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ABSTRACT In this paper, a novel soft computing algorithm is designed for the numerical solution of
third-order nonlinear multi-singular Emden–Fowler equation (TONMS-EFE) using the strength of uni-
versal approximation capabilities of Legendre polynomials based Legendre neural networks supported
with optimization power of the Whale Optimization Algorithm (WOA) and Nelder-Mead (NM) algorithm.
Unsupervised error functions are constructed in terms of mean square error for governing TONMS-EF
equations of first and second order. Unknown designed parameters in LeNN structure are optimized initially
by WOA for global search while NM algorithm further enhances the rapid local search convergence. The
proposed algorithm’s objective is to show the accuracy and robustness in solving challenging problems
like TONMS-EFE. To study our designed scheme’s performance and effectiveness, LeNN-WOA-NM is
implemented on four cases of TONMS-EFE. The results obtained by the proposed algorithm are compared
with the Particle Swarm Optimization (PSO) algorithm, Cuckoo search algorithm (CSA), and WOA.
Extensive graphical and statistical analysis for fitness value, absolute errors, and performance indicators
in terms of mean, median, and standard deviations show the proposed algorithm’s efficiency and accuracy.

INDEX TERMS Singular Emden–Fowler equation, soft computing algorithm, weighted legendre neural
networks, Nelder-Mead algorithm, whale optimization algorithm.

I. INTRODUCTION
Singular differential equations models various phenomenon’s
occurring in daily life. Therefore, they gain an immense
importance specially in physics and applied mathematics.
Singular non-linear model of famous Lane–Emden equa-
tions were introduced by astrophysicists Homer Lane [1] and
Robert Emden [2] while working on thermal performance
of gas and classical laws of heat and thermodynamics [3].
Singular systems of differential equations originates in field
of numerical sciences and physical sciences [4], electromag-
netic [5], catalytic diffusion and reactions [6], isothermal gas
phenomenons [7], quantummathematical model [8], classical
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and quantum mechanics [9], gaseous density [10], oscillating
magnetic systems [11], isotropic mediums [12] and fluid
mechanical systems [13].

Few techniques in the existing literature are used to solve
non-linear singular models like TONMS-EFE. Shawagfeh
presents Adomain decomposition method (ADM) [14],
in 2001 Wazwaz [15] uses ADM to get over the difficulty of
singularity, an analytical scheme for the solution of non-linear
singular model was implemented by Liao [16], a numerical
technique was established by He and Ji [17] using Taylor
series and power series solutions are used by Nouh [18] along
with the transformation of Euler-Abel. Kalabas and Bellman
quasi-linearization scheme was developed by Mandelzweig,
and Tabakin [19]. Variational iteration method (VIM) [20],
Finite difference method (FDM) [21] and Optimal homotopy
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TABLE 1. Legendre polynomials.

TABLE 2. Parameter setting for WOA, NM, PSO and CSA.

perturbation method (OHAM) [22], [23] are used to solve
variety of ordinary and partial differential equation models.
In terms of consistency, convergence, robustness, and appli-
cability, the techniquesmentioned above have advantages and
limitations over each other. These techniques are based on
well-established deterministic techniques. On the other hand,
stochastic techniques based on artificial neural networks are
less exploited and rapidly convergent.

In recent times, ANNs are used as universal function
approximation procedures to develop stochastic numerical
techniques. Due to their strength and stability, they are widely
used for the solutions of variety of real world problems
including multi-phase flow through porous media for imbi-
bition phenomena [24], longitudinal heat transformation fins
model [25], [26], Beam-Column designs [27], OptimalModel
Selection for Regression [28], fractional models of damping
material [26], nonlinear dusty plasma system [29], corneal
Model for Eye Surgery [30] and temperature profile of porous
fin model [31]. A plant propagation algorithm (PPA) and its

modified version were developed to solve design engineering
problems [32]–[35]. The above mentioned algorithms moti-
vate authors to develop a soft computing technique based on
artificial neural networks. The main features of this research
work are summarized as
• This paper aims to establish a soft computing tech-
nique known as the LeNN-WOA-NM algorithm to solve
non-linear multi-singular Emden-Folwer equations of a
first and second type.

• LeNN-WOA-NM algorithm suggests series solutions
for TONMS-EFE. Weighted Legendre polynomials are
used for the approximation of our solutions. A fitness
function is used to assess the unknownweights, and error
is minimized by using the Nelder-Mead Algorithm.

• Results obtained by LeNN-WOA-NM algorithms are
compared with exact solutions and other evolution-
ary algorithms, including Particle swarm optimiza-
tion, Cuckoo search algorithm, and Whale optimization
algorithm.
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FIGURE 1. Flowchart for WOA-NM Algorithm.

• Mean absolute deviation (MAD), Theil’s inequality
coefficient(TIC) and Nash Sutcliffe efficiency (NSE),
and Normal probability graphs are the performance indi-
cations that have been used for performance measure-
ment of the proposed technique in providing the best
possible solution for TONMS-EFE.

• The results for TONMS-EFE are shown through dif-
ferent graphs and tables, which show the dominance
and robustness of the proposed (LeNN-WOA-NM)
algorithm.

II. CONSTRUCTING EMDEN-FOWLER TYPE EQUATIONS
OF THIRD-ORDER
To derive Emden-Fowler equation of third order we consider
an equation of the form

x−β
dm

dξm

(
ξβ

dn

dξn

)
φ + f (ξ )g(φ) = 0, (1)

where f (ξ ) and g(φ) are some functions of ξ and φ respec-
tively. β is shape factor. Emden-Folwer equation given by
Eq (1) represents multiple phenomenons in fluid mechanics,
pattern formation, relativistic mechanics, pattern formation,
relativistic mechanics and population evolution. To determine
third order equations we select

m+ n = 3, and m, n ≥ 1 (2)

From Eq (2) we have following two choices

m = 2, n = 1, (3)

and

m = 1, n = 2, (4)

Substituting m = 2 and n = 1 in Eq (1). We get

ξ−β
d2

dξ2

(
ξβ

d
dξ

)
φ + f (ξ )g(φ) = 0, (5)
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FIGURE 2. Graphical overview of third order non-linear multi singular Emden-fowler differential equation with different cases
depending on shape factor.

with set of initial conditions given as

φ(0) = A, φ′(0) = 0 and φ′′(0) = 0,

Eq (5) in turn gives First Emden-Folwer type equation
of order three as shown by Eq (6) along with initial
conditions Eq (7).

d3φ
dξ3
+

2β
ξ

d2φ
dξ2
+
β(β − 1)
ξ2

dφ
dξ
+ f (ξ )g(φ) = 0, (6)

φ(0) = A, φ′(0) = 0 and φ′′(0) = 0, (7)

Equivalently, Eq (6) can be written as

φ′′′ +
2β
ξ
φ′′ +

β(β − 1)
ξ2

φ′ + f (ξ )g(φ) = 0, (8)

with

φ(0) = A, φ′(0) = 0 and φ′′(0) = 0,

It can be noticed that singularity lies at ξ = 0 and singular
point appears twice as ξ and ξ2 with shape factor β and (β−1)
respectively.

Now considering the case when m = 1 and n = 2.
Substituting values of m and n in Eq (1). we have,

ξ−β
d
dξ

(
ξβ

d2

dξ2

)
φ + f (ξ )g(φ) = 0, (9)

Eq (9) in turn gives Second Emden-Folwer type equa-
tion of order three as shown by Eq (10) along with initial
conditions Eq (11).

d3φ
dξ3
+
β

ξ

d2φ
dξ2
+ f (ξ )g(φ) = 0, (10)

φ(0) = A, φ′(0) = 0 and φ′′(0) = 0, (11)

Equivalently, Eq (10) can be written as

φ′′′ +
β

ξ
φ′′ + f (ξ )g(φ) = 0, (12)

with

φ(0) = A, φ′(0) = 0 and φ′′(0) = 0.

Singular point is at ξ = 0 and appears with shape factor β
once in second case.

III. SERIES SOLUTIONS USING WEIGHTED LEGENDRE
POLYNOMIALS
Legendre polynomials denoted by Ln are well known orthog-
onal polynomials that can be used tomodel approximate solu-
tions. Table 1 represents first eleven ledendre polynomials.
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FIGURE 3. Solutions obtained by LeNN-WOA-NM approach for first and second type nonlinear singular Emden-Fowler differential
equation.

FIGURE 4. Weights achieved by LeNN-WOA-NM algorithm for best solutions of Problem 1, 2, 3 and 4.

Polynomials of higher order are formulated by using
Eq (13)

Ln+1(t) =
1

n+ 1
[(2n+ 1)tLn(t)− nLn−1(t)] , (13)

trial solution or approximate series solution in term of
weighted legendre polynomials for nonlinear Emden fowler
is considered as

φappox(ξ ) =
N∑
n=0

ζnLn (ψnξ + θn) , (14)

where, ζn, ψn and θn are unknown parameters.

Since, nth order continuous derivatives of Eq (14) exist.
So first derivative φ′(ξ ), second derivative φ′′(ξ ) and third
derivative φ′′′(ξ ) of Eq (14) are represented by the following
equations.

φ′appox(ξ ) =
N∑
n=1

ζnL ′n (ψnξ + θn) , (15)

φ′′appox(ξ ) =
N∑
n=4

wnL ′′n (ψnξ + θn) , (16)

φ′′′appox(ξ ) =
N∑
n=4

ζnL ′′′n (ψnξ + θn) . (17)
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FIGURE 5. Absolute errors in best solutions obtained by proposed algorithm for different problems.

FIGURE 6. Bar graphs of statistics representing attained values of LeNN-WOA-NM algorithm, PSO, CSA and WOA for performance indicators.
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FIGURE 7. Fitness analysis for Problem 1, 2, 3 and 4 during 80 independent runs.

TABLE 3. Comparison of approximate solutions obtained by proposed algorithm with PSO, CSA, WOA and exact solution for Problem 1 and 2.

where ζn, ψn and θn are real valued unknown
parameters.

IV. FITNESS FUNCTION FORMULATION
In this section, we formulate fitness/objective functions for
first and second type nonlinear Emden-Fowler type equa-
tions. Fitness function is based on mean square error (MSE)
in candidate solution that is used to train neurons (parameters)
in LeNN. It is defined as

Minimize ε = ε1 + ε2, (18)

where ε1 is associated to first type nonlinear Emden-Fowler
equation Eq (8) and ε2 is associated to boundary conditions

for Eq (8). Mathematically, ε1 and ε2 are given as

ε1=
1
N

N∑
β=1

(
d3φ
dξ3
+
2β
ξ

d2φ
dξ2
+
β(β − 1)
ξ2

dφ
dξ
+ f (ξ )g(φ)

)2

,

(19)

ε2=
1
3

(
(φ(0)− A)2+

(
dφ
dξ

(0)
)2

+

(
d2φ
dξ2

(0)
)2)

, (20)

For non-linear multi singular Emden-Fowler differential
equation of type second, ε1 and ε2 can be mathematically
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TABLE 4. Comparison of solutions obtained by proposed algorithm with WOA, PSO, CSA and exact solution for Problem 3 and Problem 4.

TABLE 5. Comparison between the absolute errors attained by proposed algorithm with WOA, PSO and CSA for Problem 1 and Problem 2.

expressed as

ε1 =

(
d3φ
dξ3
+
β

ξ

d2φ
dξ2
+ f (ξ )g(φ)

)2

, (21)

and

ε2=
1
3

(
(φ(0)− A)2+

(
dφ
dξ

(0)
)2

+

(
d2φ
dξ2

(0)
)2)

. (22)

where N = 1
h and h is a step size.

A. WHALE OPTIMIZATION ALGORITHM
Whale Optimization Algorithm (WOA) is nature inspired
technique given by Mirajlili and lewis [36] which imitate the
social behaviour of whales. The algorithm is inspired by the
bubble net hunting strategy.

Mathematical prescription for WOA is explained below:

1) ENCIRCLING PREY
Humpback whales encircles the recognized location of prey
(small fishes). Initially, in candidate space the location of

optimal design is not known. Position of encircled prey is
modified by WOA towards the global optimal result with an
increase in iterations. The hunting of prey is mathematically
modeled as Eq (23) and Eq (24).

D = |C ·
−→
X∗(t)− EX (t)|, (23)

EX (t + 1) =
−→
X∗(t)− EA.D, (24)

where ‘‘t’’ represents the current iterations, ‘‘X∗’’ indicates
the best value obtained so far, ‘‘X ’’ is a position vector, ‘‘||’’
gives the absolute value, ‘‘r’’ is a vector in interval [0,1], ‘‘.’’
and ‘‘+’’ represents element wise multiplication and addition
respectively. EA and EC are coefficient vectors and given as
follows:

EA = 2Ea · Er − Ea, (25)
EC = 2 · Er . (26)

2) BUBBLE NET ATTACKING METHOD
To model mathematical equations for Bubble net attacking
method two approaches are designed as follows:
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FIGURE 8. Convergence analysis of MAD during 80 independent runs for first and second type Emden-Fowler differential
equations.

TABLE 6. Comparison between the absolute errors attained by proposed algorithm with WOA, PSO and CSA for Problem 3 and Problem 4.

1. Shrinking encircling mechanism: ‘‘a’’ is a randomly
selected value and In the course of iterations, it linearly
decreases from 2 to 0. Its value can be achieved by Eq (27).

a = 2-t
2

Maxlter
. (27)

2. Spiral updating position: This approach evaluates the
distance between the prey and the humpbackwhale. Tomimic

the helix-shaped movement a spiral equation is defined as
follows:

EX (t + 1) = ED′ · ebl · cos(2π l)+
−→
X∗(t), (28)

where distance between the ‘‘ith’’ whale and the prey (best
result attained so far) is represented by

−→
D′ = |

−→
X∗(t)− EX (t)|,

shape of the logarithmic spiral is denoted by constant b and
l is a randomly selected number in [−1,1].
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FIGURE 9. Convergence analysis of TIC during 80 independent runs for first and second type Emden-Fowler differential equations.

TABLE 7. Best weight achieved for optimization of Eq (38) and Eq (41) by proposed algorithm.

We know that the humpback whale follows the
spiral-shaped path and shrinking circle to hunt the prey.
To model the simultaneous behaviour the probability is cho-
sen to be 50% between the two paths so the position of the
whales can be calculated by Eq (29).

EX (t + 1) =

{
EX∗(t)− EA · D, if p < 0.5
−→
D′ · ebl · cos(2π l)+

−→
X∗(t) if p ≥ 0.5,

(29)

where ‘‘p’’ is a random value in interval [0,1].

3) SEARCH FOR PREY
A vector ‘‘A’’ with a random values less than 1 or greater
then −1 is used to move a reference whale away from a
whale. The mathematical model of this mechanism is given
by Eq (30) and Eq (31).

ED = | EC ·
−−→
Xrand − EX |, (30)

EX (t + 1) =
−−→
Xrand − EA · ED. (31)

72120 VOLUME 9, 2021



Z. Yin et al.: Analysis of TONMS-EFE by Using LeNN-WOA-NM Algorithm

FIGURE 10. Convergence analysis of ENSE during 80 independent runs for first and second type Emden-Fowler differential
equations.

TABLE 8. Best weight achieved for optimization of Eq (44) and Eq (47) by proposed algorithm.

where
−−→
Xrand is an arbitrary whale taken from the current

population.
When the process for optimization is started then

WOA creates random population, initial population
and calculate the fitness function. Flow chart
of Whale optimization algorithm is given
in Figure 1.

B. NELDER-MEAD ALGORITHM
The optimized weights obtained by WOA for solution for
Eq (8) and Eq (11) are used as an initial guess or initial
weights for Nelder-Mead algorithm. Hence, an effective local
search mechanism is applied to furnish the approximate solu-
tion for the system. The detail procedure of Nelder-Mead
algorithm is explained below.
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FIGURE 11. Analysis on normal probability curves for Fitness value attained by LeNN-WOA-NM algorithm in
comparison with PSO, CSA and WOA for third order singular non-linear Emden-Fowler differential equation of type
first (Problem 1, 2) and second (Problem 3, 4).

The Nelder–Mead (NM) simplex search method is a direct
search method proposed by Nelder and Mead in 1965 [37].
It is a non-derivative search method that has widely been
used to solve multidimensional constrained/unconstrained
optimization problems [38], [39]. NM algorithm rescales
the simplex of n + 1 points based on the local behav-
ior of the function using four basic operations named as

reflection, expansion, contraction and shrink [24]. The struc-
ture of Nelder-Mead algorithm described in flow chart
given by Figure 1. Some recent application of NM algo-
rithm includes numerical simulation of dynamical model-
ing of Li-ion batteries for electric vehicle [40], nonlinear
Muskingum models [41], application to bankruptcy pre-
diction in banks [42] and optimization of TIG welding
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FIGURE 12. Analysis on normal probability curves for MAD attained by LeNN-WOA-NM algorithm in comparison with
PSO, CSA and WOA for third order singular non-linear Emden-Fowler differential equation of type first
(Problem 1, 2) and second (Problem 3, 4).

parameters [43]. Parameter setting for Nelder-Mead Algo-
rithm is given in Table 38.

V. LeNN-WOA-NM ALGORITHM
The steps for the proposed hybridized algorithm are summa-
rized as:

Initialization: Approximate/trial solution is considered
see Eq (14) and neurons in weighted Legendre polynomials
are initialized with randomly generated real number form the
candidate space.

Fitness Calculation: Whale optimization algorithm is
used to evaluate objective or fitness functions Eq (8)
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FIGURE 13. Analysis on normal probability curves for TIC attained by LeNN-WOA-NM algorithm in comparison with
PSO, CSA and WOA for third order singular non-linear Emden-Fowler differential equation of type first (Problem 1,
2) and second (Problem 3, 4).

and Eq (11) for first and second type non-linear
Emden-Fowler equation to update the unknown neu-
rons in LeNN structure until termination criteria is
achieved.

Storage: Weights obtained byWOA for minimum value of
fitness function are stored.

Initialize NM: Nelder-Mead algorithm starts the process
of optimization by considering values of ζn, ψn and θn
obtained by WOA as its initial guess.

Fitness Calculation: Fitness functions are evaluated with
updated weights of WOA. The process stops when termina-
tion criteria is achieved.
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FIGURE 14. Analysis on normal probability curves for ENSE attained by LeNN-WOA-NM algorithm in
comparison with PSO, CSA and WOA for third order singular non-linear Emden-Fowler differential equation of
type first (Problem 1, 2) and second (Problem 3, 4).

Storage: Save the optimal weights or variables of
the LeNN.

Flowchart of the proposed soft computing technique is
shown in Figure 1.

VI. PERFORMANCE INDICES
To check the efficiency of the designed technique in obtain-
ing solution to non-linear Emden-Fowler differential equa-
tion of first and second order the statistical operators
namely, mean absolute deviation (MAD), Theil’s inequality

coefficient (TIC) and Error in Nash Sutcliffe effi-
ciency (ENSE) are defined [25]. The mathematical formu-
lation of the operators is given as:

MAD =
1
n

n∑
m=1

∣∣φ(ξ )− φapprox(ξ )∣∣ , (32)

TIC =

√
1
n

∑n
n=1

(
φ(ξ )− φapprox(ξ )

)2
(
√

1
n

∑n
n=1(φ(ξ ))2 +

√
1
n

∑n
n=1(φapprox(ξ ))2)

,

(33)
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FIGURE 15. Analysis of Boxplot for fitness value of Problem 1, 2, 3 and 4 attained by LeNN-WOA-NM algorithm in
comparison with PSO, CSA and WOA.
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TABLE 9. Statistical analysis on fitness analysis for Problem 1 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

TABLE 10. Statistical analysis on mean absolute deviation for Problem 1 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

TABLE 11. Statistical analysis on Theil’s inequality coefficient for Problem 1 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

TABLE 12. Statistical analysis on Error in Nash Sutcliffe Efficiency for Problem 1 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

TABLE 13. Statistical analysis on Fitness Analysis for Problem 1 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

NSE =

{
1−

∑n
n=1

(
(φ(ξ )− φapprox(ξ )

)2∑n
n=1

(
(φ(ξ )− φ̄(ξ )

)2 , φ̄(ξ ) =
1
n

n∑
m=1

φ(ξ ) (34)
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FIGURE 16. Analysis of Boxplot for MAD of Problem 1, 2, 3 and 4 attained by LeNN-WOA-NM algorithm in
comparison with PSO, CSA and WOA.

ENSE = 1− NSE, (35)

where n denotes the number of grid points.

VII. NUMERICAL EXPERIMENTATION
In this section, different problems are considered of first
and second type multi singular non-linear third order

Emden-Fowler differential equations. The detail explanation
about problem is given below
Problem 1: Considering Non-Linear Emden-Fowler first

type equation with shape factor β = 4, f (ξ ) = 1 and g(φ) =
φm where m = 0.

d3φ
dξ3
+

8
ξ

d2φ
dξ2
+

12
ξ2

dφ
dξ
+ 1 = 0, (36)
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FIGURE 17. Analysis of Boxplot for TIC of Problem 1, 2, 3 and 4 attained by LeNN-WOA-NM algorithm in comparison
with PSO, CSA and WOA.

subjecting to initial conditions given as

φ(0) = 1, φ′(0) = 0 and φ′′(0) = 0,

exact solution for Eq (36) is given as φ(ξ ) = 1− 1
90 (ξ )

3 [44].
Fitness function for Eq (36) is formulated as

ε = ε1 + ε2, (37)

equivalently,

ε =
1
N

N∑
m=1

(
ξ2m

d3φ
dξ3m
+ 8ξm

d2φ
dξ2m
+ 12

dφ
dξm
+ ξ2m

)2

+
1
3

(
(φ0 − 1)2 +

(
dφ(0)
dξ

)2

+

(
d2φ(0)
dξ2

)2)
. (38)
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FIGURE 18. Analysis of Boxplot for ENSE of Problem 1, 2, 3 and 4 attained by LeNN-WOA-NM algorithm in
comparison with PSO, CSA and WOA.

Problem 2: Let shape factor β = 3, f (ξ ) = −6(10+2ξ3+
6ξ6) and g(φ) = e−3φ

d3φ
dξ3
+

6
ξ

d2φ
dξ2
+

6
ξ2

dφ
dξ
− 6(10+ 2ξ3 + 6ξ6)e−3φ = 0,

(39)

with

φ(0) = 0, φ′(0) = 0 and φ′′(0) = 0,

exact solution for Eq (39) is given as log(1+ξ3) [44]. Fitness
function for Eq (39) can be written as

ε = ε1 + ε2, (40)
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TABLE 14. Statistical analysis on Mean Absolute Deviation for Problem 2 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

TABLE 15. Statistical analysis on Theil’s inequality coefficient for Problem 2 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

TABLE 16. Statistical analysis on Error in Nash Sutcliffe Efficiency for Problem 2 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

TABLE 17. Statistical analysis on Fitness Analysis for Problem 2 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

TABLE 18. Statistical analysis on Mean Absolute Deviation for Problem 2 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

ε =
1
N

N∑
m=1

(
d3φ
dξ3m
+

6
ξ

d2φ
dξ2
+

6
ξ2m

dφ
dξm
− 6(10+ 2ξ3m

+6ξ6m)e
−3φ

)2
+
1
3

(
(φ0)

2
+

(
dφ(0)
dξ

)2

+

(
d2φ(0)
dξ2

)2)
. (41)

Problem 3: Consider non liner Emden-Fowler second type
equation with β = 2 and f (ξ ) = 6 eξ − 6ξeξ − 7ξ2eξ +
ξ6e2ξ .

d3φ
dξ3
−

2
ξ

d2φ
dξ2
− φ(ξ )− φ2(ξ )

+6eξ − 6ξeξ − 7ξ2eξ + ξ6e2ξ = 0, (42)
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TABLE 19. Statistical analysis on Theil’s inequality coefficient for Problem 2 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

TABLE 20. Statistical analysis on Error in Nash Sutcliffe Efficiency for Problem 2 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

TABLE 21. Statistical analysis on Fitness Analysis for Problem 4 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

TABLE 22. Statistical analysis on Mean Absolute Deviation for Problem 4 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

TABLE 23. Statistical analysis on Theil’s inequality coefficient for Problem 4 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

TABLE 24. Statistical analysis on Error in Nash Sutcliffe Efficiency for Problem 4 during 80 independent runs by proposed algorithm, PSO, CSA and WOA.
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with

φ(0) = 0, φ(1) = e and φ′(0) = 0,

exact solution for Eq (42) is given as ξ3eξ [45]. Fitness based
error function for Eq (42) can be written as

ε = ε1 + ε2, (43)

ε =
1
N

N∑
m=1

(
ξm

d3φ
dξ3m
− 2

d2φ
dξ2m
− ξmφ(ξ )

−ξmφ
2(ξ )+ 6ξmeξ − 6ξeξ − 7ξ3me

ξ
+ ξ7me

2ξ
+

1
2

)2

+
1
3

(
(φ0)

2
+ (ξ (1)− e)2 +

(
dφ(0)
dξ

)2
)
. (44)

Problem 4: Let β = 4,f (ξ ) = −(10 + 10ξ3 + ξ6) and
g(φ) = φ then third order non-linear Emden-Folwer second
type differential equation can be written as

d3φ
dξ3
+

4
ξ

d2φ
dξ2
− (10+ 10ξ3 + ξ6)φ = 0, (45)

subjected to initial conditions

φ(0) = 1, φ′(0) = 0 and φ′′(0) = 0,

φapprox = 0.408826+ (−0.75348ξ − 0.00245)(0.295031)

+

(
3(−1.21479ξ + 0.454315)2 − 1

2

)
(−0.16766)

+

(
5(−0.04107ξ + 0.152337)3 − 3(−0.04107ξ + 0.152337)

2

)
(−0.06449)

+

(
35(0.044146ξ − 0.11558)4 − 30(0.044146ξ − 0.11558)2

8
+
3
8

)
(−0.29711)

+

(
63(−0.21488ξ − 0.17881)5 − 70(−0.21488ξ − 0.17881)3

8

+
15(−0.21488ξ − 0.17881)

8

)
(−0.09996)

+

(
231(0.088679ξ − 0.01669)6 − 315(0.088679ξ − 0.01669)4

16

+
105(0.088679ξ − 0.01669)2 − 5

16

)
(−0.30059)

+

(
429(0.282416ξ − 0.04928)7 − 693(0.282416ξ − 0.04928)5

16

+
315(0.282416ξ − 0.04928)2 − 35(0.282416ξ − 0.04928)

16

)
(−0.74158)

+

(
6435(−0.01182ξ − 0.10028)8 − 12012(−0.01182ξ − 0.10028)6

128

+
6930(−0.01182ξ − 0.10028)4 − 1260(−0.01182ξ − 0.10028)2 + 35

128

)
(−0.25962)

+

(
12155(−0.19801ξ − 0.06235)9 − 25740(−0.19801ξ − 0.06235)7

128

+
18018(−0.19801ξ − 0.06235)5 − 4620(−0.19801ξ − 0.06235)3

128

+
315(−0.19801ξ − 0.06235)

128

)
(0.20468)

+

(
46189(−0.19802ξ − 0.02949)10 − 109395(−0.19802ξ − 0.02949)8

256

+
90090(−0.19802ξ − 0.02949)6 − 30030(−0.19802ξ − 0.02949)4

256

+
3465(−0.19802ξ − 0.02949)2 − 63

256

)
(−0.86668) (48)
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analytical solution obtained by [44] for Eq (45) is e
ξ3
3 . Fitness

based error function for Eq (45) can be formulated as

ε = ε1 + ε2, (46)

equivalently,

ε =
1
N

N∑
m=1

(
d3φ
dξ3m
+

4
ξm

d2φ
dξ2m
− (10+ 10ξ3m + ξ

6
m)φ

)2

+
1
3

(
(φ0 − 1)2 +

(
dφ(0)
dξ

)2

+

(
d2φ(0)
dξ2

)2)
, (47)

VIII. RESULTS AND DISCUSSION
This paper has presented the mathematical formulation
and analysis of first and second-type third-order nonlin-
ear multi singular Emden-Fowler equations (TONMS-EFE).
Four problems are considered with different shape factor
β, f (ξ ) and g(φ). Furthermore, an evolutionary soft com-
puting technique is designed to solve the TONMS-EFE see
Eq (8) and Eq (11). Approximate series solutions for different
problems obtained by the LeNN-WOA-NM algorithm are
compared with PSO, CSA, WOA, and exact solutions [44].

The optimization performance of the proposed technique
for Eq (8) and Eq (11) is perform for 80 independent

φapprox = 0.254318+ (1.050468ξ + 0.041362)(0.906695)

+

(
3(0.823686ξ + 1.375421)2 − 1

2

)
(−0.08091)

+

(
5(0.04151ξ + 0.049329)3 − 3(0.04151ξ + 0.049329)

2

)
(0.16959)

+

(
35(−0.49358ξ + 0.571303)4 − 30(−0.49358ξ + 0.571303)2

8
+
3
8

)
(0.128204)

+

(
63(−0.14611ξ − 0.10208)5 − 70(−0.14611ξ − 0.10208)3

8

+
15(−0.14611ξ − 0.10208)

8

)
(−0.00193)

+

(
231(3.659748ξ + 0.467711)6 − 315(3.659748ξ + 0.467711)4

16

+
105(3.659748ξ + 0.467711)2 − 5

16

)
(−0.25302)

+

(
429(0.659495ξ − 0.05414)7 − 693(0.659495ξ − 0.05414)5

16

+
315(0.659495ξ − 0.05414)2 − 35(0.659495ξ − 0.05414)

16

)
(0.361584)

+

(
6435(−0.27381ξ + 0.061146)8 − 12012(−0.27381ξ + 0.061146)6

128

+
6930(−0.27381ξ + 0.061146)4 − 1260(−0.27381ξ + 0.061146)2 + 35

128

)
(0.000882)

+

(
12155(0.366455ξ − 0.33945)9 − 25740(0.366455ξ − 0.33945)7

128

+
18018(0.366455ξ − 0.33945)5 − 4620(0.366455ξ − 0.33945)3

128

+
315(0.366455ξ − 0.33945)

128

)
(0.058533)

+

(
46189(0.557791ξ + 0.340865)10 − 109395(0.557791ξ + 0.340865)8

256

+
90090(0.557791ξ + 0.340865)6 − 30030(0.557791ξ + 0.340865)4

256

+
3465(0.557791ξ + 0.340865)2 − 63

256

)
(0.349444) (49)
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executions. The graphical performance of the design scheme
for all four problems is illustrated in Figures 3-10. Approxi-
mate solutions obtained by the LeNN-WOA-NM algorithm
for problem 1, 2, 3, and IV are demonstrated through
Figures 3(a), 3(b), 3(c) and 3(d) respectively. The unknown
weights in LeNN for calculation of best solutions are visual-
ized in Figure 4. The absolute error graphs from the exact
solution are demonstrated in Figure 5 for each problem.
Figure 6 depicts the comparison of the minimum, mean,
median, mode, standard deviation, and variance of fit-

ness, MAD, TIC, and ENSE obtained by LeNN-WOA-
NM algorithm with CSA, PSO, and WOA for the four
problems.

Tables 3 and 4 represents the comparison of solutions at
each step size. The values of absolute errors (AE) in Tables 5
and 6 lie around −10−12 to −10−14, −10−5 to −10−8,
−10−8 to −10−10 and −10−7 to −10−9 for problem 1, 2,
3 and 4 respectively. Unknown weights obtained by proposed
algorithm for optimization of fitness function Eqs (38), (41),
(44) and (47) are dictated in Tables 7 and 8. It is clear

φapprox = −0.0002552+ (0.5471011ξ − 0.0915667)(−0.7318864)

+

(
3(0.90428437ξ + 0.8850403)2 − 1

2

)
(−0.0911262)

+

(
5(−0.1608536ξ − 0.2076278)3 − 3(−0.1608536ξ − 0.2076278)

2

)
(0.75734771)

+

(
35(−0.31751ξ + 0.816637)4 − 30(−0.31751ξ + 0.816637)2

8
+
3
8

)
(−0.295161)

+

(
63(−0.0390982ξ + 0.67666348)5 − 70(−0.0390982ξ + 0.67666348)3

8

+
15(−0.0390982ξ + 0.67666348)

8

)
(−0.0707813)

+

(
231(0.4659305ξ + 0.2888783)6 − 315(0.4659305ξ + 0.2888783)4

16

+
105(0.4659305ξ + 0.2888783)2 − 5

16

)
(0.78111333)

+

(
429(0.65746316ξ + 0.43559105)7 − 693(0.65746316ξ + 0.43559105)5

16

+
315(0.65746316ξ + 0.43559105)2 − 35(0.65746316ξ + 0.43559105)

16

)
(−0.084667)

+

(
6435(0.867974ξ + 0.640784)8 − 12012(0.867974ξ + 0.640784)6

128

+
6930(0.867974ξ + 0.640784)4 − 1260(0.867974ξ + 0.640784)2 + 35

128

)
(0.00571)

+

(
12155(−0.0082419ξ − 0.4193387)9 − 25740(−0.0082419ξ − 0.4193387)7

128

+
18018(−0.0082419ξ − 0.4193387)5 − 4620(−0.0082419ξ − 0.4193387)3

128

+
315(−0.0082419ξ − 0.4193387)

128

)
(−0.1662331)

+

(
46189(0.02639607ξ + 0.00074241)10 − 109395(0.02639607ξ + 0.00074241)8

256

+
90090(0.02639607ξ + 0.00074241)6 − 30030(0.02639607ξ + 0.00074241)4

256

+
3465(0.02639607ξ + 0.00074241)2 − 63

256

)
(0.5335582) (50)
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from Tables 9, 13, 17 and 21 the objective values (fitness
values) lie round 10−12, 10−6, 10−8 and 10−7 for problem
1 to 4 respectively. It is clear from Tables 10, 14, 18 and 22
that values of mean absolute deviation (MAD) lie round
10−9, 10−3, 10−3 and 10−6 for problem 1 to 4 respectively.
It is clear from Tables 11, 16, 19 and 23 that values of
Theil’s inequality coefficient (TIC) lie round 10−9, 10−3,
10−4 and 10−6 for problem 1 to 4 respectively. It is clear from
Tables 12, 17, 20 and 24 that values of Error in Nash Sutcliffe
efficiency (ENSE) lie round 10−12, 10−4, 10−6 and 10−9 for
problem 1 to 4 respectively.

Bar graphs given in Figure 6 demonstrates the com-
parison of values of fitness, MAD, TIC, and ENSE
obtained by the LeNN-WOA-NM algorithm with PSO, CSA,
and WOA for each problem. The convergence of
fitness value, MAD, TIC, and ENSE during 80 indepen-
dent runs are shown through Figure 7-10. Normal proba-
bility curves and boxplots for performance indicators are
shown in Figures 11-18. Extensive statistical and graph-
ical analysis illustrates the effectiveness of the proposed
algorithm in solving nonlinear-multi singular differential
equations.

φapprox = 0.73308615+ (0.51580967ξ + 0.70179544)(0.5402041)

+

(
3(0.44315273ξ + 0.20778173)2 − 1

2

)
(0.46296807)

+

(
5(0.23240265ξ + 0.48175825)3 − 3(0.23240265ξ + 0.48175825)

2

)
(0.22761992)

+

(
35(0.696457ξ + 0.193803)4 − 30(0.696457ξ + 0.193803)2

8
+
3
8

)
(0.476976)

+

(
63(0.6068485ξ + 0.57723262)5 − 70(0.6068485ξ + 0.57723262)3

8

+
15(0.6068485ξ + 0.57723262)

8

)
(0.16011539)

+

(
231(0.1941152ξ + 0.31740822)6 − 315(0.1941152ξ + 0.31740822)4

16

+
105(0.1941152ξ + 0.31740822)2 − 5

16

)
(0.39211912)

+

(
429(0.3545657ξ + 0.21980521)7 − 693(0.3545657ξ + 0.21980521)5

16

+
315(0.3545657ξ + 0.21980521)2 − 35(0.3545657ξ + 0.21980521)

16

)
(0.46826468)

+

(
6435(0.20798017ξ + 0.17682492)8 − 12012(0.20798017ξ + 0.17682492)6

128

+
6930(0.20798017ξ + 0.17682492)4 − 1260(0.20798017ξ + 0.17682492)2 + 35

128

)
(0.28322033)

+

(
12155(0.53476583ξ + 0.41144797)9 − 25740(0.53476583ξ + 0.41144797)7

128

+
18018(0.53476583ξ + 0.41144797)5 − 4620(0.53476583ξ + 0.41144797)3

128

+
315(0.53476583ξ + 0.41144797)

128

)
(0.21299134)

+

(
46189(0.13224697ξ + 0.31148234)10 − 109395(0.13224697ξ + 0.31148234)8

256

+
90090(0.13224697ξ + 0.31148234)6 − 30030(0.13224697ξ + 0.31148234)4

256

+
3465(0.13224697ξ + 0.31148234)2 − 63

256

)
(0.00013506) (51)
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Nomenclature:

Abreviation Discriptions
LeNN Legendre Neural Networks
NM Nelder-Mead
MAD Mean Absolute Diviation
TIC Theil’s inequality coefficient
NSE Nash Sutcliffe efficiency
ENSE Error in Nash Sutcliffe efficiency
PSO Particle Swarm Optimization
CSA Cuckoo search Algorithm
WOA Whale Optimization Algorithm
β Shape factor
α Reflection Coefficient
δ Shrink
γ Contraction
t Current iteration in WOA
X∗ Best value obtained so far
EA, EC Coefficient Vectors
EXrand Random whale

IX. CONCLUSION
In this work, we have formulated third-order nonlinear multi
singular Emden-Fowler equations. Furthermore, we have
designed novel soft computing that hybridized global search
exploitation of WOA with local search exploration of the
NM algorithm. The combination is named as LeNN-WOA-
NM algorithm. Weighted Legendre polynomials are used to
model approximate series solutions for third-order nonlinear
multi-singular Emden-Fowler differential equations, and fit-
ness functions are constructed to evaluate the candidate solu-
tions. Some significant findings of the study are summarized
below as:

• The design of a soft computing paradigm, the
LeNN-WOA-NM algorithm, is effectively applied to
solve nonlinearmulti-singular third-order Emden–Fowler
models of the first and second type.

• The accuracy and robustness of the present scheme
are proven by comparing the proposed results with the
exact solutions, PSO, CSA, and WOA for different
Emden–Fowler equation problems.

• The statistical analysis and assessments based on
80 independent executions of the LeNN-WOA-NM
algorithm establish the accuracy and convergence
of the proposed algorithm for solving real-world
problems.

Approximate solution for Eq (36) is given (48), as shown
at the bottom of the 23rd page.

Approximate solution for Eq (39) is given (49), as shown
at the bottom of the 24th page.

Approximate solution for Eq (42) is given (50), as shown
at the bottom of the 25th page.

Approximate solution for Eq (45) is given (51), as shown
at the bottom of the 26th page.

REFERENCES
[1] H. J. Lane, ‘‘On the theoretical temperature of the sun, under the hypothesis

of a gaseous mass maintaining its volume by its internal heat, and depend-
ing on the laws of gases as known to terrestrial experiment,’’ Amer. J. Sci.,
vol. 148, pp. 57–74, Jul. 1870.

[2] R. Emden, Gaskugeln: Anwendungen Der Mechanischen Wärmetheorie
Auf Kosmologische Und Meteorologische Probleme. Berlin, Germany: BG
Teubner, 1907.

[3] I. Ahmad,M.A. Z. Raja,M. Bilal, and F. Ashraf, ‘‘Neural networkmethods
to solve the Lane–Emden type equations arising in thermodynamic studies
of the spherical gas cloud model,’’ Neural Comput. Appl., vol. 28, no. S1,
pp. 929–944, Dec. 2017.

[4] D. Baleanu, S. S. Sajjadi, A. Jajarmi, and J. H. Asad, ‘‘New features of
the fractional Euler-Lagrange equations for a physical system within non-
singular derivative operator,’’ Eur. Phys. J. Plus, vol. 134, no. 4, p. 181,
Apr. 2019.

[5] J. A. Khan, M. A. Z. Raja, M. M. Rashidi, M. I. Syam, and A. M. Wazwaz,
‘‘Nature-inspired computing approach for solving non-linear singular
Emden–Fowler problem arising in electromagnetic theory,’’ Connection
Sci., vol. 27, no. 4, pp. 377–396, Oct. 2015.

[6] R. Rach, J.-S. Duan, and A.-M. Wazwaz, ‘‘Solving coupled Lane–Emden
boundary value problems in catalytic diffusion reactions by the adomian
decomposition method,’’ J. Math. Chem., vol. 52, no. 1, pp. 255–267,
Jan. 2014.

[7] K. Boubaker and R. A. Van Gorder, ‘‘Application of the BPES to Lane–
Emden equations governing polytropic and isothermal gas spheres,’’ New
Astron., vol. 17, no. 6, pp. 565–569, Aug. 2012.

[8] A. Bhrawy, A. Alofi, and R. V. Gorder, ‘‘An efficient collocation method
for a class of boundary value problems arising in mathematical physics and
geometry,’’ Abstract Appl. Anal., vol. 2014, Jan. 2014, Art. no. 425648.

[9] J. I. Ramos, ‘‘Linearization methods in classical and quantum
mechanics,’’ Comput. Phys. Commun., vol. 153, no. 2, pp. 199–208,
Jun. 2003.

[10] T. Luo, Z. Xin, and H. Zeng, ‘‘Nonlinear asymptotic stability of the Lane-
Emden solutions for the viscous gaseous star problem with degenerate
density dependent viscosities,’’ Commun. Math. Phys., vol. 347, no. 3,
pp. 657–702, Nov. 2016.

[11] M. Dehghan and F. Shakeri, ‘‘Solution of an integro-differential equation
arising in oscillating magnetic fields using he’s homotopy perturbation
method,’’ Prog. Electromagn. Res., vol. 78, pp. 361–376, 2008.
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