kubernetes resource scheduling strategy for 5G multi-access
edge computing,’’ Comput. Eng., vol. 44, no. 3, pp. 89–97, Mar. 2017.

[26] X.-L. Shi and K. Xu, ‘‘Utility maximization model of virtual machine
scheduling in cloud environment,’’ Chin. J. Comput., vol. 36, no. 2,
pp. 252–262, Mar. 2014.

[27] Y. Shi, L. Luo, and H. Guang, ‘‘Research on scheduling of cloud manufac-
turing resources based on bat algorithm and cellular automata,’’ in Proc.
IEEE Int. Conf. Smart Manuf., Ind. Logistics Eng. (SMILE), Apr. 2019,
pp. 174–177, doi: 10.1109/SMILE45626.2019.8965317.

[28] S. P. Zhang and W. B. Zhong, ‘‘Cloud resource schedule based on cel-
lular ant colony optimization,’’ Microelectron. Comput., vol. 32, no. 8,
pp. 54–57, 2015.

[29] J. Gasior and F. Seredynski, ‘‘Dynamic job scheduling in the cloud
using slowdown optimization and sandpile cellular automata model,’’ in
Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshop, May 2015,
pp. 276–285, doi: 10.1109/IPDPSW.2015.139.

[30] S. Ghanavati, J. Abawajy, and D. Izadi, ‘‘Automata-based dynamic
fault tolerant task scheduling approach in fog computing,’’ IEEE Trans.
Emerg. Topics Comput., early access, Oct. 26, 2020, doi: 10.1109/
TETC.2020.3033672.

[31] S. Sahoo, B. Sahoo, and A. K. Turuk, ‘‘An energy-efficient scheduling
framework for cloud using learning automata,’’ in Proc. 9th Int. Conf.
Comput., Commun. Netw. Technol. (ICCCNT), Jul. 2018, pp. 1–5, doi:
10.1109/ICCCNT.2018.8493692.

[32] A. Yazidi, I. Hassan, H. L. Hammer, and B. J. Oommen, ‘‘Achieving
fair load balancing by invoking a learning automata-based two-time-scale
separation paradigm,’’ IEEE Trans. Neural Netw. Learn. Syst., early access,
Aug. 5, 2020, doi: 10.1109/TNNLS.2020.3010888.

[33] M. Jahanshahi, M. R. Meybodi, and M. Dehghan, ‘‘A new approach for
task scheduling in distributed systems using learning automata,’’ in Proc.
IEEE Int. Conf. Autom. Logistics, Aug. 2009, pp. 62–67.

[34] X. L. Ma, ‘‘Research on resource scheduling strategy based on Kubernetes
container cluster,’’M.S. thesis, Dept. Softw. TheoryComput., XASTUniv.,
Xi’an, China, 2019.

[35] H. Shen and L. Chen, ‘‘A resource usage intensity aware load balancing
method for virtual machine migration in cloud datacenters,’’ IEEE Trans.
Cloud Comput., vol. 8, no. 1, pp. 17–31, Jan. 2020.

[36] Z. Zheng, Y. Zhang, and M. R. Lyu, ‘‘Investigating QoS of real-world
Web services,’’ IEEE Trans. Services Comput., vol. 7, no. 1, pp. 32–39,
Jan. 2014.

[37] A. Gorbenko and V. Popov, ‘‘Task-resource scheduling problem,’’ Int. J.
Autom. Comput., vol. 9, no. 4, pp. 429–441, Aug. 2012.

[38] Z. Yang, C. Yin, and Y. Liu, ‘‘A cost-based resource scheduling paradigm
in cloud computing,’’ in Proc. 12th Int. Conf. Parallel Distrib. Comput.,
Appl. Technol., Oct. 2011, pp. 417–422.

[39] J. J. Lotf, S. H. Hosseini Nazhad, and M. Hosseinzadeh, ‘‘Applications
of learning automata in wireless sensor networks,’’ in Proc. 5th Int. Conf.
Appl. Inf. Commun. Technol. (AICT), 2011, pp. 1–5.

LILU ZHU was born in 1988. He is currently
pursuing the Ph.D. degree with the School of Infor-
mation Science and Technology, University of Sci-
ence and Technology of China, Hefei, China. His
main research interests include spatio-temporal
data service and distributed system architecture.

KAI HUANG was born in 1988. He received
the M.E. degree in computer science and tech-
nology from Jiangnan University, Wuxi, China.
He is currently an Intern Researcher with the Insti-
tute of Electronics, Chinese Academy of Sciences,
Suzhou. His main research interest includes con-
tainer cloud.

YANFENG HU received the B.S. degree from
Xidian University, Xi’an, China, in 1999, and the
Ph.D. degree from the Institute of Electronics,
Chinese Academy of Sciences, Beijing, in 2005.
He is currently a Researcher with the Institute
of Electronics, Chinese Academy of Sciences,
Suzhou, China. His research interests include natu-
ral language processing and remote sensing image
understanding.

XIANQING TAI received the Ph.D. degree from
ZheJiang University in 1996. He is currently a
Researcher with the Institute of Electronics, Chi-
nese Academy of Sciences, Suzhou, China. His
research interests include cloud computing and
remote sensing image understanding.

81252 VOLUME 9, 2021

http://dx.doi.org/10.1109/SMILE45626.2019.8965317
http://dx.doi.org/10.1109/IPDPSW.2015.139
http://dx.doi.org/10.1109/TETC.2020.3033672
http://dx.doi.org/10.1109/TETC.2020.3033672
http://dx.doi.org/10.1109/ICCCNT.2018.8493692
http://dx.doi.org/10.1109/TNNLS.2020.3010888

