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ABSTRACT Analysis and utilization of massive meter data can help decision-makers provide reasonable
decisions. Therefore, multi-functional meter data processing has received considerable attention in recent
years. Nevertheless, it might compromise users’ privacy, such as releasing users’ lifestyles and habits. In this
paper, we propose an efficient and privacy-preserving massive data process for smart grids. The presented
protocol utilizes the Paillier homomorphic encryption and Horner’s Rule to achieve a privacy-preserving
two-level random permutation method, making large-scale meter data permuted randomly and sufficiently
in a privacy-preserving way. As a result, the analysis center can simultaneously implement various data
processing functions (such as variance, comparing, linear regression analysis), and it does not know the
source of data. The security analysis shows that our protocol can realize data confidentiality and data source
anonymity. The detailed analyses demonstrate that our protocol is efficient in terms of computational and
communication costs. Furthermore, it can support fault tolerance of entity failures and has flexible system
scalability.

INDEX TERMS Privacy preservation, efficient data processing, random permutation, massive meter data,
smart grids.

I. INTRODUCTION
Smart grids add communication networks to the traditional
electrical grid infrastructure [1]. In smart grids, massive smart
meters [2]–[4] are deployed to collect near-real-time users’
meter data, making the electrical grid more reliable and effi-
cient [1]. Analyzing and utilizing massive meter data can help
policy-makers provide reasonable decisions and aid people
in improving their quality of life. For example, the analysis
of meter data can help power companies develop more rea-
sonable sub-tariff policies, more accurately predicting users’
electricity consumption, and better real-timely controlling the
power resources. It can also aid users in utilizing electricity
rationally and avoiding the peak. Nevertheless, meter data are
directly related to the state of users’ activities and home appli-
ances, which pose significant users’ privacy risks [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Amit Singh .

For instance, if one user’s meter data is low from 9 a.m.
to 11 a.m., that indicates the user is not at home with a
high probability. Loss of control over data can lead to data
leakage [7], [8]. Therefore, encrypting the meter data before
being uploaded to the appropriate organization for processing
is a good way [7], [9]. The homomorphic encryption can con-
vert operations on plaintexts into operations on ciphertexts
[10], [11] and is a powerful tool to perform privacy-preserving
data processing [12]. Literature [11], [13]–[19] usually
adopts semi-homomorphic encryption (such as the Paillier
encryption, the ElGamal encryption, the Lifted ElGamal
encryption) or somewhat homomorphic encryption (such
as BGN) to realize privacy-preserving data processing.
Nevertheless, some limitations are: 1) The raw data need
to be encrypted, and some algebraic structures about the
raw data also need to be encrypted. Besides, different data
processing functions require different algebraic structures to
be encrypted. For example, for computing the variance of
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data, the raw data and their square both need to be encrypted;
for calculating data’s Euclidean distance, the raw data,
their negative form, and their square need to be encrypted.
Usually, the data processed requirements in one practical
application, even over the same data set, are diverse (such
as summation, average, variance, min/max, linear regres-
sion analysis). Therefore, multifunctional data processing
by using homomorphic encryption is a challenge. 2) The
homomorphic encryption operations bring heavy compu-
tational and communication burdens. Therefore, massive
data processing by using homomorphic encryption is also
a challenge. To sum up, the efficient processing of mas-
sive meter data in a privacy-preserving manner for smart
grids is still an enormous challenge. We present an efficient
and privacy-preserving massive data processing (PPMDP)
protocol for smart grids for this challenge. Note that effi-
ciency here has two meanings: one is the high efficiency
of processing massive meter data, and the other is the wide
range of data processing functions that can be implemented
simultaneously.

For massive meter data processing, we note that the fog
paradigm is well-positioned for large-scale data analysis
[20]–[24]. Fog devices, which can be gateways or aggregators
nearby neighborhoods, are at the network edge to extend the
computing and data processing capabilities to the network
edge. Therefore, we introduce the fog paradigm into our
system model to assist in handling massive meter data. Based
on our system model, we utilize homomorphic encryption
to realize the random permutation of massive meter data to
destroy the linking relationship between users and their meter
data, ensuring our protocol PPMDP can protect data privacy.
Because finally, the data analysis center processes original
meter data, PPMDP can achieve plenty of data processing
functions, making better computational and communication
efficiency. In a nutshell, our specific contributions are three-
fold.

(1) To realize plenty of privacy-preserving data processing
functions simultaneously, we present a privacy-preserving
two-level random permutation method to adequately and
securely break the links between massive meter data and their
sources. It makes the analysis center process raw meter data
but does not know whose data they are. We utilize the Paillier
homomorphic encryption and Horner’s Rule to achieve this
method.

(2) To process large-scale meter data in one-round com-
munication, we present a three-layer system architecture. The
first layer is composed of massive users, who providemassive
meter data. The second layer consisting of fog devices and
cloud servers executes the two-level random permutation.
The top layer includes a data analysis center, which performs
plenty of functions over massive meter data. Also, there is
a logical hierarchy to organize enormous users. We logi-
cally divide users into many groups, and each group has at
most n users. Then, we divide groups into a few clusters,
and each cluster has at most m groups. In other words,
each cluster has at most mn users. One fog device is in

charge of one group, and one cloud server corresponds with
one cluster. In our system model, there are η such clusters.
That is, the amount of data handled by our system is at
most ηmn.

(3) Our protocol PPMDP can implement secure multi-
functional calculations of massive meter data, support fault
tolerance of entities’ failures, and has better system scala-
bility. The performance analysis demonstrates that it is effi-
cient in terms of computational costs and communication
overhead.

The rest of this paper is organized as follows. We discuss
the related works in section II. In section III, we describe
our system model, threat model, design goals. In section IV,
we review some preliminaries. In section V, we elaborate
on the construction of our PPMDP protocol, followed by
correctness discussion, security analysis, feature analysis,
and performance analysis in sections VI, VII, VIII, and IX,
respectively. Finally, we draw our conclusion in section X.

II. RELATED WORK
For implementing privacy-preserving data processing, some
works [2], [25], [26] use differential privacy technology, and
some works [1], [27], [28] adopt secure multiparty compu-
tation technology. However, these works either reduce data
accuracy and affect data availability or require multiple com-
munication and cooperation rounds between data holders.
High data availability and one round of communication and
cooperation between entities are our design goals. Therefore,
we focus on homomorphic encryption technologies.

Several privacy-preserving data handling protocols by uti-
lizing homomorphic encryption technologies [13], [14], [16],
[17] have been proposed in the last decade. We observe
that the protocols adopting semi-homomorphic encryption
need to construct encrypted data items according to objective
functions. For example, according to the target average and
variance functions, Lu et al. [14] constructed encrypted data
items using the Chinese Remainder Theorem. One such data
item is a kind of algebraic structure of one device’s data
and its square. If the target function is to obtain summation,
Liu et al. [13] leveraged the Lifted EC-ElGamal cryptosys-
tem to encrypt each user’s meter data. Mustafa et al. [29]
and Mahdikhani et al. [30] utilized the Paillier encryption
to encrypt users’ electricity consumption data and attribute
value, respectively. To gain Euclidean distances [12], the
x-coordinate and y-coordinate of one position and their
squares are needed to be encrypted. Therefore, adopting half
homomorphic encryption to implement data processing is
not very convenient. The BGN cryptosystem has many-times
additive and one-time multiplicative homomorphism proper-
ties. As a result, the protocols employing the BGN cryptosys-
tem usually can realize some functions on the ciphertexts of
original data at the same time. For instance, Chen et al. [16]
used the BGN cryptosystem to securely calculate data’s sum-
mation, average, variance, and F-test. Han et al. [17] and
Ren et al. [18] leveraged the BGN cryptosystem to imple-
ment the secure computation of data’s summation, average,
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min/max, and some other functions, respectively. However,
the BGN cryptosystem only supports one time multiplica-
tively homomorphic operation. Therefore, using the BGN
cryptosystem, these schemes can merely calculate the func-
tions with the highest exponent order of 2 securely.

Some privacy-preserving data handling protocols based
on data anonymity have been presented. [6] hides the link
between data and its source using virtual groups’ private keys
to encrypt users’ data. However, this protocol has a compli-
cated key generation andmanagement process. In [31], Zhang
et al. first propose a bitwise XOR homomorphic cipher sys-
tem and subsequently present an efficient protocol to achieve
n-source anonymity (suppose there are n users) in mobile
phone sensing, which can realize the secure computation of
arbitrary/complex functions. Whereas, there are two main
limitations in the work of [31]. First, each user needs to
report an encrypted ln-bit string. Only l-bit substring is the
ciphertext of the original data, other l(n − 1)-bit substring is
the ciphertext of n−1 dummy data, which results in the com-
munication overhead is not satisfactory. Second, the position
of every user’s original data in the encrypted ln-bit string is
fixed, which possibly reduces the security of this protocol.

III. PROBLEM FORMALIZATION
This section gives the system model, the threat model,
the design goals, and our fundamental idea of secure data
perturbing used in our protocol. For ease of reading, Table 1
describes the main notations in this paper.

TABLE 1. Main notations.

A. SYSTEM MODEL
Our system model (shown in Fig.1) includes three layers:
Data Providing Layer, Data Perturbing Layer, and Data
Processing Layer. Large-scale users are in the Data Providing
Layer and are logically divided into many groups. Moreover,
these groups are organized into several clusters. The Data
Perturbing Layer consists of fog devices and cloud servers.
One fog device is in charge of one group, and one cloud server
is responsible for one cluster. There are at most m groups
in each cluster, and most n users in each group. In other
words, each cluster can cover at most mn users. If there are
η clusters in our system, the total number of users is ηmn.
Note that the system model in Fig.1 is a kind of logical
system structure. In actual deployment, a cloud server may
be in charge of several clusters, and a fog device probably
manages several groups. In what it follows, we describe
the four entities involved in our system model in detail:
User, Fog Devices (FD), Cloud Server (CS), and Analysis
Center (AC).

User: Users are responsible for collecting and providing
the meter data.

Fog Device, FD: FD realizes the random permutation of a
group in a privacy-preserving manner.

Cloud Server, CS: CS accomplishes the random permuta-
tion of a cluster in a privacy-preserving manner.

Analysis Center, AC: AC flexibly handles and analyzes
raw meter data and does not know the source of each data.

B. THREAT MODEL
The following attacker models are assumed:

(1) AC, CS, and FD are honest-but-curious. They keep the
system running smoothly without launching an active attack.
However, they keep all inputs, intermediate results and try to
infer meter data.

(2) Users are honest-but-curious. They do not maliciously
discard or distort any raw meter data and follow the protocol
correctly. However, they seek to obtain as much information
about other users’ meter data.

(3)CS, FD, and several users may collude to discover other
users’ meter data. It must be noted that the collusion of AC
and other entities is out of scope.

(4) A is an external adversary. A tries to gain the pri-
vacy information of any meter data through eavesdropping
on communication channels and intruding in the databases
of FD, CS, and AC. Note that A cannot obtain the secret
parameters of entities through intruding in their databases.

In this paper, for AC, we view data sources as data pri-
vacy. For other entities, we regard data content as data
privacy. Specifically, in our protocol, we focus on meter data
confidentiality and anonymity.
Definition 1: (Data Source Anonymity). Suppose the pos-

sible set of users be U . Let |U | = n. The source anonymity
of a meter data d is satisfied if no adversary can find the
source of d with a probability higher than 1

n when it obtains
d . In nature, data source anonymity here is k-anonymity [32].
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FIGURE 1. System model of our protocol PPMDP.

FIGURE 2. Basic idea of our protocol PPMDP.

Note that A may launch other active attacks on data
integrity and source authentication. However, since we focus
on meter data confidentiality and anonymity in this paper,
those active attacks are beyond the scope of this paper,
although it is not difficult to apply some sophisticated digital
signature techniques to tackle these attacks.

C. DESIGN GOAL
The main goal of PPMDP is to provide efficient
multi-functional processing for large-scale meter data with
guaranteeing data confidentiality and data source anonymity.
Specifically, the goals of PPMDP are:

Data Confidentiality: The confidentiality of meter data
has to be guaranteed, such that AC is the only entity that
obtains raw meter data.

Data Source Anonymity: The sources of meter data (that
is, users) remain unconditionally anonymous to AC.

Data Processing Diversity: PPMDP can simultaneously
realize many functions in a privacy-preservingmanner, which
is more in line with the application requirements of efficiently
handling massive meter data.

Efficiency: PPMDP can reduce transmission load and
computational costs as much as possible.

D. BASIC IDEA
Our basic idea is shown as Fig.2. We take one cluster as an
example. dij is the meter data of the jth user of the ith group
(i.e., Userij), where i = 1, 2, · · · , m, j = 1, 2, · · · , ni.
Userij encrypts dij and sends it to FDi. FDi performs a random
permutation operation on its received ciphertexts, and then
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aggregates them and transmits the result to CS. That is,
CS obtains Enc(

∑ni
j=1 dij · R

pij
1 ) (simplified as Enc(polyi)),

where {pi1, pi2, · · · , pini} is a random arrangement of {1, 2,
· · · , ni}. The coefficient of polyi’s jth item is dij with a proba-
bility of 1

ni
. Similarly, CS first executes a random permutation

operation on its received ciphertexts, and then aggregates
them and sends the result to AC. AC attains Enc(

∑m
i=1 polyi ·

Rpi2 ) (simplified as Enc(poly)). The coefficient of poly’s ith
item is polyi with a probability of 1

m . Through decrypting
Enc(poly) and parsing poly, AC will obtain all meter data
without knowing their source. Note that the process is the
same for each cluster. If there are η clusters, AC eventually
receives η ciphertexts.

IV. PRELIMINARIES
Here, we briefly recall the Paillier cryptosystem [12], [33] and
Horner’s Rule [11], which are used throughout this work.

A. PAILLIER CRYPTOSYSTEM
The Paillier cryptosystem consists of three algorithms:

Key Generation: Let N = pq and p, q are two κ-bit prime
numbers, and κ is the security parameter. Let λ = lcm(p −
1, q−1), define a function L(µ) = (µ−1)/N , pick a random
generator g ∈ Z∗

N 2 , and calculate µ = (L(gλ mod N 2)) − 1.
The public key is (N , g), and the private key is (λ,µ).
Encryption: To encrypt a message m ∈ ZN , we choose

a random number r ∈ Z∗N , and calculate the ciphertext
C = gm · rN mod N 2.
Decryption: Given the ciphertext C , the correspond-

ing message can be recovered by computing m =

L(Cλ mod N 2) · µ.
The Paillier cryptosystem has the following homomorphic

properties: E(m1, r1)E(m2, r2) = E(m1 + m2, r1 · r2) and
E(m1, r1)m2 = E(m1 · m2, r

m2
1 ).

B. HORNER’S RULE
We can use Horner’s Rule to redescribe any polynomial
p(R) = anRn + an−1Rn−1 + · · · + a1R as p(R) = (· · · (anR+
an−1)R + · · · ) + a1)R. If we know p(R) and R, where
R > max{an, an−1, · · · , a1}, we can obtain the coeffi-
cients a1, a2, · · · , an of the polynomial p(R) through n divis-
ible operations and n modulo operations. The limitation of
Horner’s Rule is p(R) grows exponentially with the parame-
ter R. Therefore, we should choose the parameter R as little
as possible.

V. OUR PROPOSED PROTOCOL
In this section, we describe our protocol PPMDP, which con-
sists of five phases: System Initialization, Data Encryption,
Local Perturbing, Global Perturbing, and Data Processing.
We take one cluster as an example to expound our protocol
PPMDP. Note that the process procedure is the same for each
cluster, and all clusters execute PPMDP in parallel. In our
system model, one cluster has at most m groups, and one
group has at most n users. We denote the number of users
in the ith group as ni (ni ≤ n). To simplify the description,

we assume one cluster includes m groups. Userij is the jth
user of ith group, where 1≤ i≤m, 1≤ j≤ ni. And we denote
Userij’s meter data as dij.
To overcome the limitation of Horner’s Rule, we should

choose a little Horner parameter R as possible. The mini-
mum value of R is 2. At this moment, meter data should
be expressed as a binary number. Each user generates a
ciphertext for each binary bit of his meter data. Tradeoff the
number of ciphertexts generated by each user and the number
of users of each cluster, in our protocol, we express a meter
data as a δ-digit ternary number. So the upper bond W of a
meter data is 2 ∗ 3δ−1 + 2 ∗ 3δ−2 + · · · + 2 ∗ 31 + 2 ∗ 30.

A. SYSTEM INITIALIZATION
In this part, given a security parameter κ , the system generates
AC’s public and private key pair (pk = (N , g), sk =

(λ,µ)) by calling the KeyGeneration algorithm of the Paillier
encryption. And then, the system chooses two public param-
eters (that is, two Horner parameters) R1 = 3 and R2 = 3n+1,
where n ≥ max{n1, n2, · · · , nm}, R2 < m+1

√
N/2.

B. DATA ENCRYPTION
Userij collects its meter data dij at time point t , and then
executes the following steps.

Step 1.1: Userij transforms dij to the corresponding ternary
number (d (δ−1)ij , d (δ−2)ij , · · · , d (1)ij , d (0)ij ). Then, for all k = 0,

1, · · · , δ− 1, Userij chooses a random number r (k)ij ∈ Z∗N and
generates the ciphertext as

C (k)
ij = gd

(k)
ij · (r (k)ij )

N
mod N 2 (1)

Note that Userij executes Step 1.1 δ times (that is, k = 0,
1, · · · , δ − 1), and finally obtains C (0)

ij , C (1)
ij , · · · , C (δ−1)

ij .

Step 1.2: Userij delivers Cij = C
(δ−1)
ij || · · · || C (0)

ij to FDi.

C. LOCAL PERTURBING
Upon receiving the ciphertexts from ni users, FDi performs
the following steps.

Step 2.1: FDi randomly picks pij ∈ {1, 2, · · · , ni} \ {pi1,
pi2, · · · , pi(j−1)} and calculates

C ′(k)ij = (C (k)
ij )R

pij
1

= gR
pij
1 ·d

(k)
ij · ((r (k)ij )R

pij
1 )N mod N 2 (2)

Step 2.2: FDi aggregates (C ′
(k)
i1 ,C

′(k)
i2 , · · · ,C

′(k)
ini ) to obtain

C̄ (k)
i =

ni∏
j=1

C ′(k)ij

= g
∑ni

j=1 R
pij
1 ·d

(k)
ij ·

ni∏
j=1

((r (k)ij )R
pij
1 )N mod N 2 (3)

Note that FDi executes Steps 2.1 and 2.2 δ times (that is,
k = 0, 1, · · · , δ − 1), and finally obtains C̄ (0)

i , C̄ (1)
i , · · · ,

C̄ (δ−1)
i .
Step 2.3: FDi sends C̄i = C̄

(δ−1)
i || · · · || C̄ (0)

i to CS.
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D. GLOBAL PERTURBING
After receiving the aggregation ciphertexts from m FDs,
CS completes the following steps.

Step 3.1: CS randomly picks pi ∈ {1, 2, · · · , m} \ {p1, p2,
· · · , pi−1} and calculates

C̄ ′
(k)
i = (C̄ (k)

i )R
pi
2

= (gR
pi
2 ·(

∑ni
j=1 R

pij
1 ·d

(k)
ij )
·

ni∏
j=1

((r (k)ij )R
pi
2 ·R

pij
1 )N ) mod N 2 (4)

Step 3.2: CS aggregates (C̄ ′
(k)
1 , C̄ ′

(k)
2 , · · · , C̄ ′

(k)
m ) to obtain

C̃ (k)
=

m∏
i=1

C̄ ′
(k)
i

= g
∑m

i=1 R
pi
2 ·(

∑ni
j=1 R

pij
1 ·d

(k)
ij )

·

m∏
i=1

ni∏
j=1

((r (k)ij )R
pi
2 ·R

pij
1 )N mod N 2 (5)

Note that CS executes Steps 3.1 and 3.2 δ times (that is,
k = 0, 1, · · · , δ − 1), and finally obtains C̃ (0)

i , C̃ (1)
i , · · · ,

C̃ (δ−1)
i .
Step 3.3: CS sends C̃ = C̃ (δ−1)

|| · · · || C̃ (0) to AC.

E. DATA PROCESSING
AC can recover M (k) by executing the Paillier decryption
algorithm.

C̃ (k)
= g

∑m
i=1 R

pi
2 ·(

∑ni
j=1 R

pij
1 ·d

(k)
ij )

·

m∏
i=1

ni∏
j=1

((r (k)ij )R
pi
2 ·R

pij
1 )N mod N 2

= gM
(k)
· (R(k))N mod N 2 (6)

where

M (k)
=

m∑
i=1

Rpi2 · (
ni∑
j=1

R
pij
1 · d

(k)
ij )

=

m∑
i=1

Ri2 · (

npi∑
j=1

Rj1 · d
(k)
pipij ) =

m∑
i=1

Ri2 · (
n′i∑
j=1

Rj1 · d̄
(k)
ij )

(7)

R(k) =
m∏
i=1

ni∏
j=1

(r (k)ij )R
pi
2 ·R

pij
1

=

m∏
i=1

npi∏
j=1

(r (k)pipij )
Ri2·R

j
1 =

m∏
i=1

n′i∏
j=1

(r̄ (k)ij )R
i
2·R

j
1 (8)

where npi is denoted as n′i. And then, AC executes
Algorithm 1 with M (k),R1, R2, m, n′1, n

′

2, · · · , n
′
m as inputs,

and obtains (d̄ (k)11 , d̄
(k)
12 , · · · , d̄

(k)
1n′1

), · · · , (d̄ (k)m1 , d̄
(k)
m2 , · · · , d̄

(k)
mn′m

).
After converting these results to the corresponding decimal
number, AC can achieve efficient computation of many func-
tions (such as variance, comparing, linear regression analysis)

Algorithm 1 Parsing Processing With Horner’s Rule
Input: M , R1, R2, m, n′1, n

′

2, · · · , n
′
m

Output: (a11, a12, · · · , a1n′1 ), · · · , (am1, am2, · · · , amn′m )

1: X0 = M/R2;
2: for i = 1 to m do
3: Mi = Xi−1 mod R2; Xi = Xi−1/R2;
4: end for
5: for i = 1 to m do
6: Xi0 = Mi/R1;
7: for j = 1 to n′i do
8: aij = Xi(j−1) mod R1; Xij = Xi(j−1)/R1;
9: end for

10: end for
11: return (a11, a12, · · · , a1n′1 ), · · · , (am1, am2, · · · , amn′m );

on raw meter data. AC needs to execute δ times Algorithm 1,
the total time complexity is O(δm · max{n1, n2, · · · , nm}).
Note that the work of this paper does not apply to such analy-
ses that require positioning or tracking (for instance, finding
out the users who use tremendous electricity), because of
breaking the correspondences between data and their sources.

VI. CORRECTNESS DISCUSSION
Because for all k = 0, 1, · · · , δ − 1, i = 1, 2, · · · , m, and j =
1, 2, · · · , ni, we have d

(k)
ij ≤ 2, so we set R1 = 3, R2 = 3n+1,

and ensure R2 < m+1
√
N/2. Let n ≥ max{n1, n2, · · · , nm}.

Because of
∑ni

j=1 R
j
1 · d

(k)
ij ≤

∑n
j=1 3

j
· 2 = 3n+1 − 3 <

3n+1 = R2, and d (k)ij ≤ 2 < 3 = R1, which satisfies the
requirement of the parameter of Horner’s Rule (see Subsec-
tion IV-B), so we can obtain correct d (k)ij by executing Alg.1

with taking
∑ni

j=1 R
j
1 · d

(k)
ij , R1 = 3, and R2 = 3n+1 as inputs.

According to the Paillier cryptosystem, the correct decryp-
tion of the ciphertext C̃ (k) must satisfy the condition M (k) <

N , i.e.,
∑m

i=1 R
i
2 · (

∑n′i
j=1 R

j
1 · d̄

(k)
ij ) < N (see (6), (7)).

We have

m∑
i=1

Ri2 · (
n′i∑
j=1

Rj1 · d̄
(k)
ij ) < 2 ·

m∑
i=1

Ri2 · (
n′i∑
j=1

Rj1)

< 2 ·
m∑
i=1

Ri2 · (
n∑
j=1

3j) < 3n+1 ·
m∑
i=1

Ri2

= R2 ·
Rm+12 − R2
R2 − 1

<
R2

R2 − 1
· Rm+12

< 2 · Rm+12 < 2 · ( m+1
√
N/2)m+1 = N (9)

Therefore, AC can correctly decrypt C̃ (k) to obtainM (k).

VII. SECURITY ANALYSIS
Theorem 1: Data confidentiality can be achieved in the

proposed protocol.
Proof: In PPMDP, before delivering, users encrypt their

meter data by executing the Paillier encryption algorithm
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with AC’s public key. Moreover, FDs and CS realize the
local perturbing (Subsection V-C) and the global perturbing
(Subsection V-D) in ciphertext space, respectively. Based
on the parameter setting discussed in section VI, Cij, C ′

(k)
ij ,

C̄ (k)
i , C̄ ′

(k)
i , and C̃ (k) are valid ciphertexts. Since the Paillier

cryptosystem is semantic secure and AC’s private key is
secretly protected, neither FDs and CS nor A can obtain any
useful information from these ciphertexts, even in the case
of collusion of some users, multiple FDs, and CS. Therefore,
PPMDP can guarantee the confidentiality of meter data.
Theorem 2: Data source anonymity can be guaranteed in

the proposed protocol.
Proof: In PPMDP, based on the parameter R1, FDi stores

ni meter data into a polynomial (denoted as polyi) by exe-
cuting the ciphertext operations (2) and (3). The polynomial
polyi satisfies Horner’s Rule. In polyi, the jth coefficient is
the jth user’s meter data with 1

ni
probability. Similarly, based

on the parameter R2, CS embeds polyi into a polynomial
(denoted as poly) by carrying out the ciphertext operations (4)
and (5). The polynomial poly satisfies Horner’s Rule. The ith
coefficient of poly is polyi with 1

m probability. By decrypting
and parsing the ciphertext from CS, AC obtains d̄ij. The prob-
ability that d̄ij is the meter data of Userij is 1

m·ni
. Hence, AC’s

probability of successfully guessing the source of d̄ij is 1
m·ni

,
which is lower than 1

ni
. Moreover, even if A intrudes into

AC’s database to obtain d̄ij and colludes with CS, it maybe
knows d̄ij comes from which group, but its probability of suc-
cessfully guessing the source of d̄ij is 1

ni
, which is not higher

than 1
ni
. Therefore, PPMDP can guarantee the anonymity of

meter data.

VIII. FEATURE ANALYSIS
In this section, we analyze the characters of PPMDP in terms
of fault tolerance and system scalability.

A. FAULT TOLERANCE
PPMDP can still work well even when some entities failure
and can support fault tolerance of user failures, fog device
failures, and cloud server failures. If some users malfunc-
tion, the corresponding fog device (suppose it is FDi) cannot
receive the reports of these users. FDi counts the number
of reports received (assume the number is n̄i) and then dis-
turbs and aggregates these reports. It randomly picks pij∈
{1, · · · , n̄i} \ {pi1, · · · , pi(j−1)} and calculates the (2). And
then, It aggregates (C ′i1, · · · ,C

′

in̄i
) to obtain Ĉi =

∏n̄i
j=1 C

′
ij.

Subsequently, FDi transmits the result to CS. If some FDs
do not work, CS cannot receive the reports of these FDs.
CS counts the number of its received reports. After permu-
tating these reports randomly, CS aggregates them. CS ran-
domly picks pi ∈ {1, · · · , m̄} \ {p1, · · · ,pi−1} and calculates
the (4). And then, CS aggregates (C̄ ′1, · · · , C̄ ′m̄) to obtain
C̃ =

∏m̄
i=1 C̄

′
i . Subsequently, CS sends C̃ to AC. Because

clusters are essential building blocks of our system model,
the relationship between them is equivalent. Furthermore, one

CS is in charge of one cluster. Therefore, some cloud servers
failure does not influence other cloud servers, and the whole
system still works fine. Therefore, PPMDP can support fault
tolerance of user failures, fog device failures, and cloud server
failures.

B. SYSTEM SCALABILITY
According to the above discussion, PPMDP can still work
well in the case of some users leaving the system. Therefore,
in this subsection, we focus on the case of user addition.
When some new users add to the scope of the FDi, the ni
will increase. If ni is still less than or equal to n, FDi can
work normally. If ni > n and the number of FD of the
corresponding cluster is less than m, let the number of users
belong FDi be n, and add a newFD into the cluster. Otherwise,
add a new CS (that is, a new cluster) into the system, and add
a new FD into the new cluster. The number of users of the
new FD is ni − n. For AC, there is not an upper bound on
the number of CS. Therefore, our protocol PPMDP has pretty
good system scalability.

IX. PERFORMANCE ANALYSIS
Our protocol PPMDP and the protocol presented by [31]
both can achieve complex functions’ privacy-preserving com-
putation by breaking the link between data and its source.
Nevertheless, the specific implementationmethods are differ-
ent. Suppose there are n users, and the data range is [0, 2l].
In [31], each user needs to encrypt an ln-bit string to a ran-
dom ln-bit string by leveraging bitwise-XOR homomorphic
encryption. In our protocol PPMDP, each user encrypts his
data by utilizing the Paillier encryption to obtain a 2048-bit
ciphertext (when the security parameter κ = 512). Because
[31] uses efficient XOR operation to realize encryption and
decryption, the protocol presented by [31] has better compu-
tation efficiency. However, it is not suitable for the application
scenarios at scale. The total communication overheads of
[31] and PPMDP are ln2 bits and 2048n bits, respectively.
Since the number of FDs is tiny relative to the number of
users, we ignore the aggregation ciphertexts in PPMDP’s
communication overhead. As the number of users increases,
the growth rate of PPMDP computational cost is linear order,
but that of the protocol presented by [31] is square order.
Therefore, PPMDP is more suitable for massive users’ appli-
cation scenarios.

There is another significant difference between the two
protocols. That is the way to realize random permutations
securely. In [31], there is a trusted authority that decides the
random permutation and distributes it to users, which means
each round of data submission requires the trusted authority’s
participation. Nevertheless, there is not a trusted authority
in our protocol PPMDP, and honest-but-curious FDs and
CS dynamically pick the random permutations. According
to these random permutations, PPMDP utilizes the Paillier
encryption and Horner’s Rule to securely permute users’
meter data.
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Next, we discuss the performance of our protocol PPMDP
under the system settings as follows: η clusters, m groups in
each cluster, n users in each group. In other words, there is a
total of ηmn users. We use a δ-digit ternary number to repre-
sent each user’s meter data. Compared to the exponentiation
operation, the computational cost of multiplication operation
in Z∗N is negligible [34]. Because the primary operations of
Alg.1 are modular and division operation over integer fields,
the computational cost of Alg.1 is also negligible. Te and
Tm denote the computational costs of a modular exponential
operation in Z∗

N 2 and a modular multiplication operation,
respectively. Let the security parameter κ = 512. We adopt
the experiment environment of the reference [18]. OpenSSL
Library [35] is run on a 2.65-GHz processor 4GB-memory
computing machine to estimate the computational costs of
operations. According to [18], Te = 10.082ms, Tm =
0.016ms. According to the Section VI, we set n = 100,
m = 5. That is, the maximum number of users of one
cluster is mn = 500. Note that if a system has 1, 000, 000
smart meters, because the size of a cluster is 500 and one
cloud server manages one cluster under the above system
setting, there is a need for 2000 cloud servers and many
more fog devices, somewhat unsuitable. However, in practical
deployment, a cloud server can be in charge of several clus-
ters according to the cloud server’s ability, and analogously,
a fog device can manage several groups. Therefore, in prac-
tical deployment, then PPMDP needs a limited number of
cloud servers and fog devices. For example, for 1, 000, 000
smart meters, if a cluster’s size is 100, 000, one cloud server
manages 5 clusters, PPMDP needs merely 2 cloud servers.
Besides, if the size of a group is 10, 000, PPMDP needs
merely 100 fog devices.

A. COMPUTATIONAL COSTS ANALYSIS
In PPMDP, each user performs 2δ times modular exponential
operations and δ times modular multiplication operations;
and each FD executes δn+δ times modular exponential oper-
ations and 2δ(n−1) times modular multiplication operations;
and each CS accomplishes δm times modular exponential
operations and 2δ(m−1) times modular multiplication opera-
tions. η clusters execute PPMDP in parallel. After one-round
communication, AC obtains all data that had been perturbed.
Because the data dealt with by AC is plaintexts, here we
do not consider its computational cost. Therefore, the total
computational cost of PPMDP is the computational cost in
one-round communication, as shown in Table 2. It is 107δTe+
(105δ − 1)Tm and is in proportion to δ. At the same time, δ
determines the upper bound W of a meter data. Fig.3 illus-
trates the effect of δ onW and PPMDP’s computational cost,
which can help us choose the suitable parameter δ according
to the concrete application scenarios. When δ = 3, the value
range of a meter data is [0,W = 26], W is too small for
practical application scenarios. When δ = 4, the data range
is [0,W = 80], the total computational cost of PPMDP is
4.3s for 500η users; δ = 5, the data range is [0,W = 242],

TABLE 2. Computational costs of our protocol PPMDP.

FIGURE 3. Effect of δ on meter data scope W and PPMDP’s
computational cost.

the total computational cost is 5.4s; δ = 6, the data range is
[0,W = 728], the total computational cost is 6.5s; and δ = 7,
the data range is [0,W = 2186], the total computational cost
is 7.6s. Because a single user’s meter data is not too large
in each time slot, it is reasonable to assume under normal
conditions, the individual’s electricity consumption data in
a time slot is usually less than 2186. Therefore, δ = 4 or
5 or 6 or 7 can satisfy different practical application sce-
narios. When δ = 4, the computational costs of User, FD,
and CS are 0.081s, 4.086s, and 0.202s, respectively. When
δ = 7, the computational costs of User, FD, and CS are
0.14s, 7.068s, and 0.353s, respectively. The computational
cost of FD is 93.5% of the total computational cost. Note
that if the hardware performance of FD is better than that
of our experimental environment, PPMDP’s computational
cost will be reduced significantly. Besides, we must note that
PPMDP’s computational cost is relative to a cluster’s size and
not to the number of clusters. Therefore, PPMDP is suitable
for smart grids.

Following, we compare the computational costs of our
protocol PPMDP with MuDA [16] and PPM-HDA [17].
Note that, for the sake of simple description, the number
of users in the three protocols is denoted as Num. Besides,
because differential privacy is beyond the scope of this
paper, we ignore the performance overhead of differential
privacy of MuDA and PPM-HDA. Also, need to pay atten-
tion to that PPM-HDA consists of two protocol, MHDA+

(which realizes privacy-preserving additive aggregate func-
tions) and MHDA

⊕
(which achieves privacy-preserving

non-additive aggregate functions). For convenience sake,
regarding non-additive functions, here we only consider the
performance costs of minimum function. Tb denotes the com-
putational costs of a bilinear pairing operation, respectively.
Tp refers to the computational costs of using Pollard’s lambda
method to compute the discrete logarithm. Tp is directly
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proportional to the number of users and the bit length of a
message. In the above-mentioned experiment environment,
Tb = 21.823ms. Set the bit length of a message is 13 and
the number of users is 10, 000, then Tp = 42.875ms. We set
Num to be an integer multiple of 10, 000. For simplicity, Tp
always takes the value 42.875ms. Because of the bit length
of a message is 13, we need a 9-digit ternary number to
express single meter data in our protocol PPMDP. Besides,
in PPMDP, when |N | = 1024, we set n = 100 and m = 5.
That is, the maximum number of users of one cluster is 500.
Therefore, when Num = 10, 000, we let η = 20; when
Num = 20, 000, we let η = 40, and so on.

The computational costs required for MuDA to achieve
the security calculation of average and variance are shown
in Table 3. The computational costs for PPM-HDA to per-
form the security computation of average and minimum are
shown in Table 4. In Table 4, d is the degree of the secret
polynomial function of PPM-HDA. Here we set d equal to 2.
In PPM-HDA, each user first utilizes the prefix membership
verification protocol [36], [37] to compute its prefix family,
in which each prefix represents a range containing its data.
Then the user transforms each prefix of its prefix family
into a unique binary number by using the prefix numeraliza-
tion protocol [38]. After that, the user encrypts these binary
numbers and sends the corresponding ciphertexts to cloud
servers. Here, for PPM-HDA, we only consider the computa-
tional cost of the user doing encryption operation but ignore
the calculation overhead of the user doing other operations.
In our protocol PPMDP, after one-round communication,
AC obtains all data that had been perturbed. So the calcu-
lating cost for PPMDP to realize the security computation
of average, variance, and the minimum is the computational
cost in one-round communication. The computational cost is
107δTe + (105δ − 1)Tm, here δ = 9.

TABLE 3. Computational costs of MuDA [16].

TABLE 4. Computational costs of PPM-HDA [17].

According to Tables 3 and 4, we can obtain the compu-
tational costs of security calculation of average function of
three schemes, the calculation costs of security calculation
of variance function of MuDA and PPMDP, and the compu-
tational costs of security calculation of minimum function
of PPM-HDA and PPMDP, as shown in Figs.4, 5 and 6,
respectively. Fig.4 shows that the computational costs of
MuDA and PPM-HDA(MHDA+) are very close and less than

FIGURE 4. Comparison of computational costs of average function.

FIGURE 5. Comparison of computational costs of variance function.

FIGURE 6. Comparison of computational costs of minimum function.

that of our protocol PPMDP. So PPMDP is not dominant
when implementing security computation of simple average
function. It is because, in MuDA or PPM-HDA(MHDA+),
GW or SP only need to perform Num − 1 times modu-
lar multiplication operations, but in our protocol PPMDP,
FD and CS need to execute n+m times modular exponential
operations to achieve two-level data disturbance. However,
when implementing security computation of complex vari-
ance function, the advantage of PPMDP is very obvious in
relation to MuDA (as shown in Fig.5). MuDA needs to
perform 3(Num−1) times modular multiplication operations
and Num times bilinear pairing operations to realize secu-
rity calculation of variance, nevertheless PPMDP still only
needs to perform n + m times modular exponential oper-
ations. Furthermore, Fig.6 shows that when implementing
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TABLE 5. Communication overhead of MuDA [16].

TABLE 6. Communication overhead of PPM-HDA [17].

security calculation of minimum function PPMDP also has
significant advantage in terms of computation performance
relative to PPM-HDA(MHDA

⊕
). The reason is that in

PPM-HDA(MHDA
⊕
), SP does not perform the aggrega-

tion operation on Num ciphertexts, which causes CS needs
to call Num times Pollard’s lambda method, which takes
computational costs of Num · Tp. However, PPMDP still
only needs to perform n + m times modular exponential
operations to disturb data. Therefore, based on the above
comparison analysis, it is clear that our protocol PPMDP
performs better in terms of computational performance of
realizing privacy-preserving calculation of complex functions
and non-additive functions. The parallel execution between
clusters brings its high-efficient computational performance.

B. COMMUNICATION OVERHEAD ANALYSIS
If the security parameter κ = 512, the length of each
ciphertext of PPMDP is LC1 = 2048 bits, and that of MuDA
and PPM-HDA are LC2 = 1024 bits. The communica-
tion overheads required for MuDA to achieve the security
calculation of average and variance are shown in Table 5.
The communication overhead for PPM-HDA to perform the
security computation of average and minimum are shown
in Table 6. According to Tables 5 and 6, the total communica-
tion overhead ofMuDA to achieve security calculation of two
functions is (Num+3) ·LC2 , and that of PPM-HDA to realize
security computation of two functions is (3Num+1)·LC2 . The
total communication overhead of PPMDP to achieve security
computation of multiple functions is ηδ(mn+m+ 1) · LC1 =

2ηδ(mn+m+ 1) · LC2 . Note, in PPMDP, when |N | = 1024,
we set n = 100 andm = 5. Therefore, when Num = 10, 000,
we let η = 20; when Num = 20, 000, we let η = 40, and
so on. From Fig.7, we can observe when the number of data
is 100, 000, the communication overhead of MuDA is about
12.8M bytes, that of PPM-HDA is about 38.4M bytes, that
of PPMDA is about 103.6M bytes when δ = 4 and is about
181.3M bytes when δ = 7. The communication overhead of
PPMDA is higher than that of PPM-HDA and that of MuDA.
However, we should note that the communication overheads
of PPM-HDA and MuDA are proportional to the number
of functions. In contrast, the number of functions does not
influence PPMDP’s communication overhead. Therefore,
in terms of communication overhead, when processing lots

FIGURE 7. Comparison of communication overhead.

of functions simultaneously, our protocol PPMDP has certain
advantages.

X. CONCLUSION
This paper proposed a privacy-preserving multi-functional
data processing protocol (named PPMDP) for smart grids.
It can achieve a random permutation of massive meter data
in a privacy-preserving way, which thanks to properties of
the Paillier homomorphic encryption and Horner’s Rule and a
two-level permutation mechanism. Because AC could obtain
the raw meter data (but not know the source of each data),
it could realize efficient and secure calculation of plenty
of functions (such as variance, comparing, linear regression
analysis) of extensivemeter data simultaneously. The security
analysis showed that PPMDP ensures data confidentiality
and data source anonymity; the feature analysis revealed
that PPMDP is pretty good scalable. Performance analysis
illustrated that PPMDP is highly efficient in terms of com-
putational costs and communication overhead. The current
PPMDP is not suitable for positioning applications, such
as locating the users who consume tremendous electricity.
Hence, for future works, we will improve the current work
to overcome the above application limitation. Meanwhile,
we will extend the current work to multi-dimensional data
and study other security issues (e.g., internal adversary attack,
differential attacks). We try to develop effective protocols
to realize secure multi-functional multi-dimensional data
processing and resist more attacks. Furthermore, the cur-
rent work only considers the privacy-preserving processing
of users’ electricity consumption data. However, in smart
grids, households equipped with mini electricity generators
(e.g., solar panels) can inject electricity into the electrical
grid [1]. Therefore, there is another direction for our future
work. We will study and design privacy-preserving meter
data processing protocols or schemes for electricity con-
sumption data and electricity injected into the electrical grid
simultaneously.
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