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ABSTRACT In this paper, we propose and design a Ge-doped air-core ring fiber, which can support a large
amount of OAMmodes for mode-division multiplexing (MDM) in optical fiber communications. By varying
the mole fraction of GeO2 and adjusting the structure parameter, including the air-core radius and the GeO2-
doped ring width, we investigate the influence of different fiber parameters on the total supported OAM
mode number. The hollow silica fiber with a 50-µm air core and a 1.5-µm thickness of Ge-doped ring is
designed in simulation to support fiber eigenmodes up to HE112,1 and EH107,1. This provides 436 OAM
modes at 1550 nm while maintaining radially single mode condition. Moreover, it can support more than
400 radially fundamental OAM modes for the wavelength from 1460 nm to 1625 nm, covering entire S,
C and L bands. The optical parameters of the guided OAMmodes in the fiber are also numerically analyzed,
including effect of material loss, optical field distribution, effective refractive index profile and chromatic
dispersion, etc. The simulation results show that the higher-order OAM modes have longer 2π and 10-ps
walk-off length in the air-core ring fiber with ellipticity or bending compared with low-order modes.

INDEX TERMS Orbital angular momentum, fiber optics, ring fiber, multiplexing.

I. INTRODUCTION
Orbital angular momentum (OAM) beams associated with
azimuthal phase dependence of the complex electric field
have gained tremendous interest in recent years. It can
potentially facilitate a variety of applications, such as
micromanipulation [1], [2], imaging [3], [4], laser material
processing [5], [6] and sensing [7], [8]. An OAM-carrying
beam, which can be described in the spatial phase form of
exp(ilϕ) (l = 0,±1,±2, . . .), has a doughnut shaped intensity
profile due to its twisted helical phase front. The amount
of 2lπ phase shift that occurs in the azimuthal direction repre-
sents different states or modes, which are orthogonal to each
other while propagating coaxially. Consequently, they are
completely independent to other multiplexing dimensions,
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such as wavelength and polarization, in tradition optical
communication systems, thus can create an additional set of
data carriers by mode-division multiplexing (MDM) system,
to further improve the transmission rate and spectrum effi-
ciency [9]–[11]. There are also some other ways of multiplex-
ing modes in optical fibers, such as LP modes [12]–[14] and
supermodes [15]–[17]. However, they require multiple-input
multiple-output (MIMO) technology with high complexity.
OAM modes couple less than LP modes do, lessening the
need for MIMO processing [18].

Efficiently maintaining the OAMmodes in an optical fiber
is of great importance. However, compared with linearly
polarized (LP) modes, OAM modes are unable to propa-
gate steadily in a conventional fiber as unwanted radially
higher-order modes will be excited and can be easily coupled
to each other. Ring fiber could potentially maintain stable
OAM modes during propagation. Since OAM modes have
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similar annular shape profiles as the ring fiber, they can
be effectively preserved when propagating in the ring fiber.
Due to this unique characteristic, ring-shaped high-index
fiber has been proposed to stably guide and transmit OAM
modes [19]–[26]. In recent years, lots of researches propose
and experimentally demonstrate that the ring fiber with a
hollow air-core can support more OAM modes because of
its improved index contrast between the high-index ring and
core regions of the fiber [27], [28]. A laudable goal would
be to further increase the number of guided OAM modes
by properly designing the ring fiber. The reach and stability
of OAM mode propagation in the ring fiber can potentially
provide an effective avenue for a host of different applica-
tions. In our previous research, an air-core As2S3 ring fiber
is introduced for supporting numerous OAM modes [29]
and OAM supercontinuum generation [30], [31], which is
promising but challenging because the complex fabrication
procedure. Compared to using As2S3 as high-index ring
region, Ge-doped glass is more frequently used core material
of telecommunication optical fiber, as its many excellent
physical properties are close to silica glass.

In this paper, we design and numerically analyze an air-
core GeO2-doped ring fiber for supporting numerous OAM
modes. By varying the mole fraction of GeO2 and optimizing
the structure parameter, the mode properties and propagation
effects of OAM modes in the proposed fiber are numeri-
cally analyzed. The simulation results show that the designed
fiber with 50-µm air-core radius and 1.5-µm ring width
can simultaneously support 436 radially fundamental OAM
modes at 1550 nm. Meanwhile, more than 400 OAM modes
can be supported across S, C, and L bands (from 1460 nm to
1625 nm). Moreover, the characteristics of the optical field
distribution, effective refractive index profile and chromatic
dispersion are also calculated for supported OAM modes in
the fiber. The results show that this design could ensure the
large effective index difference between the adjacent modes,
improving the stability of the OAM modes transmission.
Besides, the effective refractive index difference of even and
odd fiber eigenmodes induced by the fiber ellipticity or bend-
ing, and their impacts on the walk-off length are carefully
analyzed. Compared to low-order OAM modes, the higher
order OAMmodes are more tolerant to these fiber variations.
The proposed fiber could represent a promising avenue for
increasing the transmission capacity in optical OAM-based
communications systems.

II. DESIGN OF THE GE-DOPED AIR-CORE FIBER
Here, the designed fiber we propose has a hollow air-core
as a repulsive barrier and a high-index Ge-doped ring region
as the transport layer to guide the OAM modes. Figure 1(a)
illustrates the concept of OAM mode multiplexing, which
is a process of transmitting multiple OAM modes in the
designed air-core ring fiber simultaneously, representing the
OAMmodes with different l states are multiplexed. The cross
section and the refractive index profile of the proposed fiber
are shown in Figure 1(b). The air-core used here can force

FIGURE 1. (a) Concept of OAM mode multiplexing; (b) Cross-section of
the Ge-doped air-core ring fiber and index profile of three waveguide
layers.

the mode field to encounter the large index contrast between
the high-index ring and the outer cladding [27]. Moreover,
a 125-µm fiber cladding diameter is chosen, which is the
same as the standard single-mode optical fiber (SMF). This
structure could significantly reduce the intermodal coupling
by increasing the mode effective refractive index difference.
From the fabrication point of view, the material selection
and fiber structure design are feasible as the fiber with solid
cladding and a high refractive index germanium doped silica
ring core has been manufactured in practice [21], which can
be performed by using the modified chemical vapor deposi-
tion (MCVD) method [32], [33].

III. MODE PROPERTY
A. EFFECT OF GeO2 CONCENTRATION
In the practical application, preserving only the radially fun-
damental OAM modes in the designed fiber could signifi-
cantly help avoid the crosstalk of the first radial order and the
higher radial order OAM modes, simplifying the processes
of multiplexing and demultiplexing [34]–[36].We investigate
the relationship between different mole fraction of GeO2 and
the ring width (1r), while maintaining single-radial mode
condition. One can see from Figure 2(a), as the mole frac-
tion of GeO2 decreases, the range of ring width to maintain
single-radial mode condition becomes more adjustable. The
largest ring widths of the fiber for 50 mol.%, 80 mol.% and
100mol.% fractions of GeO2 are 1.5µm, 1.7µmand 2.2µm,
corresponding to the material refractive indices at 1550 nm
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are 1.5173, 1.5596 and 1.5871, respectively. The material
refractive indices of Ge-doped silica are obtained by using
the Sellmeier equations in our model [37], [38].

FIGURE 2. (a) The ring width (1r ) of the designed fiber to maintain
single-radial mode condition and corresponding material refractive index
of the ring region as a function of different mole fraction of GeO2;
(b) OAM mode number and loss of GeO2-based fiber from [30] as a
function of different mole fraction of GeO2.

Figure 2(b) depicts the relationship between OAM mode
number and optical-loss from different concentration cate-
gories at 1550 nm. According to the research, the fiber with
51, 75, and 97 mol.% GeO2 can supported 258, 356 and 428
OAM mode number, while the corresponding optical-loss
are about 10, 40 and 242 dB/km at 1550 nm, respectively.
Consequently, the trade-off between the material loss and the
supportedmode numbers should be considered on the basis of
fiber’s different applications, in which the fiber with higher
mole fractions of GeO2 can support more OAM modes but
the fiber’s optical loss also grows up [39].

B. SUPPORTED OAM MODE NUMBER
Full-vector finite-element-method (FEM) is a popular choice
for numerical modeling optical fiber properties, such as effec-
tive refractive index, loss, dispersion, effective area, and so
on. We then investigate the supported OAM mode number
variations in the designed Ge-doped air-core ring fiber as a
function of different air-core radii (r1) with different mole

FIGURE 3. OAM mode number in the designed ring fiber as a function of
the air-core radius (r1) with different mole fraction of GeO2.

fraction by FEM as shown in Figure 3. The largest ring width
is chosen under the condition of fiberwith differentmole frac-
tion. One can consider that possible design with large r1 can
increase the supported OAM mode number, which is mainly
due to that larger air-core radius has more radial space to
support more fiber eigenmodes. The Ge-doped air-core ring
fiber with parameters of r1 = 50 µm and 1r = 1.5 µm can
support the eigenmodes up to HE112,1 and EH107,1 at
1550 nm, i.e. 436 OAM modes in total. Furthermore, the
increase of GeO2 concentration can further increase the
number of supported OAM modes due to larger material
index-contrast, but with sacrificed fiber loss according to the
foregoing result.

FIGURE 4. OAM mode number of the designed fiber with r1 = 50 µm as a
function of wavelength with different mole fraction of GeO2.

The supported OAM mode number as a function of wave-
length with different mole fraction of GeO2 in the designed
fiber with r1 = 50 µm is checked in Figure 4. The solid line
corresponds to the result of maintaining only the single-radial
OAM mode. On the other hand, the dot line represents that
the unwanted radially second-order OAM modes appear. For
the designed fibers with different mole fractions of GeO2
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under the largest ring width, the radially high-order modes
all appear from 1460 nm to shorter wavelength. We found
that numerous OAM modes would be provided across S, C,
and L-band for the designed fiber with r1 = 50 µm and
100 mol.% fractions of GeO2 in the single-mode condition
of radial direction, which linearly decrease with wavelength
and reach the minimum to about 400 at 1625 nm. Besides,
the fiber with r1 = 50 µm and 50 mol.% mole fractions
of GeO2 is expected to support up to approximately 300
radially fundamental OAM modes across S, C, and L-band
ranged from 1460 nm to 1625 nm. Though the supported
OAM mode numbers for the proposed fiber in the short
wavelength are very high, it will lose the radially single-mode
condition.

FIGURE 5. The normalized intensity and phase distribution of the
OAM3,1, OAM5,1, OAM22,1, OAM101,1, OAM104,1 modes in the air-core
ring fiber (r1 = 50 µm, 1r = 1.5 µm).

For the ring fiber with r1 = 50 µm and 100 mol.% mole
fractions of GeO2 across C and L bands from 1530 nm to
1625 nm, 436 OAM modes can be supported by HEm,1 and
EHn,1 (m = 2 ∼ 105, n = 1 ∼ 100). The property of the
EH modes are closer to that of the TM mode, while the
characteristics of the HE mode are closer to that of the TE
mode. For example, the electric field lines of the TM mode
radiate outward from the center, so is the one of the EH
mode. Consequently, we can distinguish HE and EH eigen-
modes from their electric field distributions. As an example,
Figure 5 depicts the simulation of the normalized inten-
sity profiles and the phase distributions for some OAMl,1
modes (HE4,1, HE6,1, HE23,1, EH100,1 and HE105,1 corre-
spond to OAM3,1, OAM5,1, OAM22,1, OAM101,1, OAM104,1
modes, respectively) in the fiber, which are made up by
the even and odd eigenmodes (OAM±

±l,1 = HEevenl+1,1 ±

jHEoddl+1,1,OAM
∓

±l,1 = EH even
l−1,1 ± jEH

odd
l−1,1). For OAM mode

with |l| = 1, there are OAM±
±1,1 = HEeven2,1 ± jHEodd2,1

and OAM∓
±1,1 = TM even

0,1 ± jTEodd0,1 . However, TM0,1 and
TE0,1 mode supported in this structure cannot degenerate
into a stable OAM mode due to large propagation constant
difference. The shape of the ring-like intensity distribution
still remains and well-confined in the ring fiber. Moreover,
the phase distribution of the OAMl,1 mode shows a 2lπ
change azimuthally, which provides a chance to efficiently
demultiplex these OAMmodes with different orders by using
a conjugate phase pattern.

FIGURE 6. (a) Effective refractive index and (b) dispersion of the
designed fiber with parameters of r1 = 50 µm and 1r = 1.5 µm as a
function of wavelength for different vortex modes.

C. OPTICAL PROPERTIES IN S + C + L BANDS
The effective index and chromatic dispersion are studied to
assess the MDM application capability in the S, C, and L
band and the simulation results are summarized in Figure 6.
The effective refractive indices (neff ) of some OAM modes
supported in the air-core ring fiber with fiber parameters
of r1 = 50 µm and 100 mol.% mole fractions of GeO2
over S, C and L bands are illustrated in Figure 6(a). All
the effective indices of the OAM modes can only be packed
somewhere between the refractive index of the silica cladding
and the refractive index of the high-index Ge-doped ring.
Furthermore, higher-order mode has a lower effective refrac-
tive index than the lower-order mode. We can also observe
that neff of the eigenmodes monotonously decrease with
the wavelength. The effective index difference between the
HEl+1,1 and EHl−1,1 modes in a group of OAMl,1 should
be maintained above 10−4 to assure the good separation and
preclude linearly polarized (LP) mode formation according
to the previous researches [21]. From the calculated results,
the condition is more achievable for the lower topological
charge. For the lowest-order mode |l| = 1 family, the HE3,1
and EH1,1 mode have enough index difference with about
10−2 separation. Furthermore, the lowest effective index
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difference between HE102,1 and EH100,1 within |l| =
101 family can reach to approximately 6.3×10−4 conducing
the stable transmission of OAM modes across the whole S,
C and L bands.

Dispersion is an effect that can spread the light pulse in
the time domain, which can decrease the performance of a
signal transmitted in the optical fiber. It is usually composed
by two sources of dispersion including waveguide dispersion
and material dispersion. The following simulation results
show the total dispersion including the waveguide and mate-
rial dispersions. The dispersion characteristics of the eigen-
modes that form OAM modes in the air-core ring fiber with
50-µm r1 and 100 mol.% mole fractions of GeO2 are shown
in Figure 6(b). Noted that the HE2,1 and EH1,1 modes feature
low dispersion (−4.133 ps/nm/km and 14.467 ps/nm/km) at
1550 nm and small dispersion variations (<3.958 ps/nm/km
and 3.294 ps/nm/km) across S, C and L bands, while the
chromatic dispersion increases to more than 400 ps/nm/km
as the mode order becomes higher. Although the chromatic
dispersion of some high-order OAM mode is very large,
we expect that they could be compensated by OAM disper-
sion compensating fiber (DCF), which have large negative
dispersion [36], [40] and digital signal processing (DSP) in
the coherent transmission systems according to the previous
studies [41].

D. FIBER ELLIPTICITY AND BENDING
In the practical fiber optics communication, OAM modes
are sensitive to some perturbations imposed on the ring
fiber, such as stress, strain and twist which can lead to fiber
deformation. Therefore, the nonperfect circularity (elliptic-
ity) and fiber bends resulting from transmission environment
will deteriorate the OAM modes transmitted in the optical
fiber-based system. Ellipticity and bending of the fiber will
cause a difference to the propagation constants of the even and
odd modes for HEl−1,1 or EHl+1,1, which form the OAMl,1
mode and thus affect the mode profile and purity of OAM
modes.

The ellipticity and bending effects on the proposed fiber
are calculated for the effective refractive index difference of
the even and odd fiber eigenmodes which compose OAM
modes as shown in Figure 7. We note that the fiber ellip-
ticity and bending have a mirror effect on the characteristics
of the high-order modes. This is mainly because that more
azimuthal periods in the high-order OAM modes’ transverse
field distribution could help mitigating the influence from
fiber deformation. Figure 7(a) shows that the effective refrac-
tive index difference of EH1,1 mode increase from about 10−6

to 10−4 as the ellipticity of air-core ring fiber increases from
0.1% to 2%. For high-order OAM modes (composed by the
even and odd modes of EH100,1 and HE105,1), the effective
refractive index differences are always around 1 × 10−10.
The effective refractive index differences of both HE2,1 and
EH1,1 modes increase about 60 times with bending radius
r = 30 mm compared to straight fiber as shown
in Figure 7(b). The effective refractive index differences of

FIGURE 7. The effective refractive index differences as functions of
(a) ellipticity and (b) bend radius of the designed fiber with r1 = 50 µm
and 1r = 1.5 µm for some OAM modes.

the high-order OAM modes can keep stable in any bending
environment for bending radius up to 30 mm.

The temporal walk-off effect upon propagation reveals the
influence of the fiber inter-modal crosstalk. Here, we calcu-
late L2π and L10ps to evaluate the intramode walk-off of the
OAM modes at 1550 nm. 2π walk-off length (L2π ), known
as the propagation length when the even and odd modes have
a 2π relative phase shift, can be expressed as

L2π =
λ

neveneff − n
odd
eff

=
1.55× 10−6

neveneff − n
odd
eff

(m) (1)

where λ is the wavelength, neveneff and noddeff are the effective
refractive indices of the even and odd eigenmodes, respec-
tively. 10-ps walk-off length (L10ps), to describe the propaga-
tion length when the even and odd fiber eigenmodes have a
10-ps temporal walk off, represents the impact of temporal
walk-off on the signal quality. It can be characterized as

L10ps =
c×1t

neveneff − n
odd
eff

=
3× 10−3

neveneff − n
odd
eff

(m) (2)

where c and 1t are the vacuum velocity of light and the
temporal walk-off time, respectively [13], [23].
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FIGURE 8. 2π and 10-ps walk-off length as functions of (a) ellipticity and
(b) bend radius of the designed fiber with r1 = 50 µm and 1r = 1.5 µm
for some OAM modes.

The walk-off length variations of some OAM modes sup-
ported in the designed fiber with parameters of r1 = 50 µm
and 100 mol.% mole fractions of GeO2 as functions of fiber
ellipticity and bend radius are depicted in Figure 8(a) and (b).
For the higher-order OAM modes, its smaller modal index
difference (neveneff − noddeff ) induced by the fiber ellipticity or
bending leads to a longer 2π and 10-ps walk-off length.
In particular, for the highest-order OAMmodes (EH100,1 and
HE105,1 corresponded OAM101,1 and OAM103,1 modes) can
propagate more than 106 mwith<10-ps mode walk-off, even
in an air-core ring fiber with 2% ellipticity. However, for the
low-order OAMmodes, the modal index differences increase
tremendously with the fiber ellipticity and bending, resulting
in a shorter walk-off length. This means instability transmis-
sion of low-order OAMmodes when suffering environmental
disturbance.

E. MODE PURITY
For fibers with the large discontinuity in the refractive index
profile, strong spin-orbit coupling occurs, and it will result
in impure eigenmodes [42]. Here, we numerically investigate
the OAM mode purity in the designed air-core fiber at the
wavelength of 1550 nm, which is an important indicator to
measure the stability of the supported OAM modes. The
transverse components of the OAM modes in the cylindrical

FIGURE 9. OAM mode purity as functions of (a) different air-core radius
of the designed fiber with 1r = 1.5 µm and 100 mol.% GeO2,
(b) different mole fraction of GeO2 of the designed fiber with r1 = 50 µm,
and (c) different OAM order of the designed fiber with r1 = 50 µm and
10 mol.% GeO2.

coordinates (r , ϕ) can be written as [28], [43], [44],

OAM±
±l,1 = f l+1(r)e

±ilϕ σ̂
± ± gl+1(r)e

±i(l+2)ϕ σ̂
∓

(3a)

OAM∓
±l,1 = f l−1(r)e

±ilϕ σ̂
∓ ± gl−1(r)e

±i(l−2)ϕ σ̂
±

(3b)
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TABLE 1. Supported OAM mode number in fibers.

where σ̂
± means right or left polarization. Moreover,

f l±1(r) and gl±1(r) are related to the fiber design param-
eters, which varies with the ring thickness and core radius.
According to the equation, the dominant component is
OAMl,1, while the secondary component is OAMl±2,1. The
power ratio of the dominant component to the secondary
component is called OAM polarization mode purity.

We calculate the highest-order mode purity as a func-
tion of different air-core radius of the designed fiber with
1.5-µm 1r and 100 mol.% GeO2 as shown in Figure 9(a).
Furthermore, the OAMmode purity of the designed fiber with
50-µm r1 and 1.5-µm1r as different mole fraction of GeO2
are shown in Figure 9(b). One can see that larger air-core
radius and higher mole fraction can support higher-order
OAMmodes but sacrifice themode purity. Figure 9(c) depicts
different OAM order of the designed fiber with 50-µm r1
and 10 mol.% GeO2. It indicates that the OAM mode purity
increases with the mode order, which can be explained that
the electrical fields of the higher-order modes are less con-
fined in the ring region and thus the overlap is smaller.
Another noticeable thing is that the HE-based OAM modes
are universally purer than EH-based OAM modes.

IV. EVOLUTION OF OAM-CARRYING FIBERS
We compare the supported OAM mode number in this work
with some previously known simulation research results of
OAM-carrying fibers, which can be found in Table 1. From
the table, we can obviously observe achieved OAM mode
numbers with different fiber types, and our designed fiber
can support more OAM modes to achieve a larger data-
transmission capacity.

V. CONCLUSION
In summary, we propose and design a novel air-core
GeO2-doped ring fiber for supporting numerous OAM
modes. The characteristics of the OAM modes in the
proposed fiber are thoroughly analyzed by varying the mole
fraction of GeO2 and adjusting the structure parameter.
Numerical analysis shows that fiber with 50-µm air-core
radius and 1.5-µm ring width can simultaneously support
436 radially fundamental OAM modes at 1550 nm. Besides,

we further verify by simulation that more than 400 OAM
modes can be supported across all the S, C, and L bands.
Moreover, the characteristics of the optical field distribution,
chromatic dispersion and the effects of fiber ellipticity and
bending are also analyzed numerically for different OAM
beams in the designed fiber. We found that high-order OAM
modes show more tolerance to the fiber ellipticity and bend-
ing caused by transmission environment.

The proposed fiber can be potentially applied in WDM,
MDM, and SDM optical communications systems to tremen-
dously increase the data-transmission capacity. With hun-
dreds of supported OAM modes, it could theoretically
provide more than 400 channels, which is also compatible
with wavelength division multiplexing technique (S + C
+ L band) to increase thousands of times the total trans-
mission capacity compared with a single channel. However,
still additional researches are needed to further improve
the channel number, insertion loss, and crosstalk for these
relevant optical devices of generating and (de)multiplexing
multiple OAM channels. In addition, reducing the cost and
size for real-environmental OAM systems could become
another considerable issue, which should be improved in the
long run.
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