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ABSTRACT Path tracking system plays a key technology in autonomous driving. The system should be
driven accurately along the lane and be careful not to cause any inconvenience to passengers. To address
such tasks, this research proposes hybrid tracker based optimal path tracking system. By applying a deep
learning based lane detection algorithm and a designated fast lane fitting algorithm, this research developed
a lane processing algorithm that shows a match rate with actual lanes with minimal computational cost.
In addition, three modified path tracking algorithms were designed using the GPS based path or the vision
based path. In the driving system, a match rate for the correct ideal path does not necessarily represent
driving stability. This research proposes hybrid tracker based optimal path tracking system by applying
the concept of an observer that selects the optimal tracker appropriately in complex road environments.
The driving stability has been studied in complex road environments such as straight road with multiple 3-
way junctions, roundabouts, intersections, and tunnels. Consequently, the proposed system experimentally
showed the high performance with consistent driving comfort by maintaining the vehicle within the
lanes accurately even in the presence of high complexity of road conditions. Code will be available in
https://github.com/DGIST-ARTIV.

INDEX TERMS Intelligent vehicles, vehicle driving, autonomous vehicles, path tracking, lane detection,
driving stability.

I. INTRODUCTION
In recent years, the requirements for the driving system of the
autonomous vehicle are increasing in difficulty with respect
to levels of driving automation proposed by SAE [1]. In level
4-5 of vehicle autonomy, the vehicle should perform the
main driving and request humans to transfer control only in
special circumstances or in areas where autonomous driving
is not possible. For this reason, combining the two fields
of perception and control algorithm is emerging as a very
important area in autonomous driving. Hence, There are sev-
eral prominent researches about path tracking on autonomous
driving [2], [3]. Recently, end-to-end deep learning tracking
algorithms [4]–[6] or methods using reinforcement learning
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[7] have been studied, but these methods are difficult to
response flexible changes in the surrounding environment.

The deep learning based lane detection and the GPS based
driving path tracking were also applied to deal with complex
road environments [8]. The control method used geometric
model-based path tracker, Pure pursuit and Stanley controller,
which are widely used in the control field. This research pro-
poses a path tracking system that is able to pass through not
only highways and motorway roads, but also urban and com-
plex road environments. In high-speed and low-speed, tunnel,
and steep curve, the system quickly changed the appropriate
tracking method and reflected it in driving stability for dif-
ferent speeds. In lane detection, the algorithm designed to
process the deep learning method has been applied the three
lane fitting methods in parallel to provide the most optimized
path.
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In this research, the modified path tracking algorithm
is designed to simultaneously process vision data to GPS
data, in other words, local and global coordinates. Vision
and GPS based driving guidance lines cause uncomfort-
able driving textures when driving along the lines. Accu-
rately following the lane is also an act that does not take
into account driving stability or driver acceptance. To solve
this problem, this research suggested an optimal path track-
ing algorithm to ensure high driving stability and com-
fortableness in the presence of high complexity of road
conditions.

This optimal path tracking algorithm appropriately selects
the most stable tracker out of modified trackers, which is
called Hybrid tracker based optimal path tracking system
in this research. This system receives sensor information
at the same time as each tracker calculation, estimates the
driving environment, and transfers the control authority to
the most suitable tracker. With parallel system to minimize
the stability degradation. This method guarantees consistent
driving stability even in the presence of various driving envi-
ronments with different characteristics. Furthermore, it has
the advantage that additional correction of the computational
speed is not required on the hybrid system even if each
tracker is modified. Consequently, this research notes that
there are several advantages of using theHybrid tracker based
optimal tracking system: (a) it is capable of driving in a
complex road environment with high performance of driving
stability and accuracy; (b) additional correction of the compu-
tational speed is not required even if each tracker is modified;
(c) the proposed algorithm enhances high usage of vision
based lane following which can be widely used in real-world
environments; (d) Finally, our selection system induces the
improvements of driving stability and tracking performance
despite of its simple implementation. To demonstrate the
generality of proposed system, we installed the system in an
autonomous vehicle and were confirmed its performance at
the DGIST campus and high-speed driving proving ground.
Consequently, the experimental results represents that our
proposed system significantly improves accuracy and stabil-
ity on all seven cases at a low computational cost.

This research is structured as follows: Section II describes
related works. Section III-B shows lane processing algorithm
using result from deep learning. Section III-C introduces the
modified path trackers and respective features. Section III-
D describes the coordinate system transformation and inter-
polation for the path from the perception part. Section III-E
demonstrates path tracker selection. Section IV shows exper-
imental results and discussions of path trackers and proposed
system. Finally, Section V provides the conclusion.

II. RELATED WORKS
A. PATH TRACKING ALGORITHM
Generating a path that the vehicle should take to its destina-
tion and following the generated path are the most essential
parts of an autonomous vehicle. There are three types of path

tracking algorithms, which are divided into geometric model-
based, kinematic model-based, and dynamic model-based
algorithm [9]. Among these three path tracking algorithms,
the simplest algorithm type is the geometric model-based
path tracking algorithm such as Pure pursuit, Stanley con-
troller, and Vector pursuit.

The algorithms used in this research are Pure pursuit and
Stanley controller. Pure pursuit and Stanley controller use the
same 2-dimension bicycle model regardless of vehicle type,
so that the calculation is simple and easy to apply compared
to other path tracking algorithms [10], [11]. Unfortunately,
it was reported that these two algorithms work well only
on low-speed and general roads [12]. Conversely, when the
curvature of the road turns to large or the speed of the vehicle
becomes high, it is unable to follow the generated path.
Therefore if both kinematic model and dynamic model are
used, tracking performance can be improved in more diverse
environments. However, the above simple algorithms (i.e.,
Pure pursuit and Stanley controller) were appropriately mod-
ified in order to achieve maximum efficiency with limited
computer performance.

Pure pursuit’s tracking performance depends on the
look-ahead distance, which leads importantly to set an
appropriate look-ahead distance. Otherwise, unlike other
path tracking algorithms, Stanley controller does not use
a look-ahead distance, so parameters have not to be tuned
[13]. Comparing multiple path tracking algorithms [9], Pure
pursuit shows robustness to low-speeds and large errors, but
it does not work well at high-speeds [14], [15]. However,
Stanley controller has a faster rate of convergence to the
ideal path than the Pure pursuit, but there are cases where
the steering angle sometimes diverges on a road with a large
curvature. Thus, this study focuses on modifying the existing
algorithms to minimize the disadvantages mentioned above
and to validate the modified tracking algorithm in various
situations.

B. LANE DETECTION NETWORKS
Studies about end-to-end network performance for lane
detection are as follows. PointLaneNet [16] redefined the
lane structure and lane distance to facilitate the training
of the network. PINet [17] combined point estimation and
point instance segmentation, but there were limitations in
the presence of the local occlusions or unclear lanes. The
lightweight model ENet-SAD [18] has been proposed by
applying self attention distillation (SAD) methods to the
existing ENet [19]. SCNN [20] and ENet-SAD obtain diverse
and rich contextual information to solve these limitations.
In the autonomous driving system, various methods are
attempted to reduce the delay from sensor recognition to vehi-
cle maneuvering as much as possible. Recently, deep learning
is essentially considered in the perception field, but it has
also disadvantages that it is not able to secure both processing
speed (i.e., inference time) and performance (i.e., accuracy)
due to the limitation of GPU hardware. However, processing
performance varies depending on the size of the network
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parameter or the computational complexity of the layer. The
recent deep learning methodologies have proposed various
methods to solve these obstacles. ENet-SAD improved the
processing speed by applying self-attention approach. Its pro-
cessing speed secured 10 times faster comparing with SCNN.
In addition, a method of actively using conventional com-
puter graphics technology has been proposed to improve the
performance of deep learning algorithms. Thus, this research
proposed fast and accurate lane processing algorithm using
the results of ENet-SAD. As a result, low-latency and highly
reliable lane detection system has been designed and vali-
dated in the presence of diverse road conditions.

C. ENSEMBLE METHOD
Recognizing lanes in raw images and extracting information
about lanes in segmentation images are necessary processes.
In machine learning, ensemble method combines predictions
from multiple models rather than a single model, so that the
final result achieves better performance. There are various
methods such as voting and bootstrap aggregating (Bag-
ging) in the ensemble method. The voting method compares
the results predicted by various algorithms for the same
dataset and chooses the final result. There are also two
types of voting: hard and soft voting. Hard voting simply
chooses the results that received the most votes among the
predictions from different models. Soft voting selects the
highest result by summing the probability of the predicted
results from different models. Moreover, Bagging is a method
of voting to determine the final results predicted by one
algorithm on various datasets sampled differently by allow-
ing overlap. In Teow’s handwriting recognition research,
the best results came out by adopting soft voting [21]. Soft
voting increased the accuracy and stability of aggregation
as a result of prediction in signal segments [22]. Thus,
this research adopted soft voting that can be parallel pro-
cessing guaranteed fast computational speed in lane fitting
algorithm.

III. APPROACH
A. SENSOR LAYOUT
The locations of each sensor are shown in Fig.1. Three
sensors were used: camera, GPS, and IMU. Logitech’s Brio
4K Pro Webcam for camera, Synerex’s RTK GNSS MRP-
2000 for GPS, and WitMotion’s HWT901B for the IMU
were utilized. The camera, GPS and IMU were installed
at a distance of 155cm, 93cm, 80cm from the ground and
213cm, 82.5cm, 378cm from the front part, respectively
shown in Fig. 1. The entire autonomous driving system
of the test vehicle is equipped with one main computing
unit and one discrete deep learning inference unit. Vehicle
control and decision were operated by the embedded com-
puter of Nuvo-8108GC, and a computer based on Titan Xp
GPU for deep learning based lane detection algorithm was
used. Detailed specifications for each sensor are listed in
TABLE 1.

FIGURE 1. Sensor installation on the test vehicle.

TABLE 1. Specifications of sensors.

B. FAST OPTIMAL LANE PROCESSING ALGORITHM
1) DATA PREPARATION
A numerous and high-quality dataset is required for deep
learning network to avoid overfitting. First of all, ENet-SAD
with the published lane dataset CULane [20] and TuSimple
[23] have been trained in this research. ENet-SAD inferred
the better results when trained on CULane containing urban,
rural and highway road types. CULane contains a total
of 133,235 images, including training set of 88,880, valida-
tion set of 9,675 and test set of 2,782. This study developed
an annotation tool that had the same file structure as CULane,
and gathered approximately 45,000 images for road types in
Korea.

The lane has linearity and the constant width of the lane.
Since ENet-SAD learned the characteristics of the lane,
the lane can be recognized even if there are objects or shadow
covering the lane. The augmented data are also able to be
obtained in a range that keeps the properties of lane. A total
of 11 types of augmentation were applied without spatial
information damage, including weather changes, brightness
changes, shadow occlusion and resolution changes. As a
result, total dataset consisted of 600,000 imageswith CULane
and the Korean urban dataset. More dataset was obtained
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FIGURE 2. Before and after using erosion filter (a) segmentation image
without erosion filter, (b) segmentation image with erosion filter.

through augmentation, leading to the improved lane detection
performance.

2) POST-PROCESS FOR SEGMENTATION IMAGE
The post-processing for lane segmentation images inferred
from the ENet-SAD. The post-processing consists of inverse
perspective mapping(IPM) and erosion filter. Due to the char-
acteristic of camera, parallel lanes meet at the vanishing point
and straight lines with the same thickness tend to become
thinner as approaching the vanishing point. Images taken
by camera have the distortion from the real circumstances
described above and this distortion narrows the range of steer-
ing, which is able to impair steering sensitivity. To solve this
phenomenon, IPM was used and it was possible to preserve
the thickness and parallelism of straight lanes by converting
to top view images. During converting the curve lanes, there
is an area with thicker lanes which adversely affects the com-
putational speed of the lane fitting process. The segmentation
image with thin lanes could be obtained using the erosion
filter. Therefore, this process leads to faster computational
speed in lane fitting because it reduces the number of pixels
that need to be processed. Lane fitting will be detailed in
section III-B3. The Fig. 2 shows enlarged images of raw
output from the ENet-SAD multiplied by a constant. The
lanes are separated by different colors. Comparing the left-
most lane of Fig. 2(a) and Fig. 2(b), the thickest part is
66 pixels and 49 pixels, respectively. By simplifying data,
the computational cost could be reduced.

3) LANE FITTING
The lane fitting finds the regression function that best repre-
sents the pixel coordinates detected as lane in the segmenta-
tion image. Specifically, the methods used in lane fitting are
linear, quadratic and cubic least squares fitting. Equation (1)
expresses a least squares polynomial fitting function. The
coefficient values (i.e., ci, i = 1, 2, . . . , m) for minimizing
the squared error was derived from (1).
p0(x1) p1(x1) p2(x1) . . . pm(x1)
p0(x2) p1(x2) p2(x2) . . . pm(x2)
...

...
...

. . .
...

p0(xn) p1(xn) p2(xn) . . . pm(xn)



c1
c2
...

cm

=

y1
y2
...

yn

 (1)

FIGURE 3. Procedures of the lane fitting algorithm.

where m means degree, ci(i = 1, 2, . . . , m) is coefficients,
pi(x)(i = 1, 2, . . . , m) is x to the i power respectively.
The analyzed lanes consist of four lanes, which are defined

as left-left lane, left lane, right lane, and right-right lane.
Coefficient values were found by using linear, quadratic, and
cubic least squares fitting of all four lanes. Some pixel coor-
dinates were sampled by applying the coefficients obtained
from the three fitting functions. Using the obtained variance
as metric, the mentioned four lanes were expressed by select-
ing the fitting function with the smallest variance. Based
on the fitting function that best represents lanes, 31 points
are obtained for each lane, and the driving guidance line is
provided in the form of a point group using the fitting function
corresponding to the left lane and right lane. Although one
of the two main lanes is not detected, driving guidance line
(hereinafter referred to as a path) can be provided by adding
an offset because a lane has certain width. The procedure
for vision recognition parts configured the seamless system,
allowing the tracker to process the path directly. The process
of overall lane fitting algorithm can be seen in Fig. 3. Algo-
rithm 1 shows a pseudo code that contains the overall fast
optimal lane processing described in the section III-B.

C. PATH TRACKING ALGORITHM
1) PURE PURSUIT
Pure pursuit has been recognized one of the path tracking
algorithms that follow the target point. In this algorithm,
a vehicle is treated as a bicycle model, and the geometric
explanation of the Pure pursuit is shown in Fig. 4. The basic
calculation method of Pure pursuit is as follows.

When drawing a circle with the radius of the look-ahead
distance (ld) based on the rear wheel of the vehicle, the point
that overlaps the given path is taken as the target point. The
steering angle (δ) of the vehicle is calculated using α, which
indicates the difference between the direction toward the rear
wheel of the vehicle and the direction toward the look-ahead
distance. At this time, the steering angle can be expressed
as (2).

δ = tan−1(
2L · sin(α)

ld
) (2)

where, L represents wheel base of the vehicle and ld means
the look-ahead distance respectively.

There are static and variable look-ahead distances. With
a static look-ahead distance, the Pure pursuit achieves poor
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Algorithm 1 Overall Fast Optimal Lane Processing Algo-
rithm
Input: I : Segmentation image from deep learning network
Output: O: Driving guidance line consisting of points
1: Ip: Top view image after post-processing for I
2: w: Width of I
3: h: Height of I
4: Lcoord : Two-dimensional lists of coordinates for lane

points
5: Lfunc: Two-dimensional lists of function for lane
6: Ip← Run IPM
7: Ip← Apply the erosion filter
8: for iteration = 1, 2, . . . ,w do
9: for iteration = 1, 2, . . . , h do
10: Get the pixel coordinates segmented by lane
11: from Ip and store them in the Lcoord
12: end for
13: end for
14: for iteration(i) = 1, 2, 3, 4 do
15: Run lane fitting algorithm on the Lcoord [i]
16: Store the best function expression in the Lfunc[i]
17: end for
18: if left lane and right lane are exist then
19: O← Calculate the center points with
20: Lfunc[1] and Lfunc[2]
21: else
22: if only left is exist then
23: O← Calculate the left lane
24: points with Lfunc[1] and add offset
25: else
26: if only right is exist then
27: O← Calculate the right lane
28: points with Lfunc[2] and add offset
29: else
30: O← Lane does not exist
31: end if
32: end if
33: end if

results because the target point is always fixed in the same
radius regardless of the vehicle speed. Therefore, a variable
look-ahead distancewas used in order to achieve better results
and expressed as a function of velocity in this study. The
variable look-ahead distance was expressed as (3).

ld = 190+ 100 · [
1

exp{−( v−2015 )}
− 0.5] (3)

Moreover, a PID controller based filter was added to pre-
vent sudden bouncing or shaking of the steering angle.
Anti-windup logic was added to prevent the divergence of
error due to integral calculation. The compensator generating
a smooth profile of the steering angle was also implemented
as described in Algorithm 2.

In this study, the modified Pure pursuit was developed to
follow the vision and GPS based path provided by the per-

FIGURE 4. Geometric explanation of Pure pursuit.

Algorithm 2 Steering Angle Compensation Algorithm
Input: δ: Steering angle calculated with Pure pursuit and

filter
Output: com_δ: Steering angle after compensation
1: T : Threshold
2: if δ − prev_steer > T then
3: com_δ = prev_steer + T
4: else if prev_steer − δ > T then
5: com_δ = prev_steer − T
6: else
7: com_δ = δ
8: end if
9: prev_steer = com_δ

return com_δ

ception part. There are two types of pure pursuit depending
on sensor used. Pure pursuit using a vision based path is
indicated as Pure pursuit (vision), and Pure pursuit using a
GPS based path is indicated as Pure pursuit (GPS). Both Pure
pursuit (vision) and Pure pursuit (GPS) become unable to
drive on very large curvature roads, but stability of steering
angle is highly secured on straight or slight curve. Pure
pursuit (vision) is more responsive than Pure pursuit (GPS)
due to fast computational speed of vision. However, Pure
pursuit (vision) is unable to compute further path than Pure
pursuit (GPS) which can be driven in areas without lanes.

2) STANLEY CONTROLLER
Like the Pure pursuit, the Stanley controller calculates the
steering angle based on the bicyclemodel. Two types of errors
are used to calculate the steering angle. The two errors consist
of a cross-track error and a heading error. The cross-track
error refers to the minimum distance between a given path
and a front wheel of the vehicle. The heading error refers
to the difference between the direction vector of the path
and the direction vector of the vehicle. Using these two
errors, the steering angle can be obtained and a geometric
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FIGURE 5. Geometric explanation of Stanley controller.

explanation for this algorithm is shown in Fig. 5.

δ(t) = θe(t) + θd (t) = ϕ(t) + tan−1
ke(t))

ks + vf (t)
(4)

where ϕ(t)(θe(t)) is heading error, e(t) is cross-track error,
vf (t) is the speed of the vehicle, k and ks are gain parameters
respectively. k and ks in parameter types are expressed in (4).
Since it is difficult to implement perfect tracking performance
with only these two parameters, k1 and k2 should be added
before θe(t) and θd (t), respectively. Therefore, the modified
Stanley controller expression can be written the same as (5).

δ(t)=k1θe(t)+k2θd (t)=k1ϕ(t)+k2 tan−1
ke(t))

ks+vf (t)
(5)

This modified Stanley controller was used to follow the
global path provided by the HDmap. Stanley (GPS) and Stan-
ley (vision) represent Stanley controller usingGPS based path
and vision based path respectively. Stanley (GPS) receives the
current position of the vehicle through GPS and the position
of the front wheel of the vehicle can be calculated using L,
the wheel base of the vehicle. In case of using the modified
Stanley (GPS), the vehicle shakes a lot. Nevertheless, Stan-
ley (GPS) is necessary because it can be driven in very large
curvatures.

Stanley controller does not use the vision based path due
to the method of determining the steering angle. As described
above, Stanley controller uses the heading error and the
cross-track error to calculate the steering angle. Since the
vision based path starts from the front wheel of the vehicle,
the cross-track error is not able to exist as zero. With Stanley
(vision), the steering angle must be calculated only from
the heading error. Therefore, Stanley (vision) was not used
because of its low tracking performance.

D. PATH PROCESSING METHOD
The cameras, GPS and HD map were used to generate paths.
GPS and HD map are essential to get the path, when lane
detection was not able to properly perform or in the case of

large curvature road. It was explained in the Section III-B
that the path could be retrieved from raw image through the
camera. The process of creating a vision based path included
a process in which the tracker uses the path immediately. In
order to use the GPS based path directly in the tracker like
the vision based path, coordinate transformation is required.
The process of smoothly connecting paths becomes also nec-
essary for more stable driving. Therefore, path processing
method includes the coordinate transformation and interpo-
lation.

1) PATH PROCESSING METHOD BASED ON VISION (Pure
Pursuit)
The processing method of path based on vision used in Pure
pursuit will be explained as follows. The points obtained in
section III-B are assigned a corresponding distance estimated
from the camera extrinsic parameter. The look-ahead distance
varies with velocity of vehicle and the look-ahead point also
changes. The target point, the closest point to the look-ahead
point, affects the steering angle. Since the points are not
continuous, the target point changes from time to time, which
leads to instability in steering. In order to ensure that the
target point is located as close to the look-ahead point as
possible, the number of points was increased by selecting the
two closest points to the look-ahead point and using linear
interpolation between the two points. The stability of the
steering angle is compensated by tracking the target point at
the same location as the look-ahead point.

2) PATH PROCESSING METHOD BASED ON GPS (Stanley
Controller)
The processing method of global path used in Stanley con-
troller is shown in Fig. 6. First of all, the yaw value of the
vehicle is obtained using IMU. The global path is received
from the HD map and provides 30 points with an interval of
about 1 meter based on the current location of the vehicle.
In order to use this path in Stanley controller, it is necessary
to connect 30 points smoothly in a curve. Therefore, cubic
spline interpolation was used to approximate these points
as curves. Cubic spline interpolation represents a method of
smoothly connecting given points using a cubic polynomial.
By applying this, 30 points that come in at intervals of 1
meter are interpolated at intervals of about 0.1 meter, and all
yaw values corresponding to each point are calculated. Using
the interpolated path and vehicle’s yaw value, the distance
to the point on the path closest to the current vehicle and
yaw at which point can be calculated. Using these values,
the steering angle is finally obtained by the Stanley controller.

3) PATH PROCESSING METHOD BASED ON GPS (Pure
Pursuit)
The processing method of the global path used in Pure pursuit
provides 30 points at about 1 meter intervals based on the
current location. The coordinate system of the global path
uses the UTM coordinate system and the coordinate sys-
tem used in the Pure pursuit requires local path. Therefore,
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FIGURE 6. Path processing method based on GPS used in Stanley
controller.

FIGURE 7. Path coordinate transformation (a) UTM coordinate system,
(b) pixel image coordinate system.

FIGURE 8. Path processing method based on GPS used in Pure pursuit.

the heading of the vehicle was always set to be the same
as the direction of the y-axis, and coordinate transformation
converting the global path into a local path was used. Since
300 by 300 pixel image coordinate was used, scaling was
performed to fit the units of the coordinate system. These path
coordinate transformations are shown in Fig.7, and the coor-
dinate transformation equations are formulated in (6) and (7).
The data-flow diagram for the path processing method based
on GPS used in Pure pursuit is shown in Fig. 8.

new_path_x = 150− 10 · [cos{−(90+ yaw)} · (path_x

− global_x)− sin{−(90+ yaw)}

· (path_y− global_y)] (6)

new_path_y = 300+ 10 · [cos{−(90+ yaw)} · (path_x

− global_x)− sin{−(90+ yaw)}

· (path_y− global_y)] (7)

E. OPTIMAL PATH TRACKER SELECTION
The most important part of hybrid tracker based optimal
path tracking system becomes optimal path tracker selection.

FIGURE 9. Steering at straight road (a) steering angle using Pure pursuit,
(b) steering angle using Stanley controller.

Optimal path tracker selection chooses an appropriate path
tracking algorithm among Pure pursuit (GPS), Pure pursuit
(vision), and Stanley (GPS) considering instability of steering
angle, GPS reliability, vision reliability, and road information.
The selected trackers can be changed in short intervals alter-
nately because this algorithm ensures real-time and selects
the optimized tracker. The instability of steering angle is
predetermined based on the driving tendency of the Stanley
controller and Pure pursuit. GPS determines the reliability of
the sensor using horizontal dilution of precision (HDOP) and
RTK precision information. Vision checks the information
of the path received from section III-B and determines the
detection reliability of the lane itself inside the system. It also
determines road information such as curvature, roundabout,
and intersection of the path to be driven based on HD map.
The key role in the optimal path tracker selection is to
observe the information provided by the sensors and to switch
securely the path tracker.

The instability of the steering angle is determined accord-
ing to the following results shown in Fig. 9. Comparing the
steering values, the vibration of the steering angle using Pure
pursuit becomes smaller than using the Stanley controller.
When Pure pursuit was used, it converged to 0 degrees
in 4 seconds, whereas when Stanley was used, it oscillated
within 10 degrees and -10 degrees even after 4 seconds. It
can be deduced that the driving stability would be better if
the Pure pursuit with higher stability of steering angle was
used in the range of driving with in-track maintained.
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FIGURE 10. General overview of the Hybrid tracker based optimal path tracking system.

In this research, GPS state information is named as GPS
reliability, HD map based road information is named as HD
map data and vision based lane detection state informa-
tion is named as lane reliability. Each evaluating method is
explained as follows.

First, HDOP refers to the degree of interfering with the
positional precision of the horizontal coordinate by parsing
from the information of NMEA 0183 of GPS. Therefore,
HDOP and RTK precision information was obtained from
GPS, and GPS reliability was evaluated by combining them.
The normal operating standard of HDOP was set to 3 or less
experimentally. The information of RTK precision is divided
into 3 levels, which the highest level (Fixed) was treated as 2,
the lower levels in turn were treated as 1 (Float) and 0 (No
Fixed). The Fixed option was chosen in this research as the
highest level because GPS only works well with Fixed, which
compensates for signals using LTE. If HDOP is less than
3 and the RTK precision information satisfies Fixed option,
the GPS determines only that it is operating normally as
shown in TABLE 2.
Themethod of evaluating the lane reliability is explained as

follows. In the 300 by 300 window, the location of the current
vehicle was set to (150,0) and the vision based path in the
direction of headingwas provided as point group information.
By expressing the location and point group information as
an image, it was possible to determine the pixel distance as
metrics for the relationship between the path and the current
vehicle location.

The pixel coordinates of the x-axis were scaled at
0.03 meter per pixel. The width of a road equals 100 pixels.
Considering width of the vehicle, if the vehicle is off one-fifth

TABLE 2. Criteria on determination of the GPS availability.

the width of the road from its current location, it could be
deduced that the test vehicle invaded the center line. There-
fore, if the Equation (8) is satisfied, the vision based path is
determined to be stable and 1 is provided as lane reliability.

|150− lpts| < Wr/5 (8)

where lpts is x coordinates of lane points and Wr is width of
a road in the pixel coordinates respectively.

When lanes are unclear in the intersection and the round-
about, it is difficult for vision to recognize them. In tunnel or
a road on a hillside, GPS status is not good, which leads GPS
based path to a low reliability. Therefore, the driving stability
should be improved by receiving information of road terrain
in advance and selecting the optimal path tracking algorithm.

By using the optimal path tracker selection with these
information, each of the disadvantages was compensated and
solved simply by switching the tracking algorithm following
each path of vision and GPS.
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TABLE 3. Criteria of optimal path tracker selection.

FIGURE 11. Estimation results after applying the fast optimal lane
processing algorithm with diverse road conditions (a) straight roads,
(b) roads with lane covered, (c) curve roads, (d) tunnel.

The criteria of this system for selecting the tracking
algorithm using the data described above is summarized in
TABLE 3.

Each part from perception to control was described in detail
above. In order to reduce the computational cost, the per-
ception and control sections were closely connected, and the
trackers were configured as parallel systems. An overview of
the architecture of Hybrid tracker based optimal path tracking
system used in this research is shown in Fig. 10.

IV. EXPERIMENTAL RESULTS
This section includes the performance analysis about the
proposed Hybrid tracker based optimal path tracking system
(hereinafter referred to as Hybrid). All of the tested algo-

rithms were mounted on Hyundai Ioniq Electric 2020 and
were tested on a shuttle route of DGIST and on high-speed
circuit proving ground. Tested roads comprise a variety of
roads, including two-lane or four-lane roads, intersection,
as well as steep curve, tunnels, roundabout and so on. In addi-
tion, the shuttle route includes both uphill, flat and downhill,
enabling acceleration testing. The high-speed circuit consists
of three-lane one-way and banked curve whose radius is
100 meters. The roads in DGIST can be assumed as Korean
urban road and the high-speed circuit might be assumed
highways. Therefore, tested paths were considered good road
conditions for verifying the system at low and high speeds
(i.e., 0 km/h to 100 km/h).

The DGIST shuttle route was analyzed into normal road
environments and complex road environments. Roadways
relatively easy to follow among the DGIST shuttle route are
called the normal road environment. The three types of nor-
mal road environment were selected as straight, slight curve
of radius 157.5 meters and steep curve of radius 53 meters
because tracker is able to drive properly on these roadways
using only one of the vision and GPS based path.

Sections of the road relatively difficult to follow among
the DGIST shuttle route are called the complex road envi-
ronment, and the four sections were designated as straight
road with multiple 3-way junctions, roundabout of radius
14 meters, tunnel, and intersection. The reasons why the
sections were selected as the complex road environment will
be explained as follows.

Unlike roads belonging to the normal road environment,
the intersection and roundabout have very large curvature and
the cameras cannot recognize the lanes in the road of large
curvature. In addition, since lanes occasionally disappears for
straight roads with multiple 3-way junctions, GPS based path
is required. Due to the low reliability of GPS in the tunnel,
the vision based path is only available.

A. PERFORMANCE OF FAST OPTIMAL LANE PROCESSING
ALGORITHM
The performance of fast optimal lane processing algorithm
will be explained in this section. The Fig. 11 shows the image
overlapping the raw image with the lane of top view image
processed by the fast optimal lane processing algorithm.
In the Fig. 11, (a), (b), (c) and (d) show the results of lane
processing algorithm at straight road, roads with lane covered
by vehicles, curve road, tunnel respectively. The results of
straight roads consist of uphill, flat and downhill roads. The
results of the tunnel show that the vehicle passes through the
tunnel. The algorithm recognizes lanes despite of structures
or vehicles on the road, such as speed bump, eye-inducing
rods, vehicles. It can be deduced that this algorithm robustly
recognizes lanes in various road environments and find the
best fitting regression function.

The time-averaged to infer lanes from ENet-SAD is taken
23.53ms. The time-averaged to fit the pixel coordinates is
measured 4.42ms. The sum of several delays is approximately
found 5ms. Therefore, the final runtime is 32.95ms.
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FIGURE 12. Test result at normal road environments (a) straight road, (b) slight curve, (c) enlarged graph of (b), (d) steep curve, (e) enlarged
graph of (d).

B. EVALUATION ON REAL-WORLD
The modified Pure pursuit, Stanley controller and Hybrid
system have been tested and analyzed in complex road con-
ditions. Two types of driving guidance line, the vision based
path and the GPS based path can be used by each path track-
ing algorithm. There are four possible cases; Pure pursuit
(vision), Pure pursuit (GPS), Stanley (vision), and Stanley
(GPS). As for these four cases, the other three cases exclud-
ing Stanley (vision) which had poor performance have been
studied in this research. The detailed reason for excluding the
Stanley (vision) was explained in section III-C2.

Therefore, the three modified trackers were optimized for
coordinate transformation and post-processing algorithms of
various sensor parts. Tracking performance and driving sta-
bility have been evaluated by comparing the Hybrid and three
modified trackers with ideal path based on HD map. Success
represents that the tracking algorithms drove in the designated
area without hitting the curb or moving into the opposite lane

To determine the tracking performance of each tracker,
RMSE (lateral), RMSE (longitudinal) and distance were
used in metric unit. These values represent the difference
between the ideal path and the real driving path. RMSE
(lateral) and RMSE (longitudinal) stand for the root mean
square error of latitude and longitude, respectively. The
‘‘distance’’ signifies the difference between the ideal path and
the real driving path.

Driving stability has been determined using the RMSE
(yaw) and RMSE (steer) in degree unit. RMSE (yaw)
expresses the difference between the yaw of the vehicle and

the yaw of HD map. RMSE (steer) means the difference
between the steering angle directly driven by a human in
an ideal path and the steering angle calculated by each path
tracking algorithm. The yaw indicates vehicle’s heading, and
the steer means a value that determines the direction of the
vehicle. The small RMSE (yaw) value represents that the
planned driving direction becomes similar to the ideal driving
direction. The small RMSE (steer) value also implies that the
steering value calculated by the tracking algorithm becomes
similar to steer of the human, since it is compared to the
driving smoothly of human. Therefore, if both values show
small, it implies driving stability is high because the algo-
rithm follows the path smoothly without fluctuation. Thus,
the driving stability can be evaluated with values of RMSE
(yaw) and RMSE (steer).

These six experimental results were summarized in
TABLE 4 and 5 to find easily out the differences, and the Top-
2 results for each column was emphasized in these tables.

1) TEST RESULTS UNDER NORMAL ROAD ENVIRONMENT
Fig. 12 shows graphically the tracking results of Pure pursuit
(vision), Pure pursuit (GPS), Stanley (GPS) and Hybrid in
three different scenes. In Fig. 12(a), (b) and (d) shows the
results; a straight road, a slight curve road, and a steep curve
road. Graph (c) and (e) are enlarged views of the yellow
boxes in graphs (b) and (d) in Fig. 12, respectively. It can
be seen in the figure that Pure pursuit (vision), Pure pursuit
(GPS), Stanley (GPS), and Hybrid are all almost identical
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TABLE 4. Quantitative results by different path tracking algorithms under normal road environments (i.e., straight, slight curve, steep curve).

to the ideal path in the normal road environment. Numerical
interpretation of the graph is demonstrated in TABLE 4.

Thus, it can be concluded that all of modified trackers
successfully drove the suggested section without infringe-
ment on the lane from the Success column in TABLE 4).
As mentioned in section III-C in this research, each tracker
clearly shows high performance in the certain section of the
road due to the characteristics of each tracker. Therefore,
this implies that the result of modified each tracker produces
optimal performance for each situation. Hybrid system shows
intermediate or higher results in the overall result. Since the
Hybrid system operates by selecting several optimal trackers
at a fast computational speed, it is possible to secure at least
the average performance of each tracker.

In the case of straight road, the overall tracking perfor-
mance (i.e., RMSE) of Hybrid system is lower than the peak
performance of other base trackers. It is because Hybrid is
the system composed of the above three trackers. The Hybrid
system also guarantees of both stability and tracking perfor-
mance, whereas these slight losses may occur. As shown in
TABLE 4 and 5, in terms of stability, the Hybrid achieves
the highest performance. RMSE (yaw) and RMSE (steer)
values were lower than the second best performances of Pure
pursuit (vision) by 0.054 and 0.014 in degree unit respec-
tively. Thus, it convinces that Hybrid is superior in terms of
driving stability. It is also found that Hybrid has a tendency to
lack the ability to compensate for residual errors in a straight
road situation as it is changed to multiple trackers due to the
fast selection speed. However, due to these characteristics,
robustness of the stability for the Hybrid system improved
the overall driving performance.

The driving performances show the most effective in the
slight curve due to the characteristics of Hybrid. It is also
able to be found that other roads have a clear difference in
performance between vision and GPS, but slight curve shows
relatively similar performance. In other words, the Hybrid
has the best overall performance in slight curve because the
tracking performance of multiple trackers is properly used.
Conversely, RMSE (yaw) leads to 16.933 degrees out of ideal
path, which is the third best among the four algorithms. How-

ever, the difference between the value of the best algorithm
and Hybrid was only 0.686 degrees which equals to only
0.04% differences with the results of the other algorithms.
Since the value of RMSE (steer) was the smallest one, it can
be explained that the driving stability of Hybrid system pro-
vides the best comfortableness.

Moreover, in the steep curve, due to the limitations of
vision, trackers using GPS are mainly used. In this case, Stan-
ley (GPS) shows high precision for this road environment.
However, due to bad stability, Hybrid uses only Pure pur-
suit (vision) and Pure pursuit (GPS) to secure overall driving
performance. As an experimental result, the tendency of error
becomes similar that of Pure pursuit (vision). The tracking
performance of Hybrid gets worse than the performance of
Stanley (GPS) since Hybrid uses Pure pursuit trackers. Thus,
it can be deduced that relatively low tracking performance
of Hybrid system is a result of the algorithm operation to
ensure stability. When human drives on the steep curve,
they usually do offset driving for driving stability. Since the
proposed system does not have environment recognition, it is
important to precisely follow the provided path. Hence, when
the importance of the in-track is high, such as the steep curve,
the Hybrid drives by focusing on the in-track rather than the
stability. In the steep curve, the results show Stanley (GPS)
has the best tracking performance, but show Stanley (GPS)
has poor driving stability. Therefore, it can be concluded that
Hybrid secured driving stability by properly switching two
trackers, Pure pursuit (vision) and Pure pursuit (GPS), which
have good stability performance in the secured tracking per-
formance situation. Considering the value of RMSE (steer)
compared to humans with offset driving, the smaller value of
RMSE (yaw) than 5 degrees compared to other trackers imply
that the overall driving performance of Hybrid in steep curve
represents superior.

2) TEST RESULTS UNDER COMPLEX ROAD ENVIRONMENT
In the previous section, it was found that three tracking algo-
rithms and Hybrid system succeeded in driving the normal
road environment. However, there were some sections where
three algorithms except Hybrid could not properly control
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FIGURE 13. DGIST shuttle route and experimental results at complex road environments (a) DGIST shuttle route, (b) straight road with multiple 3-way
junctions, (c) roundabout, (d) intersection.

the vehicle in roundabout, intersection, and tunnel shown
in the Fig. 13. The Fig. 13(a) shows that the path in which
the proposed system actually drove the entire DGIST shuttle
route closelymatches the ideal path. Each road in the complex
road environment is marked by a black box in Fig. 13(a). Fig-
ures of (b), (c) and (d) comprise a combination of the roadway
actual tested, the driving graph and the graph extending the
yellow box. Fig. 13(b) shows the results of tracking straight
roads with multiple 3-way junctions and the enlarged graph
demonstrates that Pure pursuit (vision) has poor tracking
performance due to the absence of lanes in the area with
3-way junctions. Fig. 13(c) displays the results of tracking
the roundabout. Pure pursuit (vision) was unable to follow
because the lane of the roundabout was not clear and Pure
pursuit (GPS) was unable to follow accurately at very large

curvature. Only Stanley controller succeeded in tracking and
the proposed system tracked well by selecting Stanley con-
troller among the three tracking algorithms. Fig. 13(d) shows
the results of tracking the intersection. Pure pursuit (vision)
failed to follow the driving guidance line of the intersection.
Pure pursuit (GPS) and Stanley controller tracked the path
well. Pure pursuit (GPS) adjusted the steers quickly and
Stanley controller adjusted the steers slowly, whereas Pure
pursuit (GPS) occasionally crossed the center line and tracked
the path overall.

In the complex road environment, a numerical analysis of
the tracking performance and driving stability of each algo-
rithm are listed in TABLE 5. In straight road with multiple
3-way junctions, the algorithms using the GPS based path
have better tracking performance than the algorithm using
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TABLE 5. Quantitative results by different path tracking algorithms under complex road environments (i.e., straight road with multiple 3-way junctions,
roundabout, tunnel, intersection).

the vision based path since lanes are often disconnected. The
distance value of Hybrid is 0.157 meter, which can be seen to
have a value between the distance value of Stanley (GPS) and
the distance value of Pure pursuit (GPS). It might be implied
that the Hybrid selected alternately Stanley (GPS) and Pure
pursuit (GPS). In particular, the values of RMSE (yaw) and
RMSE (steer) representing a driving stability showed the best
among the tested methods.

In roundabout, due to the few lanes, Pure pursuit (vision)
was unable to drive properly this road. Also, it was unable
to adopt Pure pursuit (GPS) due to very large curvature.
The TABLE 5 also indicated that Stanley (GPS) and Hybrid
succeeded in driving the roundabout, and distance value
of Hybrid is about 0.094 meter closer than that of Stanley
(GPS)’s distance to the ideal path. In terms of driving stabil-
ity, RMSE (yaw) value of Hybrid showed 14.351 degrees bet-
ter than that of Stanley (GPS), and RMSE (steer) of Hybrid is
slight difference with that of Stanley (GPS). This is the reason
why there is a big difference (i.e., 14.3 degrees) in RMSE
(yaw) even though Hybrid adopted Stanley (GPS) because
Hybrid chose different trackers in entering the roundabout.
It can be finally induced that Hybrid becomes superior in
terms of tracking performance and driving stability.

In intersection, Pure pursuit (GPS), Stanley (GPS), Hybrid
system succeeded. The distance values show all 0.330 meter
or less, so the tracking performance indicates high. Although
Hybrid did not represent the highest tracking performance
among them, it guarantees the driving stability.

In Tunnel, the GPS did not work properly, so tracking
performance could not be obtained. The tracking of the tunnel
area was operated well based on Pure pursuit (vision), but
the reliability of the GPS showed low and the graph seems
that the vehicle did not follow the path, as in the (e) area
of Fig. 13(a). It is shown that the steer value driven by
humans and the steer values predicted by each algorithm.
Fig. 14(b) shows reliability of GPS. When the reliability of
GPS becomes high, the graph background color is highlighted
in cyan, otherwise in magenta. The steer value provided by

FIGURE 14. Experimental results in tunnel (a) comparison of steering
angle value, (b) GPS reliability.

Pure pursuit (vision) shows pretty similar to the steer value
driven by humans, whereas the steer value provided by Pure
pursuit (GPS) does not. It is also shown in Fig. 14(a) that
algorithms using GPS based path are not able to pass through
tunnels due to the low reliability of GPS.

Finally, since GPS based path was impossible to operate
correctly in the tunnel, only RMSE (steer) was obtained.
RMSE (steer) of Pure pursuit (vision) and RMSE (steer) of
Hybrid are similar with 0.6 degrees differences. Therefore,
Hybrid succeeded in passing through the tunnel using Pure
pursuit (vision). In summary of experimental results, the path
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tracking algorithms for the vision based path and the GPS
based path were appropriately switched through the Hybrid
tracker based optimal path tracking system to drive the shuttle
route on DGIST campus.

V. CONCLUSION
This research proposes Hybrid tracker based optimal path
tracking system for autonomous vehicles. The designed sys-
tem combines, evaluates and applies several trackers to
driving on complex road conditions. The proposed system
includes all of the processing algorithms of deep learning
based lane detection algorithms, coordinate system trans-
formation, three modified geometric trackers and optimal
path selection algorithm. Based on combining all above pro-
cesses, the proposed system guarantees reasonable driving
performance for trade-off of driving stability and tracking
performance in both normal and complex road environments.
This study also notes that the quantitative comparison using
ideal path and the steering value from human shows the
overall driving performance of Hybrid tracker based optimal
path tracking system. With experimental results, this study
convinces to build a seamless system from the sensor part of
the autonomous vehicle to the action part for better perfor-
mance. In other words, the key to build this system was that
control and sensor recognition should bemade in one process.
The proposed system secured improved driving stability and
tracking performance with low computation cost by apply-
ing the hybrid method to the tracker using GPS and vision.
However, since it is a method of improving at the tracking
stage, not path planning, it can show high stability only in HD
map based driving (i.e., Shuttle and perfectly planned route)
provided in advance. It is considered that stable results can
be derived with path planning using HDmap or long-distance
vision path. Consequently, as shown in experimental results,
it notes that proposed system of the optimal path selection
and system architecture significantly improves both driving
stability and tracking performance in the presence of high
complexity of road conditions.
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